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Micro-CT, also known as X-ray micro-computed tomography, has emerged as the primary instrument for pore-
scale properties study in geological materials. Several studies have used deep learning to achieve super-
resolution reconstruction in order to balance the trade-off between resolution of CT images and field of view.
Nevertheless, most existing methods only work with single-scale CT scans, ignoring the possibility of using multi-
scale image features for image reconstruction. In this study, we proposed a super-resolution approach via multi-
scale fusion using residual U-Net for rock micro-CT image reconstruction (MS-ResUnet). The residual U-Net
provides an encoder-decoder structure. In each encoder layer, several residual sequential blocks and improved
residual blocks are used. The decoder is composed of convolutional ReLU residual blocks and residual chained
pooling blocks. During the encoding-decoding method, information transfers between neighboring multi-
resolution images are fused, resulting in richer rock characteristic information. Qualitative and quantitative
comparisons of sandstone, carbonate, and coal CT images demonstrate that our proposed algorithm surpasses
existing approaches. Our model accurately reconstructed the intricate details of pores in carbonate and sand-

stone, as well as clearly visible coal cracks.

1. Introduction

To solely rely on the rock structure, rock color, rock thickness and
rock water absorption properties of the reservoir is far from sufficient for
acquiring large-scale oil and gas fields. Influential oil and gas resources
can be discovered by studying the microscopic levels of rocks, such as
pore structural features, pore morphology and pore fissure ratio (Bos-
tanabad et al., 2018; Ju et al., 2014, 2017; Hou et al., 2021; Kuang et al.,
2021; Zhu et al., 2019). It is essential to accurately simulate
three-dimensional (3D) pore structure while researching physical and
transport features (Bultreys et al., 2016; Fu et al., 2021, 2022; Li et al.,
2018; Tian et al., 2020). Imaging tools like micro-CT can be used to
obtain the 3D core pore structure, which was known as "digital core"
technology (Feng et al., 2020; Gerke et al., 2017; Karimpouli et al.,
2020; Ju et al., 2019; Sanematsu et al., 2019; Schliiter et al., 2014; Tan
et al., 2021; Zhang et al., 2019). However, due to the cost of image
acquisition equipment and the undesirably external environment, it is
not always possible to obtain high-resolution (HR) images of large-sized
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cores with sharp edges and rich details. Micro-CT technology can reveal
microstructure, but we have to admit that zooming in on rock images
can lead to distortions, which means seeing finer details in
low-resolution (LR) images is challenging. To address these issues,
image super-resolution (SR) reconstruction technology has been used in
the core CT image to improve the image’s resolution (Bizhani et al.,
2022; Dong et al., 2014; Tao et al., 2017; Wang et al., 2020; Feng et al.,
2022; Zhou et al., 2021). This allows for an in-depth understanding of
the rock’s specific characteristics and structural analysis. At the same
time, it provides a solid scientific basis for the research and exploration
of oil or gas reservoirs.

Current single-image SR reconstruction techniques can be divided as
are four categories: interpolation-based, shallow learning-based,
reconstruction-based, and deep learning-based approaches. The first
three techniques have gradually faded out of researchers’ field of vision
due to their inaccuracy. Many academics have researched deep learning-
based SR reconstruction techniques in the past decade. Dong et al.
(2014) first introduced deep learning to the field of image SR
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reconstruction. They implemented end-to-end learning using a deep
convolutional neural network (CNN) with LR images as input and SR
images as output (SRCNN). Dong et al. (2016) improved the SRCNN
network and put forward a fast SR model (FSRCNN). A very deep con-
volutional networks (VDSR) approach was soon put forth to accomplish
super reconstruction (Kim et al., 2016a). However, a significant down-
side is that deeper layers increase the number of network parameters,
which burdens computation and elevates the risk of vanishing/explod-
ing gradients. Utilizing recurrent supervision and skip-connections, Kim
et al. (2016b) employed deeply recursive convolutional networks
(DRCN) to achieve SR reconstruction for the first time, avoiding gradient
disappearance and gradient explosion while using a high-depth neural
network. The SRResNet was developed over deep residual networks to
renovate realistic textures from several LR images (Ledig et al., 2017).
Tai et al. (2017) built a DRCN-based deep recurrent residual network
(DRRN) by adding local residual learning that can leverage residual
knowledge to make deep network training easier and implement
recursive learning while increasing depth to optimize model parameters.
In most of the mentioned studies, the high-frequency features are
ignored. Ledig et al. (2017) enhanced the high-frequency detail of LR
images by using generative adversarial network (GAN) technology
(SRGAN). Wang et al. (2018) proposed an enhanced SRGAN (ESRGAN)
using residual dense blocks as the base network without batch normal-
ization (BN). ESRGAN outperforms SRGAN in texture realism, organicity
and visual quality.

The CNN depth is critical for SRCNN-based image reconstruction.
Lim et al. (2017) designed enhanced deep residual networks (EDSR)
based on SRResNet, which have undergone rapid development. The
EDSR network has 160 layers and removes several BN layers in SRRes-
Net, which boosts training efficiency and speed. Zhang et al. (2018a)
introduced the residual channel attention network (RCAN), a sophisti-
cated 400-layer architecture that leverages residual and channel atten-
tion mechanisms. This design enables the network to concentrate on
learning high-frequency information, optimizing its focus and effi-
ciency. Haris et al. (2018) proposed deep back-projection networks
(DBPN) by constructing an iterative up-sampling method. Different from
image interpolation or nonlinear mapping of the above algorithms,
DBPN focuses on different depths to improve the sampling rate of SR.
Zhang et al. (2018b) developed a residual dense network (RDN) to
collect local features from all convolutional operations using residual
dense blocks and adopt a holistic approach to fuse global features. Guo
et al. (2020) proposed a dual regression network (DRN), which con-
strains and balances the leading network by fusing shallow and deep
features through jump connections mapped by a U-shaped network. Liu
et al. (2020) deployed a residual feature aggregation framework (RFA-
Net) via an enhanced spatial attention module to make the network
focus on critical spatial characteristics. You et al. (2021) introduced a
progressive growing GAN approach (PGGAN) for reconstructing 3D
digital models of carbonate rocks. This innovative technique allows for
the gradual enhancement of network complexity and resolution,
resulting in the generation of high-fidelity 3D digital core images.

Most of the aforementioned deep learning-based SR reconstruction
techniques might be made up of a shallow feature extraction module, a
deep feature extraction module, an up-sampling module and a recon-
struction module. However, this kind of technique usually only stacks a
lot of residual convolution modules during the feature extraction pro-
cess. Common challenges include networks being limited by a uniform
receptive field due to the use of convolutions of the same size without
down-sampling, resulting in the recovery of only same-level features. To
overcome these limitations, integrating multi-scale information
modeling into super-resolution networks is essential. For exploring the
multi-scale SR, a new wave of academic research on multi-scale deep
learning algorithms has begun. Gao and Zhuang (2019) presented
multi-scale deep neural networks (MsDNN) to resolve the issue that the
sampling factor is unknown when the data is input, which makes it
challenging to train the super-score if the wup-sampling and
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down-sampling are unclear. We have to admit that later ideas of ensuing
multi-scale study are universally generated by corresponding diverse
scales fusion. Sun et al. (2021) designed a quick and light framework,
stating a better trade-off between reconstructed performance and
computational efficiency by stacking residual blocks for multi-scale
images. The multi-scale SR reconstruction algorithms mentioned
above have become a significant source of inspiration in this study.

Currently, several studies have explored the use of deep learning to
reconstruct clear digital rock images. Wang et al. (2020) employed SR
techniques for compensating texture recovery, contributing to assessing
digital rocks with a high fraction of LR microporous features. Yan et al.
(2022) recently unveiled a learning strategy based on several lexicons.
The homogeneous HR pore structure’s multi-scale reconstruction algo-
rithm generates a more accurate multi-scale pore structure model by
introducing the edge mode and micro-pore mode of the homogeneous
HR pore structure into the LR pore structure. Liao et al. (2022) verified
the effectiveness of decoupled simulations with sandstone and carbonate
rock samples, significantly accelerating the computational speed of
digital rocks. Liu and Mukerji (2022) put forth a multi-scale imaging
approach based on deep GANs to synthesize large-scale HR digital rocks.
Shan et al. (2022a) deployed a SR reconstruction model (CA-SRResNet)
using CNNs, attention mechanisms and residual technique to produce SR
rock images. A GAN-based method (called RDCA-SRGAN) was proposed
to enhance resolution of digital rock images by integrating residual
blocks and dual-channel attention (Shan et al., 2022b). Cai et al. (2022)
investigated the multi-scale theories of rock in unconventional oil and
gas reservoirs through numerical simulations. These studies in digital
rock motivate us to explore multi-scale digital rock reconstruction using
deep learning. In our study, a digital rock CT image SR reconstruction
algorithm based on residual U-Net and multi-scale fusion is presented.
Our model introduces the following three innovations:1. Utilizing the
residual U-Net algorithm, which combines the characteristics of U-sha-
ped networks and residual connections, to enhance the reconstruction
quality and accuracy of digital rock CT images. 2. Introducing a
multi-scale fusion technique to effectively integrate information from
different scales, improving the algorithm’s ability to capture details and
structures. 3. By leveraging both residual learning and multi-scale in-
formation, our model preserves fine features while better restoring the
details and clarity of the original image. The remainder of this article is
arranged as the following: our proposed multi-scale residual U-Net
(MS-ResUnet) SR algorithm is detailed in Section II, along with the
pertinent model concepts that are introduced. The experimental pro-
cedures and model-training procedures are described in Section III.
Additionally, different methods are tested and compared to our pro-
posed approach. Section IV summarizes the findings of this
investigation.

2. Methodology
2.1. U-Net model

The multi-scale rock CT reconstruction proposed in this study is the
extension of U-Net (Ronneberger et al., 2015). U-Net is an extremely
symmetrical architecture made up of an encoder (left side of U-Net
structure) and a decoder (right side of U-Net structure). The encoder
extracts the image’s features hierarchically, while the decoder recovers
and reconstructs the SR image. Coordinating the encoder with the
decoder does well in extracting high-frequency information. Numerous
researchers improved the original U-Net and created several variations
(Poudel et al., 2016; Roth et al., 2018; Zhou et al., 2018). Fig. 1 shows
the basic U-Net architecture.

2.2. The proposed MS-ResUnet model

Fig. 2 illustrates our proposed framework MS-ResUnet. Be inspired
by Lin et al. (2017), we integrate these blocks into multi-scale models. In
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Fig. 1. Basic U-Net architecture.

Conv(5x5)

Fig. 2. Framework of MS-ResUnet.

particular, the image up-sampling, information interaction and recur-
rent fusion between multi-scale features of single image are carried out
in the encoding phase. Using the fusion of these long-distance residual
connections to transfer the underlying features can refine the rough
high-level feature map. In this study, a 4-cascade structure is adopted to
further realize the skip connection fusion of the encoding/decoding
component of the same resolution image. Gradients can be immediately
transferred to early convolutional layers thanks to this long-distance
residual link, making end-to-end training effective.

To optimize the training stability, prevent over-fitting and speed up
network convergence, the BN layer is utilized before the coding portion.
Following that, improved residual block (IRB) and several residual
sequential blocks (RSBs) are employed in each layer of the encoder.
They are used to downscale images and extract key CT image elements.

Convolutional ReLU residual blocks (CRRB) and residual chained
pooling blocks (RCPB) make up the decoder. It will be combined with its
below layer that was created at a higher scale. Each layer is made up of
the fusion of up-sampling sub-levels and skip-connections of the
encoding portion. To create HR semantic feature maps, high-level se-
mantic data are combined with low-level detail features using these
skip-connections. Up-sampling multi-scale fusion can be utilized in the
decoding phase to connect the simultaneous multi-resolution picture
sub-networks. After the multi-scale fusion deep network structure is
realized, the nonlinear mapping relationship between the input and
output images of the model can be simulated as much as possible, and
then richer features can be extracted to generate SR images.
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2.3. Encoding
1 Residual sequential block (RSB)

The RSB module, which is the main part of deep feature extraction,
hastwo 1 x 1 convolutions that facilitate feature dimension changes and
minimize parameter calculations. The first 1 x 1 convolution is capable
of reducing the number of channels. To maintain the same number of
channels as the original input in the network, the second 1x 1 convo-
lution is used to adjust the channel numbers, ensuring that the output
image matches the input image in terms of channels after the 3x 3
convolution. The RSB module is shown in Fig. 3.

2. Improved residual block (IRB)

Each layer has an IRB module configured for scale modification, or
dimensionality reduction, being convenient for the output from the
layer below. To achieve the dimension reduction and normalization of
incoming images in the input stage, the IRB backbone structure is
consistent with the main feature extraction part of RSB. Besides, IRB
adds a1 x 1 convolution block and a BN layer as a direct connection in
the residual structure part. The structure of IRB is shown in Fig. 4. From
Fig. 4, we can see that the data is loaded into the deep RSB module to
carry out the encoding section of the data feature extraction phase
following the IRB module’s dimensionality reduction.

2.4. Decoding
1. Residual chained pooling block (RCPB)

The core CT image area serves as background context information
with the proposed residual chain pooling block, which effectively ag-
gregates image features from various window sizes.

The RCPB module comprises several chained pooling blocks, each of
which has a max pooling layer and a 3 x 3 convolution layer. The max
pooling layer reduces feature map sizes by selecting the maximum value
in each 5 x 5 window. The output of the prior pooling block is fed to
each subsequent chained pooling block. To retrieve the features of a vast
area, each pooling block might reuse the feature information from the
preceding pooling operation. Skip connections are employed to merge
the output features from all pooling blocks with the input features,
promoting gradient propagation throughout the training process. Note
that the pooling blocks match up 3 x 3 convolutional layers to obtain
the best result after abundant experimental tests. The convolution
operation is equivalent to the weighting calculation, working for sum-
mation and fusion after each pooling process. The workflow of RCPB is
shown in Fig. 5.

2. Convolutional ReLU residual block (CRRB)

Encouraged by a simplified version of the convolutional unit (He
et al., 2016), a novel residual block is designed, namely CRRB. It mod-
ifies pre-trained weights before the network decodes the output, which
consists of two ReLU and 3 x 3 convolutions, as well as the residual sum.
In this way, under the same computing resources, more network layers
can be stacked or more features can be extracted from each layer, to
obtain better performance. A CRRB architecture is shown in Fig. 6.
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2.5. Multi-scale fusion

Gradients can be propagated effectively in preceding layers because
only linear transformations are implemented in these layers, which is
necessary for further fusion processing. We consider multi-scale fusion
as the summation of outputs from various residual connections, which is
utilized specifically integrates feature maps with different shapes. It is
necessary to ensure that the linear feature dimension is adaptive, which
enables the feature dimension suitable for fusing the input from each
decoding pipeline into an HR feature map. The flow chart of multi-scale
fusion is drawn in Fig. 7. The module first employs convolution that acts
on the input to produce feature maps; next, it expands all smaller feature
maps to generate the same feature dimension; and finally, it fuses all
feature maps. The input adaptation of this module aids in correctly
tuning feature values along various paths. If there is only one input path,
it will travel directly through the module without modification.

2.6. Loss function

The difference between the response estimator and the ground truth
is measured by mean square error (MSE). For instance, t represents a
population parameter 6 derives from a sample estimate. The theoretical
likelihood of (6 — t)?, called the MSE of the estimator t.

MSE is defined as the objective function during the MS-ResUnet
network training to improve the features of the reconstructed image.
The same dimension images are input. We need to obtain the squares
sum of the difference between the predicted and ground truth.

Making a metric by adding the squares of the corresponding differ-
ences of the n elements, dividing the result by n, and then taking the MSE
standard between the input x (output of the model prediction) and the
target y:

loss(x,y) =1 /N ZL] (=)’ M

If the true value is y and the predicted value is y, where y and y can both
take on any shape and contain any number of elements, respectively, the
loss function is expressed as follows:

loss(y,y) =1 /N Z:;l 3 — )’ )

3. Experiments

We used a GPU server with Intel Core i19-9900KF@3.60GHz and two
NVIDIA GeForce GTX 2080ti GPUs configured to 32 GB. All experiments
were carried out on a 64-bit Windows10 OS equipped with CUDA
Toolkit 10.2 and the Pytorch framework. The state-of-art methods
including SRCNN, VDSR, FSRCNN, DRRN, EDSR, SRGAN, ESRGAN,
RCAN and our MS-ResUnet model are trained and tested in our
experiments.

3.1. Datasets

We used carbonate rock, sandstone and coal data from DeepRock-SR
(Wang et al., 2019). The training set consists of 9600 HR rock CT images,
while the validation set and testing set are each composed of 1200 im-
ages. Rock CT images are characterized by 500 x 500 unsegmented
slices, a resolution of 2.7-25 ym, and no overlap between the testing set
and training set.

Conv(1x1) BN ReLU

Conv(3x3) BN

ReLU Conv(1x1) BN ::m

Fig. 3. Residual sequential block (RSB).
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Fig. 4. Improved residual block (IRB).
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Fig. 5. Residual chained pooling block (RCPB).
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Fig. 6. Convolutional ReLU residual block (CRRB).
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Fig. 7. Structure of multi-scale fusion.

The images are randomly cropped to 96 x 96 size for faster training
and testing speed. Fig. 8 shows three clipped training sample. Fig. 9
displays testing images. The training images are augmented with 90-de-
gree rotation, horizontal flips and a random crop. The original HR im-
ages serve as the target labels, which are then degraded to
corresponding LR images. Notably, in this study, bicubic interpolation
down-sampling is used. The initial HR image is scaled by a factor of 2, 4
and 8 to produce noisy and blurred LR pictures, depending on the
different magnification scales. Before down-sampling, the input is
considered as HR images, subsequently, the ones are changed to LR
images. An efficient pair for later model training consists of LR and HR
images. As a result, the LR images as the inputs of MS-ResUnet have the
following pixel sizes: 48 x 48, 24 x 24 and 12 x 12.

3.2. Training setting
We trained our models using the Adam optimizer during the exper-
iment, with initial learning rates of 1 x 10~* and exponential decay rates

of #; = 0.9 and f, = 0.999. The learning rate is halved every 200 epochs
throughout the 1000 training epochs.

3.3. Experimental results

1 Quantitative results

Fig. 8. Training set.

Fig. 9. Testing set.

The structural similarity index (SSIM) and the peak signal-to-noise
ratio (PSNR) are two metrics used in the objective evaluation tech-
nique. The quality of image translation is frequently measured using
PSNR, a full-reference image evaluation metric. Here is how MSE and
PSNR are respectively defined in Eq. (3) and Eq. (4):

i o~ [f(i,j) —fi,7)]
MSE:Z[':OE]:OV( Q] < u(/ ) ©)

2

MAX:
PSNR=101 i
5 0 L0810 155

4

MSE has been referred to in section 2.6, which reacts to the differences
between the HR image and the regenerated SR image, MAX denotes the
highest degree of gray, and PSNR is measured in decibels (dB). The
reconstructed CT picture is more faithful to the original image with a
higher PSNR value.

Pixel accuracy is taken into account by PSNR, but visual aspects of
human eyesight are ignored. Another measure, called SSIM, can describe
the structural information of the image. Using the mean (), variance
and covariance (o) and stable variables (C). The following Eq. (5) is the
SSIM formula:

(2up, + C1) (20, + C2)
(uf +ul + C1> (a§ + 02+ Cz)

SSIM (x,y) = (5)

The value range of SSIM is between O and 1. The SSIM is more
representative of the real sample when it is nearer 1.

At scale factors of 2, 4 and 8, our MS-ResUnet model is compared
with SRCNN, FSRCNN, EDSR, VDSR, DRRN, RCAN, SRGAN and ESR-
GAN. The testing data consists of three sets of 500 x 500 picture sam-
ples, representing images of sandstone, carbonate and coal, respectively.
Table 1 demonstrates the average PSNR and SSIM for each benchmark
approach. The highest PSNR and SSIM are set in bold. From Table 1, we
observe that the deep network models and straightforward structure of
SRCNN, FSRCNN, VDSR and DRRN result in lower PSNR and SSIM. The
channel attention technique of RCAN also enables the model to acquire a
higher evaluation value. EDSR optimizes the deep network topology to
conserve space to enlarge the size of the model to boost the model’s
expressiveness. The PSNR values of the SRGAN and ESRGAN are
insufficient, but the texture is more natural with higher SSIM value.
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Table 1
Comparison PSNR and SSIM values.
Model Scale Average PSNR Average SSIM
SRCNN 2 32.90 0.791
4 31.27 0.790
8 28.32 0.730
FSRCNN 2 33.25 0.800
4 31.50 0.792
8 28.40 0.732
VDSR 2 33.72 0.828
4 32.13 0.814
8 28.71 0.748
DRRN 2 33.82 0.831
4 32.33 0.822
8 28.91 0.750
SRGAN 2 34.11 0.895
4 32.42 0.862
8 29.25 0.804
EDSR 2 34.47 0.863
4 32.98 0.849
8 29.57 0.766
RCAN 2 34.46 0.888
4 33.11 0.854
8 29.68 0.775
ESRGAN 2 34.46 0.900
4 32.50 0.879
8 29.32 0.829
MS-ResUnet (Ours) 2 36.11 0.933
4 33.75 0.810
8 29.84 0.786

From Table 1, we can summarize that our MS-ResUnet model has a
considerable improvement in structural similarity. The MS-ResUnet is
capable of capturing the more textural details of rock CT images. It has
the optimal PSNR value at all three magnification scales. As the scale
increases, the transmission of information within the network may
become more challenging in multi-scale fusion. This could result in
ineffective transmission and utilization of crucial information at scales 4
and 8, impacting the quality of reconstruction as well as the SSIM scores.

2 Qualitative results

The outcomes of the experiments frequently match the human eye’s
intuitive reflection. When the scale factor is 2, it is difficult to see the
small difference between the HR and SR images by the human eyes.
When the scale factor is 8, the feature information is too hazy. For
qualitative evaluation, a scale factor of 4 was selected. The HR images
and SR images produced from SRCNN, FSRCNN, EDSR, VDSR, DRRN,
RCAN, SRGAN, ESRGAN and MS-ResUnet are compared in Figs. 10-12.

Original SRCNN

RDCA

FSRCNN
m u
m u

SRGAN
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As shown in Figs. 10-12, when comparisons of the SR images from
the nine algorithms are presented with a scale factor of 4, The SR images
generated by SRCNN and FSRCNN are distorted and blurred. The pa-
rameters of EDSR, VDSR, DRRN and RCAN are optimized by increasing
the number of network layers, which improves the reconstruction effect
of rock CT images. However, SRGAN and ESRGAN with the higher
theoretical value of structural similarity have a better visual effect on the
human eye and form a clearer image, but when the detail texture in-
creases, the edge of the image is not so smooth.

In detail, algorithms such as SRCNN, VDSR, FSRCNN and DRRN are
difficult to reconstruct rock fissure edges and particle characteristics in
carbonate and sandstone. EDSR and RDCA models cannot extract
intragranular information, but they have advantages when intra-
granular complex information is correlated. SRGAN and ESRGAN al-
gorithms facilitate pixel-by-pixel matching of the original image. Among
the nine models, the SRGAN, EDSR, RCAN and ESRGAN algorithms can
better analyze the texture and high-frequency information of the
reconstructed CT images, resulting in clearer and higher-quality SR
images. However, in the enlarged image details, the edges are not sharp
enough and the details are not realistic enough.

In contrast to them, the MS-ResUnet utilizes the multi-scale fusion of
these long-distance residual connections to transfer low-level features
for refining coarse high-level feature maps. The long-distance residual
connection enables gradients to be directly propagated to early con-
volutional layers, which enables efficient end-to-end training. Simulta-
neously, MS-ResUnet generates richer texture features and less content
loss, which are optimal for human vision.

3. Number of parameters and operations

The floating-point operations per second (flops) and number of pa-
rameters for all trained models are described in Table 2. Our MS-
ResUnet model achieved comparable performance with EDSR, RCAN
and ESRGAN with fewer parameters (7.45M). The MS-ResUnet has
smaller flops than DRRN, EDSR, RCAN and ESRGAN. Our work incor-
porated the multi-scale idea into the SR domain, which captures the
multi-scale features and reduces network depth, hence the better per-
formance of the network while keeping the parameters and number of
operations low.

3.4. Ablation study
1. Number of residual sequential block (RSB) modules

We compare and test the network performance utilizing various

VDSR DRRN
u
m

ESRGAN MS-ResUnet

Fig. 10. Comparisons of reconstructed SR images on carbonate using nine models.
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Fig. 11. Comparisons of reconstructed SR images on coal using nine models.
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Fig. 12. Comparisons of reconstructed SR images on sandstone using nine models.

Table 2 Table 3
Number of parameters and operations for nine models. Comparisons of PSNR and SSIM for different numbers of RSB modules.
Model Parameters Flops RSB structure Scale Average PSNR Average SSIM
SRCNN 0.06M 2.87G [3, 4,3, 4] 2 35.77 0.931
FSRCNN 0.01M 1.32G 4 33.38 0.806
VDSR 0.66M 33.35G 8 28.95 0.782
DRRN 0.30M 59.31G [3,4,4,3] 2 35.21 0.931
EDSR 1.37M 68.99G 4 33.44 0.805
RCAN 15.44M 770.03G 8 28.14 0.783
SRGAN 5.91M 36.51G [4,3,3,4] 2 35.13 0.928
ESRGAN 40.26M 904.39G 4 33.59 0.805
MS-ResUnet (ours) 7.45M 52.05G 8 28.88 0.778
[3, 23, 23, 3] 2 35.90 0.932
4 33.38 0.804
numbers of RSB modules in the encoding stage before coming to the best 8 28.14 0.778
experimental results. Performance evaluations were independently (4,23, 3, 23] i giif 8':(3;;
carried out to compare the impact of shallow versus deep network front s 28.75 0777
ends. The deep network has a better overall impact than the shallow [23, 3, 23, 3] 2 36.03 0.932
network. On the other hand, an excessively deep network cannot pro- 4 33.53 0.806
duce better outcomes and has a slower rate of convergence. Table 3 8 28.91 0.783
shows that the best PSNR and SSIM values for the 4-layer encoder were 3,4,23,3] i gg;; g‘:?z
obtained with 3, 4, 23 and 3 RSB modules, respectively. s 20.84 0.786

2. Loss analysis
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Loss function calculates the pixel-level loss based on the one-to-one
correspondence of pixel positions between two images. In an extreme
scenario, if two identical images are slightly shifted by one pixel in their
corresponding positions, the pixel-level loss function may yield rela-
tively large values, even though the human eye may perceive minimal
differences between the images. Common loss functions employed in
deep learning-based SR include MSE, mean absolute error (MAE),
perceptual loss, and gradient term loss.

MAE is a commonly utilized regression objective function. It is the
total of the absolute differences between the anticipated value y; and the
target value y;. Regardless of the mistake’s direction, it stands for the
average error margin of the anticipated values. It is expressed as
following Eq. (6):

1 n
loss(x,y) = Z i —f(x)] 6)

i=1

The semantic information contained in the image can be understood
by the perceptual loss function. The image’s feature information can be
extracted using a VGG network, and the feature information is then used
to calculate the loss. The expression for perceptual loss is as follows in
Eq. (7):

28,53 =03 - o) @
Jat T GHW Y e

Gradient term loss is mainly used for image smoothing, ghost
removal, denoising and restoration processing. The total variation of
noise-contaminated images is significantly larger than that of noise-free
images. Limiting the total variation suppresses noise. For image pro-
cessing, total variation loss can smooth the image. The principle is that a
signal with excessive and possibly spurious detail has a high total vari-
ation, that is, the integral of the absolute gradient of the signal is high.
According to this principle, the total variation of the signal is reduced so
that it closely matches the original signal. This removes unwanted de-
tails while preserving important details such as edges. The gradient term
loss function is described in Eq. (8):

4
Inw=)_ [(xi-j — 1) (i — x"*”')z] 2 ®

To find the best loss function for our model, we employ MAE, MSE
and the perceptual loss function. Table 4 shows the experimental find-
ings. We can see that the MSE loss function produces the greatest PSNR
and SSIM.

4. Discussion

In this study, we presented a novel SR algorithm using U-Net with
multi-scale fusion and residual structure (MS-ResUnet). Experimental
results show that MS-ResUnet achieves the highest average PSNR at all
three magnification scales and the highest average SSIM at x 2 magni-
fication. The comparison in Figs. 10-12 illustrates that our model
accurately reconstructs the detailed pores in carbonate and sandstone,

Table 4
Comparison of MS-ResUet in PSNR and SSIM at different loss functions.

Loss function Scale Average PSNR Average SSIM
Perceptual loss with gradient term 2 30.31 0.933
4 28.45 0.807
8 26.12 0.783
Perceptual loss without gradient term 2 31.47 0.933
4 31.23 0.807
8 26.59 0.783
MAE loss 2 36.05 0.932
4 33.03 0.807
8 28.75 0.783
MSE loss 2 36.11 0.933
4 33.75 0.809
8 29.84 0.786
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as well as clearly visible coal cracks. This approach offers a solution to
address the limitations of traditional digital rock reconstruction
methods and mitigate the blurring effects induced by hardware equip-
ment and environmental factors. However, it is important to note that
the current research is limited to two-dimensional digital rock core
images and has not yet considered 3D volumetric rock core images (You
et al., 2021). Future work will overcome this challenge and expand the
application of digital rock cores to broader scenarios, better supporting
research and practices in the geological and petroleum engineering
fields.

5. Conclusion

HR digital rock core images are essential data sources for geological
and petroleum engineering research, offering valuable insights for oil
exploration and development. Nevertheless, constraints from physical
devices and external conditions often result in the acquisition of LR
images. These LR digital rock core images may fail to fully depict the
intricate details and textural characteristics of the rock cores, potentially
compromising the precision and dependability of geological and petro-
leum engineering investigations. To address this issue, we introduced a
SR approach through multi-scale fusion using residual U-Net for
reconstructing rock micro-CT images (MS-ResUnet). The proposed
method was tested on image samples of sandstone, carbonate rock, and
coal during the experiments. Through comparisons of various loss
functions, module numbers, and depths, we identified the optimal
network structure. Compared to eight methods, our MS-ResUnet excels
in capturing fine details at image edges and restoring high-frequency
features by integrating low-level detail traits with high-level pixel
classification characteristics. The use of our MS-ResUnet framework
results in reconstructed SR images that closely resemble HR images in
terms of structure. This method explored in our study contributes to
advancing rock physics within the multi-scale digital rock methodology,
offering an efficient tool for characterizing unconventional reservoirs.
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