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A B S T R A C T   

Micro-CT, also known as X-ray micro-computed tomography, has emerged as the primary instrument for pore- 
scale properties study in geological materials. Several studies have used deep learning to achieve super- 
resolution reconstruction in order to balance the trade-off between resolution of CT images and field of view. 
Nevertheless, most existing methods only work with single-scale CT scans, ignoring the possibility of using multi- 
scale image features for image reconstruction. In this study, we proposed a super-resolution approach via multi- 
scale fusion using residual U-Net for rock micro-CT image reconstruction (MS-ResUnet). The residual U-Net 
provides an encoder-decoder structure. In each encoder layer, several residual sequential blocks and improved 
residual blocks are used. The decoder is composed of convolutional ReLU residual blocks and residual chained 
pooling blocks. During the encoding-decoding method, information transfers between neighboring multi- 
resolution images are fused, resulting in richer rock characteristic information. Qualitative and quantitative 
comparisons of sandstone, carbonate, and coal CT images demonstrate that our proposed algorithm surpasses 
existing approaches. Our model accurately reconstructed the intricate details of pores in carbonate and sand
stone, as well as clearly visible coal cracks.   

1. Introduction 

To solely rely on the rock structure, rock color, rock thickness and 
rock water absorption properties of the reservoir is far from sufficient for 
acquiring large-scale oil and gas fields. Influential oil and gas resources 
can be discovered by studying the microscopic levels of rocks, such as 
pore structural features, pore morphology and pore fissure ratio (Bos
tanabad et al., 2018; Ju et al., 2014, 2017; Hou et al., 2021; Kuang et al., 
2021; Zhu et al., 2019). It is essential to accurately simulate 
three-dimensional (3D) pore structure while researching physical and 
transport features (Bultreys et al., 2016; Fu et al., 2021, 2022; Li et al., 
2018; Tian et al., 2020). Imaging tools like micro-CT can be used to 
obtain the 3D core pore structure, which was known as "digital core" 
technology (Feng et al., 2020; Gerke et al., 2017; Karimpouli et al., 
2020; Ju et al., 2019; Sanematsu et al., 2019; Schlüter et al., 2014; Tan 
et al., 2021; Zhang et al., 2019). However, due to the cost of image 
acquisition equipment and the undesirably external environment, it is 
not always possible to obtain high-resolution (HR) images of large-sized 

cores with sharp edges and rich details. Micro-CT technology can reveal 
microstructure, but we have to admit that zooming in on rock images 
can lead to distortions, which means seeing finer details in 
low-resolution (LR) images is challenging. To address these issues, 
image super-resolution (SR) reconstruction technology has been used in 
the core CT image to improve the image’s resolution (Bizhani et al., 
2022; Dong et al., 2014; Tao et al., 2017; Wang et al., 2020; Feng et al., 
2022; Zhou et al., 2021). This allows for an in-depth understanding of 
the rock’s specific characteristics and structural analysis. At the same 
time, it provides a solid scientific basis for the research and exploration 
of oil or gas reservoirs. 

Current single-image SR reconstruction techniques can be divided as 
are four categories: interpolation-based, shallow learning-based, 
reconstruction-based, and deep learning-based approaches. The first 
three techniques have gradually faded out of researchers’ field of vision 
due to their inaccuracy. Many academics have researched deep learning- 
based SR reconstruction techniques in the past decade. Dong et al. 
(2014) first introduced deep learning to the field of image SR 
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reconstruction. They implemented end-to-end learning using a deep 
convolutional neural network (CNN) with LR images as input and SR 
images as output (SRCNN). Dong et al. (2016) improved the SRCNN 
network and put forward a fast SR model (FSRCNN). A very deep con
volutional networks (VDSR) approach was soon put forth to accomplish 
super reconstruction (Kim et al., 2016a). However, a significant down
side is that deeper layers increase the number of network parameters, 
which burdens computation and elevates the risk of vanishing/explod
ing gradients. Utilizing recurrent supervision and skip-connections, Kim 
et al. (2016b) employed deeply recursive convolutional networks 
(DRCN) to achieve SR reconstruction for the first time, avoiding gradient 
disappearance and gradient explosion while using a high-depth neural 
network. The SRResNet was developed over deep residual networks to 
renovate realistic textures from several LR images (Ledig et al., 2017). 
Tai et al. (2017) built a DRCN-based deep recurrent residual network 
(DRRN) by adding local residual learning that can leverage residual 
knowledge to make deep network training easier and implement 
recursive learning while increasing depth to optimize model parameters. 
In most of the mentioned studies, the high-frequency features are 
ignored. Ledig et al. (2017) enhanced the high-frequency detail of LR 
images by using generative adversarial network (GAN) technology 
(SRGAN). Wang et al. (2018) proposed an enhanced SRGAN (ESRGAN) 
using residual dense blocks as the base network without batch normal
ization (BN). ESRGAN outperforms SRGAN in texture realism, organicity 
and visual quality. 

The CNN depth is critical for SRCNN-based image reconstruction. 
Lim et al. (2017) designed enhanced deep residual networks (EDSR) 
based on SRResNet, which have undergone rapid development. The 
EDSR network has 160 layers and removes several BN layers in SRRes
Net, which boosts training efficiency and speed. Zhang et al. (2018a) 
introduced the residual channel attention network (RCAN), a sophisti
cated 400-layer architecture that leverages residual and channel atten
tion mechanisms. This design enables the network to concentrate on 
learning high-frequency information, optimizing its focus and effi
ciency. Haris et al. (2018) proposed deep back-projection networks 
(DBPN) by constructing an iterative up-sampling method. Different from 
image interpolation or nonlinear mapping of the above algorithms, 
DBPN focuses on different depths to improve the sampling rate of SR. 
Zhang et al. (2018b) developed a residual dense network (RDN) to 
collect local features from all convolutional operations using residual 
dense blocks and adopt a holistic approach to fuse global features. Guo 
et al. (2020) proposed a dual regression network (DRN), which con
strains and balances the leading network by fusing shallow and deep 
features through jump connections mapped by a U-shaped network. Liu 
et al. (2020) deployed a residual feature aggregation framework (RFA
Net) via an enhanced spatial attention module to make the network 
focus on critical spatial characteristics. You et al. (2021) introduced a 
progressive growing GAN approach (PGGAN) for reconstructing 3D 
digital models of carbonate rocks. This innovative technique allows for 
the gradual enhancement of network complexity and resolution, 
resulting in the generation of high-fidelity 3D digital core images. 

Most of the aforementioned deep learning-based SR reconstruction 
techniques might be made up of a shallow feature extraction module, a 
deep feature extraction module, an up-sampling module and a recon
struction module. However, this kind of technique usually only stacks a 
lot of residual convolution modules during the feature extraction pro
cess. Common challenges include networks being limited by a uniform 
receptive field due to the use of convolutions of the same size without 
down-sampling, resulting in the recovery of only same-level features. To 
overcome these limitations, integrating multi-scale information 
modeling into super-resolution networks is essential. For exploring the 
multi-scale SR, a new wave of academic research on multi-scale deep 
learning algorithms has begun. Gao and Zhuang (2019) presented 
multi-scale deep neural networks (MsDNN) to resolve the issue that the 
sampling factor is unknown when the data is input, which makes it 
challenging to train the super-score if the up-sampling and 

down-sampling are unclear. We have to admit that later ideas of ensuing 
multi-scale study are universally generated by corresponding diverse 
scales fusion. Sun et al. (2021) designed a quick and light framework, 
stating a better trade-off between reconstructed performance and 
computational efficiency by stacking residual blocks for multi-scale 
images. The multi-scale SR reconstruction algorithms mentioned 
above have become a significant source of inspiration in this study. 

Currently, several studies have explored the use of deep learning to 
reconstruct clear digital rock images. Wang et al. (2020) employed SR 
techniques for compensating texture recovery, contributing to assessing 
digital rocks with a high fraction of LR microporous features. Yan et al. 
(2022) recently unveiled a learning strategy based on several lexicons. 
The homogeneous HR pore structure’s multi-scale reconstruction algo
rithm generates a more accurate multi-scale pore structure model by 
introducing the edge mode and micro-pore mode of the homogeneous 
HR pore structure into the LR pore structure. Liao et al. (2022) verified 
the effectiveness of decoupled simulations with sandstone and carbonate 
rock samples, significantly accelerating the computational speed of 
digital rocks. Liu and Mukerji (2022) put forth a multi-scale imaging 
approach based on deep GANs to synthesize large-scale HR digital rocks. 
Shan et al. (2022a) deployed a SR reconstruction model (CA-SRResNet) 
using CNNs, attention mechanisms and residual technique to produce SR 
rock images. A GAN-based method (called RDCA-SRGAN) was proposed 
to enhance resolution of digital rock images by integrating residual 
blocks and dual-channel attention (Shan et al., 2022b). Cai et al. (2022) 
investigated the multi-scale theories of rock in unconventional oil and 
gas reservoirs through numerical simulations. These studies in digital 
rock motivate us to explore multi-scale digital rock reconstruction using 
deep learning. In our study, a digital rock CT image SR reconstruction 
algorithm based on residual U-Net and multi-scale fusion is presented. 
Our model introduces the following three innovations:1. Utilizing the 
residual U-Net algorithm, which combines the characteristics of U-sha
ped networks and residual connections, to enhance the reconstruction 
quality and accuracy of digital rock CT images. 2. Introducing a 
multi-scale fusion technique to effectively integrate information from 
different scales, improving the algorithm’s ability to capture details and 
structures. 3. By leveraging both residual learning and multi-scale in
formation, our model preserves fine features while better restoring the 
details and clarity of the original image. The remainder of this article is 
arranged as the following: our proposed multi-scale residual U-Net 
(MS-ResUnet) SR algorithm is detailed in Section II, along with the 
pertinent model concepts that are introduced. The experimental pro
cedures and model-training procedures are described in Section III. 
Additionally, different methods are tested and compared to our pro
posed approach. Section IV summarizes the findings of this 
investigation. 

2. Methodology 

2.1. U-Net model 

The multi-scale rock CT reconstruction proposed in this study is the 
extension of U-Net (Ronneberger et al., 2015). U-Net is an extremely 
symmetrical architecture made up of an encoder (left side of U-Net 
structure) and a decoder (right side of U-Net structure). The encoder 
extracts the image’s features hierarchically, while the decoder recovers 
and reconstructs the SR image. Coordinating the encoder with the 
decoder does well in extracting high-frequency information. Numerous 
researchers improved the original U-Net and created several variations 
(Poudel et al., 2016; Roth et al., 2018; Zhou et al., 2018). Fig. 1 shows 
the basic U-Net architecture. 

2.2. The proposed MS-ResUnet model 

Fig. 2 illustrates our proposed framework MS-ResUnet. Be inspired 
by Lin et al. (2017), we integrate these blocks into multi-scale models. In 
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particular, the image up-sampling, information interaction and recur
rent fusion between multi-scale features of single image are carried out 
in the encoding phase. Using the fusion of these long-distance residual 
connections to transfer the underlying features can refine the rough 
high-level feature map. In this study, a 4-cascade structure is adopted to 
further realize the skip connection fusion of the encoding/decoding 
component of the same resolution image. Gradients can be immediately 
transferred to early convolutional layers thanks to this long-distance 
residual link, making end-to-end training effective. 

To optimize the training stability, prevent over-fitting and speed up 
network convergence, the BN layer is utilized before the coding portion. 
Following that, improved residual block (IRB) and several residual 
sequential blocks (RSBs) are employed in each layer of the encoder. 
They are used to downscale images and extract key CT image elements. 

Convolutional ReLU residual blocks (CRRB) and residual chained 
pooling blocks (RCPB) make up the decoder. It will be combined with its 
below layer that was created at a higher scale. Each layer is made up of 
the fusion of up-sampling sub-levels and skip-connections of the 
encoding portion. To create HR semantic feature maps, high-level se
mantic data are combined with low-level detail features using these 
skip-connections. Up-sampling multi-scale fusion can be utilized in the 
decoding phase to connect the simultaneous multi-resolution picture 
sub-networks. After the multi-scale fusion deep network structure is 
realized, the nonlinear mapping relationship between the input and 
output images of the model can be simulated as much as possible, and 
then richer features can be extracted to generate SR images. 

Fig. 1. Basic U-Net architecture.  

Fig. 2. Framework of MS-ResUnet.  
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2.3. Encoding  

1 Residual sequential block (RSB) 

The RSB module, which is the main part of deep feature extraction, 
has two 1 × 1 convolutions that facilitate feature dimension changes and 
minimize parameter calculations. The first 1 × 1 convolution is capable 
of reducing the number of channels. To maintain the same number of 
channels as the original input in the network, the second 1× 1 convo
lution is used to adjust the channel numbers, ensuring that the output 
image matches the input image in terms of channels after the 3× 3 
convolution. The RSB module is shown in Fig. 3.  

2. Improved residual block (IRB) 

Each layer has an IRB module configured for scale modification, or 
dimensionality reduction, being convenient for the output from the 
layer below. To achieve the dimension reduction and normalization of 
incoming images in the input stage, the IRB backbone structure is 
consistent with the main feature extraction part of RSB. Besides, IRB 
adds a 1 × 1 convolution block and a BN layer as a direct connection in 
the residual structure part. The structure of IRB is shown in Fig. 4. From 
Fig. 4, we can see that the data is loaded into the deep RSB module to 
carry out the encoding section of the data feature extraction phase 
following the IRB module’s dimensionality reduction. 

2.4. Decoding  

1. Residual chained pooling block (RCPB) 

The core CT image area serves as background context information 
with the proposed residual chain pooling block, which effectively ag
gregates image features from various window sizes. 

The RCPB module comprises several chained pooling blocks, each of 
which has a max pooling layer and a 3 × 3 convolution layer. The max 
pooling layer reduces feature map sizes by selecting the maximum value 
in each 5 × 5 window. The output of the prior pooling block is fed to 
each subsequent chained pooling block. To retrieve the features of a vast 
area, each pooling block might reuse the feature information from the 
preceding pooling operation. Skip connections are employed to merge 
the output features from all pooling blocks with the input features, 
promoting gradient propagation throughout the training process. Note 
that the pooling blocks match up 3 × 3 convolutional layers to obtain 
the best result after abundant experimental tests. The convolution 
operation is equivalent to the weighting calculation, working for sum
mation and fusion after each pooling process. The workflow of RCPB is 
shown in Fig. 5.  

2. Convolutional ReLU residual block (CRRB) 

Encouraged by a simplified version of the convolutional unit (He 
et al., 2016), a novel residual block is designed, namely CRRB. It mod
ifies pre-trained weights before the network decodes the output, which 
consists of two ReLU and 3 × 3 convolutions, as well as the residual sum. 
In this way, under the same computing resources, more network layers 
can be stacked or more features can be extracted from each layer, to 
obtain better performance. A CRRB architecture is shown in Fig. 6. 

2.5. Multi-scale fusion 

Gradients can be propagated effectively in preceding layers because 
only linear transformations are implemented in these layers, which is 
necessary for further fusion processing. We consider multi-scale fusion 
as the summation of outputs from various residual connections, which is 
utilized specifically integrates feature maps with different shapes. It is 
necessary to ensure that the linear feature dimension is adaptive, which 
enables the feature dimension suitable for fusing the input from each 
decoding pipeline into an HR feature map. The flow chart of multi-scale 
fusion is drawn in Fig. 7. The module first employs convolution that acts 
on the input to produce feature maps; next, it expands all smaller feature 
maps to generate the same feature dimension; and finally, it fuses all 
feature maps. The input adaptation of this module aids in correctly 
tuning feature values along various paths. If there is only one input path, 
it will travel directly through the module without modification. 

2.6. Loss function 

The difference between the response estimator and the ground truth 
is measured by mean square error (MSE). For instance, t represents a 
population parameter θ derives from a sample estimate. The theoretical 
likelihood of (θ − t)2, called the MSE of the estimator t. 

MSE is defined as the objective function during the MS-ResUnet 
network training to improve the features of the reconstructed image. 
The same dimension images are input. We need to obtain the squares 
sum of the difference between the predicted and ground truth. 

Making a metric by adding the squares of the corresponding differ
ences of the n elements, dividing the result by n, and then taking the MSE 
standard between the input x (output of the model prediction) and the 
target y: 

loss(x, y) = 1

/

N
∑n

i=1
(xi − yi)

2 (1)  

If the true value is y and the predicted value is ŷ, where ŷ and y can both 
take on any shape and contain any number of elements, respectively, the 
loss function is expressed as follows: 

loss(ŷ, y) = 1

/

N
∑n

i=1
(ŷi − yi)

2 (2)  

3. Experiments 

We used a GPU server with Intel Core i9-9900KF@3.60GHz and two 
NVIDIA GeForce GTX 2080ti GPUs configured to 32 GB. All experiments 
were carried out on a 64-bit Windows10 OS equipped with CUDA 
Toolkit 10.2 and the Pytorch framework. The state-of-art methods 
including SRCNN, VDSR, FSRCNN, DRRN, EDSR, SRGAN, ESRGAN, 
RCAN and our MS-ResUnet model are trained and tested in our 
experiments. 

3.1. Datasets 

We used carbonate rock, sandstone and coal data from DeepRock-SR 
(Wang et al., 2019). The training set consists of 9600 HR rock CT images, 
while the validation set and testing set are each composed of 1200 im
ages. Rock CT images are characterized by 500 × 500 unsegmented 
slices, a resolution of 2.7–25 μm, and no overlap between the testing set 
and training set. 

Fig. 3. Residual sequential block (RSB).  
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The images are randomly cropped to 96 × 96 size for faster training 
and testing speed. Fig. 8 shows three clipped training sample. Fig. 9 
displays testing images. The training images are augmented with 90-de
gree rotation, horizontal flips and a random crop. The original HR im
ages serve as the target labels, which are then degraded to 
corresponding LR images. Notably, in this study, bicubic interpolation 
down-sampling is used. The initial HR image is scaled by a factor of 2, 4 
and 8 to produce noisy and blurred LR pictures, depending on the 
different magnification scales. Before down-sampling, the input is 
considered as HR images, subsequently, the ones are changed to LR 
images. An efficient pair for later model training consists of LR and HR 
images. As a result, the LR images as the inputs of MS-ResUnet have the 
following pixel sizes: 48 × 48, 24 × 24 and 12 × 12. 

3.2. Training setting 

We trained our models using the Adam optimizer during the exper
iment, with initial learning rates of 1 × 10−4 and exponential decay rates 
of β1 = 0.9 and β2 = 0.999. The learning rate is halved every 200 epochs 
throughout the 1000 training epochs. 

3.3. Experimental results  

1 Quantitative results 

The structural similarity index (SSIM) and the peak signal-to-noise 
ratio (PSNR) are two metrics used in the objective evaluation tech
nique. The quality of image translation is frequently measured using 
PSNR, a full-reference image evaluation metric. Here is how MSE and 
PSNR are respectively defined in Eq. (3) and Eq. (4): 

MSE =
∑H

i=0

∑W

j=0

[ f̂ (i, j) − f (i, j)]
2

H × W
(3)  

PSNR = 10 log10
MAX2

i

MSE
(4)  

MSE has been referred to in section 2.6, which reacts to the differences 
between the HR image and the regenerated SR image, MAX denotes the 
highest degree of gray, and PSNR is measured in decibels (dB). The 
reconstructed CT picture is more faithful to the original image with a 
higher PSNR value. 

Pixel accuracy is taken into account by PSNR, but visual aspects of 
human eyesight are ignored. Another measure, called SSIM, can describe 
the structural information of the image. Using the mean (μ), variance 
and covariance (σ) and stable variables (C). The following Eq. (5) is the 
SSIM formula: 

SSIM(x, y) =

(
2μxμy + C1

)(
2σxy + C2

)

(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (5) 

The value range of SSIM is between 0 and 1. The SSIM is more 
representative of the real sample when it is nearer 1. 

At scale factors of 2, 4 and 8, our MS-ResUnet model is compared 
with SRCNN, FSRCNN, EDSR, VDSR, DRRN, RCAN, SRGAN and ESR
GAN. The testing data consists of three sets of 500 × 500 picture sam
ples, representing images of sandstone, carbonate and coal, respectively. 
Table 1 demonstrates the average PSNR and SSIM for each benchmark 
approach. The highest PSNR and SSIM are set in bold. From Table 1, we 
observe that the deep network models and straightforward structure of 
SRCNN, FSRCNN, VDSR and DRRN result in lower PSNR and SSIM. The 
channel attention technique of RCAN also enables the model to acquire a 
higher evaluation value. EDSR optimizes the deep network topology to 
conserve space to enlarge the size of the model to boost the model’s 
expressiveness. The PSNR values of the SRGAN and ESRGAN are 
insufficient, but the texture is more natural with higher SSIM value. 

Fig. 4. Improved residual block (IRB).  

Fig. 5. Residual chained pooling block (RCPB).  

Fig. 6. Convolutional ReLU residual block (CRRB).  

Fig. 7. Structure of multi-scale fusion.  

Fig. 8. Training set.  

Fig. 9. Testing set.  

L. Shan et al.                                                                                                                                                                                                                                    



Applied Computing and Geosciences 22 (2024) 100165

6

From Table 1, we can summarize that our MS-ResUnet model has a 
considerable improvement in structural similarity. The MS-ResUnet is 
capable of capturing the more textural details of rock CT images. It has 
the optimal PSNR value at all three magnification scales. As the scale 
increases, the transmission of information within the network may 
become more challenging in multi-scale fusion. This could result in 
ineffective transmission and utilization of crucial information at scales 4 
and 8, impacting the quality of reconstruction as well as the SSIM scores.  

2 Qualitative results 

The outcomes of the experiments frequently match the human eye’s 
intuitive reflection. When the scale factor is 2, it is difficult to see the 
small difference between the HR and SR images by the human eyes. 
When the scale factor is 8, the feature information is too hazy. For 
qualitative evaluation, a scale factor of 4 was selected. The HR images 
and SR images produced from SRCNN, FSRCNN, EDSR, VDSR, DRRN, 
RCAN, SRGAN, ESRGAN and MS-ResUnet are compared in Figs. 10–12. 

As shown in Figs. 10–12, when comparisons of the SR images from 
the nine algorithms are presented with a scale factor of 4, The SR images 
generated by SRCNN and FSRCNN are distorted and blurred. The pa
rameters of EDSR, VDSR, DRRN and RCAN are optimized by increasing 
the number of network layers, which improves the reconstruction effect 
of rock CT images. However, SRGAN and ESRGAN with the higher 
theoretical value of structural similarity have a better visual effect on the 
human eye and form a clearer image, but when the detail texture in
creases, the edge of the image is not so smooth. 

In detail, algorithms such as SRCNN, VDSR, FSRCNN and DRRN are 
difficult to reconstruct rock fissure edges and particle characteristics in 
carbonate and sandstone. EDSR and RDCA models cannot extract 
intragranular information, but they have advantages when intra
granular complex information is correlated. SRGAN and ESRGAN al
gorithms facilitate pixel-by-pixel matching of the original image. Among 
the nine models, the SRGAN, EDSR, RCAN and ESRGAN algorithms can 
better analyze the texture and high-frequency information of the 
reconstructed CT images, resulting in clearer and higher-quality SR 
images. However, in the enlarged image details, the edges are not sharp 
enough and the details are not realistic enough. 

In contrast to them, the MS-ResUnet utilizes the multi-scale fusion of 
these long-distance residual connections to transfer low-level features 
for refining coarse high-level feature maps. The long-distance residual 
connection enables gradients to be directly propagated to early con
volutional layers, which enables efficient end-to-end training. Simulta
neously, MS-ResUnet generates richer texture features and less content 
loss, which are optimal for human vision.  

3. Number of parameters and operations 

The floating-point operations per second (flops) and number of pa
rameters for all trained models are described in Table 2. Our MS- 
ResUnet model achieved comparable performance with EDSR, RCAN 
and ESRGAN with fewer parameters (7.45M). The MS-ResUnet has 
smaller flops than DRRN, EDSR, RCAN and ESRGAN. Our work incor
porated the multi-scale idea into the SR domain, which captures the 
multi-scale features and reduces network depth, hence the better per
formance of the network while keeping the parameters and number of 
operations low. 

3.4. Ablation study  

1. Number of residual sequential block (RSB) modules 

We compare and test the network performance utilizing various 

Table 1 
Comparison PSNR and SSIM values.  

Model Scale Average PSNR Average SSIM 

SRCNN 2 32.90 0.791 
4 31.27 0.790 
8 28.32 0.730 

FSRCNN 2 33.25 0.800 
4 31.50 0.792 
8 28.40 0.732 

VDSR 2 33.72 0.828 
4 32.13 0.814 
8 28.71 0.748 

DRRN 2 33.82 0.831 
4 32.33 0.822 
8 28.91 0.750 

SRGAN 2 34.11 0.895 
4 32.42 0.862 
8 29.25 0.804 

EDSR 2 34.47 0.863 
4 32.98 0.849 
8 29.57 0.766 

RCAN 2 34.46 0.888 
4 33.11 0.854 
8 29.68 0.775 

ESRGAN 2 34.46 0.900 
4 32.50 0.879 
8 29.32 0.829 

MS-ResUnet (Ours) 2 36.11 0.933 
4 33.75 0.810 
8 29.84 0.786  

Fig. 10. Comparisons of reconstructed SR images on carbonate using nine models.  
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numbers of RSB modules in the encoding stage before coming to the best 
experimental results. Performance evaluations were independently 
carried out to compare the impact of shallow versus deep network front 
ends. The deep network has a better overall impact than the shallow 
network. On the other hand, an excessively deep network cannot pro
duce better outcomes and has a slower rate of convergence. Table 3 
shows that the best PSNR and SSIM values for the 4-layer encoder were 
obtained with 3, 4, 23 and 3 RSB modules, respectively.  

2. Loss analysis 

Fig. 11. Comparisons of reconstructed SR images on coal using nine models.  

Fig. 12. Comparisons of reconstructed SR images on sandstone using nine models.  

Table 2 
Number of parameters and operations for nine models.  

Model Parameters Flops 

SRCNN 0.06M 2.87G 
FSRCNN 0.01M 1.32G 
VDSR 0.66M 33.35G 
DRRN 0.30M 59.31G 
EDSR 1.37M 68.99G 
RCAN 15.44M 770.03G 
SRGAN 5.91M 36.51G 
ESRGAN 40.26M 904.39G 
MS-ResUnet (ours) 7.45M 52.05G  

Table 3 
Comparisons of PSNR and SSIM for different numbers of RSB modules.  

RSB structure Scale Average PSNR Average SSIM 

[3, 4, 3, 4] 2 35.77 0.931 
4 33.38 0.806 
8 28.95 0.782 

[3, 4, 4, 3] 2 35.21 0.931 
4 33.44 0.805 
8 28.14 0.783 

[4, 3, 3, 4] 2 35.13 0.928 
4 33.59 0.805 
8 28.88 0.778 

[3, 23, 23, 3] 2 35.90 0.932 
4 33.38 0.804 
8 28.14 0.778 

[4, 23, 3, 23] 2 35.78 0.931 
4 33.41 0.805 
8 28.75 0.777 

[23, 3, 23, 3] 2 36.03 0.932 
4 33.53 0.806 
8 28.91 0.783 

[3, 4, 23, 3] 2 36.11 0.933 
4 33.75 0.810 
8 29.84 0.786  
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Loss function calculates the pixel-level loss based on the one-to-one 
correspondence of pixel positions between two images. In an extreme 
scenario, if two identical images are slightly shifted by one pixel in their 
corresponding positions, the pixel-level loss function may yield rela
tively large values, even though the human eye may perceive minimal 
differences between the images. Common loss functions employed in 
deep learning-based SR include MSE, mean absolute error (MAE), 
perceptual loss, and gradient term loss. 

MAE is a commonly utilized regression objective function. It is the 
total of the absolute differences between the anticipated value ̂yj and the 
target value yj. Regardless of the mistake’s direction, it stands for the 
average error margin of the anticipated values. It is expressed as 
following Eq. (6): 

loss(x, y) =
1
n

∑n

i=1
|yi − f (xi)| (6) 

The semantic information contained in the image can be understood 
by the perceptual loss function. The image’s feature information can be 
extracted using a VGG network, and the feature information is then used 
to calculate the loss. The expression for perceptual loss is as follows in 
Eq. (7): 

l
φ,j
feat(ŷ, y) =

1
CjHjWj

⃦
⃦φj(ŷ) − φj(y)

⃦
⃦2

2 (7) 

Gradient term loss is mainly used for image smoothing, ghost 
removal, denoising and restoration processing. The total variation of 
noise-contaminated images is significantly larger than that of noise-free 
images. Limiting the total variation suppresses noise. For image pro
cessing, total variation loss can smooth the image. The principle is that a 
signal with excessive and possibly spurious detail has a high total vari
ation, that is, the integral of the absolute gradient of the signal is high. 
According to this principle, the total variation of the signal is reduced so 
that it closely matches the original signal. This removes unwanted de
tails while preserving important details such as edges. The gradient term 
loss function is described in Eq. (8): 

JT0 (u) =
∑

i,j

[(
xi,j − xi,j−1

)2
+

(
xi,jxi+1,j − xi+1,j

)2
]β

2 (8) 

To find the best loss function for our model, we employ MAE, MSE 
and the perceptual loss function. Table 4 shows the experimental find
ings. We can see that the MSE loss function produces the greatest PSNR 
and SSIM. 

4. Discussion 

In this study, we presented a novel SR algorithm using U-Net with 
multi-scale fusion and residual structure (MS-ResUnet). Experimental 
results show that MS-ResUnet achieves the highest average PSNR at all 
three magnification scales and the highest average SSIM at × 2 magni
fication. The comparison in Figs. 10–12 illustrates that our model 
accurately reconstructs the detailed pores in carbonate and sandstone, 

as well as clearly visible coal cracks. This approach offers a solution to 
address the limitations of traditional digital rock reconstruction 
methods and mitigate the blurring effects induced by hardware equip
ment and environmental factors. However, it is important to note that 
the current research is limited to two-dimensional digital rock core 
images and has not yet considered 3D volumetric rock core images (You 
et al., 2021). Future work will overcome this challenge and expand the 
application of digital rock cores to broader scenarios, better supporting 
research and practices in the geological and petroleum engineering 
fields. 

5. Conclusion 

HR digital rock core images are essential data sources for geological 
and petroleum engineering research, offering valuable insights for oil 
exploration and development. Nevertheless, constraints from physical 
devices and external conditions often result in the acquisition of LR 
images. These LR digital rock core images may fail to fully depict the 
intricate details and textural characteristics of the rock cores, potentially 
compromising the precision and dependability of geological and petro
leum engineering investigations. To address this issue, we introduced a 
SR approach through multi-scale fusion using residual U-Net for 
reconstructing rock micro-CT images (MS-ResUnet). The proposed 
method was tested on image samples of sandstone, carbonate rock, and 
coal during the experiments. Through comparisons of various loss 
functions, module numbers, and depths, we identified the optimal 
network structure. Compared to eight methods, our MS-ResUnet excels 
in capturing fine details at image edges and restoring high-frequency 
features by integrating low-level detail traits with high-level pixel 
classification characteristics. The use of our MS-ResUnet framework 
results in reconstructed SR images that closely resemble HR images in 
terms of structure. This method explored in our study contributes to 
advancing rock physics within the multi-scale digital rock methodology, 
offering an efficient tool for characterizing unconventional reservoirs. 
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Table 4 
Comparison of MS-ResUet in PSNR and SSIM at different loss functions.  

Loss function Scale Average PSNR Average SSIM 

Perceptual loss with gradient term 2 30.31 0.933 
4 28.45 0.807 
8 26.12 0.783 

Perceptual loss without gradient term 2 31.47 0.933 
4 31.23 0.807 
8 26.59 0.783 

MAE loss 2 36.05 0.932 
4 33.03 0.807 
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4 33.75 0.809 
8 29.84 0.786  
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