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Abstract—The unauthorized duplication of design intellectual
property (IP) and illegal overproduction of integrated circuits
(ICs) are hardware security threats plaguing the security of the
globalized IC supply chain. Researchers have developed various
countermeasures such as logic locking, layout camouflaging, and
split manufacturing to overcome the security threat of IP piracy
and unauthorized overproduction. Logic locking is a holistic
solution among all countermeasures since it safeguards the design
IP against untrusted entities, such as untrusted foundries, test
facilities, or end-users throughout the globalized IC supply chain.
There are well-known logic locking techniques for combinational
circuits with well-established security properties; however, their
sequential counterparts remain vulnerable. Since most practical
designs are inherently sequential, it is essential to develop secure
obfuscation techniques to protect sequential designs. This paper
proposes a sequential obfuscation technique, STATION, building
on the principles of finite state machine encoding schemes.
STATION is resilient against various attacks on sequential
obfuscation—input-output (I/O) query attacks and structural at-
tacks, including the ones targeting sequential obfuscation—which
have broken all state-of-the-art sequential obfuscation techniques.
STATION achieves good resilience and desired security against
various I/O and structural attacks, which we ascertain by
launching 9 different attacks on all tested circuits. Moreover,
STATION ensures tolerable overheads in power, performance,
and area, such as 8.75%, 1.22%, and 5.63% on the largest
tested circuit, containing 102 inputs, 7 outputs, 6.1×104 gates,
7 flip flops, 100 states, and 3.0× 103 transitions.

Index Terms—IP protection, Logic locking, Sequential obfus-
cation, Finite state machine, FSM encoding

I. INTRODUCTION

A. Logic Locking for Intellectual Property (IP) Protection

THE globalized integrated circuit (IC) supply chain is
a critical facet of the modern semiconductor industry,

and this complex supply chain has led to multiple entities
operating in various geographic regions. Currently, design
houses account for $143 billion in added value in a supply
chain with a value of $444.5 billion [1]. Alarmingly, the
increasing presence of third-party entities also provides path-
ways for malicious entities to pirate the design intellectual
property (IP) or engage in illegal IC overproduction. Multi-
ple countermeasures, such as IC camouflaging [2], [3], split
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Fig. 1. FSMs of (a) original design, (b) HARPOON protected design, (c)
DSD protected design, and (d) STATION protected design (Our work).

manufacturing [4], and logic locking [5], have been proposed
to restrict illegal activities while retaining the benefits of the
globalized IC supply chain. Among these countermeasures,
logic locking promises the most comprehensive and practical
solution against threats emerging from untrusted foundries,
test facilities, and end-users [5]–[7]. Thereby, logic locking
has been set for industry adoption, examples of which include
the Automatic Implementation of Secure Silicon (AISS) pro-
gram supported by Synopsys and Defense Advanced Research
Projects Agency (DARPA) [8] and Structured Array Hardware
for Automatically Realized Applications (SAHARA) program
supported by Intel and DARPA [9].

One can broadly classify the logic locking techniques into
combinational and sequential locking (a.k.a. sequential obfus-
cation). Combinational locking techniques insert extra logic
driven by additional input ports, referred to as key inputs. A
tamper-proof memory stores the correct key and drives the key
inputs. Only the correct key recovers the original functionality;
applying any arbitrary incorrect key to the locked design
leads to corrupted/incorrect functionality. Similarly, sequential
obfuscation modifies the finite state machine (FSM) of the
design by hiding specific states or state transitions [6], [10]–
[12]. Here, a key can also be an input sequence to the FSM.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

B. Limitations of Combinational Locking

Before explaining the various defenses and attacks on
sequential obfuscation techniques, we state the limitations of
combinational locking techniques and motivate the need for
better sequential obfuscation techniques. The seminal SAT-
based attack [13] broke most combinational locking tech-
niques, leading researchers to develop SAT-resilient techniques
(also called post-SAT techniques). Among these SAT-resilient
techniques, some aim to increase the number of iterations
required by the SAT attack, which are known as point function-
based techniques, utilizing a point function1 to make the SAT
attack eliminate only a few incorrect keys per SAT iteration,
forcing the performance of the SAT attack close to brute-force
attacks [7], [14]. Other post-SAT techniques aim to increase
the run time of each SAT iteration [15], [16], which are also
called SAT-hard techniques. However, the point function-based
techniques are vulnerable to structural attacks [3], [17]–[19],
and the SAT-hard techniques are broken by neural network-
guided attacks [20]. Another major drawback of the point
function-based techniques is their output error rate, which is
exponentially small with respect to the key-size [21], [22].
On the other hand, sequential obfuscation techniques offer
a higher output error rate than point function-based tech-
niques [23], [24]. Additionally, since most practical designs
are inherently sequential, it is essential to develop secure
obfuscation techniques.

C. Prior Works on Sequential Obfuscation: Defenses

We now provide an overview of prior defense techniques.
For a detailed summary of all the techniques, we refer the
reader to Chakraborty et al. [34]. Active Metering [10] aug-
ments the original state register with additional flip-flops (FFs),
thereby increasing the number of states. An input sequence is
used as the key. The design only enters the correct initial state
after applying the correct key sequence. After that, the design
traverses the FSM correctly. HARPOON [6] augments an FSM
with additional states and has two modes of operation: an
obfuscation mode and a functional mode. The FSM functions
correctly only when states are correctly traversed through the
obfuscation mode and successfully enter the initial state of the
functional mode. Interlocking [11] introduces multiple transi-
tions between the obfuscated and functional modes. Dynamic
State Deflection (DSD) [12] ensures that the state transitions
are deflected from the original transition to a blackhole state
when applying an incorrect key. Blackhole states are states
with no outward transitions in the FSM. Thus, upon enter-
ing a blackhole state, the design cannot go into functional
mode. State, connectivity, and routing augmentation model
for building logic encryption (SCRAMBLE) [30] obfuscates
FFs or logic with a shuffling/re-permutation block to protect
the input signals of FFs. However, SCRAMBLE assumes
that the attacker cannot access the scan chain; if the scan
chain is open to the attacker, the combinational logic of a
SCRAMBLE-protected design is vulnerable to attacks (e.g.,
SAT attack [13]). Another obfuscation technique, synthesis

1A point function is a single-output Boolean function that has a single or
a few input pattern(s) resulting in output as 1.

of Hidden State Transitions (HSTs) [31], introduces “clock
glitch” to increase the search space in the obfuscated FSM for
the attacker by changing the frequency of the clock signal [18].
However, the operation of “clock glitch” on the clock signal
[31] is equivalent to modifying the combinational logic, and
it is unclear whether the technique achieves resilience against
the SAT attack on the combinational logic [13]; moreover, one
research work, JANUS [33], states that HST contains potential
vulnerabilities against structural attacks on FSM [28], [29].
As a more robust version of HST [31], coupling capacitance
based HST [32] inserts clock glitching at the physical design
level, masking the location of the HST triggers. Therefore,
this operation hinders reverse engineering from the protected
physical design to its gate-level netlist. As a result, coupling
capacitance based HST protects the design against the BMC
and KC2 attacks. Unlike previous approaches, JANUS [33]
protects the sequential design while offering a high error rate
by configuring the functionality of the FFs using a dynamic
key. The key decides whether the FF is a D-type FF, whose
output is the same as the input signal, or a T-type FF, whose
output is kept/toggled compared to the previous state when the
input signal is 0/1. In this way, JANUS hides the transition
from the current state to the next state. However, there is no
experimental result showing the resilience of JANUS against
various attacks, such as input-output (I/O) query attacks [13],
[25], [26] and structural attacks [3], [17]–[19], [28], [29].
TriLock [24] uses a point function and state re-encoding to
protect the design against multiple attacks [27]–[29] while
keeping a high error rate. However, structural vulnerabilities
still exist due to the usage of point functions, as an attacker
can analyze the structure of the combinational part of the ob-
fuscated sequential design and further recover the design [3],
[17]–[19].

D. Prior Works on Obfuscation: Attacks
Multiple attacks have been developed to overcome sequen-

tial obfuscation. Some attacks target breaking the combina-
tional part of the sequential design, while sequential attacks
analyze the FSM to remove sequential obfuscation protections.
Besides, broadly, these attacks can be classified into: (i) input-
output (I/O) query attack, where an attacker applies inputs to
the functional chip and observes its output to search for the key
based on the analysis of the locked netlist, and (ii) structural
attacks, where an attacker analyzes the structure of the locked
netlist or the FSM to remove the protection or extract the
correct key.
Attacks on combinational locking techniques. We now
explain the different attacks targeting the combinational part
of the sequential netlist, thereby removing the protection
provided by sequential obfuscation techniques.

For I/O attacks, Boolean Satisfiability (SAT) attack [13]
targets combinational locking techniques. The SAT attack
builds a miter circuit and detects distinguishing input patterns
(DIPs), which are input patterns to eliminate incorrect keys.
The SAT attack effectively breaks all the locking techniques
prior to the SAT attack (a.k.a pre-SAT locking techniques) [5],
[35]–[37]. The success of the SAT attack led to the de-
velopment of defenses after the SAT attack (a.k.a post-SAT
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TABLE I
STATE-OF-THE-ART SEQUENTIAL OBFUSCATION TECHNIQUES AND ATTACKS. ATTACKS ARE CATEGORIZED AS INPUT-OUTPUT (I/O) AND STRUCTURAL

ATTACKS. ✓/✗ DENOTES A SUCCESS/FAILURE OF THE DEFENSE TECHNIQUE, N/A IS NOT APPLICABLE, AND ∗ SHOWS NO ANALYSIS

Defense
Attack I/O attack Structural attack

SAT [13] BMC, KC2 [25], [26] Fun-SAT [27] SPS [17] ATR [3] FALL [18] SPI [19] SCC [28], [29]
Active Metering [10] N/A ∗ ✗ N/A N/A N/A N/A ✗

HARPOON [6] ✗ ✗ ✗ N/A N/A N/A N/A ✗
Interlocking [11] N/A ∗ ✗ N/A N/A N/A N/A ✗

Dynamic State Deflection [12] N/A ∗ ✗ N/A N/A N/A N/A ✗
SCRAMBLE [30] ✗ ✓ ∗ N/A N/A N/A N/A ✓

HST [31], [32] ∗ ✓ ∗ N/A N/A N/A N/A ∗
JANUS [33] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
TriLock [24] ✓ ✓ ✓ ∗ ∗ ∗ ∗ ✓

STATION ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

techniques) [3], [7], [14], [38]. These techniques use specific
functions, such as point functions, that force the SAT attack
to use an exponential number of DIPs in key-size. However,
many of these techniques are vulnerable to structural attacks
described below.

For structural attacks, Signal Probability Skew (SPS) [17]
detects and bypasses/removes the point function logic, thereby
recovering the design with its original functionality. AND-Tree
Removal (ATR) attack [3] searches for multi-input AND tree
components and removes that logic to get a functional design.
Functional Analysis attacks on Logic Locking (FALL) [18]
does structural analysis to locate the gates in the circuit
leading the subcircuits whose Boolean functions are unate2

and collect a list of possible keys. Sparse Prime Implicant
(SPI) attack [19] analyzes the prime implicants (PIs) on the
PI table (PIT) of the locked circuit. The correct key is extracted
from the PIT if the circuit is protected by the point function-
based techniques (e.g., SAT attack [13]), no matter what is the
structure of the locked netlist is.
Attacks on sequential obfuscation techniques can also be
categorized into I/O attacks and structural attacks.

For I/O attacks, such as Key Condition Crunching (KC2)
attack [26], it reduces the attack complexity by using incre-
mental bounded-model checking and simplifying key condi-
tions. Fun-SAT attack [27] estimates the minimum number
of unrollings and accelerates the search for the correct key.
It uses the notion of functional corruptibility combined with
model checking to verify a candidate key. A monotonically
increasing functional corruptibility on every unrolling implies
the elimination of more incorrect key sequences.

For structural attacks, such as Strongly Connected Com-
ponent (SCC) attack [28], [29], it analyzes the topology of
the obfuscated netlist/FSMs, maps the individual FFs into
their respective FSMs, and removes the FFs inserted by the
obfuscation technique. The sequential obfuscation techniques
[6], [10]–[12] discussed in Sec. I-C are vulnerable to the SCC
attack [28]. The vulnerability exists because these sequential
obfuscation techniques insert additional states into the FSM,
usually clustered into one or multiple groups/clusters and
distinguished from the states of the original FSM. These

2An n-input 1-output Boolean function f(x1, x2, · · · , xn) is unate
means that, for each xi ∈ {x1, x2, · · · , xn}, it is always true with either
f(x1, · · · , xi−1, 0, xi+1, · · · , xn)≤ f(x1, · · · , xi−1, 1, xi+1, · · · , xn)
or f(x1, · · · , xi−1, 0, xi+1, · · · , xn)≥ f(x1, · · · , xi−1, 1, xi+1, · · · , xn),
∀(x1, · · · , xi−1, xi+1, · · · , xn) ∈ Bn−1 (B = {0, 1}) [18].

different clusters are connected by one or multiple directed
transition(s), as shown in Fig. 1(b)–(c). The SCC attack easily
detects and exploits these directed transitions between different
clusters. It then bypasses these directed transitions to remove
the clusters except the one belonging to the original FSM,
thereby recovering the original FSM. The foundation of these
techniques is based on hiding the directed transitions from
obfuscation mode to functional mode. If these transitions are
detected, then the designs are broken.

Table I summarizes some of the state-of-the-art sequen-
tial obfuscation techniques that are empirically vulnerable to
structural attacks or I/O attacks. Some sequential obfuscation
techniques, such as HARPOON, are key-free in implemen-
tation, where the key sequence is provided through the pri-
mary inputs. This type of key-free obfuscated design has an
equivalent design with key-input ports; thus, the attacker can
apply combinational attacks, such as the SAT attack on the
obfuscated design. Meanwhile, advanced sequential obfusca-
tion techniques, including JANUS [23], [33], TriLock [24],
SCRAMBLE [30], and synthesis of HSTs [31], have certain
vulnerabilities, as mentioned in Sec. I-C. Hence, in this work,
we address the following question: Can we develop a holistic
sequential obfuscation technique that can provide a compre-
hensive defense against both I/O and structural attacks?

E. This Work

Our approach protects FSMs such that it groups all the states
into one cluster to defend against the SCC attack [28], [29]
(see Fig. 1(d)). To this end, we develop DisJoint, an FSM
encoding scheme for sequential obfuscation. We then apply a
combinational locking technique to the state-transition block
of this encoded FSM; we call this approach STATION. Our
contributions are:
• Our defense technique, STATION, is the first defense tech-

nique to combine fundamental concepts from combinational
locking with FSM encoding schemes from sequential cir-
cuits to develop a sequential obfuscation technique.

• We discuss how our encoding technique, DisJoint, can easily
integrate with modern logic synthesis tools and overcome
the vulnerabilities created by sequential synthesis tools.

• We introduce the concept of protected state transitions to the
research community. We expect that the notion of protected
state transitions shall prove helpful in quantifying structural
resilience.
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• Our encoding scheme aids the designer by providing greater
flexibility. We demonstrate this flexibility by allowing the
designer to flexibly choose and protect state transitions.

• STATION has the same time complexity as the synthesis
step, converting from the original FSM to the locked netlist.
Thus, integrating STATION into the IC design flow only
incurs a negligible time effort, especially for large-scale
designs.

• We showcase the strength of STATION by demonstrating
the resilience against SAT [13], BMC [25], KC2 [26], Fun-
SAT [27], SPS [17], ATR [3], FALL [18], SPI [19], and
SCC [29] attacks on both academic standard benchmark
circuits and large-scale synthetic circuits, including the state-
of-the-art I/O and structural attacks.

• Our technique limits the overheads for large-scale designs.
The average power, performance, and area (PPA) overheads
are 7.00%, 0.15%, and 8.69%, respectively.

Paper Organization. The remainder of the paper is organized
as follows. We provide a brief background in Sec. II. Sec. III
describes the methodology of STATION. We present and
analyze various results in Sec. IV. Finally, discussions and
concluding remarks are provided in Sec. V and Sec. VI.

II. BACKGROUND AND PRELIMINARIES

In this section, we explain the underlying combinational
locking technique used in STATION, stripped-functionality
logic locking (SFLL), and the FSM encoding principles.

A. Stripped-Functionality Logic Locking (SFLL)

We now explain the underlying combinational locking tech-
nique that is among the building blocks of STATION. SFLL is
a family of logic locking techniques based on the principle
of corrupt-and-correct (or strip-and-restore) [7]. An SFLL-
protected circuit consists of a functionality-stripped circuit
(FSC) and a restore unit, as shown in Fig. 2. The output of the
FSC differs from the original circuit for specific input patterns
known as protected input patterns (PIPs); for any input pattern
that is not a PIP, the outputs of the FSC and the original circuit
are identical. The restore unit corrects/restores the output
of the FSC only when applied with the correct key. SFLL
is provably-secure against I/O attacks, especially the SAT
attack [13], [35], [39]. When the protected design contains
p PIPs and a key-size of k, the resilience against I/O attacks
is α = k− log2p [7]. When there are a few PIPs, the achieved
α-security is close to k. With fewer PIPs, the SFLL-protected
design has higher resilience against I/O attacks. Specifically,
when p = 1, the design contains the highest security level
with a certain key-size. At the same time, SFLL is empirically
secure against most removal/structural attacks, such as SPS
and ATR attacks [3], [17]. The attacker can remove SFLL
blocks, such as the restore unit, to extract a recovered design
using removal attacks [3], [17]. However, the functionality
difference between the original and recovered designs is hard
to detect without the original netlist. Further, the attacker
cannot ensure and verify whether the recovery is a success or
a failure, as discussed in Shamsi et al. [39]. Some structural
attacks can extract the secret key from the FSC of SFLL, such
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Fig. 2. General structure of a circuit protected by stripped functionality logic
locking [7].

as FALL and SPI attacks [18], [19]. FALL [18] breaks SFLL-
HD using the unateness property. Additionally, the SPI attack
breaks all SFLL techniques, including SFLL-fault [40] that
keeps resilient against all prior structural attacks [41] (e.g.,
SPS [17], ATR [3], and FALL attacks [18]), by analyzing the
PIT of the locked circuit’s FSC to extract the PIPs [19].

B. FSM Encoding Techniques

FSM is a representation of the functionality of a sequential
design. Given the current state and the input, the FSM tran-
sitions to the next state and returns the corresponding output.
Usually, these states are represented in a high-level language.
A synthesis tool, such as Synopsys Design Compiler [42], Ca-
dence Genus [43], and Mentor Graphics Precision RTL [44],
converts the high-level description of the FSM into the gate-
level netlist of the hardware. During the synthesis process,
FSM encoding assigns a numeric value to each state. Some
well-known encoding schemes include binary, gray, and one-
hot encoding [45]. Multiple encoding schemes have been
developed to achieve various design objectives. For example,
gray encoding minimizes power consumption by reducing
the switching activity while transitioning between states [45].
While encoding schemes for conventional circuit design ob-
jectives (e.g., design overheads) are well known, there has not
been significant interest in developing encoding schemes for
modern circuit design objectives for the sake of security.

III. PROPOSED TECHNIQUES

In this section, we define the threat model and the challenges
faced by sequential obfuscation techniques. We then present
how DisJoint encoding and STATION are able to overcome
the research challenges and withstand the complex threats en-
vironment. Finally, we discuss the complexity of STATION to
display its practicality.

A. Threat Model

In this subsection, we state the attacker’s objective, loca-
tions, and resources. We also state the resources available
to the defender. Our threat model is consistent with existing
sequential obfuscation techniques [6], [10]–[12], [33].
Attacker’s Objective. The attacker aims to retrieve the un-
locked design. To this end, the adversary attempts to gain
the correct key or remove the logic blocks added by the
obfuscation scheme.
Attacker’s Location. The attacker could be an untrusted
foundry, test facility, end user, or the collusion of multiple
untrusted entities.
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Attacker’s Resources. Considering the attacker’s location, the
attacker can potentially access one or multiple resources, as
listed below.
• The attacker can access the netlist of the locked design.
• The attacker can access a functional chip (a.k.a oracle), such

as a chip legally purchased from the market.
• The adversary can know the employed defense technique.

For example, for a STATION-obfuscated design, the attacker
can know that its protection defense is STATION using the
DisJoint encoding scheme.

Defender’s Resources. The defender is located within the
design house and knows the FSM’s state-transition table. This
is a valid assumption since the design house possesses the
design specifications. The defender utilizes this information
to protect the design.

B. Research Challenges

At first glance, it appears that one can use an existing secure
combinational logic locking technique (e.g., SFLL [7] using
D2PIPs [19]) to defend against either I/O or structural attacks.
Unfortunately, this task is not trivial to solve and requires
our proposed scheme, STATION, to overcome the following
challenges:
1) Existing combinational locking techniques operate at the

gate level, whereas sequential obfuscation techniques op-
erate at the FSM level. Thus, one needs to develop a
methodology that spans both abstraction levels.

2) Security-agnostic logic synthesis tools simplify the state-
transition table of the FSM by state minimization. However,
this process creates structural vulnerabilities. Analogous
logic minimization techniques have been known to cre-
ate structural vulnerabilities in combinational logic lock-
ing [17], [19], [46]. To overcome such vulnerabilities, one
needs to account for the effect of logic synthesis tools and
develop techniques that can be easily integrated into the
synthesis process.

3) The proposed technique should incur a reasonable overhead
on practical circuits while guaranteeing security.

4) The proposed obfuscation technique needs to consider the
complexity of implementation, such as how long it could
take on average and how stable the protection is.

In the remaining sections, we elaborate on how STA-
TION overcomes these challenges.

C. DisJoint Encoding and Analysis

Our first objective, DisJoint encoding, is to guarantee the
presence of D2PIPs [19] in the state-transition logic and
provide security against structural attacks. D2PIP is a PIP that
has a distance of at least 2 to any ON-set minterm of the
FSC. In our proposed obfuscation on FSM, if the Hamming
distance between the encoding (binary values) of two states is
at least 2, we call the corresponding state transition a protected
state transition (PST). By definition, the logic of the chosen
PST(s) can be considered analogous to D2PIP(s) of an SFLL-
protected design. Unfortunately, PSTs are rare in practical
circuits, making it difficult to ensure sufficient resilience. To

increase the number of PSTs in the circuit, we modify each
state’s value using an FSM encoding scheme.

To this end, our proposed DisJoint encoding scheme en-
codes the states such that the distance between any two states
in our encoding is at least 2. This satisfies the property of
D2PIPs (Dist2 property) [19], ensures the presence of PSTs in
our scheme, and allows the designer to protect the transition(s)
of their choice.

Algorithm 1 lists the proposed DisJoint encoding. It uses
a SAT solver to search for the solution of DisJoint encoding.
The input to the SAT solver is the original state-transition
table and the number of state bits (numerically the same as the
number of FFs) allowed by the designer. For every transition
in the state-transition table, we assign an extra constraint: the
distance between the resulting solution should be at least 2.
If the solution of DisJoint encoding exists, the SAT solver
returns it; otherwise, the designer has to increase the number
of state bits (numerically the same as the number of FFs).

For example, Table II shows the same FSM in Fig. 4 with
different encoding schemes. The 2nd column (corresponding to
the original encoding) does not contain any PST, indicating the
vulnerability to defend against structural attacks. On the other
hand, we can observe that DisJoint encoding ensures each state
has a distance of at least 2 from any other state, which means
that, after DisJoint encoding, each state transition is a PST,
and we can use the PST(s) to guarantee the resilience against
structural attacks.
Tackling logic synthesis tools. As we have seen in the case
of combinational logic locking, logic synthesis can undermine
the security offered by the logic locking technique by leaving
structural “traces” about the PIP or the correct key [18], [19].
We now explain why DisJoint encoding and STATION are able
to hide such traces in obfuscated sequential designs.

If two states are redundant (i.e., the states go to the same
next state and return the same output for the same input
pattern) [45], logic synthesis tools merge these two states into
one state. For example, in Fig. 3(a), state s1 and state s2 are
merged into s1,2. Such merging can reduce the number of
reachable states explored by the attacker (i.e., the size of the
clique in the obfuscated FSM is reduced).

STATION does not suffer from the above problem. SFLL
corrupts the protected output to either 0 or 1. If the defender
chooses to protect all pseudo outputs (i.e., the inputs of the
FFs), there exists the input pattern and the key reaching an
arbitrary next state. Thereby, any of the 2N states can be
visited, where N is the number of FFs. This ensures that each
state is unique because the next state can be any state based on
the key: the FSM goes to the correct state for the correct key
and all the other incorrect states for incorrect keys. Since the
states are unique, synthesis tools will not merge them. This
way, the FSM extracted from the STATION-obfuscated netlist
is a clique, as shown in Fig. 1(d).

D. Overhead Analysis of DisJoint Encoding

In the above example (Table II), each state requires at least
3 bits while applying the DisJoint encoding scheme compared
to the 2 bits in the original encoding. Correspondingly, the
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Fig. 3. s1 and s2 in (a) are merged to s1,2 in (b) during synthesis.

Algorithm 1: DisJoint encoding algorithm.
Input: State-transition table T , size of state bits x
Output: DisJoint encoding solution

DisJoint encoding
1 CNF0 ← ∅ //Constraint initialization
2 for transitioni ∈ T do
3 scur, snext ← Transition parser(transitioni)
4 CNF cnst ← Distance at least 2(scur, snext, x)
5 CNF0 ← CNF0 ∧ CNF cnst

6 end
7 DisJoint encoding ← SAT solver(CNF0)
8 if DisJoint encoding == UNSAT then
9 return None //Cannot be achieved using x bits

10 end
11 return DisJoint encoding

TABLE II
ORIGINAL AND DisJoint ENCODING SCHEMES FOR THE FSM IN FIG. 4.

THE REMAINING STATES ARE HIDDEN FOR SIMPLICITY

State Original encoding DisJoint encoding
s0 00 000
s1 01 011
s2 10 101
s3 11 110

DisJoint encoded netlist requires at least 3 FFs, while the
original encoding requires only 2 FFs. Thus, it is necessary
to understand the minimum number of FFs required by Dis-
Joint encoding, as this minimum bound will help designers
reduce the overhead without sacrificing security.

Theorem 1. If an original sequential design contains m states
and n FFs, where 2n−1 < m ≤ 2n, then DisJoint encoding
can be achieved with n+ 1 FFs.

Proof. If the circuit has m states and n FFs, where 2n−1 <
m ≤ 2n, then there is a non-repeating sequence of n-bit
binary values V = [v1, v2, . . . , vm]. Since each element in
V is unique (non-repeating), for ∀i ̸= j ∈ {1, 2, . . . ,m},
the distance between vi and vj is no less than 1, i.e.,
Dist(vi, vj) ≥ 1.

Let us construct another sequence of m binary values with
(n+1) bits for each, i.e., V ′ = [v′1, v

′
2, . . . , v

′
m]. For each v′i ∈

V ′ (i ∈ {1, 2, . . . ,m}), v′i satisfies v′i = vi · bi (concatenation
operation), and bi ∈ B. Notably, bi satisfies

bi =

{
0, if vi contains even number of 1’s
1, if vi contains odd number of 1’s.

Consequently, each v′i ∈ V ′ contains even number of 1’s.
For ∀i ̸= j ∈ {1, 2, . . . ,m}, if supposing the numbers of 1’s

in vi and vj share the same parity (both are even or both are
odd), then bi = bj . Since Dist(vi, vj) must be an even number
and Dist(vi, vj) ≥ 1, we can know that Dist(vi, vj) ̸= 1 and
Dist(vi, vj) ≥ 2. Furthermore,

Dist(v′i, v
′
j) = Dist(vi, vj) ≥ 2. (1)

Otherwise, if the numbers of 1’s in vi and vj have dif-
ferent parities, then bi ̸= bj . Thus, Dist(bi, bj) = 1 and
Dist(vi, vj) ≥ 1. Since v′i = vi · bi,

Dist(v′i, v
′
j) = Dist(vi, vj) +Dist(bi, bj) ≥ 2. (2)

Therefore, from Eq. (1) and Eq. (2), there exists an encoding
scheme with n + 1 bits, such that the distance between any
two states is no less than 2. Hence, DisJoint encoding can be
achieved with n+ 1 FFs. □

Notably, the proof provides a solution of DisJoint encoding,
which is a parity encoding. In other words, for an encoding
scheme, all states’ binary values containing even/odd numbers
of 1s (parity encoding) is a solution of DisJoint encoding.
However, it does not mean that any DisJoint encoding must
be a parity encoding. Instead, there is a chance that a non-
parity encoding can be a DisJoint encoding. Algorithm 1 gives
a method to find a DisJoint encoding, and its result can be a
non-parity solution. Since we know that a parity solution is
always a solution of DisJoint encoding, launching the parity
encoding to do DisJoint encoding can reduce time complexity,
especially when the time effort is critical for the user to protect
the design.

Theorem 2. If the original sequential design contains m states
and n FFs, where 2n−1 < m ≤ 2n, then DisJoint encoding
cannot be achieved with n FFs.

Proof. From the proof in Theorem 1, we know that there
exists an n-bit encoding scheme for 2n−1 states, such that
the distance between any two states is no less than 2. Thus,
all 2n−1 states take half of the entire space Bn. Assume, on the
contrary, all 2n−1 states do not share the same parity: some
states have even numbers of 1’s, and other states have odd
numbers of 1’s. Then, since all states take exactly half of the
entire space, there must exist a pair of binary values (vi, vj),
such that vi and vj are adjacent (i.e., Dist(vi, vj) = 1).
Consequently, it contradicts the assumption that the encoding
scheme can ensure that each state keeps a distance of at
least 2 to all others. Therefore, for an n-bit encoding scheme
on 2n−1 states satisfying each state has at least distance 2
from all others, all states must share the same parity. Thus,
DisJoint encoding cannot be achieved with only n FFs. □

Considering both two theorems: (i) Theorem 2 provides a
strict lower bound, and the available FFs’ amount must be
greater than n, and (ii) Theorem 1 ensures the existence of
the DisJoint encoding scheme when there are no less than
n + 1 FFs. Therefore, the minimum number of extra FFs of
DisJoint encoding is exactly 1. Moreover, this lower bound
helps the designer/defender decide the proper number of FFs
to achieve lower overhead while ensuring security.
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E. Protecting State-Transition Logic

Our objective is to protect the state transition(s) in the
original FSM—for example, s1→s2 in Fig. 4. Protecting the
state transition in the FSM is equivalent to locking the state-
transition logic in the design. For instance, protecting s1→s2
in Fig. 5(a) is equivalent to protecting the 3rd row in the state-
transition table in Fig. 4(b). To this end, as stated previously,
one can use a secure combinational locking technique, such
as SFLL with D2PIPs, to protect the design. We consider the
state-transition logic in Fig. 4(a) as the target combinational
logic for SFLL. A tuple of the input pattern and the current
state of the state-transition logic acts as the PIP of SFLL,
and it affects the output or the next state. The key-size of the
SFLL determines the security level, which the designer can
fine-tune to achieve a tradeoff between security vs. overhead.
In our case, the key-size is the sum of the number of primary
inputs and the number of FFs that drive the state-transition
logic.

While SFLL naturally protects against I/O attacks and
certain structural attacks [7], it fails to defend against the
FALL attack [18] and the SPI attack [19]. To prevent any
type of structural attack, one has to ensure that the Hamming
distance between the PIP(s) and the FSC of the SFLL should
be no less than 2 [19]. Han et al. [19] refers to this secure
property as Dist2 property. Not all tuples of the input pattern
and the next state can satisfy this property. Hence, we present
the DisJoint encoding scheme that encodes the states to satisfy
this property.

F. STATION’s Flow and Time Complexity Analysis

The generation of the protected netlist requires several
stages. From the original FSM, it needs to go through the
following stages.
Performing DisJoint encoding, creating the FSC of the
encoded FSM, and generating the gate-level FSC. From the
proof of Theorem 1, we can conclude that a parity encoding is
a solution of DisJoint encoding. Notably, the time complexity
to launch DisJoint encoding can be reduced to O(m), where
m is the number of states in the state-transition table of
the original design. Besides, the complexity of updating the
encoding (binary value) of each state in the state-transition
table is O(t), where t is the number of transitions in the
FSM. Once we have such an encoded FSM, the defender can
construct the FSM of the FSC by hiding the chosen PSTs
from the state-transition table of the encoded FSM. The time
complexity of converting the encoded FSM to the FSM of
the FSC is O(t). To convert the state-transition table of the
FSC from KISS2 format to behavioral Verilog format, the
converter tool needs to operate on each transition separately.
Thus, the complexity of the conversion is O(t). Once this
conversion is finished to get the behavioral Verilog design,
there is a synthesis step to generate the gate-level Verilog
using a commercial synthesis tool. The synthesis step takes the
majority of the time. Thus, the time complexity of getting the
FSC netlist (starting from the original design’s state-transition
table) is approximately equal to the complexity of a synthesis
process.

S0

S3 S2

S1

-/1

1/1

-/1 1/0
0/00/1

(a)

in statecur statenext out
1 s0 s1 1
0 s0 s2 0
1 s1 s2 0
0 s1 s3 1
− s2 s3 1
− s3 s1 1

(b)

Fig. 4. Original FSM and corresponding state-transition table. The defender
protects the dashed/shaded transition in red.

Output Logic

Flip Flops

in

Combinational Logic

out

Current 
State

Next 
State

key
State Transition Logic

(a)

S0 S1

S6 S7

S3 S2

S5 S4

S0 S1

S6 S7

S3 S2

S5 S4

Encoded FSM

(b)

Fig. 5. Proposed sequential obfuscation technique and the corresponding
state-encoded FSM.

Appending the restore unit to the FSC and generating the
netlist of the STATION-obfuscated design. Once we get the
netlist of the FSC (gate-level Verilog from the last step), we
can add the logic of the restore unit to construct the logic of
STATION-protected design according to Fig. 2. In this stage,
most of the time effort is spent in running re-synthesis to get
the entire locked netlist.

Therefore, except for two (re-)synthesis steps, the time
complexity is O(m + 3t), which is linear in the number of
states or transitions in the original FSM. As for the re-synthesis
step, many modern commercial tools can efficiently achieve it,
such as Synopsys Design Compiler [42], Cadence Genus [43],
and Mentor Graphics Precision RTL [44].

IV. EXPERIMENTAL EVALUATION

In this section, we first discuss the experimental setup,
followed by results on execution time. Following this analysis,
we empirically demonstrate the security of our technique and
overhead analysis in terms of power, performance, and area
(PPA).

A. Experimental Setup

We perform the experiments on a 32-core Intel Xeon
processor at 2.6 GHz with 512 GB RAM.

We utilize the NEOS tool [47] to launch the BMC at-
tack [25] and the KC2 attack [26]. And we use the Kiss2vl
tool [48] to convert the KISS2 format to Verilog files. Since
our proposed technique performs DisJoint encoding on the
FSMs, we utilize the benchmarks where the FSMs have been
explicitly defined in terms of state-transition table, such as
designs in the KISS2 format. Hence, we use benchmarks from
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TABLE III
THE SCALE OF EACH TESTED CIRCUIT, INCLUDING THE NUMBERS OF INPUTS, OUTPUTS, INSTANCES, STATES, TRANSITIONS, AND PSTS

Circuit # Inputs # Outputs # Instances # States # Transitions # PSTs
# Gates # FFs Original DisJoint

B
en

ch
m

ar
k

s27 6 1 70 3 7 41 0 41
bbara 6 2 75 4 10 60 0 60
beec 5 4 82 3 7 29 0 29
dk14 5 5 105 3 7 57 0 57
dk17 4 3 56 3 8 32 0 32
dk27 3 2 26 3 7 15 0 15

dk512 3 3 68 4 15 31 0 31
dnfile 4 1 165 5 24 97 0 97
origin 3 1 4 1 6 13 0 13
s298 5 6 1.4× 103 8 218 1.1× 103 0 1.1× 103

shiftreg 3 1 26 3 8 17 0 17

Sy
nt

he
tic

fsm1
syn 32 7 1.7× 104 7 80 2.0× 103 0 2.0× 103

fsm2
syn 32 7 2.5× 104 7 80 3.2× 103 0 3.2× 103

fsm3
syn 52 7 2.4× 104 7 80 1.9× 103 0 1.9× 103

fsm4
syn 32 7 3.3× 104 7 80 4.4× 103 0 4.4× 103

fsm5
syn 52 7 3.6× 104 7 100 3.0× 103 0 3.0× 103

fsm6
syn 62 7 4.1× 104 7 100 3.1× 103 0 3.1× 103

fsm7
syn 102 7 4.0× 104 7 80 1.9× 103 0 1.9× 103

fsm8
syn 102 7 6.1× 104 7 100 3.0× 103 0 3.0× 103

TABLE IV
ATTACK RESULTS OF VARIOUS ATTACKS ON DIFFERENT CIRCUITS. A ✓/✗ REPRESENTS THE SUCCESS/FAILURE OF THE ATTACK ON THE CIRCUIT. IN THE
5th , THE 6th , AND THE 7th COLUMNS (SAT, BMC, AND KC2 ATTACKS), NUMERIC VALUES REPRESENT THE REQUIRED NUMBERS OF SAT ITERATIONS

AND BMC/KC2 DISCRIMINATING INPUT SEQUENCES (DISES) TO EXTRACT THE CORRECT KEY, A “TIME-OUT” REPRESENTS THAT THE SAT/KC2
ATTACK TOOL CANNOT FIND THE KEY WITHIN 72 HOURS, AND A “OUT-OF-MEMORY” REPRESENTS THE BMC ATTACK CANNOT FIND THE KEY WITH A

MEMORY LIMIT OF 10 GB SET IN NEOS

Circuit # States Key-size I/O attack Structural attack
SAT [13] BMC [25] KC2 [26] Fun-SAT [27] SPS [17] ATR [3] FALL [18] SPI [19] SCC [29]

B
en

ch
m

ar
k

s27 7 8 98 82 91 ✗ ✗ ✗ ✗ ✗ ✗
origin 6 5 7 6 6 ✗ ✗ ✗ ✗ ✗ ✗
bbara 10 9 318 66 94 ✗ ✗ ✗ ✗ ✗ ✗
dk27 7 5 30 6 8 ✗ ✗ ✗ ✗ ✗ ✗
beec 7 7 8 36 38 ✗ ✗ ✗ ✗ ✗ ✗

shiftreg 8 5 2 2 2 ✗ ✗ ✗ ✗ ✗ ✗
dk512 15 6 27 3 8 ✗ ✗ ✗ ✗ ✓ ✗
dk17 8 6 10 26 32 ✗ ✗ ✗ ✗ ✓ ✗
dk14 7 7 126 36 40 ✗ ✗ ✗ ✗ ✗ ✗
dnfile 24 8 9 43 45 ✗ ✗ ✗ ✗ ✗ ✗
s298 218 12 2.9× 103 1.4× 103 1.4× 103 ✗ ✗ ✗ ✗ ✗ ✗

Sy
nt

he
tic

fsm1
syn 7 38 time-out out-of-memory time-out ✗ ✗ ✗ ✗ ✗ ✗

fsm2
syn 7 38 time-out out-of-memory time-out ✗ ✗ ✗ ✗ ✗ ✗

fsm3
syn 7 58 time-out out-of-memory time-out ✗ ✗ ✗ ✗ ✗ ✗

fsm4
syn 7 38 time-out out-of-memory time-out ✗ ✗ ✗ ✗ ✗ ✗

fsm5
syn 7 58 time-out out-of-memory time-out ✗ ✗ ✗ ✗ ✗ ✗

fsm6
syn 7 68 time-out out-of-memory time-out ✗ ✗ ✗ ✗ ✗ ✗

fsm7
syn 7 108 time-out out-of-memory time-out ✗ ✗ ✗ ✗ ✗ ✗

fsm8
syn 7 108 time-out out-of-memory time-out ✗ ✗ ✗ ✗ ✗ ✗

MCNC-91 suite where the KISS2 format is available. The cho-
sen set of FSMs in KISS2 is widely used in academic research
works, such as Alkabani et al. [10], Koushanfar et al. [49], and
Li et al. [23], [33]. However, the MCNC-91 suite lacks large-
scale designs. Moreover, current FSM extraction tools cannot
handle large-scale designs for converting netlists into FSMs.3

To demonstrate STATION’s scalability (performance on large-
scale designs), we generated large-scale random FSMs to
mimic the real-world FSMs. We use user-defined specifications
for inputs, outputs, states, and transitions to generate a random
synthetic FSM following Algorithm 2. The process described

3The existing FSM extraction tools cannot extract FSMs for large bench-
marks, such as the NEOS [47] and SIS [50] tools. We have reported and
confirmed this issue with the NEOS developers. We encountered a similar
issue while testing the SIS tool [50].

in lines 6-17 details the generation of each transition (tran). To
prevent multiple transitions sharing the same trigger condition
(where two different transitions start from the same input
pattern and current state but lead to different output patterns or
next states), we implement a verification step in the algorithm.
This step, shown in line 10, checks whether the current
transition (tran) can potentially conflict with the set storing
all previously collected transitions (G.Trans). In case of a
conflict (different transitions with identical trigger conditions),
the new transition, tran, undergoes continuous updates until
there is no conflict.

B. Execution Time of STATION

Fig. 6 describes the implementation flow of STATION con-
taining multiple steps categorized into two stages: generating



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

Algorithm 2: Random FSM generation.
Input: # inputs n input, # outputs n ouput,

# states n state, # transitions n tran
Output: Random FSM G

1 G ← init FSM ()
2 n ff ← minimum num FFs (n state)
3 G.States← state random encoding(n state, n ff)
4 G.Trans← ∅ //Transitions inititalization
5 for i ∈ {1, 2, · · · , n tran} do
6 while True do
7 tran← init transition ()
8 tran.in← random input pattern (n input)
9 tran.statecur ← random state (G.States)

10 conflict← exists tran start (G.Trans, tran)
11 if ¬ conflict then
12 break //Avoid the same tran trigger condition
13 end
14 end
15 tran.statenext ← random state (G.States)
16 tran.out← random output pattern (n output)
17 G.Trans← G.Trans

⋃
{tran}

18 end
19 return G

Stage 1: Generating 
FSC Netlist

Stage 2: Generating 
STATION Netlist

Original FSM 
(.kiss2)

DisJoint FSM 
(.kiss2)

DisJoint 
encoding

FSC FSM 
(.kiss2)

Transition protection

FSC Netlist (.v)

STATION
RTL (.v)

STATION
Netlist (.v)

Appending restore unit

Synthesis

Synthesis

Fig. 6. Two stages of implementing STATION. Each box represents the status
of the design at the step, along with the file format used.

the netlist of FSC and generating the netlist of STATION pro-
tected circuit. Given the FSM of the original design (in
the KISS2 file format) as the input, STATION first does
DisJoint encoding on the initial FSM. Once we get the
DisJoint encoded FSM, STATION obfuscates with the chosen
PST to produce the FSM of FSC. After obtaining the FSM
of FSC, STATION utilizes Design Compiler, does synthesis
on the FSM, and generates the gate-level netlist of the FSC.
Thus, in the first stage, we get the netlist of the FSC. Later,
to obtain the entire STATION protected design, we append
the restore unit to get the entire STATION protected design
according to Fig. 2. We realize this step by adding the RTL
description of the restore unit into the Verilog file of the FSC
netlist. Lastly, to get the netlist of the STATION protected
design, we launch another synthesis process utilizing Design
Compiler and obtain the netlist of the STATION-obfuscated
design from the netlist of the FSC.

To show the reasonable execution time for STATION within
a reasonable time limit, the remainder of this subsection

0 500 1000 1500
Execution time (sec)
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Fig. 7. The distribution of the total execution time after repeating STATION on
each tested circuit for 10 times.

analyzes the experimental execution time from different per-
spectives, including the stability and average execution time
in different stages of STATION by repeating the STATION ob-
fuscation process on each design 10 times.
Execution Time. Fig. 7 shows the total execution time after
repeatedly performing STATION obfuscation on each design
10 times. Each box in Fig. 7 tells the minimum, lower
quartile, median, upper quartile, and maximum values of
the STATION execution time on each circuit. The differ-
ence/fluctuation in the execution time is within a narrow range
compared to the mean/average execution time. For example,
on the synthetic design fsm8

syn, a relatively large-scale design
among all tested circuits, the ratio of standard deviation
over mean value is 3.91%. Thus, we consider that the total
execution time of STATION is stable.
Average Execution Time in Each Stage. According to the
theoretical time complexity analysis in Sec. III-F, we know
that the generation of each STATION-obfuscated circuit can
be separated into two stages: the generation of FSC’s netlist
and the generation of the STATION-locked circuit’s netlist. In
the stage of generating the netlist of the FSC, STATION parses
the original state-transition table, decides the PST, constructs
the FSM of the FSC (in the form of state-transition table),
and does synthesis to get the netlist of the FSC based on the
state-transition table of the FSC. Once STATION generates
the netlist of the FSC, STATION continually constructs the
locked design by XORing the restore unit with the FSC
and goes through the re-synthesis process. We can see that,
in each stage, there’s a synthesis process. In practice, this
synthesis process, utilizing the commercial tool Synopsys De-
sign Compiler, takes the majority of execution time compared
to the effort in other operations, such as parsing the state-
transition table, deciding the PST, appending the restore unit,
etc. Fig. 8 presents the average execution time in each stage on
every tested circuit after repeatedly generating each STATION-
obfuscated design 10 times.

We can observe from Fig. 8 that, in each tested circuit, the
average execution time in two stages (generation of the FSC
and generation of the locked design) is almost equal. This
is because the input files sent to Synopsys Design Compiler
(Verilog file before synthesis) have similar sizes. Thus, the
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Fig. 8. The average execution time of STATION in different stages on each
circuit.

complexities in these two stages are almost the same. There-
fore, to accelerate the STATION’s process, one can append the
restore unit without re-synthesis (canceling the re-synthesis
step in the second stage). Eliminating the re-synthesis step in
the second stage may increase the power, performance, and
area (PPA) cost since there’s no optimization step to combine
the FSC and the restore unit. At the same time, the designer
can benefit from the perspective of the execution time since
the cancellation can reduce the execution time almost to its
half compared to keeping the re-synthesis step in the second
stage. Meanwhile, the cancellation of the re-synthesis step in
the second stage cannot compromise security even with the
exposure of the restore unit. This is because the restore unit
stores no secret but purely compares both the input pattern
and the key input pattern.

C. Security Analysis of STATION
To show the security of STATION, this subsection presents

an analysis of the number of PSTs in conventional designs
before and after using our encoding scheme, along with the
resilience against many I/O and structural attacks.
Number of PSTs. Table III and Table IV provide the number
of PSTs and the maximum achievable key-size on the DisJoint
encoded circuits. Our analysis shows that the original circuits
do not have any PSTs. On the contrary, after applying the
proposed DisJoint encoding, all transitions are PSTs so that
a defender can flexibly choose one or multiple transition(s)
they want to protect. These results demonstrate the need
for the DisJoint encoding for sequential obfuscation. In our
implementation, we choose to protect a single PST to achieve
the highest resilience against I/O attacks, according to the
security analysis in Sec. II-A.
Resilience against structural attacks. An attacker can at-
tempt to launch structural attacks like SPS, ATR, FALL, SPI,
and SCC [3], [17]–[19], [29] to circumvent the security of
the protected state-transition logic. To this end, we run these
attacks using the source code developed by the respective
researchers. For the SCC attack, we used the DANA tool [29].
SPS, ATR, and FALL attacks target combinational designs
and are not applicable to sequential designs. Despite that, we
ran the attack on the state-transition logic to demonstrate the
strength of STATION. As shown in Table IV, none of the
structural attacks breaks STATION.

Resilience against I/O attacks. Though STATION is a se-
quential obfuscation technique, we evaluate its security against
both sequential I/O attacks (e.g., BMC [25] and KC2 [26])
and combinational I/O attacks (e.g., SAT [13]). While the
former targets sequential designs, we applied the latter also
because the state-transition logic is combinational. We first
execute the SAT attack [13] on the protected designs. The
5th column of Table IV shows the SAT attack results on all
tested circuits. When the SAT attack tool can find a key within
72 hours, the table lists the required number of iterations by
the SAT attack tool, as the SAT attack result on each tested
benchmark circuit. If the SAT attack tool cannot find a key
within 72 hours, it is considered a “time-out,” as the SAT
attack results on each synthetic FSM. If we suppose that
the required number of SAT iterations satisfies the uniform
random distribution in the range of {1, 2, 3, · · · , 2k} (k is
the key-size), then the distribution of # iterations

2k−1 approximately
satisfies the uniform random distribution on the range of (0, 2].
The approximation happens since there is a transformation
from the discrete space to a continuous space. Further, the
expected mean and variance are E(µ) = 1 and E(σ2) = 1

3 .
Based on the collected number of SAT iterations from the
SAT results on all tested benchmark circuits, we can get
that the mean and variance of the distribution of # iterations

2k−1

are µ = 0.86 and σ2 = 0.49. We have µ ̸= E(µ) and
σ2 ̸= E(σ2) for three reasons: (i) there is an approximated
mapping for the data points ( # iterations

2k−1 from the discrete space
{ 1
2k−1 ,

2
2k−1 , · · · , 2k

2k−1 } to the continuous space (0, 2] ), (ii) it
is unstable for the number of SAT iterations when the key-size
k is a small value, and (iii) since there are only 11 data points
(the numbers of SAT iterations on 11 benchmark circuits),
it is more likely to have unstable values of µ and σ2 due
to limited data points. We consider that STATION is secure
against the SAT attack since, on relatively larger key-size
cases, the circuits protected by STATION show high resilience
from experimental results, including circuits requiring much
more SAT iterations on larger benchmark circuits (e.g., s298)
and all synthetic FSMs (“time-out” on these synthetic FSMs).
We evaluate the resilience against the BMC [25] and KC2 [26]
attacks. In Table IV, the “BMC/KC2” column shows the
number of discriminating input sequences (DISes) required by
the BMC/KC2 attack. Our observations indicate that: (i) for
benchmark circuits, the number of DISes grows exponentially
with the key-size, and (ii) for synthetic FSMs with large key-
sizes, the BMC attack cannot find the key within 72 hours
(i.e., “time-out”), and the KC2 attack cannot find the key with
a memory limit of 10 GB set in NEOS (i.e., “out-of-memory”).
Based on these findings, we conclude that STATION is secure
against the BMC and KC2 attacks. For instance, considering
the tested benchmark s27, the STATION-obfuscated s27 has a
key-size of 8. Theoretically, the expectation value of the num-
ber of iterations or DISes is E(# iterations) = E(# DISes) =

(
2k∑
i=1

i)/2k ≈ 2k−1 = 28−1 = 128. In our experimental

analysis (refer to Table IV), we can observe that the actual
numbers of SAT iterations, BMC DISes, and KC2 DISes are
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TABLE V
ATTACK RESULTS OF VARIOUS ATTACKS ON SMALL-SCALE SYNTHETIC FSMS

Circuit # States Key-size I/O attack Structural attack
SAT [13] BMC [25] KC2 [26] Fun-SAT [27] SPS [17] ATR [3] FALL [18] SPI [19] SCC [29]

Sy
nt

he
tic

fsms27
syn 7 8 112 15 16 ✗ ✗ ✗ ✗ ✗ ✗

fsmorigin
syn 6 5 7 10 12 ✗ ✗ ✗ ✓ ✗ ✗

fsmbbara
syn 10 9 153 77 58 ✗ ✗ ✗ ✗ ✗ ✗

fsmdk27
syn 7 5 22 6 5 ✗ ✗ ✗ ✗ ✗ ✗

fsmbeec
syn 7 7 50 46 56 ✗ ✗ ✗ ✗ ✗ ✗

fsmshiftreg
syn 8 5 17 10 9 ✗ ✗ ✗ ✗ ✗ ✗

fsmdk512
syn 15 6 4 22 22 ✗ ✗ ✗ ✗ ✗ ✗

fsmdk17
syn 8 6 26 12 11 ✗ ✗ ✗ ✓ ✗ ✗

fsmdk14
syn 7 7 122 18 13 ✗ ✗ ✗ ✗ ✗ ✗

fsmdnfile
syn 24 8 210 100 98 ✗ ✗ ✗ ✗ ✗ ✗

fsms298
syn 218 12 3.4× 103 1.6× 103 1.5× 103 ✗ ✗ ✗ ✗ ✗ ✗

98, 82, and 91, respectively,4 which are close to the expected
value (E = 128 for s27). Based on these results, we conclude
that the STATION-obfuscated design is resilient against the
SAT, BMC, and KC2 attacks.

Finally, we tested STATION against the Fun-SAT at-
tack [27]. Fun-SAT targets to break the circuit protected by
HARPOON [6] or Interlocking [11]. However, some assump-
tions made by Fun-SAT to break other protected designs are
not applicable to STATION-obfuscated designs. A STATION-
obfuscated circuit does not contain an obfuscation mode or
require a corresponding input key sequence of length tk. Thus,
STATION requires adjustment to work with Fun-SAT. Since
the STATION-obfuscated circuit does not have an obfuscation
mode, we consider tk = 0 for all tested circuits. Finally,
a circuit protected by HARPOON [6] or Interlocking [11]
does not have explicit key ports like STATION but instead
has a key sequence that is fed from input ports. Thus, we
consider the key ports of the STATION-obfuscated circuit as
input ports while running Fun-SAT. Fun-SAT cannot prune out
keys effectively on STATION-obfuscated designs, as functional
corruptibility does not always increase monotonically. This
is due to a combination of factors, such as the low output
corruptibility in the STATION-obfuscated design and the lack
of distinct functional and obfuscation modes in STATION.
In most cases, Fun-SAT terminates early after encountering
a sequence of iterations where the functional corruptibility
does not increase monotonically. The early termination even
occurs when user-defined parameters are set to avoid an early
termination. Thus, Fun-SAT is unable to break STATION.

To summarize, we observe that our proposed sequential
obfuscation technique can defend against the state-of-the-art
I/O and structural attacks mentioned in Table IV.
Does the Design Suite Matter for the Security of STA-
TION? To show that STATION works on both small-scale
and large-scale designs, we chose MCNC benchmarks and
large synthetic FSMs. The attack results in Table IV highlight
that the SAT attack breaks small-scale MCNC benchmarks
while returning “time-out” on large-scale synthetic FSMs. To
show that STATION provides similar resilience on same-scale

4Using the NEOS tool suite, we run both BMC and KC2 attacks and collect
different numbers of DISes for BMC and KC2 attacks. The difference in the
numbers of DISes is because the NEOS tool generates random seeds at the
beginning of the BMC/KC2 attack; consequently, after re-running the attack,
the number of DISes changes.

designs irrespective of the suites where designs belong, we
first create additional small-scale synthetic FSMs with the
exact sizes of all 11 tested benchmarks in the MCNC suite (the
same numbers of inputs, outputs, states, and transitions). For
example, in the MCNC suite, bbara has 6 inputs, 2 outputs, 10
states, and 60 transitions; when generating the corresponding
synthetic FSM, this FSM has the same number of inputs,
outputs, states, and transitions as bbara; we name this synthetic
FSM fsmbbara

syn . Next, we protect small-scale synthetic FSMs
with STATION and conduct all attacks on these small-scale
synthetic FSMs. Table V depicts the attack results on small-
scale synthetic FSMs. The SAT, BMC, and KC2 attacks break
all small-scale synthetic FSMs by returning correct keys, and
this case is the same as the SAT, BMC, and KC2 attack
results on MCNC benchmarks. The FALL attack breaks two
designs (fsmorigin

syn and fsmdk17
syn ) with small key-sizes (5 and 6),

which is reasonable since the FALL attack returns multiple
candidate keys. Thus, we see similar attack performance on
MCNC benchmarks and small-scale synthetic FSMs. Thus, we
conclude that STATION provides a similar level of resilience
to designs irrespective of the suite of designs. Therefore, if
there is a large-scale industrial FSM in practice to protect with,
STATION can provide resilience against SAT, BMC, KC2, and
FALL attacks.

D. Overhead of STATION

Table VI showcases the PPA overheads between the original
design and the STATION-obfuscated design. On benchmark
circuits with smaller sizes, the average overheads on power,
performance, and area are 122.19%, 53.05%, and 113.12%.
The overheads are high on these benchmark designs because
these benchmarks are inherently very small (the maximum
number of gates is only 1, 425 on s298). At the same time,
on the larger synthetic FSMs, the average PPA overheads
are 7.00%, 0.15%, and 8.69%. This is in par with existing
sequential obfuscation techniques, e.g., the PPA overheads
of HARPOON-obfuscated designs are 13.31%, −1.73%, and
8.92% [6]. Additionally, these controllers are ≤ 1% in modern
processors [10], further reducing the overhead in large-scale
designs.

To show how the number of PSTs can affect the overheads,
we conducted an experiment on the largest tested FSM, fsm8

syn,
by changing the number of PSTs from 1 to 10, as shown
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TABLE VI
THE PPA OVERHEADS RESULTS BETWEEN THE ORIGINAL DESIGN AND

THE STATION-OBFUSCATED DESIGN

Circuit Overhead (%)
Power Performance Area

B
en

ch
m

ar
k

s27 220.16 18.75 61.39
bbara 69.24 431.82 85.31
beec 76.27 1.6 69.86
dk14 83.17 5.79 87.47
dk17 72.23 6.6 101.86
dk27 101.55 −73.04 117.97

dk512 106.97 37.04 97.05
dnfile 79.69 0.0 114.21
origin 203.98 69.23 227.59
s298 234.36 77.03 145.48

shiftreg 96.46 8.77 136.15
Average 122.19 53.05 113.12

Sy
nt

he
tic

fsm1
syn 10.86 −1.84 11.64

fsm2
syn 10.44 0.87 11.0

fsm3
syn 10.37 −5.04 9.27

fsm4
syn 9.31 2.55 9.68

fsm5
syn 8.07 1.67 9.05

fsm6
syn 7.36 0.41 6.88

fsm7
syn 7.10 1.33 6.41

fsm8
syn 8.75 1.22 5.63

Average 7.00 0.15 8.69

1 2 3 4 5 6 7 8 9 10
Num. of PSTs

0

2.5

5

7.5

10

Ov
er

he
ad

 (%
)

Power Performance Area

Fig. 9. Trade-off between the number of PSTs and power, performance, and
area (PPA) overheads on fsm8

syn.

in Fig. 9. We observe that, on the largest tested FSM, the
overhead of STATION implementation is within a reasonable
range. When increasing the number of PSTs, there is a small
increase in power. Comparing the power overheads when
protecting the design with 1 PST and 10 PSTs, the difference
is less than 0.54%. The performance (delay) overhead varies,
maintaining within a negligible range (less than 2.5%). On
fsm8

syn, there is no significant variation in the area overhead,
and the standard deviation is within 0.27%.

E. Vulnerabilities of Previous Obfuscations Techniques

Table VII shows the resilience of SCRAMBLE, HST, or
JANUS-obfuscated designs against SAT and BMC attacks. As
shown in the table, SCRAMBLE is vulnerable to BMC attack.
In the case of HST, except for s298 with the key-size of 217,
the BMC attack can break the tested benchmark circuit with a
few DISes. The BMC attack cannot break s298 for HST and

JANUS as finding each DIS costs a long execution time due
to the large-scale unrolled design (the number of unrollings
is 217 on s298). In the case of JANUS and HST, the BMC
attack can find the key except for s298 but can break all the
circuits, thereby rendering them non-secure. We attribute this
outlier to the nature of s298 rather than security of HST and
JANUS as evidenced in other circuits. However, STATION is
secure against these attacks, as listed in Table IV.

V. DISCUSSION AND LIMITATIONS

Is STATION vulnerable to scan-based attacks? If the
attacker has scan-chain access, they can scan out the next-
state values, eventually extracting the logic of a transition
in the obfuscated FSM. However, due to DisJoint encoding
and STATION, there are exponential numbers of states and
transitions introduced into the FSM. Furthermore, one can also
use STATION in conjunction with techniques that lock scan
chains [51], thereby preventing an attacker from scanning out
the values.
Is Disjoint encoding the same as parity encoding? DisJoint
encoding is not the same as parity encoding. If there are 2n

states, then each solution of DisJoint encoding with n+1 bits
is a parity encoding. However, if there are more than n + 2
bits, it is not parity encoding, but it is still a DisJoint encoding.
To the best of our knowledge, DisJoint is the first encoding
scheme for sequential obfuscation.
Is STATION dependent on SFLL? STATION is independent
of SFLL. STATION relies on a secure combinational locking
technique to protect the state-transition logic. As long as this
locking technique is secure against all attacks, STATION re-
mains secure. So far, SFLL is secure against all these attacks
(when PIPs are chosen to ensure structural security, such as
D2PIPs [19]). Hence, we used SFLL. However, one can use
other logic locking techniques for STATION.

VI. CONCLUSION

Various sequential obfuscation techniques have been put
forward in the research community; however, many of these
have been circumvented by attackers. Also, multiple defense
techniques are proposed to defend against a specific set
of attacks. However, STATION can simultaneously defend
against multiple I/O and structural attacks by leveraging
DisJoint encoding and existing secure combinational logic
locking techniques. Our experimental analysis over different
circuits demonstrates that STATION achieves the desired se-
curity against nine attacks, including four I/O attacks and
five structural attacks while incurring tolerable power and
area overheads with a minimal performance penalty. One can
achieve a holistic obfuscation solution by using STATION for
FSMs/controllers and combinational logic locking techniques
for datapath units.
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