Check for
Updates

Parsons Problems to Scaffold Code Writing: Impact on
Performance and Problem-Solving Efficiency

Xinying Hou
xyhou@umich.edu
University of Michigan
Ann Arbor, Michigan, United States

ABSTRACT

Novice programmers struggle with writing code from scratch. One
possible way to help them is by using an equivalent Parsons problem
on demand, where learners place mixed-up code blocks in the
correct order. In a classroom study with 89 undergraduate students,
we examined how using a Parsons problem as scaffolding impacts
performance and problem-solving efficiency. Results showed that
students in the Parsons as Help group achieved significantly higher
practice performance and problem-solving efficiency than students
who wrote code without help, while achieving the same level of
posttest scores. These results improve the understanding of Parsons
problems and contribute to the design of future coding practices.

CCS CONCEPTS

- Applied computing — Interactive learning environments;
Computer-assisted instruction; Education.

KEYWORDS
Parsons problems, Introductory Programming, Code Writing

ACM Reference Format:

Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2023. Parsons Problems
to Scaffold Code Writing: Impact on Performance and Problem-Solving
Efficiency. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 2 (ITiCSE 2023), July 8-12, 2023, Turku,
Finland. ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3587103.
3594182

Novice programmers find writing code challenging, particularly
when learning new topics in introductory programming courses.
Parsons problems are popular programming exercises where stu-
dents place mixed-up code blocks in the correct order. They can
help novices who struggle while writing code from scratch. In an
earlier study, there was a ceiling effect on the pretest when inves-
tigating the benefits of using a Parsons problem to scaffold code
writing on Python 3 Basics, suggesting that students had already
mastered this topic [3]. The current study examined the effects
of Parsons problem as scaffolding when learning to write Python
classes before this topic was covered in the course.

An in-class experiment was conducted in a Python programming
course at a large public research university in the northern US. The

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2023, July 8-12, 2023, Turku, Finland

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0139-9/23/07.

https://doi.org/10.1145/3587103.3594182

Barbara Jane Ericson
barbarer@umich.edu
University of Michigan
Ann Arbor, Michigan, United States

665

Xu Wang
xwanghci@umich.edu
University of Michigan

Ann Arbor, Michigan, United States

experiment had two conditions: Parsons-Help (PH) - a text-entry
write-code interface allowing students to open an adaptive Parsons
problem when needed, and No-Help (NH) - only the text-entry in-
terface. Students first completed three parts in order: introduction
to classes and objects, system introduction, and a survey of prior
knowledge. Then participants were assigned to a condition, prac-
ticed four write-code problems, and completed a posttest. The final
sample contained 89 students who completed all of the materials
in order (41 in PH and 48 in NH). For each student, the problem-
solving efficiency was calculated following the likelihood model
from Hoffman and Schraw [2]: Write-code practice score (Max =
40) / Practice time (mins). Practice time was calculated as the time
used for practice, excluding any periods of inactivity over 5 minutes.
The highest efficiency is 4.07, achieved by a student who finished
all four write-code practice problems (40 points) in 9.83 minutes.

We built three linear regression models, using the practice score,
problem-solving efficiency, and posttest score as the dependent
variables, the assigned condition as the independent variable, and
self-rated prior knowledge as a covariate. When controlling for
students’ prior knowledge, PH students got significantly higher
practice scores (M = 20.98) on average compared to NH (M = 10.83),
p = 0.003, Cohen’s f2 = 0.11 (small [1]). Similarly, when control-
ling for prior knowledge, PH students (M = 1.34) had significantly
higher problem-solving efficiency on average during practice com-
pared to NH (M = 0.81), p = 0.041, Cohen’s f2 = 0.05 (small [1]).
However, when controlling for prior knowledge, there were no sig-
nificant differences between students’ posttest scores, even though
PH students (M = 15.15 of 40) achieved higher than NH students
on average (M = 11.51 of 40), p = 0.349.

Our study shows that using scaffolding, such as Parsons prob-
lems, can significantly enhance practice performance and efficiency
when practicing code writing, while maintaining a similar level of
learning performance. This finding also leads to future implications
on appropriate Parsons problems as scaffolding. For example, per-
sonalizing Parsons problems and providing faded scaffolding for
those closer to a correct solution can be effective strategies.

Acknowledgements The funding for this research came from the
National Science Foundation award DUE-2143028. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] Jacob Cohen. 2013. Statistical power analysis for the behavioral sciences. Routledge.
[2] Bobby Hoffman and Gregory Schraw. 2010. Conceptions of efficiency: Applications
in learning and problem solving. Educational Psychologist 45, 1 (2010), 1-14.

[3] Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using Adaptive Par-
sons Problems to Scaffold Write-Code Problems. In Proceedings of the 2022 ACM

Conference on International Computing Education Research-Volume 1. 15-26.


https://orcid.org/0000-0002-1182-5839
https://orcid.org/0000-0001-6881-8341
https://orcid.org/0000-0001-5551-0815
https://doi.org/10.1145/3587103.3594182
https://doi.org/10.1145/3587103.3594182
https://doi.org/10.1145/3587103.3594182
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587103.3594182&domain=pdf&date_stamp=2023-06-29

	Abstract
	References



