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Aphids present a fascinating example of phenotypic plasticity,
in which a single genotype can produce dramatically different
winged and wingless phenotypes that are specialized for
dispersal versus reproduction, respectively. Recent work has
examined many aspects of this plasticity, including its
evolution, molecular control mechanisms, and genetic variation
underlying the trait. In particular, exciting discoveries have been
made about the signaling pathways that are responsible for
controlling the production of winged versus wingless morphs,
including ecdysone, dopamine, and insulin signaling, and about
how specific genes such as REPTOR2 and vestigial are
regulated to control winglessness. Future work will likely focus
on the role of epigenetic mechanisms, as well as developing
transgenic tools for more thoroughly dissecting the role of
candidate plasticity-related genes.
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Introduction

Many organisms have evolved the ability to respond to
changing environmental conditions by altering develop-
ment to produce adaptive phenotypes. This develop-
mental phenotypic plasticity can be highly advantageous,
allowing short-term adjustments to changing environ-
mental circumstances. Phenotypic plasticity has been stu-
died for decades with respect to the factors that promote its
evolution (e.g. [1-3]) as well as its potential costs and limits
(e.g. [4,5]). Far less-understood, however, are the molecular

and physiological mechanisms that are responsible for the
determination and development of different plastic phe-
notypes. Identifying these mechanisms is a prerequisite for
understanding how they properly function, have evolved,
and may constrain or facilitate future modifications.

A renewed focus on the role of plasticity in evolution [6]
has invigorated studies of its mechanistic bases in a
variety of insects and noninsects. Important discoveries
have been made, for example, in a nematode of the
genus Pristionchus that generates alternative feeding-
type mouth forms in response to the environment,
where sulfation-related enzymes [7-9] act as molecular
switches controlling phenotype determination. In an-
other example, ecdysone signaling controls Bicyclus
butterfly plastic seasonal color differences [10 and re-
ferences therein]. But these are just two examples; a
wider view of the exciting ongoing work in this field can
be gained by reading other articles of this issue.

Our focus here will be on the wing plasticity of aphids, in
which dramatically different winged and wingless
morphs (Figure 1) are produced from identical geno-
types depending on environmental conditions. The
wingless morphs are specialized for maximizing re-
productive output, while the winged morphs are capable
of long-range dispersal. Below, we will review recent
studies that have provided insight into the evolution and
mechanistic basis of the aphid wing plasticity.

Aphid wing plasticity, an overview

The aphid wing plasticity occurs naturally during the
spring and summer months. During this time, females
reproduce asexually and give live birth to clonal daughters
via a modified meiosis that bypasses recombination [11].
Cues that induce the production of winged instead of
wingless morphs are varied but are generally indicators of
a deteriorating environment such as tactile stimulation
(often caused by high densities) and low food quality [12].
For some species, this is transgenerational: the aphid
mother senses environmental cues and her daughters are
winged or wingless, while in other species, a developing
aphid nymph can sense the environmental cues and alter
their target adult phenotype [12].

Winged or wingless is shorthand for an integrated, adap-
tive suite of morphological, physiological, behavioral, and
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Figure 1
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Genetically identical winged (left) and wingless (right) pea aphid
(Acyrthosiphon pisum) females. Photo by Omid Saleh Ziabari.

life-history trait differences. In addition to the wing
structure and associated wing musculature, there are
other, finer-scale morphological differences associated
with winged morphs. These include more sensory organs
(rhinaria) on the antennae [13] and larger antennal and
optic lobes in the brain [14]. Wingless morphs, in contrast,
complete development more quickly, are more sedentary,
and have higher fecundity [15]. Recent -omic analyses
have revealed extensive physiological divergence be-
tween the winged and wingless morphs. These studies
have interrogated alternative splicing differences in adult
pea aphids [16], long noncoding RNA and protein ex-
pression differences between the penultimate (fourth)
nymphal instar and adult brown citrus aphids [17] and pea
aphids [18], and gene expression differences across de-
velopment in the bird cherry-oat aphid [19]. These stu-
dies provide a wealth of information as to how a single
genome can be shaped to produce functionally distinct
morphs, with concomitant physiological functions.

Although the wing plasticity is generally discontinuous,
with only winged and wingless morphs, a recent study
revealed that intermediate, seemingly maladaptive
morphs are surprisingly common among some pea aphid
genotypes [20]. These morphs exhibit wing asymme-
tries, for example, wings on one side but not the other.
Future study of these asymmetric morphs could reveal
which aspects of the alternative morphs are most de-
velopmentally integrated and therefore presumably most
important for morph function, and which are less de-
velopmentally coupled.

Evolution of aphid wing dimorphisms

Aphid wing dimorphisms have an interesting evolu-
tionary history with respect to the two sexes. The
asexual female wing plasticity evolved early in aphid
evolution, and most aphid species display this plasticity
(reviewed previously in [15,21]). Male aphids also ex-
hibit winged and wingless morphs. Males are produced
as part of the sexual generation in the fall, when sexual

females and males mate and produce overwintering,
diapausing eggs. Male wing polymorphism is rare, oc-
curring in only ~4% of aphid species and having evolved
multiple times [22]. Most species produce winged or
wingless males, not both, and there have been many
transitions between the two wing morph phenotypes
over evolutionary time [22]. It is possible that the per-
sistence of the female wing plasticity across the aphid
phylogeny has facilitated these many male wing morph
transitions: if a species loses one of the morphs in males,
it can be re-evolved at a later date because the genome
retains the ability to produce both morphs (because the
asexual females are always producing both morphs).

Compared with females, far less is known about trade-
offs between male winged and wingless morphs, al-
though in pea aphids, the wingless males reach re-
productive maturity faster and have larger testes, while
the winged males have an advantage in competitive
matings [23]. Interestingly, the male wing dimorphism
in pea aphids is #of a phenotypic plasticity, but rather is
controlled genetically by a single locus on the X chro-
mosome: wingless males have a 120-kb insertion at this
locus containing a duplicated, expressed fol/listatin gene,
while winged males do not [24]. It is remarkable that a
single aphid species, the pea aphid, exhibits both an
environmentally induced wing dimorphism in asexual
females and a genetically controlled one in males. The
male genetic dimorphism evolved relatively recently
[22,24] compared with the female plasticity, suggesting
that this might be a case of genetic assimilation, the
phenomenon by which trait variation originally induced
by environmental variables loses its environmental re-
sponsiveness [25].

The ecological and life-history contexts of winged versus
winglessness vary considerably across and within aphid
species [21]. For example, in some gall-forming genera,
only winged migrants are produced during the asexual
part of the life cycle [26]. On the other hand, the egg-
laying females of most species are wingless. Other eco-
logical contexts that impact the prevalence of winged or
wingless morphs include ant tending, galling, diet
breadth of host plants, and host alternation [22,27].

Proximate basis of the wing plasticity

Wing plasticity is relatively widespread in insects, and a
growing literature has begun to reveal how these plas-
ticities work at the molecular, mechanistic level (see
especially recent work in planthoppers, e.g. [28-30]; also
see previous reviews in [31-33]), In aphids, this process
must traverse a sequence of molecular events that cul-
minates in morph determination (the ‘decision’ of an
aphid to be winged or wingless) and subsequent,
downstream effects that contribute to morph-specific
development (the developmental achievement of that
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morph once determined). When considering studies
addressing the proximate basis of the aphid wing plas-
ticity, it is important not to attribute a role in morph
determination to genes that function only in the devel-
opment of a morph-specific trait. For example, RNA-
interference (RNAi) knockdown of genes important for
wing development may result in aphids with reduced or
missing wings [34]. However, such developmental
functions in the wing machinery are distinct from a
function in wingless morph determination, if the re-
maining suite of winged-morph-specific characters re-
mains unchanged after gene loss-of-function.

Hormones play a prominent role in the aphid wing
plasticity, as with likely many plasticities [35]. Juvenile
hormone has long been implicated, but no role for this
hormone in the aphid wing plasticity has been unequi-
vocally established [15,31]. Rather, ecdysone signaling
seems to be a key player, promoting winglessness
[36,37], and is hypothesized to be the maternal-to-em-
bryo signal critical for the transgenerational plasticity
response of pea aphids. Similarly, higher levels of do-
pamine are associated with increased production of
wingless offspring in pea aphids [36], and adding dopa-
mine via injection resulted in more wingless offspring
[38]. Given that dopamine acts upstream of ecdysone
signaling in Drosophila [39], dopamine signaling may be
responsible for the early stages of the environmental cue
integration in pea aphids.

Insulin/insulin-like growth factor signaling (I1IS) has also
long been known as a regulator of a variety of plasticities
[31], including controlling differences between long- and
short-winged morphs of the planthopper [29,30] and the
soapberry bug [40]. It is also important for the aphid
wing plasticity. Wingless-destined pea aphid embryos
exhibit higher expression levels of genes regulated by
Forkhead Box O (FoxO) [41]. Because insulin signaling
represses FoxO, this result implies that insulin signaling
is decreased in wingless- compared with winged-des-
tined embryos. Indeed, a subsequent study in pea
aphids found that IIS activation alleviates FoxO-medi-
ated repression of several wing development genes, in-
cluding the wing ‘master’ gene vestigial [42]. Shang et al.
[43] found that IIS modulation is important for wingless
morph determination, this time in both the pea aphid
and in the brown citrus aphid. This modulation is
achieved via miRNA-9b-mediated inhibition of the gene
ATP-Binding Cassette subfamily-G member 4 and sub-
sequent loss of Insulin-Like Peptide 3 expression. Im-
portantly, this mechanism appears to be critical both for
transgenerational morph determination and post-
embryonic wingless morph development, and may in-
volve a non-canonical IIS pathway.

Still other studies have provided insight into the specific
genes responsible for wingless morph development.

Aphid wing plasticity mechanisms Deem et al. 3

Yuan et al. [44] found that a novel duplicate of the Re-
pressed by TOR gene (REPTORZ2) is upregulated in
wingless pea aphid nymphs, and its action led to au-
tophagy of developing wing buds. All pea aphid nymphs
have wing primordia at birth, so wing bud loss is an
important stage for morph differentiation [45]. Fan et al.
[46] found that vestigial, which is critical for wing growth
across insects, is downregulated in developing wingless
morphs of the bird cherry-oat aphid. Further, they dis-
covered that this downregulation of vestigial is modu-
lated posttranscriptionally by miRNA-7475, not by
modulating the upstream regulators of vestigial. This
latter study is particularly interesting because it shows
how vestigial 1s directly affected, avoiding the likely
pleiotropic effects that would have occurred if vestigial’s
regulators were also modulated. In this case, direct reg-
ulation of vestigia/ may bypass pleiotropic constraints on
the evolution of phenotypic plasticity in this system.

Much, therefore, has been learned about the molecular
mechanisms involved in the aphid wing plasticity
(summarized in Figure 2). Future studies will work to
connect the pieces of the puzzle, from environmental
cue reception (perhaps the least-understood part of the
process) to alternative morph development. Another
open question is how the wing plasticity evolved from a
wing monomorphic ancestor. It is intriguing that the
signaling mechanisms important for aphid wing plasti-
city such as ecdysone, IIS, and TOR (Target Of Rapa-
mycin), are known to play many, often interacting roles
in reproduction, behavior, metabolism, metamorphosis,
and stress response in Drosophila (e.g. [47-49]). Thus,
the pea aphid wing plasticity could have evolved from
preexisting, integrated networks controlling metabolic,
gonadotropic, and metamorphic alterations that occur in
response to environmental stress.

Genetic variation for wing plasticity

A promising area of focus for ongoing and future research
is examining genetic variation for the wing plasticity and
determining the genetic variants responsible for that
variation. As with other traits, plastic traits exhibit ge-
netic variation that can be subject to natural selection
[50,51]. Despite the importance of variation to the evo-
lutionary process, little is known about the types of
genes/genetic pathways that underlie variation in plastic
responses.

Parker and Brisson [52] provided some initial insights.
They found that a single pea aphid population harbored
extensive variation for the wing plasticity, observing a
continuum from genotypes that produced high propor-
tions of winged offspring in response to high-density
cues to genotypes that produced low proportions of
winged offspring in response to those same cues. Sub-
sequently, comparative transcriptomic analyses revealed
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Figure 2

Molecular signals in asexual female
Pea aphid wing plasticity
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Summary of putative molecular mechanisms involved in the aphid wing
plasticity. The top part of the model summarizes how the aphid mother
likely senses and transduces information about her environment, while
the bottom section (in gray) summarizes molecular signals involved in
morph specification and/or differentiation.

laterally transferred genes of densoviral origin that had
higher expression in those high-responding compared
with low-responding lines. Interestingly, densovirus in-
fection in another aphid species caused the production
of winged offspring [53], implying that the gene had
retained its function post genome transfer. In this ex-
ample, the conclusion gave an interesting answer to the
question of whether genes underlying the development
of plastic traits are the same ones that control variation in
plasticity: not only are the densoviral genes from outside
the developmental genetic pathway for the aphid wing
plasticity, they also are from outside aphids themselves.

Pea aphid biotypes, which are host-plant associated lineages
associated with some degree of ecological isolation, exhibit a
similar range of plasticity variation [54]. Parker et al. [54]
investigated gene expression in clonal lines from two

biotypes: one that produces a large number of winged off-
spring in response to crowding (high-responding), and one
that produces mostly wingless offspring, regardless of
crowding (low-responding). They found that the high-re-
sponding biotype line had a strong transcriptional response
to a high- versus low-density environment, while the low-
responding biotype had no differentially expressed genes
with the same treatments. This result suggested that gen-
otypes can lose their ability to assess their environment, and
cannot respond to environmental density cues.

While these studies provide building blocks to under-
standing variation in aphid wing plasticity at a mechan-
istic level, many unresolved questions remain. Are the
mechanisms underlying intraspecific variation in plasti-
city the same as the interspecific variation differences
between species? Which type of variation is more likely
to arise, for example, variation due to endocrine versus
epigenetic or other factors? Is variation found more often
at the environmental sensing, cue integration, or morph
differentiation level? This lack of knowledge represents
a significant roadblock to understanding how plastic re-
sponses evolve. The synthesis of intra- and interspecific
studies on the developmental basis of plasticity will
begin to resolve these outstanding questions.

Future directions

Much remains to be discovered about the molecular me-
chanisms underlying aphid wing plasticity. Given that
morph differences emerge from the same genome, epige-
netic analyses show great promise for future studies [55,56].
As noted in Richard et al. [57], epigenetic mechanisms such
as chromatin accessibility are the likely effectors down-
stream of signaling cascades that set up the alternative
transcriptional programs that eventually lead to the alter-
native morphs. There have been some recent, pioneering
epigenetic studies in aphids. Richard et al. [58] revealed a
sex-specific chromatin accessibility profile in pea aphids via
Formaldehyde-Assisted Isolation of Regulatory Elements
followed by deep sequencing (FAIRE-seq) and Mathers
[59] did the same with DNA methylation.

Functional manipulations will become more critical as
research groups become increasingly interested in
probing a range of molecular mechanisms associated
with the wing plasticity. Targeted mutations via the
Clustered Regularly Interspaced Repeat-CRISPR asso-
ciated protein 9 (CRISPR-Cas9) system are technically
possible in aphids [60], but have not been widely im-
plemented due in part to the low hatching rates fol-
lowing the obligate overwintering diapause period of
aphid eggs. This is in addition to the common problems
faced with CRISPR experiments, including the potential
lethality or sterility of mutants and the difficulty of
screening and identifying mutants. Still, CRISPR may
provide a valuable means to functionally evaluate genes
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for a role in morph determination via complete loss-of-
function.

No transgenic lines of aphids have yet to be produced,
but an established enhancer-reporter assay would be
highly beneficial for dissecting gene networks re-
sponsible for plasticity. Specifically, a thorough dissec-
tion of the cs-regulatory elements at genes important for
morph determination in the embryo is required to un-
derstand how they are activated or repressed by en-
vironmentally induced maternal endocrine signaling.
Despite the inherent difficulties, the establishment of
ever-more elegant molecular tools in nontraditional in-
sect models (e.g. [61,62]) provides hope for developing
these technologies in aphids. Combining established
next-generation sequencing experiments with protein
loss-of-function (RNAi or CRISPR) and enhancer-re-
porter assays, will be fruitful approaches for future stu-
dies aimed at piecing together the wing plasticity gene-
regulatory network.
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