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Evolution and molecular mechanisms of wing plasticity 
in aphids 
Kevin D Deem, Lauren E Gregory, Xiaomi Liu, Omid S Ziabari and  
Jennifer A Brisson   

Aphids present a fascinating example of phenotypic plasticity, 
in which a single genotype can produce dramatically different 
winged and wingless phenotypes that are specialized for 
dispersal versus reproduction, respectively. Recent work has 
examined many aspects of this plasticity, including its 
evolution, molecular control mechanisms, and genetic variation 
underlying the trait. In particular, exciting discoveries have been 
made about the signaling pathways that are responsible for 
controlling the production of winged versus wingless morphs, 
including ecdysone, dopamine, and insulin signaling, and about 
how specific genes such as REPTOR2 and vestigial are 
regulated to control winglessness. Future work will likely focus 
on the role of epigenetic mechanisms, as well as developing 
transgenic tools for more thoroughly dissecting the role of 
candidate plasticity-related genes. 
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Introduction 
Many organisms have evolved the ability to respond to 
changing environmental conditions by altering develop
ment to produce adaptive phenotypes. This develop
mental phenotypic plasticity can be highly advantageous, 
allowing short-term adjustments to changing environ
mental circumstances. Phenotypic plasticity has been stu
died for decades with respect to the factors that promote its 
evolution (e.g. [1–3]) as well as its potential costs and limits 
(e.g. [4,5]). Far less-understood, however, are the molecular 

and physiological mechanisms that are responsible for the 
determination and development of different plastic phe
notypes. Identifying these mechanisms is a prerequisite for 
understanding how they properly function, have evolved, 
and may constrain or facilitate future modifications. 

A renewed focus on the role of plasticity in evolution [6] 
has invigorated studies of its mechanistic bases in a 
variety of insects and noninsects. Important discoveries 
have been made, for example, in a nematode of the 
genus Pristionchus that generates alternative feeding- 
type mouth forms in response to the environment, 
where sulfation-related enzymes [7–9] act as molecular 
switches controlling phenotype determination. In an
other example, ecdysone signaling controls Bicyclus 
butterfly plastic seasonal color differences [10 and re
ferences therein]. But these are just two examples; a 
wider view of the exciting ongoing work in this field can 
be gained by reading other articles of this issue. 

Our focus here will be on the wing plasticity of aphids, in 
which dramatically different winged and wingless 
morphs (Figure 1) are produced from identical geno
types depending on environmental conditions. The 
wingless morphs are specialized for maximizing re
productive output, while the winged morphs are capable 
of long-range dispersal. Below, we will review recent 
studies that have provided insight into the evolution and 
mechanistic basis of the aphid wing plasticity. 

Aphid wing plasticity, an overview 
The aphid wing plasticity occurs naturally during the 
spring and summer months. During this time, females 
reproduce asexually and give live birth to clonal daughters 
via a modified meiosis that bypasses recombination [11]. 
Cues that induce the production of winged instead of 
wingless morphs are varied but are generally indicators of 
a deteriorating environment such as tactile stimulation 
(often caused by high densities) and low food quality [12]. 
For some species, this is transgenerational: the aphid 
mother senses environmental cues and her daughters are 
winged or wingless, while in other species, a developing 
aphid nymph can sense the environmental cues and alter 
their target adult phenotype [12]. 

Winged or wingless is shorthand for an integrated, adap
tive suite of morphological, physiological, behavioral, and 
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life-history trait differences. In addition to the wing 
structure and associated wing musculature, there are 
other, finer-scale morphological differences associated 
with winged morphs. These include more sensory organs 
(rhinaria) on the antennae [13] and larger antennal and 
optic lobes in the brain [14]. Wingless morphs, in contrast, 
complete development more quickly, are more sedentary, 
and have higher fecundity [15]. Recent -omic analyses 
have revealed extensive physiological divergence be
tween the winged and wingless morphs. These studies 
have interrogated alternative splicing differences in adult 
pea aphids [16], long noncoding RNA and protein ex
pression differences between the penultimate (fourth) 
nymphal instar and adult brown citrus aphids [17] and pea 
aphids [18], and gene expression differences across de
velopment in the bird cherry-oat aphid [19]. These stu
dies provide a wealth of information as to how a single 
genome can be shaped to produce functionally distinct 
morphs, with concomitant physiological functions. 

Although the wing plasticity is generally discontinuous, 
with only winged and wingless morphs, a recent study 
revealed that intermediate, seemingly maladaptive 
morphs are surprisingly common among some pea aphid 
genotypes [20]. These morphs exhibit wing asymme
tries, for example, wings on one side but not the other. 
Future study of these asymmetric morphs could reveal 
which aspects of the alternative morphs are most de
velopmentally integrated and therefore presumably most 
important for morph function, and which are less de
velopmentally coupled. 

Evolution of aphid wing dimorphisms 
Aphid wing dimorphisms have an interesting evolu
tionary history with respect to the two sexes. The 
asexual female wing plasticity evolved early in aphid 
evolution, and most aphid species display this plasticity 
(reviewed previously in [15,21]). Male aphids also ex
hibit winged and wingless morphs. Males are produced 
as part of the sexual generation in the fall, when sexual 

females and males mate and produce overwintering, 
diapausing eggs. Male wing polymorphism is rare, oc
curring in only ∼4% of aphid species and having evolved 
multiple times [22]. Most species produce winged or 
wingless males, not both, and there have been many 
transitions between the two wing morph phenotypes 
over evolutionary time [22]. It is possible that the per
sistence of the female wing plasticity across the aphid 
phylogeny has facilitated these many male wing morph 
transitions: if a species loses one of the morphs in males, 
it can be re-evolved at a later date because the genome 
retains the ability to produce both morphs (because the 
asexual females are always producing both morphs). 

Compared with females, far less is known about trade- 
offs between male winged and wingless morphs, al
though in pea aphids, the wingless males reach re
productive maturity faster and have larger testes, while 
the winged males have an advantage in competitive 
matings [23]. Interestingly, the male wing dimorphism 
in pea aphids is not a phenotypic plasticity, but rather is 
controlled genetically by a single locus on the X chro
mosome: wingless males have a 120-kb insertion at this 
locus containing a duplicated, expressed follistatin gene, 
while winged males do not [24]. It is remarkable that a 
single aphid species, the pea aphid, exhibits both an 
environmentally induced wing dimorphism in asexual 
females and a genetically controlled one in males. The 
male genetic dimorphism evolved relatively recently  
[22,24] compared with the female plasticity, suggesting 
that this might be a case of genetic assimilation, the 
phenomenon by which trait variation originally induced 
by environmental variables loses its environmental re
sponsiveness [25]. 

The ecological and life-history contexts of winged versus 
winglessness vary considerably across and within aphid 
species [21]. For example, in some gall-forming genera, 
only winged migrants are produced during the asexual 
part of the life cycle [26]. On the other hand, the egg- 
laying females of most species are wingless. Other eco
logical contexts that impact the prevalence of winged or 
wingless morphs include ant tending, galling, diet 
breadth of host plants, and host alternation [22,27]. 

Proximate basis of the wing plasticity 
Wing plasticity is relatively widespread in insects, and a 
growing literature has begun to reveal how these plas
ticities work at the molecular, mechanistic level (see 
especially recent work in planthoppers, e.g. [28–30]; also 
see previous reviews in [31–33]), In aphids, this process 
must traverse a sequence of molecular events that cul
minates in morph determination (the ‘decision’ of an 
aphid to be winged or wingless) and subsequent, 
downstream effects that contribute to morph-specific 
development (the developmental achievement of that 

Figure 1  
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Genetically identical winged (left) and wingless (right) pea aphid 
(Acyrthosiphon pisum) females. Photo by Omid Saleh Ziabari.   
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morph once determined). When considering studies 
addressing the proximate basis of the aphid wing plas
ticity, it is important not to attribute a role in morph 
determination to genes that function only in the devel
opment of a morph-specific trait. For example, RNA- 
interference (RNAi) knockdown of genes important for 
wing development may result in aphids with reduced or 
missing wings [34]. However, such developmental 
functions in the wing machinery are distinct from a 
function in wingless morph determination, if the re
maining suite of winged-morph-specific characters re
mains unchanged after gene loss-of-function. 

Hormones play a prominent role in the aphid wing 
plasticity, as with likely many plasticities [35]. Juvenile 
hormone has long been implicated, but no role for this 
hormone in the aphid wing plasticity has been unequi
vocally established [15,31]. Rather, ecdysone signaling 
seems to be a key player, promoting winglessness  
[36,37], and is hypothesized to be the maternal-to-em
bryo signal critical for the transgenerational plasticity 
response of pea aphids. Similarly, higher levels of do
pamine are associated with increased production of 
wingless offspring in pea aphids [36], and adding dopa
mine via injection resulted in more wingless offspring  
[38]. Given that dopamine acts upstream of ecdysone 
signaling in Drosophila [39], dopamine signaling may be 
responsible for the early stages of the environmental cue 
integration in pea aphids. 

Insulin/insulin-like growth factor signaling (IIS) has also 
long been known as a regulator of a variety of plasticities  
[31], including controlling differences between long- and 
short-winged morphs of the planthopper [29,30] and the 
soapberry bug [40]. It is also important for the aphid 
wing plasticity. Wingless-destined pea aphid embryos 
exhibit higher expression levels of genes regulated by 
Forkhead Box O (FoxO) [41]. Because insulin signaling 
represses FoxO, this result implies that insulin signaling 
is decreased in wingless- compared with winged-des
tined embryos. Indeed, a subsequent study in pea 
aphids found that IIS activation alleviates FoxO-medi
ated repression of several wing development genes, in
cluding the wing ‘master’ gene vestigial [42]. Shang et al.  
[43] found that IIS modulation is important for wingless 
morph determination, this time in both the pea aphid 
and in the brown citrus aphid. This modulation is 
achieved via miRNA-9b-mediated inhibition of the gene 
ATP-Binding Cassette subfamily-G member 4 and sub
sequent loss of Insulin-Like Peptide 3 expression. Im
portantly, this mechanism appears to be critical both for 
transgenerational morph determination and post
embryonic wingless morph development, and may in
volve a non-canonical IIS pathway. 

Still other studies have provided insight into the specific 
genes responsible for wingless morph development. 

Yuan et al. [44] found that a novel duplicate of the Re
pressed by TOR gene (REPTOR2) is upregulated in 
wingless pea aphid nymphs, and its action led to au
tophagy of developing wing buds. All pea aphid nymphs 
have wing primordia at birth, so wing bud loss is an 
important stage for morph differentiation [45]. Fan et al.  
[46] found that vestigial, which is critical for wing growth 
across insects, is downregulated in developing wingless 
morphs of the bird cherry-oat aphid. Further, they dis
covered that this downregulation of vestigial is modu
lated posttranscriptionally by miRNA-147b, not by 
modulating the upstream regulators of vestigial. This 
latter study is particularly interesting because it shows 
how vestigial is directly affected, avoiding the likely 
pleiotropic effects that would have occurred if vestigial’s 
regulators were also modulated. In this case, direct reg
ulation of vestigial may bypass pleiotropic constraints on 
the evolution of phenotypic plasticity in this system. 

Much, therefore, has been learned about the molecular 
mechanisms involved in the aphid wing plasticity 
(summarized in Figure 2). Future studies will work to 
connect the pieces of the puzzle, from environmental 
cue reception (perhaps the least-understood part of the 
process) to alternative morph development. Another 
open question is how the wing plasticity evolved from a 
wing monomorphic ancestor. It is intriguing that the 
signaling mechanisms important for aphid wing plasti
city such as ecdysone, IIS, and TOR (Target Of Rapa
mycin), are known to play many, often interacting roles 
in reproduction, behavior, metabolism, metamorphosis, 
and stress response in Drosophila (e.g. [47–49]). Thus, 
the pea aphid wing plasticity could have evolved from 
preexisting, integrated networks controlling metabolic, 
gonadotropic, and metamorphic alterations that occur in 
response to environmental stress. 

Genetic variation for wing plasticity 
A promising area of focus for ongoing and future research 
is examining genetic variation for the wing plasticity and 
determining the genetic variants responsible for that 
variation. As with other traits, plastic traits exhibit ge
netic variation that can be subject to natural selection  
[50,51]. Despite the importance of variation to the evo
lutionary process, little is known about the types of 
genes/genetic pathways that underlie variation in plastic 
responses. 

Parker and Brisson [52] provided some initial insights. 
They found that a single pea aphid population harbored 
extensive variation for the wing plasticity, observing a 
continuum from genotypes that produced high propor
tions of winged offspring in response to high-density 
cues to genotypes that produced low proportions of 
winged offspring in response to those same cues. Sub
sequently, comparative transcriptomic analyses revealed 

Aphid wing plasticity mechanisms Deem et al. 3 

www.sciencedirect.com Current Opinion in Insect Science 2024, 61:101142 



laterally transferred genes of densoviral origin that had 
higher expression in those high-responding compared 
with low-responding lines. Interestingly, densovirus in
fection in another aphid species caused the production 
of winged offspring [53], implying that the gene had 
retained its function post genome transfer. In this ex
ample, the conclusion gave an interesting answer to the 
question of whether genes underlying the development 
of plastic traits are the same ones that control variation in 
plasticity: not only are the densoviral genes from outside 
the developmental genetic pathway for the aphid wing 
plasticity, they also are from outside aphids themselves. 

Pea aphid biotypes, which are host-plant associated lineages 
associated with some degree of ecological isolation, exhibit a 
similar range of plasticity variation [54]. Parker et al. [54] 
investigated gene expression in clonal lines from two 

biotypes: one that produces a large number of winged off
spring in response to crowding (high-responding), and one 
that produces mostly wingless offspring, regardless of 
crowding (low-responding). They found that the high-re
sponding biotype line had a strong transcriptional response 
to a high- versus low-density environment, while the low- 
responding biotype had no differentially expressed genes 
with the same treatments. This result suggested that gen
otypes can lose their ability to assess their environment, and 
cannot respond to environmental density cues. 

While these studies provide building blocks to under
standing variation in aphid wing plasticity at a mechan
istic level, many unresolved questions remain. Are the 
mechanisms underlying intraspecific variation in plasti
city the same as the interspecific variation differences 
between species? Which type of variation is more likely 
to arise, for example, variation due to endocrine versus 
epigenetic or other factors? Is variation found more often 
at the environmental sensing, cue integration, or morph 
differentiation level? This lack of knowledge represents 
a significant roadblock to understanding how plastic re
sponses evolve. The synthesis of intra- and interspecific 
studies on the developmental basis of plasticity will 
begin to resolve these outstanding questions. 

Future directions 
Much remains to be discovered about the molecular me
chanisms underlying aphid wing plasticity. Given that 
morph differences emerge from the same genome, epige
netic analyses show great promise for future studies [55,56]. 
As noted in Richard et al. [57], epigenetic mechanisms such 
as chromatin accessibility are the likely effectors down
stream of signaling cascades that set up the alternative 
transcriptional programs that eventually lead to the alter
native morphs. There have been some recent, pioneering 
epigenetic studies in aphids. Richard et al. [58] revealed a 
sex-specific chromatin accessibility profile in pea aphids via 
Formaldehyde-Assisted Isolation of Regulatory Elements 
followed by deep sequencing (FAIRE-seq) and Mathers  
[59] did the same with DNA methylation. 

Functional manipulations will become more critical as 
research groups become increasingly interested in 
probing a range of molecular mechanisms associated 
with the wing plasticity. Targeted mutations via the 
Clustered Regularly Interspaced Repeat-CRISPR asso
ciated protein 9 (CRISPR–Cas9) system are technically 
possible in aphids [60], but have not been widely im
plemented due in part to the low hatching rates fol
lowing the obligate overwintering diapause period of 
aphid eggs. This is in addition to the common problems 
faced with CRISPR experiments, including the potential 
lethality or sterility of mutants and the difficulty of 
screening and identifying mutants. Still, CRISPR may 
provide a valuable means to functionally evaluate genes 

Figure 2  
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Summary of putative molecular mechanisms involved in the aphid wing 
plasticity. The top part of the model summarizes how the aphid mother 
likely senses and transduces information about her environment, while 
the bottom section (in gray) summarizes molecular signals involved in 
morph specification and/or differentiation.   
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for a role in morph determination via complete loss-of- 
function. 

No transgenic lines of aphids have yet to be produced, 
but an established enhancer-reporter assay would be 
highly beneficial for dissecting gene networks re
sponsible for plasticity. Specifically, a thorough dissec
tion of the cis-regulatory elements at genes important for 
morph determination in the embryo is required to un
derstand how they are activated or repressed by en
vironmentally induced maternal endocrine signaling. 
Despite the inherent difficulties, the establishment of 
ever-more elegant molecular tools in nontraditional in
sect models (e.g. [61,62]) provides hope for developing 
these technologies in aphids. Combining established 
next-generation sequencing experiments with protein 
loss-of-function (RNAi or CRISPR) and enhancer-re
porter assays, will be fruitful approaches for future stu
dies aimed at piecing together the wing plasticity gene- 
regulatory network. 
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