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Abstract

Obtaining high-resolution maps of precipitation data can provide key insights to stakeholders to assess a 
sustainable access to water resources at urban scale. Mapping a non-stationary, sparse process such as 
precipitation at very high spatial resolution requires the interpolation of global datasets at the location 
where ground stations are available with statistical models able to capture complex non-Gaussian global 
space–time dependence structures. In this work, we propose a new approach based on capturing the 
spatially varying anisotropy of a latent Gaussian process via a locally deformed stochastic partial differential 
equation (SPDE) with a buffer allowing for a different spatial structure across land and sea. The finite 
volume approximation of the SPDE, coupled with integrated nested Laplace approximation ensures feasible 
Bayesian inference for tens of millions of observations. The simulation studies showcase the improved 
predictability of the proposed approach against stationary and no-buffer alternatives. The proposed 
approach is then used to yield high-resolution simulations of daily precipitation across the United States.
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1 Introduction

Accurate high-resolution information of precipitation data is essential to effective prediction and 
management of water resources (Clark et al., 2015). Dramatic improvements in modelling phys-
ical processes driving precipitation have resulted in more realistic simulations from global climate 
models and hence more reliable predictions. The high complexity of modern climate models, how-
ever, implies a computational and storage cost which limit the spatial resolution at which global 
climate simulations can be performed. As such, there are significant uncertainties and mismatches 
with observations, due to precipitation patterns that coarse resolutions do not sufficiently re-
present as they cannot capture the scale of the physical processes of interest (Wood et al., 
2021). The consequences can be over- or under-attribution of a particular location or incorrect 
timing of events, that can for example be the difference between a local flooding or not 
(Sapountzis et al., 2021). It is therefore of high scientific interest to refine global predictions and 
produce maps of both probability of rain occurrence and precipitation intensity at a high spatial 
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scale, in order to inform impact assessment models for flood resilience and agricultural models for 
drought predictions.

It is in principle possible to produce high-resolution precipitation using a coarse global dataset 
as boundary condition for a regional weather model such as the weather and research forecasting 
(WRF, Skamarock et al., 2019). This dynamical downscaling approach (Sain et al., 2011) has the 
appealing advantage of producing physically consistent spatial fields at high resolution, but comes 
with a substantial associated cost in terms of computational and storage resources, as well as ex-
pertise for model setup that only few research centres, universities or businesses could afford. A 
more affordable solution lies in the formulation of an empirical relationship between global 
data and ground observations to be fit at locations where ground data are available. Under the as-
sumption that this relationship is at least approximately valid at unobserved locations, high- 
resolution maps can be produced by correcting the global dataset. This statistical downscaling ap-
proach (Berrocal et al., 2010) is fast, computationally affordable, and has a long established track 
record of success in the geoscience literature. In order to work, such approach requires that the 
global and the ground data are co-located, which is not a priori the case since global data are de-
fined as averages over large areas. It becomes therefore necessary to use spatial statistical models to 
interpolate the global simulation values at the same locations of the ground observations, and to 
have an assessment of the uncertainty around these estimates.

Global spatial data require the formulation of specialised models whose theoretical properties 
are substantially different from spatial processes on Euclidean spaces. In fact, Gneiting (2013)
highlighted how a valid process on the sphere with great circle distance could be achieved only 
with severe restrictions on the parameter space of the most widespread covariance model, the 
Matérn function. In the past two decades, new modelling approaches tailored for global data 
have emerged. Among them, Jun and Stein (2007, 2008) proposed to embed the sphere in a three- 
dimensional space, consider a Matérn model and apply partial derivatives to achieve more flexi-
bility. The proposed class of models was able to capture not just an isotropic behaviour, but 
also axial symmetry, i.e. a non-stationary behaviour across latitude (Jones, 1963). Jun (2011) gen-
eralised this approach to multivariate global processes. A fast and flexible spectral class of axially 
symmetric models was proposed in the case of gridded data by Castruccio and Stein (2013). The 
approach was then generalised to non-parametric spectral estimation (Castruccio & Genton, 
2014), three-dimensional variables (Castruccio & Genton, 2016), different land/ocean behaviour 
(Castruccio & Guinness, 2017), and also multivariate processes (Edwards et al., 2019). On the 
more theoretical side, substantial progress has been made in the determination of properties of 
high-dimensional spheres for isotropic processes via basis decomposition see, e.g. Arafat et al. 
(2020) and Porcu et al. (2020). We refer to Jeong et al. (2017) and Porcu et al. (2018) for two re-
cent reviews on the topic.

A novel, different perspective was raised in the seminal work of Lindgren et al. (2011), where a 
sub-class of Matérn models was associated with the solution of a diffusion-reaction stochastic par-
tial differential equation (SPDE) with the Markov property and inference was performed with fi-
nite elements. The key insight of this approach, as far as global models are concerned, is that the 
original SPDE on the plane can be just adapted to the sphere, with the additional benefit of not 
requiring boundary conditions. The original ideas for non-stationarity in Lindgren et al. (2011)
have been explored in several directions, from nested SPDE (Bolin & Lindgren, 2011) to models 
with physical barriers (Bakka et al., 2019). Recently, Fuglstad et al. (2015) and Fuglstad and 
Castruccio (2020) extended this approach by parametrising spatially varying anisotropy on the 
sphere through a spatially varying scalar and vector field, which resulted in a local deformation 
of the SPDE. The proposed approach showed promising results, but has been so far limited to 
the Gaussian case and generalisation to non-Gaussian data is by no means straightforward, given 
the challenges in modelling non-Gaussian data and the computational overhead implied by these 
models.

In this work, we propose a non-Gaussian, non-stationary SPDE-based global spatio-temporal 
model with spatially varying anisotropy and a buffer between land and sea to account for abrupt 
changes in spatial dependence. Non-Gaussianity is modelled via a latent Gaussian model, i.e. by 
assuming that the non-Gaussian marginal behaviour is conditionally independent across loca-
tions, and then the spatial dependence is captured via a latent process with a Gaussian structure. 
Inference is still achievable for very large datasets by means of (1) a sparse precision matrix of the 
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latent Gaussian model emerging from the finite volume solution of the SPDE and (2) a fast ap-
proximation of the high-dimensional integrals required for posterior computation via integrated 
nested Laplace approximation (INLA, Rue et al., 2009). The model is ideally suited to highly 
non-Gaussian data such as daily global precipitation, and it is then used to (1) fit global re-analysis 
data, (2) provide interpolated data at the same location as the ground observations, (3) downscale 
precipitation using both ground and interpolated data, so that (4) high-resolution maps of precipi-
tation are provided.

The work proceeds as follows. Section 2 introduces the data which will be used in this work. 
Section 3 details the methodology for the latent Gaussian model, specifically the temporal and 
the spatial component. Section 4 shows how inference is performed and how sparsity and numer-
ical approximations alleviate the computational burden. Section 5 assesses numerically the poster-
ior consistency, as well as the improved predictability of the proposed model against simpler 
alternatives. Section 6 applies the proposed model to the precipitation data and shows it can pro-
vide high-resolution maps of daily precipitation across the continental United States. Section 7
concludes with a discussion. For reproducibility, at the end of this work we provide information 
about the repository where the code and data are available.

2 Data description

We focus on daily global precipitation data from the Modern-Era Retrospective Analysis for 
Research and Applications, version 2 (MERRA-2, Gelaro et al., 2017) produced by the NASA 
Global Modeling and Assimilation Office. MERRA-2 is a re-analysis data product that incorpo-
rates observations from satellite instruments and is considered one of the best representations of 
the state of the Earth’s system. The data is available on a regular grid with a resolution of 0.625◦ × 

0.5◦ in longitude and latitude, respectively, for a total of n = 207,936 locations. We focus on the 
year 2021, the latest year with a continuous record available, and we use the daily maximum rain-
fall rate (MRR, in kg/m2 · s). To convert the MRR into precipitation, we divided it by the water 
density, 1,000 (kg/m3), and convert the unit to millimetre by multiplying by 1,000, as well as 
multiply by 86,400s to obtain the daily precipitation. We assume that for each location, the 
MRR lasts for the whole day, which leads to some overestimation, as it can be clearly seen 
from the two different legend scales in Figure 1. The downscaling approach in Section 6 will be 
able to account for this by performing a linear transformation between (interpolated) 
MERRA-2 and U.S. Surface Climate Reference Network (USCRN).

For ground observations, we consider the USCRN (NOAA, 2022), a data product containing 
continuous records from climate monitoring stations across the continental United States. The 
USCRN monitoring stations record measurements for total precipitation, measured in millimetres 
(mm), in real-time in 5-min intervals. The data are collected with a Geonor T-200B precipitation 
gauge, whose maximum capacity is 600 mm. This gauge uses a precipitation collection bucket 
which is surrounded by a wind/snow shield and heated in order to prevent ice build-up in cold re-
gions. Three wires attached to this collection device vibrate with frequencies relative to the weight 
of the bucket, and these vibration frequencies are then converted to gauge depth (in mm). For this 
work, we consider data from 131 different monitoring stations post-processed to daily resolution 
forming a continuous record from 1 January 2021 to 31 December 2021. Figure 1 shows the lo-
cations of the USCRN sensors along with the average total daily precipitation throughout 2021. 
For comparison, the same figure also shows the average daily precipitation for the MERRA-2 grid 
points during the same time frame. It is readily apparent from this figure that the regions of highest 
average daily precipitation are the northwest and southeast regions of the country, whereas the 
drier region of the country spans from the eastern border of California to the Mississippi River.

3 Methodology

3.1 Latent Gaussian model

We propose a spatio-temporal latent Gaussian model (Rue et al., 2009), defined for a generic spa-
tial point on the sphere s ∈ S

2 and time t = 1, 2, . . . as

Y(s, t) ∣ μ(s, t), θMRG ∼ h(μ(s, t), θMRG), (1a) 
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g(μ(s, t)) =
􏽘

P

p=1

βpfp(s) + f time(s, t) + ϵ(s), (1b) 

f time(s, t) =
􏽘

K

k=1

ζk(s) sin
2πkt

δ

􏼒 􏼓

+ ζ ′k(s) cos
2πkt

δ

􏼒 􏼓􏼚 􏼛

, (1c) 

where h(·) represents the marginal distribution of Y(·) conditional on the latent field and the hyper-
parameters, and belongs to the exponential family with some mean μ(s, t), whose structure is de-
termined by a latent Gaussian process through a link function g(·). The marginal parameters θMRG 

characterise moments higher than the first, and could be empty. If the marginal distribution is 
Gaussian, we have Y(s) ∼ N (μ(s, t), θMRG), and the link function g(·) is simply the identity func-
tion (Dunn & Smyth, 2018). For example, if the marginal distribution is the Bernoulli distribution 
instead, we have Y(s) ∼ B(μ(s, t)), and the logit function can be chosen as the link function (Dunn 
& Smyth, 2018). We assume that the transformed mean in the latent space g(μ(s, t)) is modelled by 

a location specific time effect, f time(s, t), p = 1, . . . , P location-specific covariates fp(s), and a spa-

tial error ϵ(s). The time effect f time(s, t) is described by K harmonics with parameters ζ(s) = 

(ζ1(s), . . . , ζK(s))⊤ and ζ ′(s) = (ζ ′
1(s), . . . , ζ ′K(s))⊤, and the number of harmonics is chosen via a 

model selection metric, see the application and the online supplementary material. If we assume 
that we have a sample observed at s1, . . . , sn, the total number of temporal parameters in equation 
(1c) is θtime = {θtime(s1), . . . , θtime(sn)}, where θtime(si) = {ζ(si), ζ ′(si)}, for a total of 2Kn parameters. 
The period δ ∈ {365, 366} depends on the leap/no-leap year considered. We assume that the spa-
tial random effect ϵ(s) is a realisation from a mean-zero Gaussian random field independent in 
time, whose covariance function depends on some parameters θspace which will be specified in 

the next section.

Figure 1. Average daily precipitation (in mm) for each USCRN site and MERRA-2 grid point from 1 January 2021 

through 31 December 2021.

68                                                                                                                                                   Zhang et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
c
/a

rtic
le

/7
3
/1

/6
5
/7

2
6
1
6
7
8
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
tre

 D
a
m

e
 u

s
e
r o

n
 3

0
 M

a
y
 2

0
2
4

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad084#supplementary-data


3.2 Spatial correlation structure

The simplest models for the spatial dependence of ϵ(s) are stationary and isotropic, i.e. they assume 
that the dependence is a function of ‖s1 − s2‖. Among them, one of the most popular choices is 
arguably the Matérn model, whose correlation between two locations s1, s2 is defined as (Stein, 
1999)

Corr(ϵ(s1), ϵ(s2)) = C(s1, s2) =
1

2ν−1Γ(ν)

‖s1 − s2‖

ρ

􏼒 􏼓ν

Kν
‖s1 − s2‖

ρ

􏼒 􏼓

, 

where Kν is the modified Bessel function of the second kind with smoothness parameter ν > 0 (i.e. 
controlling the degree of mean squared differentiability) and range parameter ρ > 0. If inference is 
sought for a large dataset, a matrix comprising of the covariance among all locations could not be 
stored, and likelihood evaluation could become computationally challenging or just impossible. 
Instead of operating directly with the covariance matrix, a popular solution in the past decade 
has been to rely on the identification of a Gaussian process with Matérn covariance as the (unique) 
stationary solution of the following fractional reaction diffusion SPDE (Whittle, 1954):

1

ρ2
− Δ

􏼒 􏼓ν/2+1/2

ϵ(s) = W(s), s ∈ R
2, (2) 

where Δ is the Laplacian operator and W(s) is a spatial Gaussian white noise. By exploiting an 
‘explicit link’ between a continuous Markov process when ν is integer in equation (2) and a dis-
crete Gaussian Markov Random Field (GMRF), Lindgren et al. (2011) proved that if all locations 
are arranged on a two-dimensional lattice, then the covariance structure of the GMRF could be 
approximated by applying the convolution of a sparse precision matrix. Moreover, any location 
that is not on the lattice could also be interpolated and approximated by means of a triangulation 
over the domain. Ultimately, this implies that the Matérn covariance can be approximated by a 
sparse precision matrix, and hence allow faster and feasible inference on the spatial structure of 
ϵ(·). In this work, we rely on a similar SPDE defined on a sphere defined as

1

ρ2
− Δ

S
2

􏼒 􏼓ν/2+1/2

ϵ(s) = W(s), s ∈ S
2, (3) 

where Δ
S

2 is the Laplacian operator.
The aforementioned SPDE approach has clear computational advantages and can be general-

ised to allow for non-stationary constructs, while still yielding sparse precision matrices 
(Lindgren et al., 2011). In this work we rely on a spatially varying SPDE originally formulated 
in Fuglstad et al. (2019) for spatially varying anisotropy, but other approaches for spatially vary-
ing parameters (Lindgren et al., 2011) or nested SPDE (Bolin & Lindgren, 2011) have been pro-
posed. We assume a location on the sphere has polar coordinates s = (L, l), where L is the latitude 
and l is the longitude. We introduce two terms: a vector field v(·) = (v1(·), v2(·))⊤ and a positive- 
valued scalar field ρ(·). We then define the inverse deformation tensor as

G(s)−1
= ρ(s)2 I2 + v(s)v(s)⊤

�������������

1 + ‖v(s)‖2
􏽰 , 

where I2 is a 2 × 2 identity matrix. One can show that with the spatially varying metric tensor de-

fined above, the distance along the direction v(s) is scaled by 1/(ρ(s)(1 + ‖v(s)‖2)
1
4. In the orthog-

onal direction of v(s), the distance is scaled by (1 + ‖v(s)‖2)
1
4/ρ(s). Therefore, the vector field v(·) 

specifies the direction of the local anisotropic effect at each location, while ρ(·) represents its 
strength. After specifying the metric tensor G(s), it can be shown that an appropriate change of 
variable in the SPDE (3) yields (Fuglstad & Castruccio, 2020):

[|G(s)|
1
2 − ∇ · |G(s)|

1
2G(s)−1∇]ϵ(s) = |G(s)|

1
4W(s), s ∈ S

2
. (4) 
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3.3 Spherical harmonics

Both the vector field v(·) and the scalar field ρ(·) can be specified through basis decomposition such 
as spherical vector harmonics and spherical harmonics, respectively. However, a more flexible ap-
proach is necessary for global models, which must account not just for slowly changing non- 
stationarity, but also for abrupt changes dictated by large geographical descriptors such as land 
and ocean (Castruccio & Guinness, 2017). In order to formulate a valid model via SPDE while still 
accounting for abrupt changes, we consider the buffering approach proposed by Bakka et al. 
(2019). More specifically, we use a buffer area along coastlines with a separate parameter that de-
scribes the multiplicative drop d ∈ [0, 1] in the strength of dependence in the buffer area for all 
triangles at the boundary TB, so that for each of the land/ocean domain we propose a separate 
spherical harmonics decomposition:

log{ρj(s)} =
􏽘

L

l=0

􏽘

l

m=−l

αj
mlY

m
l (s) + d × I(s ∈ TB), 

where αj
ml 

are real-valued coefficients and Ym
l (s) are Laplace’s spherical harmonic of degree l and 

order m, and j = {land, ocean} specifies the geographical descriptor where s is located. Similarly, 
the vector field v(·) can be described as

vj(s) =
􏽘

L

l=1

􏽘

l

m=−l

{E
(1,j)
lm ∇Yl

m(s) + E
(2,j)
lm r̂(s)∇ × Yl

m(s)}, 

where r̂ is the unit vector in the positive radial direction, E
(1,j)
lm and E

(2,j)
lm are real coefficients, L is the 

highest order in the bases. Additionally, in order to account for micro-scale variability, we assume that 

the process for both land and sea also has a nugget τ2
j . In summary, the spatial parameters of the model 

are θspace = {d, {τ2
j , j ∈ {land, sea}}, {αj

ml, E
(1,j)
lm , E

(2,j)
lm , m = −l, . . . , l; l = 1, . . . , L, j ∈ {land, sea}}}, 

for a total of 6(L2 + 2L) + 3 parameters.
We use a priori independent standard normal distributions as priors for all parameters, with log 

transformation if they are constrained to be positive. The same setting is applied to the parameters 
used in simulation study and application. Given the overall large amount of data, the posterior 
results are not expected to substantially deviate for (reasonable) changes in the prior. 
Nevertheless, one could in principle use other more sophisticated choices such as penalised com-
plexity priors (Simpson et al., 2017), even though the implementation with a user-defined model 
such as ours is not straightforward. We have added this remark in the prior discussion.

4 Inference

We propose a stepwise inference approach to reduce the overall dimension of the parameter space 
in each step. We first estimate θtime at each location independently, then θspace conditionally on the 
temporal parameters. In Edwards et al. (2020), it was shown that the stepwise approach results in 
an asymptotically consistent inference, and Castruccio and Guinness (2017) showed that uncer-
tainty and bias propagation have small impact for large yet finite datasets such as the one we 
work with here.

4.1 Step 1: Temporal structure

In the first step, the inference is performed at each location independently. We redefine equation 
(1) as the following:

Y(s, t) ∼ h(μ(s, t), θMRG),

g(μ(s, t)) =
􏽘

P

p=1

βpfp(s) +
􏽘

K

k=1

ζk(s) sin
2πkt

δ

􏼒 􏼓

+ ζ ′
k(s) cos

2πkt

δ

􏼒 􏼓􏼚 􏼛

.
(5) 
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The vector of temporal parameters θtime and the linear parameters β1, . . . , βp are estimated using 

least squares and the parameters are considered fixed in the following inference steps. Once 

θ̂time, β̂1, . . . , β̂p are obtained, conditional on them the spatial parameters θspace of the spatial pro-

cess ϵ(s) can be estimated.

4.2 Step 2: Spatial covariance structure

We define a collection of triangles T1, . . . , TnT 
on the sphere, and use a finite volume method to 

discretise the SPDE in equation (4). We redefine the inverse matrix tensor as G(s)−1
= ρ(s)2H(s), 

where |H(s)| = 1, and we integrate it over triangles Ti generated on a global mesh and seek for a 
piece-wise constant solution to the SPDE. For all triangles Ti, we have the following equality in 
distribution:

∫Ti

1

ρ(s)2
− ∇ · H(s)∇

􏼔 􏼕

ϵ(s) dVd
=

∫Ti

1

ρ(s)
W(s) dV. (6) 

Here ∇· is the divergence operator, ∇ is the gradient operator, and H(·) is a 2 × 2 piece-wise con-
tinuously differentiable diffusion tensor and dV is the surface measure on the triangles. This allows 
to translate the SPDE into a set of linear equations for a Gaussian vector that is assumed to be con-
stant across each triangle.

Similarly to Bertolazzi and Manzini (2007) and Fuglstad and Castruccio (2020), let 
ϵ = (ϵ1, ϵ2, . . . , ϵn) be the vector of values at triangle centre, then the following n × n matrix AH 

could be calculated to describe a discrete approximation:

􏽘

3

j=1

∫σi,j
(H(s)∇ϵ(s))⊤ni,j ds

􏼠 􏼡n

i=1

≈ AHϵ.

Here, σi,j represents the three faces of the triangle Ti and ni,j is its outward-facing vector. Then, we 

combine this with a n × n diagonal matrix D, in which dii = |Ti|/ρ(xi)
2, so that we have:

∫Ti

ϵ(s)

ρ(s)2
ds −

􏽘

3

j=1

∫σi,j
(H(s)∇ϵ(s))Tni,j ds

􏼠 􏼡n

i=1

≈ (D − AH)ϵ.

With this approximation, the equality in distribution expressed in equation (6) can now be ex-
pressed as

(D − AH)ϵ ∼ N (0, L), 

where L is a n × n diagonal matrix with elements lii = |Ti|/ρ(xi)
2. This implies that ϵ ∼ N (0, Q−1), 

and Q is a sparse precision matrix defined as:

Q = (D − AH)⊤L−1(D − AH).

Therefore, the finite volume method ensures a sparse precision matrix, which mitigates the com-
putational burden for large global data and boosts the computing speed of the non-stationary 
model during inference.

4.3 Inference for latent Gaussian model

In order to perform inference on the latent Gaussian Model, in this work, we make use of the INLA 
(Rue et al., 2009) a method for Bayesian inference alternative to traditional Markov chain Monte 
Carlo, which could further ease the computational burden. INLA is a deterministic method for fast 
approximation of high-dimensional integrals which takes advantage of computational properties 
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of models that can be expressed as a latent GMRF. Thus, the INLA approach is used for perform-
ing the inference in this study. Under the proposed latent Gaussian model structure, we have the 
observed data vector denoted here as Y = (Y(s1), . . . , Y(sn))⊤ at locations si that can be described 
by hyperparameter vector θspace. For simplicity, throughout this section, we will use θ to represent 
hyperparameter vector θspace. If conditioned on latent spatial field X, the observations are margin-
ally independent with likelihood:

π(Y ∣ X, θ) =
􏽙

n

i=1

π(Y(si) ∣ X(si), θ), 

where X = (X(s1), . . . , X(sn))⊤ is a Gaussian field with mean zero and modelled by an SPDE ap-
proach with precision matrix Q(θ). Therefore, the joint distribution of latent effect and hyperpara-
meters can be written as

π(X, θ ∣ Y) ∝ π(θ)π(X ∣ θ)
􏽙

n

i=1

π(Y(si) ∣ X(si), θ)

∝ π(θ) ∣ Q(θ)|1/2exp −
1

2
X⊤Q(θ)X

􏼚 􏼛

􏽙

n

i=1

π(Y(si) ∣ X(si), θ), 

where |Q(θ)| is the determinant of the precision matrix. The main goal is to approximate the pos-
terior marginals π(X(si) ∣ Y), π(θ ∣ Y) and π(θj ∣ Y). The marginal posterior distributions of interest 

can be written as:

π(X(si) ∣ Y) = ∫ π(X(si)|θ, Y)π(θ|Y) dθ

π(θj ∣ Y) = ∫ π(θ ∣ Y) dθ−j.

The key idea of INLA approach is to use the form above to construct nested approximations. The 
approximations of the marginals for the latent field π(X(si) ∣ Y) are computed by approximating 
π(θ ∣ Y) and π(X(si) ∣ θ, Y), and using numerical integration to integrate out θ. In other words, the 
posterior marginals of the latent parameter would be obtained by

π̃(X(si) ∣ Y) =
􏽘

k

π̃(X(si) ∣ θk, y) × π̃(θk ∣ Y) × Δk, 

where Δk are the weights associated with a vector θk of hyperparameters in a grid.

5 Simulation studies

Throughout this section, we denote with NS-LS the proposed non-stationary latent Gaussian 
model (4) with land/sea effect with NS the non-stationary model with no land/sea effect. We fur-
ther consider the stationary SPDE model (3), and denote with S-LS the model with land/sea effect 
and with S without it. In Section 5.1, we perform simulations from the Gaussian marginal distri-
bution for NS-LS to numerically assess posterior consistency for both the hyperparameters and the 
resulting covariance matrix. In Sections 5.2 and 5.3, we perform simulations from Gaussian and 
Bernoulli marginal distributions with identity and logit link, respectively, to assess the interpol-
ation (kriging) performance of the NS-LS against NS, S-LS, and S.

Since the key contribution of this work lies in the spatial component of the model, throughout 
this section we will assume a purely spatial process with no covariates. In other words, model (1) 
simplifies to

Y(s) ∼ h(μ(s), θMRG), (7a) 

g(μ(s)) = ϵ(s) ∼ N (0, Σ(θspace)). (7b) 

In the Gaussian case, we also have θMRG = σ2 = 0.05, while in the Bernoulli case no marginal 
parameters are defined, so that θMRG = ∅.
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For each simulation, we sample n = 2,000 data points on the unit sphere, and then draw the pa-
rameters of θspace from a Normal distribution with mean 1 and standard deviation 0.5, assume 
them fixed. Each simulation comprises of nr = 100 replicates from the resulting covariance matrix 
Σ(θspace), and could be intuitively interpreted as the number of independent replicates in time. We 
simulate data from a NS-LS model with L = 1, so that there is a total of 6(L2 + L) + 3 = 21 hyper-
parameters. In other terms, we perform ns independent simulations, each one comprising nr rep-
licates to aid the identifiability of the parameters.

5.1 Posterior consistency in the Gaussian case

In order to numerically assess posterior consistency, for each simulation we consider an increasing 
number of replicates nr = 10, . . . , 100. Inference is performed assuming the same model (7) and 
with a mesh of nT = 2,000 triangles. The choice of the number/size of triangles is dictated mostly 
by computational constraints. While it would be desirable to have a mesh as fine as possible, this 
would require in larger matrices and hence more challenging likelihood evaluation. On the other 
hand, a mesh too coarse would loose some fundamental structure in the spatial field, so there is a 
trade-off. Our choice allowed for challenging yet not impossible inference. For varying levels of nr, 
the hyperparameters’ posterior distributions is retrieved and is compared with the true value. 
Posterior consistency can be empirically verified in the extent to which the hyperparameters’ pos-
terior distributions converges to the true parameters θspace as nr increases.

Figure 2 shows the functional boxplot (Sun & Genton, 2011) for all ns of the posterior distri-
butions, for two hyperparameters for increasing values of realisations nr. It is readily apparent 
how the posterior mean aligns to the true parameter value and the posterior standard deviations 
decreases as the replicates increase. While results are shown for NS-LS, similar patterns have been 
observed across all other models (NS, S-LS, and S). Table 1 shows the median mean squared error 
(MSE) and inter-quartile range (IQR) of the hyperparameters posterior means estimated from the 
NS-LS model and the true values across all hyperparameters and across all ns = 100 simulations. 
The median MSE decreases as the replicates increases.

In order to perform a uniform comparison across all hyperparameters, whose number quickly 
becomes overbearing (e.g. with L = 4 we would have 6(42 + 4) + 3 = 123 hyperparameters), we 
also compare the covariance matrix implied by the hyperparameters with the true one. We assess 
the discrepancy in the covariances via the Kullback–Leibler divergence (KLD), which in the case of 
an n-dimensional Gaussian distributions with mean μ0 and μ1 and covariance matrices Σ0 and Σ1 

simplifies to

1

2
tr(Σ−1

1 Σ0) − n + (μ1 − μ0)⊤Σ−1
1 (μ0 − μ1) + ln

detΣ1

detΣ0

􏼒 􏼓􏼒 􏼓

.

Figure 2. Functional boxplots (Sun & Genton, 2011) across ns simulations of the posterior distribution of two 

hyperparameters (a) α2
11 and (b) E (2,2)

10 for different number of replicates nr . The vertical dashed lines represent the 

true hyperparameter values.
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In our case, μ0 = μ1 = 0, Σ0 = Σ(θspace) and Σ1 = Σ(θ̂space), so that the KLD measures the distance 

between the true and estimated covariance. The results as shown in Figure 3 for NS-LS (panel (a)) 
and S (panel (b)), where the functional boxplot (Sun & Genton, 2011) of KLD across all ns = 100 
simulations for an increasing number of realisations nr is shown. The functional boxplot is used to 
report the envelope of the 50% central region (pink area), the median curve (black line) and the 
maximum non-outlying envelope (outer blue line). As in the case of the estimated parameters, 
we observe how even with a relatively small number of replicates in the training set, the estimated 
covariance is converging to the true one. In particular, after 40 replicates the estimated covariance 
is practically indistinguishable from the true one.

5.2 Interpolation performance in the Gaussian case

In order to assess the interpolation performance, we perform inference on the hyperparameters for 
all four models and use them to interpolate at specified locations. We consider two cases: (1) all n 
data points are used in the training set and interpolation is performed at the same sites and (2) 92% 
of the n locations are considered in the training set, and the others 8% are withheld for cross- 
validation. The test locations are located in within three selected areas indicated in online 
supplementary Figure S1. Interpolation performance is measured with the MSE.

Results for both cases are reported in Table 2, and it is readily apparent how the MSE of NS-LS 
model is the smallest among all four models for the both the all location case (1) and the cross- 
validation setting (2). More specifically, compared to the S-LS model, the NS-LS model shows 
an improvement of the median MSE across all locations by 14.6%. The NS-LS model also shows 
an appreciable improvement in MSE by 10.4% and 16.7%, compared with the NS and S models, 
respectively. From these results it is clear how the land/sea effect and buffer area construction yield 
significant improvement when used in conjunction with the NS model.

5.3 Interpolation performance in the Bernoulli case

We now assess predictability in the case of a Bernoulli distribution with logit link, and as in Section 
5.2 we assess both the case where all locations are used as training set, as well as cross-validation 
with the same testing locations as before. Figure 4 shows the average differences across all ns = 100 

Table 1. Median MSE (IQR) between the true hyperparameter and the posterior distribution across all simulations ns 

for Gaussian case

nr 20 40 60 80 100

Median MSE (IQR) 0.32 (0.13) 0.25 (0.07) 0.14 (0.05) 0.05 (0.05) 0.01 (0.007)

Note. IQR, inter-quartile range; MSE, mean squared error.

Figure 3. Functional boxplot across ns = 100 simulations of the KLD between the true covariance matrix and the 

estimated one according to (a) NS-LS and (b) S-LS.
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simulations between receiver operating characteristic curve (ROC) for NS-LS and S-LS, using S as 
reference for all locations and validation locations. The ROC for NS are visually indistinguishable 
to that of the S-LS model, so the results associated to that model are not shown. The ROC differ-
ence in both cases show how the NS-LS model is uniformly better than the stationary S model (as 
the ROC difference is always positive), and also uniformly better than the S-LS model, especially in 
the middle of the curve. As expected, the extent of improvement of NS-LS is larger in the case of 
cross-validation (panel (b)), where the added value of the model at unobserved locations is more 
apparent.

In order to have a comprehensive assessment across all possible choice of thresholds, we con-
sider the area under the curve (AUC) of the ROC for all models and we report it in Table 2. In 
the best case of a perfect prediction, i.e. 100% true positive rate uniformly across the choice the 
threshold the AUC should equal 1, and in the worst case of a random guess it should be 0.5. 
The extent to which the AUC is close to 1 is a measure of predictive performance in this case. 
As it is shown in Table 2, the NS-LS outperforms every other model in both cases. More specific-
ally, across all locations, the NS-LS yields an improvement by 7.2%, 5.3%, and 9.4% for the S-LS, 
NS, and S models, respectively. These results agree with those presented in Section 5.2, for the use 
of the land/sea effect and buffer area construction definitively yields improved performance when 
included in the NS model.

6 Application

In this section, we use the data detailed in Section 2 and the proposed latent Gaussian model with 
non-stationary SPDE introduced in Section 3 to estimate the global probability of a rain event and 
the precipitation intensity. In Section 6.1, we discuss both the fit of the global MERRA-2 dataset 

Table 2. Comparison of interpolation performance across models

Model locations NS-LS S-LS NS S

Gaussian All locations 90.12 (8.17) 105.47 (9.94) 100.55 (11.25) 108.25 (11.23)

Gaussian Cross-validation 9.11 (1.04) 21.88 (1.18) 19.35 (1.62) 21.39 (1.59)

Bernoulli All locations 0.824 (0.048) 0.769 (0.074) 0.782 (0.051) 0.753 (0.050)

Bernoulli Cross-validation 0.707 (0.072) 0.676 (0.081) 0.672 (0.079) 0.641 (0.079)

Note. The first two rows show the median MSE (IQR) across all ns = 100 simulations in the Gaussian case for both (1) all 
locations and (2) cross-validation. The last two rows show the median AUC (IQR) for the Bernoulli case across the same 
two cases. IQR = inter-quartile range; AUC = area under the curve.

Figure 4. Average differences across all ns = 100 simulations between ROC curves of NS-LS and S (black line), and 

S-LS and S (red line) for (a) all locations and (b) cross-validation. The ROC for NS are visually indistinguishable to that 

of the S-LS model, so the results associated to that model are not shown. ROC = operating characteristic curve.
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and the downscaling approach to adjust interpolated MERRA-2 data with ground USCRN pre-
cipitation measurement. In Section 6.2, we provide evaluation metrics to assess the model 
performance.

6.1 Modelling global precipitation and downscaling

We initially focus on the MERRA-2 data and consider two global datasets (1) a binary rain occur-
rence event and (2) in case of rain, the actual rain intensity. We then fit the latent Gaussian model 
(1) with non-stationary SPDE (4) with L = 1, using a Bernoulli marginal distribution with a logit 
link function g(·) for rain occurrence and a Gamma distribution with negative inverse link function 
for rain intensity. Validation for the choice of the marginal distribution can be found in the online 
supplementary material along with online supplementary Figure S3 showing the histogram of pre-
cipitation at 456 sample locations (resolution of 18.75◦ × 15◦ in longitude and latitude) with esti-
mated Gamma density. The sample locations are sparse in space to mitigate any spatial influences.

In both cases, no additional covariates are assumed, and we assume K = 2 harmonics for the 
temporal component, as it was shown to be the optimal choice according to the model selection 
in online supplementary Figure S2. Formally, model (1) now specialises in the following two 
models:

log
μ(s, t)

1 − μ(s, t)

􏼒 􏼓

= f time(s, t) + ϵpr(s), precipitation probability, (8a) 

−μ(s, t)−1
= f time(s, t) + ϵin(s), precipitation intensity, (8b) 

where ϵpr(s) and ϵin(s) are independent processes between them and in time. The histogram shows 

that precipitation intensity follows a Gamma distribution with shape parameter 0.826 and scale 
parameter 0.184. Inference is performed with a global triangulation of nT = 2,340 triangles, of 
which 1,134 are within the area of interest (contiguous United States), while the remaining 
1,206 cover the rest of the world.

The hyperparameters’ posterior distributions is obtained and used to predict both the precipi-
tation probability and intensity at the locations where the 131 USCRN ground observations loca-
tions are located, see Figure 1. These predictions are then adjusted (downscaled) to point 
resolution via linear regression. Since we perform downscaling independently for every time point, 
for simplicity we now drop the time dependence, and we denote as YG(s) and YS(s) the precipita-
tion intensity for USCRN and MERRA2, respectively (G = ground, S = simulation), and with 
pG(s) and pS(s) the probability of precipitation occurrence. We further denote as ŶS(s) and p̂S(s) 
the estimated intensity and probability of occurrence, respectively, according to the proposed 
SPDE model. Finally, we estimate the probability of precipitation occurrence for the USCRN 
data by fitting the latent Gaussian model (1) for each location independently as a time series model, 
i.e. assuming no spatial dependence and denote the estimate as p̂G(s). We further assume a 
linear relationship between USCRN and MERRA2 precipitation occurrence probability and in-
tensity:

log
p̂G(s)

1 − p̂G(s)

􏼒 􏼓

= β(O)
0 + β(O)

1 log
p̂S(s)

1 − p̂S(s)

􏼒 􏼓

+ ξO(s), precipitation probability, (9a) 

log YG(s)
( 􏼁

= β(I)
0 + β(I)

1 log ŶS(s)
( 􏼁

+ ξI(s), precipitation intensity, (9b) 

where ξj(s) ∼ N (0, σ2
j ), j ∈ {O, I} independent and identically distributed in space. A functional 

boxplot of the variogram of the residuals in online supplementary Figure S4 (with each curve rep-
resenting a different time point) lends support to the assumption of spatial independence of the 

error. The downscaling parameters β(I)
0 and β(I)

1 for precipitation intensity are then estimated using 

the ordinary least squares.
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6.2 Results and evaluation

Downscaled probabilities of precipitation occurrence and precipitation intensity according to the 
aforementioned model are displayed in Figure 5a and b, respectively, with the dark bubbles rep-
resenting average values from the USCRN data. The prediction maps of the United States show 
high daily precipitation and high precipitation intensity around Seattle, while the lowest values 
can be found near Las Vegas, and overall the model prediction resembles the ground observation 
values across the United States. To evaluate the model performance, we calculate the root mean 
squared error (RMSE) for both probability of precipitation occurrence and precipitation intensity. 

Figure 5. Average (a) daily precipitation and (b) precipitation probability. The global dataset is interpolated at the 

same sites as the ground observations according to the non-stationary global SPDE model (4), the linear model (9) is 

fit, and the resulting relationship is used to produce the downscaled maps. SPDE = stochastic partial differential 

equation.
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The RMSE for intensity and probability of precipitation occurrence is 2.01 and 0.14 mm, respect-
ively. In order to assess the value added by the smoothing of our SPDE model, we also perform 
downscaling with the linear models in (9), but assuming that no spatial model is fit, i.e. that the 
MERRA-2 data are not interpolated at the locations of the USCRN sites. Instead, we consider 
MERRA-2 data at their original resolution, and attribute to each USCRN site the value in the 
same cell. In other words, we consider as covariates pS(s, t) and YS(s, t). The resulting RMSE 
for this model in the case of precipitation intensity and probability of precipitation occurrence 
is 82.74 and 0.28 mm, respectively. Therefore, the proposed SPDE approach has narrowed the dis-
crepancy between MERRA-2 and USCRN significantly, as it has reduced the RMSE for precipi-
tation intensity and probability of precipitation occurrence by 97.6% and 50%, respectively. 
Figure 6 shows the fitted lines using downscaling model in equations (9a) and (9b) on 1 
February 2021. The R2 for the two linear models are 0.78 and 0.67 for precipitation probability 
and intensity, respectively.

We also evaluate the model uncertainty by cross-validation. First, we remove the data from one 
ground observation location and fit the model using the remaining observations. Next, we con-
struct the 95% credibility interval for the posterior mean of the probability of precipitation occur-
rence or precipitation intensity at the removed location with the estimated posterior distributions 
of the hyperparameters of the model. Then, we repeat the same procedure for all the 131 locations 
in USCRN. Finally, we determine how many intervals among the 131 of the 95% credibility in-
tervals cover the true value. For precipitation, 93.1% (122/131) of the 95% credibility intervals 
cover the true value, while for probability of raining, 91.6% (120/131) of the 95% credibility in-
tervals cover the true value.

7 Conclusion and discussion

In this work, we have proposed a novel non-stationary spatio-temporal SPDE model able to 
smooth both probability of precipitation occurrence and probability intensity from a global data-
sets. Such interpolated dataset is then used in conjuction with ground observation to produce 
high-resolution (downscaled) precipitation maps, which allow to predict what would ground 
observations would look like in unsampled location with a higher degree of accuracy compared 
to the original simulated data (i.e. the global data at their native resolution). One may in principle 
use MERRA-2 as a boundary condition to drive regional simulations with models such as WRF to 
obtain precipitation maps at equally high spatial resolution, with the added benefit of being able to 
produce predictions compliant with physical laws. Such dynamical downscaling approach is how-
ever considerably more involved, as it requires substantial computational and storage resources, 
as well as considerable expertise to set up WRF properly. As such, our proposed statistical 

Figure 6. The fitted lines using downscaling models described in (a) equation (9a) and (b) equation (9b) on 1 February 

2021.
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downscaling approach is considerably faster and easier to implement without specialised compu-
tational resources. The proposed method of adjustment of a simulation via ground observation 
can also be seen as a bias correction approach, i.e. a method to correct simulations (see, e.g. 
Hawkins et al., 2013; Ho et al., 2012; Kim et al., 2015; Yuan et al., 2019 for a general review). 
While a large body of literature in geoscience focuses on bias correction as a means to adjust 
the first (Chen et al., 2012; Hemer et al., 2012) and possibly the second moment (Li et al., 
2019; Teutschbein & Seibert, 2012) of the marginal distribution, such approach can be used 
also to adjust non-Gaussian features, similarly to other recent efforts (Piani & Haerter, 2012; 
Vrac & Friederichs, 2014).

The proposed statistical model is scalable to future re-analysis data products with even higher 
spatial resolution, owing to the finite volume approximation of the SPDE generating the spatial 
model. Even more realistic downscaled patters could be generated if additional physical variables 
such as temperature and humidity could be considered as covariates. An incorporation of covari-
ates could be performed either as the latent Gaussian model in equation (1b), as suggested in this 
work, or as as additional input of the scalar or vector field which dictate the deformation of the 
SPDE model. This could be implemented assuming either a linear contribution, or a non-linear 
one by means of neural networks (Hu et al., 2022). In principle, multiple variables could be mod-
elled jointly. However, this would considerably increase both the methodological challenge and 
the computational overhead, as fast, flexible, multivariate and non-Gaussian global models are 
currently an active area of investigation (Genton & Kleiber, 2015).

While the proposed approach has many advantages over the chosen alternative models, there 
are also limitations which are ultimately inherited by and inextricably linked with the general 
modelling strategy chosen. In primis, the use of latent Gaussian models for non-Gaussian data 
has a long history in statistics, allows flexible hierarchical modelling while retaining computation-
al affordability but by its own nature does not allow explicit control over some basic statistical 
properties such as the moments. Secondly, the use of SPDE requires a discretisation, whose reso-
lution is limited by how many triangles can be used in the domain: more triangles result in a more 
accurate solution but imply larger matrices. Finally, for this particular model, the choice of basis 
function for the scalar and vector field may require a lot of parameters, and other choices are 
possible.
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