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Abstract

Obtaining high-resolution maps of precipitation data can provide key insights to stakeholders to assess a
sustainable access to water resources at urban scale. Mapping a non-stationary, sparse process such as
precipitation at very high spatial resolution requires the interpolation of global datasets at the location
where ground stations are available with statistical models able to capture complex non-Gaussian global
space-time dependence structures. In this work, we propose a new approach based on capturing the
spatially varying anisotropy of a latent Gaussian process via a locally deformed stochastic partial differential
equation (SPDE) with a buffer allowing for a different spatial structure across land and sea. The finite
volume approximation of the SPDE, coupled with integrated nested Laplace approximation ensures feasible
Bayesian inference for tens of millions of observations. The simulation studies showcase the improved
predictability of the proposed approach against stationary and no-buffer alternatives. The proposed
approach is then used to yield high-resolution simulations of daily precipitation across the United States.

Keywords: integrated nested Laplace approximation, latent Gaussian model, precipitation, stochastic partial differential
equation

1 Introduction

Accurate high-resolution information of precipitation data is essential to effective prediction and
management of water resources (Clark et al., 2015). Dramatic improvements in modelling phys-
ical processes driving precipitation have resulted in more realistic simulations from global climate
models and hence more reliable predictions. The high complexity of modern climate models, how-
ever, implies a computational and storage cost which limit the spatial resolution at which global
climate simulations can be performed. As such, there are significant uncertainties and mismatches
with observations, due to precipitation patterns that coarse resolutions do not sufficiently re-
present as they cannot capture the scale of the physical processes of interest (Wood et al.,
2021). The consequences can be over- or under-attribution of a particular location or incorrect
timing of events, that can for example be the difference between a local flooding or not
(Sapountzis et al., 2021). It is therefore of high scientific interest to refine global predictions and
produce maps of both probability of rain occurrence and precipitation intensity at a high spatial
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scale, in order to inform impact assessment models for flood resilience and agricultural models for
drought predictions.

It is in principle possible to produce high-resolution precipitation using a coarse global dataset
as boundary condition for a regional weather model such as the weather and research forecasting
(WRF, Skamarock et al., 2019). This dynamical downscaling approach (Sain et al., 2011) has the
appealing advantage of producing physically consistent spatial fields at high resolution, but comes
with a substantial associated cost in terms of computational and storage resources, as well as ex-
pertise for model setup that only few research centres, universities or businesses could afford. A
more affordable solution lies in the formulation of an empirical relationship between global
data and ground observations to be fit at locations where ground data are available. Under the as-
sumption that this relationship is at least approximately valid at unobserved locations, high-
resolution maps can be produced by correcting the global dataset. This statistical downscaling ap-
proach (Berrocal et al., 2010) is fast, computationally affordable, and has a long established track
record of success in the geoscience literature. In order to work, such approach requires that the
global and the ground data are co-located, which is not a priori the case since global data are de-
fined as averages over large areas. It becomes therefore necessary to use spatial statistical models to
interpolate the global simulation values at the same locations of the ground observations, and to
have an assessment of the uncertainty around these estimates.

Global spatial data require the formulation of specialised models whose theoretical properties
are substantially different from spatial processes on Euclidean spaces. In fact, Gneiting (2013)
highlighted how a valid process on the sphere with great circle distance could be achieved only
with severe restrictions on the parameter space of the most widespread covariance model, the
Matérn function. In the past two decades, new modelling approaches tailored for global data
have emerged. Among them, Jun and Stein (2007, 2008) proposed to embed the sphere in a three-
dimensional space, consider a Matérn model and apply partial derivatives to achieve more flexi-
bility. The proposed class of models was able to capture not just an isotropic behaviour, but
also axial symmetry, i.e. a non-stationary behaviour across latitude (Jones, 1963). Jun (2011) gen-
eralised this approach to multivariate global processes. A fast and flexible spectral class of axially
symmetric models was proposed in the case of gridded data by Castruccio and Stein (2013). The
approach was then generalised to non-parametric spectral estimation (Castruccio & Genton,
2014), three-dimensional variables (Castruccio & Genton, 2016), different land/ocean behaviour
(Castruccio & Guinness, 2017), and also multivariate processes (Edwards et al., 2019). On the
more theoretical side, substantial progress has been made in the determination of properties of
high-dimensional spheres for isotropic processes via basis decomposition see, e.g. Arafat et al.
(2020) and Porcu et al. (2020). We refer to Jeong et al. (2017) and Porcu et al. (2018) for two re-
cent reviews on the topic.

A novel, different perspective was raised in the seminal work of Lindgren et al. (2011), where a
sub-class of Matérn models was associated with the solution of a diffusion-reaction stochastic par-
tial differential equation (SPDE) with the Markov property and inference was performed with fi-
nite elements. The key insight of this approach, as far as global models are concerned, is that the
original SPDE on the plane can be just adapted to the sphere, with the additional benefit of not
requiring boundary conditions. The original ideas for non-stationarity in Lindgren et al. (2011)
have been explored in several directions, from nested SPDE (Bolin & Lindgren, 2011) to models
with physical barriers (Bakka et al., 2019). Recently, Fuglstad et al. (2015) and Fuglstad and
Castruccio (2020) extended this approach by parametrising spatially varying anisotropy on the
sphere through a spatially varying scalar and vector field, which resulted in a local deformation
of the SPDE. The proposed approach showed promising results, but has been so far limited to
the Gaussian case and generalisation to non-Gaussian data is by no means straightforward, given
the challenges in modelling non-Gaussian data and the computational overhead implied by these
models.

In this work, we propose a non-Gaussian, non-stationary SPDE-based global spatio-temporal
model with spatially varying anisotropy and a buffer between land and sea to account for abrupt
changes in spatial dependence. Non-Gaussianity is modelled via a latent Gaussian model, i.e. by
assuming that the non-Gaussian marginal behaviour is conditionally independent across loca-
tions, and then the spatial dependence is captured via a latent process with a Gaussian structure.
Inference is still achievable for very large datasets by means of (1) a sparse precision matrix of the
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latent Gaussian model emerging from the finite volume solution of the SPDE and (2) a fast ap-
proximation of the high-dimensional integrals required for posterior computation via integrated
nested Laplace approximation (INLA, Rue et al., 2009). The model is ideally suited to highly
non-Gaussian data such as daily global precipitation, and it is then used to (1) fit global re-analysis
data, (2) provide interpolated data at the same location as the ground observations, (3) downscale
precipitation using both ground and interpolated data, so that (4) high-resolution maps of precipi-
tation are provided.

The work proceeds as follows. Section 2 introduces the data which will be used in this work.
Section 3 details the methodology for the latent Gaussian model, specifically the temporal and
the spatial component. Section 4 shows how inference is performed and how sparsity and numer-
ical approximations alleviate the computational burden. Section 5 assesses numerically the poster-
ior consistency, as well as the improved predictability of the proposed model against simpler
alternatives. Section 6 applies the proposed model to the precipitation data and shows it can pro-
vide high-resolution maps of daily precipitation across the continental United States. Section 7
concludes with a discussion. For reproducibility, at the end of this work we provide information
about the repository where the code and data are available.

2 Data description

We focus on daily global precipitation data from the Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2, Gelaro et al., 2017) produced by the NASA
Global Modeling and Assimilation Office. MERRA-2 is a re-analysis data product that incorpo-
rates observations from satellite instruments and is considered one of the best representations of
the state of the Earth’s system. The data is available on a regular grid with a resolution of 0.625° x
0.5° in longitude and latitude, respectively, for a total of 7 =207,936 locations. We focus on the
year 2021, the latest year with a continuous record available, and we use the daily maximum rain-
fall rate (MRR, in kg/m? - s). To convert the MRR into precipitation, we divided it by the water
density, 1,000 (kg/m’), and convert the unit to millimetre by multiplying by 1,000, as well as
multiply by 86,400s to obtain the daily precipitation. We assume that for each location, the
MRR lasts for the whole day, which leads to some overestimation, as it can be clearly seen
from the two different legend scales in Figure 1. The downscaling approach in Section 6 will be
able to account for this by performing a linear transformation between (interpolated)
MERRA-2 and U.S. Surface Climate Reference Network (USCRN).

For ground observations, we consider the USCRN (NOAA, 2022), a data product containing
continuous records from climate monitoring stations across the continental United States. The
USCRN monitoring stations record measurements for total precipitation, measured in millimetres
(mm), in real-time in 5-min intervals. The data are collected with a Geonor T-200B precipitation
gauge, whose maximum capacity is 600 mm. This gauge uses a precipitation collection bucket
which is surrounded by a wind/snow shield and heated in order to prevent ice build-up in cold re-
gions. Three wires attached to this collection device vibrate with frequencies relative to the weight
of the bucket, and these vibration frequencies are then converted to gauge depth (in mm). For this
work, we consider data from 131 different monitoring stations post-processed to daily resolution
forming a continuous record from 1 January 2021 to 31 December 2021. Figure 1 shows the lo-
cations of the USCRN sensors along with the average total daily precipitation throughout 2021.
For comparison, the same figure also shows the average daily precipitation for the MERRA-2 grid
points during the same time frame. It is readily apparent from this figure that the regions of highest
average daily precipitation are the northwest and southeast regions of the country, whereas the
drier region of the country spans from the eastern border of California to the Mississippi River.

3 Methodology

3.1 Latent Gaussian model

We propose a spatio-temporal latent Gaussian model (Rue et al., 2009), defined for a generic spa-
tial point on the sphere s € S* and time =1, 2, ... as

Y(S, t) | ,U(S, t): 0MRG ~ /’J(/l(s, t)s 0MRG)3 (13)
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Figure 1. Average daily precipitation (in mm) for each USCRN site and MERRA-2 grid point from 1 January 2021
through 31 December 2021.
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gluls, 1))=Y Byfpls) + (s, 1) + €(s), (1b)
p=1
K
fime (s ¢) =;{§k(s)sin(2n7kt> +C}e(s)cos(2n7kt>}, (1c)

where h(-) represents the marginal distribution of Y(-) conditional on the latent field and the hyper-
parameters, and belongs to the exponential family with some mean u(s, t), whose structure is de-
termined by a latent Gaussian process through a link function g(-). The marginal parameters O\rG
characterise moments higher than the first, and could be empty. If the marginal distribution is
Gaussian, we have Y(s) ~ N (u(s, t), Omrc), and the link function g(-) is simply the identity func-
tion (Dunn & Smyth, 2018). For example, if the marginal distribution is the Bernoulli distribution
instead, we have Y(s) ~ B(u(s, t)), and the logit function can be chosen as the link function (Dunn
& Smyth, 2018). We assume that the transformed mean in the latent space g(u(s, #)) is modelled by
a location specific time effect, fi™(s, t), p =1, ..., P location-specific covariates f,(s), and a spa-
tial error €(s). The time effect fi™e(s, ¢) is described by K harmonics with parameters {(s) =
(C1(8)y -5 Cx(s))T and ¢'(s) = (L) (s), ..., {k(s))T, and the number of harmonics is chosen via a
model selection metric, see the application and the online supplementary material. If we assume
that we have a sample observed at sy, ..., s,, the total number of temporal parameters in equation
(1¢) 18 Oime = {Brime(S1)5 - - - 5 Orime(s)}, Where Oime(s;) = {L(s;), £ (si)}, for a total of 2Kn parameters.
The period 6 € {365, 366} depends on the leap/no-leap year considered. We assume that the spa-
tial random effect ¢(s) is a realisation from a mean-zero Gaussian random field independent in
time, whose covariance function depends on some parameters Osp,ce Which will be specified in
the next section.
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3.2 Spatial correlation structure

The simplest models for the spatial dependence of €(s) are stationary and isotropic, i.e. they assume
that the dependence is a function of |s; —s;||. Among them, one of the most popular choices is
arguably the Matérn model, whose correlation between two locations sy, s; is defined as (Stein,
1999)

Corr(e(sy), €(s2)) = C(s1, s2) = 2"—111“(‘,) <||Sl ;Sz”) Kv<||sl ; Sz||>’

where K, is the modified Bessel function of the second kind with smoothness parameter v > 0 (i.e.
controlling the degree of mean squared differentiability) and range parameter p > 0. If inference is
sought for a large dataset, a matrix comprising of the covariance among all locations could not be
stored, and likelihood evaluation could become computationally challenging or just impossible.
Instead of operating directly with the covariance matrix, a popular solution in the past decade
has been to rely on the identification of a Gaussian process with Matérn covariance as the (unique)
stationary solution of the following fractional reaction diffusion SPDE (Whittle, 1954):

1 v/24+1/2
(p_z - A) e(s)=W(s), seR? (2)

where A is the Laplacian operator and W(s) is a spatial Gaussian white noise. By exploiting an
‘explicit link” between a continuous Markov process when v is integer in equation (2) and a dis-
crete Gaussian Markov Random Field (GMRF), Lindgren et al. (2011) proved that if all locations
are arranged on a two-dimensional lattice, then the covariance structure of the GMRF could be
approximated by applying the convolution of a sparse precision matrix. Moreover, any location
that is not on the lattice could also be interpolated and approximated by means of a triangulation
over the domain. Ultimately, this implies that the Matérn covariance can be approximated by a
sparse precision matrix, and hence allow faster and feasible inference on the spatial structure of
€(+). In this work, we rely on a similar SPDE defined on a sphere defined as

1 v/2+1/2
(p_z - AS2> (s)=W(s), seS?, (3)

where A is the Laplacian operator.

The aforementioned SPDE approach has clear computational advantages and can be general-
ised to allow for non-stationary constructs, while still yielding sparse precision matrices
(Lindgren et al., 2011). In this work we rely on a spatially varying SPDE originally formulated
in Fuglstad et al. (2019) for spatially varying anisotropy, but other approaches for spatially vary-
ing parameters (Lindgren et al., 2011) or nested SPDE (Bolin & Lindgren, 2011) have been pro-
posed. We assume a location on the sphere has polar coordinates s = (L, /), where L is the latitude
and [ is the longitude. We introduce two terms: a vector field v(-) = (v1(-), v2(-))" and a positive-
valued scalar field p(-). We then define the inverse deformation tensor as

_ el v

Gls)™' = ;
1+ [v(s)[”

where I, is a 2 X 2 identity matrix. One can show that with the spatially varying metric tensor de-
fined above, the distance along the direction v(s) is scaled by 1/(p(s)(1 + ||V(S)||2)%. In the orthog-

onal direction of v(s), the distance is scaled by (1 + ||V(s)||2)37/p(s). Therefore, the vector field v(-)
specifies the direction of the local anisotropic effect at each location, while p(-) represents its
strength. After specifying the metric tensor G(s), it can be shown that an appropriate change of
variable in the SPDE (3) yields (Fuglstad & Castruccio, 2020):

[|G(s)2 = V - |G(s)[?G(s) "' V]e(s) = IG(s)W(s), s € S (4)
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3.3 Spherical harmonics

Both the vector field v(-) and the scalar field p(-) can be specified through basis decomposition such
as spherical vector harmonics and spherical harmonics, respectively. However, a more flexible ap-
proach is necessary for global models, which must account not just for slowly changing non-
stationarity, but also for abrupt changes dictated by large geographical descriptors such as land
and ocean (Castruccio & Guinness, 2017). In order to formulate a valid model via SPDE while still
accounting for abrupt changes, we consider the buffering approach proposed by Bakka et al.
(2019). More specifically, we use a buffer area along coastlines with a separate parameter that de-
scribes the multiplicative drop d € [0, 1] in the strength of dependence in the buffer area for all
triangles at the boundary T, so that for each of the land/ocean domain we propose a separate
spherical harmonics decomposition:

L !

loglp/(s)} =Y " o, YI"(s) +d x I(s € Ty),

=0 m=-1

where ainl are real-valued coefficients and Y}"(s) are Laplace’s spherical harmonic of degree / and
order m, and j = {land, ocean} specifies the geographical descriptor where s is located. Similarly,
the vector field v(-) can be described as

L I
=ZZ EMVY! (s) + EX i (s)V x Y ()],

I=1 m=-I

where T is the unit vector in the positive radial direction, E ) and E /) are real coefficients, £ is the
highest order in the bases. Additionally, in order to account for micro- scale variability, we assume that
the process for both land and sea also has a nugget rlz In summary, the spatial parameters of the model

are  Ogpace = {d, {r2 j € {land, sea}}, {o/ EM B =l =1, ., L, j € {land, sea}}},

Donl> Etm > i >
for a total of 6(£% + 2L) + 3 parameters.

We use a priori independent standard normal distributions as priors for all parameters, with log
transformation if they are constrained to be positive. The same setting is applied to the parameters
used in simulation study and application. Given the overall large amount of data, the posterior
results are not expected to substantially deviate for (reasonable) changes in the prior.
Nevertheless, one could in principle use other more sophisticated choices such as penalised com-
plexity priors (Simpson et al., 2017), even though the implementation with a user-defined model
such as ours is not straightforward. We have added this remark in the prior discussion.

4 Inference

We propose a stepwise inference approach to reduce the overall dimension of the parameter space
in each step. We first estimate ime at each location independently, then @gpac conditionally on the
temporal parameters. In Edwards et al. (2020), it was shown that the stepwise approach results in
an asymptotically consistent inference, and Castruccio and Guinness (2017) showed that uncer-
tainty and bias propagation have small impact for large yet finite datasets such as the one we
work with here.

4.1 Step 1: Temporal structure

In the first step, the inference is performed at each location independently. We redefine equation
(1) as the following;:

Y(S, t) ~ h(:u(s’ t)’ 0MRG),

1= ) o)
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The vector of temporal parameters @iime and the linear parameters §y, ..., f, are estimated using
least squares and the parameters are considered fixed in the following inference steps. Once
Orimes ﬁl, e ﬁp are obtained, conditional on them the spatial parameters @yp,c. of the spatial pro-
cess €(s) can be estimated.

4.2 Step 2: Spatial covariance structure

We define a collection of triangles T4, ..., Ty, on the sphere, and use a finite volume method to
discretise the SPDE in equation (4). We redefine the inverse matrix tensor as G(s)™! = p(s)*H(s),
where [H(s)| = 1, and we integrate it over triangles T; generated on a global mesh and seek for a
piece-wise constant solution to the SPDE. For all triangles T;, we have the following equality in
distribution:

[IT, LZ— V. H(s)V:|€(s) dvd [r, iW(s) dv. (6)
p(s) =" p(s)

Here V- is the divergence operator, V is the gradient operator, and H(-) is a 2 X 2 piece-wise con-
tinuously differentiable diffusion tensor and dV is the surface measure on the triangles. This allows
to translate the SPDE into a set of linear equations for a Gaussian vector that is assumed to be con-
stant across each triangle.

Similarly to Bertolazzi and Manzini (2007) and Fuglstad and Castruccio (2020), let
€= (e1, 2, ..., €,) be the vector of values at triangle centre, then the following 7 X 7z matrix Ay
could be calculated to describe a discrete approximation:

(Z [5, (H s)) nl,ds> ~ Age.
i=1

Here, 0;; represents the three faces of the triangle T; and n;} is its outward-facing vector. Then, we
combine this with a 7 X # diagonal matrix D, in which d;; = IT,'I/p(x,-)Z, so that we have:

( (((:;2 ds — Z [0, (H(s)Ve(s)) n,,ds)i_lz(D—AH)(.

With this approximation, the equality in distribution expressed in equation (6) can now be ex-
pressed as

(D - AH)( NN(Oa L)9

where L is a 7 x n diagonal matrix with elements [; = | Tj| /p(x;)>. This implies that € ~ A/(0, Q}),
and Q is a sparse precision matrix defined as:

Q=(D-An)'L7/(D-Ay).

Therefore, the finite volume method ensures a sparse precision matrix, which mitigates the com-
putational burden for large global data and boosts the computing speed of the non-stationary
model during inference.

4.3 Inference for latent Gaussian model

In order to perform inference on the latent Gaussian Model, in this work, we make use of the INLA
(Rue et al., 2009) a method for Bayesian inference alternative to traditional Markov chain Monte
Carlo, which could further ease the computational burden. INLA is a deterministic method for fast
approximation of high-dimensional integrals which takes advantage of computational properties
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of models that can be expressed as a latent GMRF. Thus, the INLA approach is used for perform-
ing the inference in this study. Under the proposed latent Gaussian model structure, we have the
observed data vector denoted here as Y = (Y(s1), ..., Y(s,))" at locations s; that can be described
by hyperparameter vector @space. For simplicity, throughout this section, we will use 0 to represent
hyperparameter vector Ospac.. If conditioned on latent spatial field X, the observations are margin-
ally independent with likelihood:

(Y | X, 0) =[] a(Y(si) | X(s:), 0),
=1

where X = (X(s1), ..., X(s,))" is a Gaussian field with mean zero and modelled by an SPDE ap-
proach with precision matrix Q(0). Therefore, the joint distribution of latent effect and hyperpara-
meters can be written as

(X, 01Y) xa(0)m(X | 0) ﬁ n(Y(si) | X(s:), 0)

i=1
() | Q<0>|”2exp{—§XTQ(0>X} Qn(Y(s» | X(s:), 0),

where |Q(0)| is the determinant of the precision matrix. The main goal is to approximate the pos-
terior marginals 7(X(s;) | Y), (@ | Y) and #(6; | Y). The marginal posterior distributions of interest
can be written as:

a(X(s;) | Y) =] 2(X(s:)|0, Y)z(0]Y) dO
0 1Y)=[=0]Y)do_;.

The key idea of INLA approach is to use the form above to construct nested approximations. The
approximations of the marginals for the latent field z(X(s;) | Y) are computed by approximating
(0| Y) and z(X(s;) | 0, Y), and using numerical integration to integrate out 6. In other words, the
posterior marginals of the latent parameter would be obtained by

#(X(s:) | Y) =) #(X(si) | O, ¥) X 70 | Y) X Ay,
k

where Ay, are the weights associated with a vector 6, of hyperparameters in a grid.

5 Simulation studies

Throughout this section, we denote with NS-LS the proposed non-stationary latent Gaussian
model (4) with land/sea effect with NS the non-stationary model with no land/sea effect. We fur-
ther consider the stationary SPDE model (3), and denote with S-LS the model with land/sea effect
and with S without it. In Section 5.1, we perform simulations from the Gaussian marginal distri-
bution for NS-LS to numerically assess posterior consistency for both the hyperparameters and the
resulting covariance matrix. In Sections 5.2 and 5.3, we perform simulations from Gaussian and
Bernoulli marginal distributions with identity and logit link, respectively, to assess the interpol-
ation (kriging) performance of the NS-LS against NS, S-LS, and S.

Since the key contribution of this work lies in the spatial component of the model, throughout
this section we will assume a purely spatial process with no covariates. In other words, model (1)
simplifies to

Y(s) ~ h(u(s), Omra), (7a)
glu(s)) = e(s) ~ N(0, E(Ospace))- (7b)

In the Gaussian case, we also have Oyrg = 6> = 0.05, while in the Bernoulli case no marginal
parameters are defined, so that fyrg = 0.
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For each simulation, we sample 7z = 2,000 data points on the unit sphere, and then draw the pa-
rameters of Oyy,cc from a Normal distribution with mean 1 and standard deviation 0.5, assume
them fixed. Each simulation comprises of 7, = 100 replicates from the resulting covariance matrix
Z(Ospace), and could be intuitively interpreted as the number of independent replicates in time. We
simulate data from a NS-LS model with £ = 1, so that there is a total of 6(£* + £) + 3 = 21 hyper-
parameters. In other terms, we perform 7, independent simulations, each one comprising 7, rep-
licates to aid the identifiability of the parameters.

5.1 Posterior consistency in the Gaussian case

In order to numerically assess posterior consistency, for each simulation we consider an increasing
number of replicates 7, = 10, ..., 100. Inference is performed assuming the same model (7) and
with a mesh of n1 = 2,000 triangles. The choice of the number/size of triangles is dictated mostly
by computational constraints. While it would be desirable to have a mesh as fine as possible, this
would require in larger matrices and hence more challenging likelihood evaluation. On the other
hand, a mesh too coarse would loose some fundamental structure in the spatial field, so there is a
trade-off. Our choice allowed for challenging yet not impossible inference. For varying levels of 7,,
the hyperparameters’ posterior distributions is retrieved and is compared with the true value.
Posterior consistency can be empirically verified in the extent to which the hyperparameters’ pos-
terior distributions converges to the true parameters Ogpce as 7, increases.

Figure 2 shows the functional boxplot (Sun & Genton, 2011) for all 7 of the posterior distri-
butions, for two hyperparameters for increasing values of realisations 7,. It is readily apparent
how the posterior mean aligns to the true parameter value and the posterior standard deviations
decreases as the replicates increase. While results are shown for NS-LS, similar patterns have been
observed across all other models (NS, S-LS, and S). Table 1 shows the median mean squared error
(MSE) and inter-quartile range (IQR) of the hyperparameters posterior means estimated from the
NS-LS model and the true values across all hyperparameters and across all #; = 100 simulations.
The median MSE decreases as the replicates increases.

In order to perform a uniform comparison across all hyperparameters, whose number quickly
becomes overbearing (e.g. with £ = 4 we would have 6(4 + 4) + 3 = 123 hyperparameters), we
also compare the covariance matrix implied by the hyperparameters with the true one. We assess
the discrepancy in the covariances via the Kullback-Leibler divergence (KLD), which in the case of
an n-dimensional Gaussian distributions with mean g, and ¢, and covariance matrices £y and X;
simplifies to

) _ detZ
(tr(fq]zo) — 4 (g — o) 27" (4o — ) + 1n<det2(1))>.
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Figure 2. Functional boxplots (Sun & Genton, 2011) across ns simulations of the posterior distribution of two
hyperparameters (a) o2, and (b) E%Z' for different number of replicates n,. The vertical dashed lines represent the
true hyperparameter values.
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Table 1. Median MSE (IQR) between the true hyperparameter and the posterior distribution across all simulations ns
for Gaussian case

n, 20 40 60 80 100

Median MSE (IQR) 0.32 (0.13) 0.25 (0.07) 0.14 (0.05) 0.05 (0.05) 0.01 (0.007)

Note. IQR, inter-quartile range; MSE, mean squared error.
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Figure 3. Functional boxplot across ns = 100 simulations of the KLD between the true covariance matrix and the
estimated one according to (a) NS-LS and (b) S-LS.

In our case, gy = p; =0, g = Z(Ospace) and Xy = Z(@Space), so that the KLD measures the distance
between the true and estimated covariance. The results as shown in Figure 3 for NS-LS (panel (a))
and S (panel (b)), where the functional boxplot (Sun & Genton, 2011) of KLD across all #; = 100
simulations for an increasing number of realisations 7, is shown. The functional boxplot is used to
report the envelope of the 50% central region (pink area), the median curve (black line) and the
maximum non-outlying envelope (outer blue line). As in the case of the estimated parameters,
we observe how even with a relatively small number of replicates in the training set, the estimated
covariance is converging to the true one. In particular, after 40 replicates the estimated covariance
is practically indistinguishable from the true one.

5.2 Interpolation performance in the Gaussian case

In order to assess the interpolation performance, we perform inference on the hyperparameters for
all four models and use them to interpolate at specified locations. We consider two cases: (1) all #
data points are used in the training set and interpolation is performed at the same sites and (2) 92%
of the 1 locations are considered in the training set, and the others 8% are withheld for cross-
validation. The test locations are located in within three selected areas indicated in online
supplementary Figure S1. Interpolation performance is measured with the MSE.

Results for both cases are reported in Table 2, and it is readily apparent how the MSE of NS-LS
model is the smallest among all four models for the both the all location case (1) and the cross-
validation setting (2). More specifically, compared to the S-LS model, the NS-LS model shows
an improvement of the median MSE across all locations by 14.6%. The NS-LS model also shows
an appreciable improvement in MSE by 10.4% and 16.7%, compared with the NS and S models,
respectively. From these results it is clear how the land/sea effect and buffer area construction yield
significant improvement when used in conjunction with the NS model.

5.3 Interpolation performance in the Bernoulli case

We now assess predictability in the case of a Bernoulli distribution with logit link, and as in Section
5.2 we assess both the case where all locations are used as training set, as well as cross-validation
with the same testing locations as before. Figure 4 shows the average differences across all 7, = 100
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Table 2. Comparison of interpolation performance across models

Model locations NS-LS S-LS NS S
Gaussian All locations 90.12 (8.17) 105.47 (9.94) 100.55 (11.25) 108.25 (11.23)
Gaussian Cross-validation 9.11 (1.04) 21.88 (1.18) 19.35 (1.62) 21.39 (1.59)
Bernoulli All locations 0.824 (0.048) 0.769 (0.074) 0.782 (0.051) 0.753 (0.050)
Bernoulli Cross-validation 0.707 (0.072) 0.676 (0.081) 0.672 (0.079) 0.641 (0.079)

Note. The first two rows show the median MSE (IQR) across all 2, = 100 simulations in the Gaussian case for both (1) all
locations and (2) cross-validation. The last two rows show the median AUC (IQR) for the Bernoulli case across the same
two cases. IQR = inter-quartile range; AUC = area under the curve.
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Figure 4. Average differences across all ng = 100 simulations between ROC curves of NS-LS and S (black line), and
S-LS and S (red line) for (a) all locations and (b) cross-validation. The ROC for NS are visually indistinguishable to that
of the S-LS model, so the results associated to that model are not shown. ROC = operating characteristic curve.

simulations between receiver operating characteristic curve (ROC) for NS-LS and S-LS, using S as
reference for all locations and validation locations. The ROC for NS are visually indistinguishable
to that of the S-LS model, so the results associated to that model are not shown. The ROC differ-
ence in both cases show how the NS-LS model is uniformly better than the stationary S model (as
the ROC difference is always positive), and also uniformly better than the S-LS model, especially in
the middle of the curve. As expected, the extent of improvement of NS-LS is larger in the case of
cross-validation (panel (b)), where the added value of the model at unobserved locations is more
apparent.

In order to have a comprehensive assessment across all possible choice of thresholds, we con-
sider the area under the curve (AUC) of the ROC for all models and we report it in Table 2. In
the best case of a perfect prediction, i.e. 100% true positive rate uniformly across the choice the
threshold the AUC should equal 1, and in the worst case of a random guess it should be 0.5.
The extent to which the AUC is close to 1 is a measure of predictive performance in this case.
As it is shown in Table 2, the NS-LS outperforms every other model in both cases. More specific-
ally, across all locations, the NS-LS yields an improvement by 7.2%, 5.3%, and 9.4% for the S-LS,
NS, and S models, respectively. These results agree with those presented in Section 5.2, for the use
of the land/sea effect and buffer area construction definitively yields improved performance when
included in the NS model.

6 Application

In this section, we use the data detailed in Section 2 and the proposed latent Gaussian model with
non-stationary SPDE introduced in Section 3 to estimate the global probability of a rain event and
the precipitation intensity. In Section 6.1, we discuss both the fit of the global MERRA-2 dataset
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and the downscaling approach to adjust interpolated MERRA-2 data with ground USCRN pre-
cipitation measurement. In Section 6.2, we provide evaluation metrics to assess the model
performance.

6.1 Modelling global precipitation and downscaling
We initially focus on the MERRA-2 data and consider two global datasets (1) a binary rain occur-
rence event and (2) in case of rain, the actual rain intensity. We then fit the latent Gaussian model
(1) with non-stationary SPDE (4) with £ = 1, using a Bernoulli marginal distribution with a logit
link function g(-) for rain occurrence and a Gamma distribution with negative inverse link function
for rain intensity. Validation for the choice of the marginal distribution can be found in the online
supplementary material along with online supplementary Figure S3 showing the histogram of pre-
cipitation at 456 sample locations (resolution of 18.75° X 15° in longitude and latitude) with esti-
mated Gamma density. The sample locations are sparse in space to mitigate any spatial influences.
In both cases, no additional covariates are assumed, and we assume K =2 harmonics for the
temporal component, as it was shown to be the optimal choice according to the model selection
in online supplementary Figure S2. Formally, model (1) now specialises in the following two
models:

log K1) = fime(s 1) + €pr(s),  precipitation probability, (8a)
1= ufs, 1)
—u(s, 8)71 = fi™(s, £) + €in(s),  precipitation intensity, (8b)

where €,,(s) and €, (s) are independent processes between them and in time. The histogram shows
that precipitation intensity follows a Gamma distribution with shape parameter 0.826 and scale
parameter 0.184. Inference is performed with a global triangulation of # = 2,340 triangles, of
which 1,134 are within the area of interest (contiguous United States), while the remaining
1,206 cover the rest of the world.

The hyperparameters’ posterior distributions is obtained and used to predict both the precipi-
tation probability and intensity at the locations where the 131 USCRN ground observations loca-
tions are located, see Figure 1. These predictions are then adjusted (downscaled) to point
resolution via linear regression. Since we perform downscaling independently for every time point,
for simplicity we now drop the time dependence, and we denote as Y(s) and Yy(s) the precipita-
tion intensity for USCRN and MERRA2, respectively (G = ground, S = simulation), and with
pc(s) and ps(s) the probability of precipitation occurrence. We further denote as Ys(s) and ps(s)
the estimated intensity and probability of occurrence, respectively, according to the proposed
SPDE model. Finally, we estimate the probability of precipitation occurrence for the USCRN
data by fitting the latent Gaussian model (1) for each location independently as a time series model,
i.e. assuming no spatial dependence and denote the estimate as p(s). We further assume a
linear relationship between USCRN and MERRA2 precipitation occurrence probability and in-
tensity:

log (lPiGT(GS)(s)) = go) +/3(10) log (11_757;;)(50 +&o(s), precipitation probability, (9a)
log(Yc(s)) =y + B log(Vs(s)) + &(s), precipitation intensity, (9b)

where &i(s) ~ NV(0, 0]-2), j € {O, I} independent and identically distributed in space. A functional
boxplot of the variogram of the residuals in online supplementary Figure S4 (with each curve rep-
resenting a different time point) lends support to the assumption of spatial independence of the
error. The downscaling parameters ﬁg) and ﬂ(ll) for precipitation intensity are then estimated using
the ordinary least squares.
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Figure 5. Average (a) daily precipitation and (b) precipitation probability. The global dataset is interpolated at the
same sites as the ground observations according to the non-stationary global SPDE model (4), the linear model (9) is
fit, and the resulting relationship is used to produce the downscaled maps. SPDE = stochastic partial differential
equation.

6.2 Results and evaluation

Downscaled probabilities of precipitation occurrence and precipitation intensity according to the
aforementioned model are displayed in Figure 5a and b, respectively, with the dark bubbles rep-
resenting average values from the USCRN data. The prediction maps of the United States show
high daily precipitation and high precipitation intensity around Seattle, while the lowest values
can be found near Las Vegas, and overall the model prediction resembles the ground observation
values across the United States. To evaluate the model performance, we calculate the root mean
squared error (RMSE) for both probability of precipitation occurrence and precipitation intensity.
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Figure 6. The fitted lines using downscaling models described in (a) equation (9a) and (b) equation (9b) on 1 February
2021.

The RMSE for intensity and probability of precipitation occurrence is 2.01 and 0.14 mm, respect-
ively. In order to assess the value added by the smoothing of our SPDE model, we also perform
downscaling with the linear models in (9), but assuming that no spatial model is fit, i.e. that the
MERRA-2 data are not interpolated at the locations of the USCRN sites. Instead, we consider
MERRA-2 data at their original resolution, and attribute to each USCRN site the value in the
same cell. In other words, we consider as covariates ps(s, t) and Yg(s, t). The resulting RMSE
for this model in the case of precipitation intensity and probability of precipitation occurrence
is 82.74 and 0.28 mm, respectively. Therefore, the proposed SPDE approach has narrowed the dis-
crepancy between MERRA-2 and USCRN significantly, as it has reduced the RMSE for precipi-
tation intensity and probability of precipitation occurrence by 97.6% and 50%, respectively.
Figure 6 shows the fitted lines using downscaling model in equations (9a) and (9b) on 1
February 2021. The R? for the two linear models are 0.78 and 0.67 for precipitation probability
and intensity, respectively.

We also evaluate the model uncertainty by cross-validation. First, we remove the data from one
ground observation location and fit the model using the remaining observations. Next, we con-
struct the 95% credibility interval for the posterior mean of the probability of precipitation occur-
rence or precipitation intensity at the removed location with the estimated posterior distributions
of the hyperparameters of the model. Then, we repeat the same procedure for all the 131 locations
in USCRN. Finally, we determine how many intervals among the 131 of the 95% credibility in-
tervals cover the true value. For precipitation, 93.1% (122/131) of the 95% credibility intervals
cover the true value, while for probability of raining, 91.6% (120/131) of the 95% credibility in-
tervals cover the true value.

7 Conclusion and discussion

In this work, we have proposed a novel non-stationary spatio-temporal SPDE model able to
smooth both probability of precipitation occurrence and probability intensity from a global data-
sets. Such interpolated dataset is then used in conjuction with ground observation to produce
high-resolution (downscaled) precipitation maps, which allow to predict what would ground
observations would look like in unsampled location with a higher degree of accuracy compared
to the original simulated data (i.e. the global data at their native resolution). One may in principle
use MERRA-2 as a boundary condition to drive regional simulations with models such as WRF to
obtain precipitation maps at equally high spatial resolution, with the added benefit of being able to
produce predictions compliant with physical laws. Such dynamical downscaling approach is how-
ever considerably more involved, as it requires substantial computational and storage resources,
as well as considerable expertise to set up WRF properly. As such, our proposed statistical
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downscaling approach is considerably faster and easier to implement without specialised compu-
tational resources. The proposed method of adjustment of a simulation via ground observation
can also be seen as a bias correction approach, i.e. a method to correct simulations (see, e.g.
Hawkins et al., 2013; Ho et al., 2012; Kim et al., 2015; Yuan et al., 2019 for a general review).
While a large body of literature in geoscience focuses on bias correction as a means to adjust
the first (Chen et al., 2012; Hemer et al., 2012) and possibly the second moment (Li et al.,
2019; Teutschbein & Seibert, 2012) of the marginal distribution, such approach can be used
also to adjust non-Gaussian features, similarly to other recent efforts (Piani & Haerter, 2012;
Vrac & Friederichs, 2014).

The proposed statistical model is scalable to future re-analysis data products with even higher
spatial resolution, owing to the finite volume approximation of the SPDE generating the spatial
model. Even more realistic downscaled patters could be generated if additional physical variables
such as temperature and humidity could be considered as covariates. An incorporation of covari-
ates could be performed either as the latent Gaussian model in equation (1b), as suggested in this
work, or as as additional input of the scalar or vector field which dictate the deformation of the
SPDE model. This could be implemented assuming either a linear contribution, or a non-linear
one by means of neural networks (Hu et al., 2022). In principle, multiple variables could be mod-
elled jointly. However, this would considerably increase both the methodological challenge and
the computational overhead, as fast, flexible, multivariate and non-Gaussian global models are
currently an active area of investigation (Genton & Kleiber, 2015).

While the proposed approach has many advantages over the chosen alternative models, there
are also limitations which are ultimately inherited by and inextricably linked with the general
modelling strategy chosen. In primis, the use of latent Gaussian models for non-Gaussian data
has a long history in statistics, allows flexible hierarchical modelling while retaining computation-
al affordability but by its own nature does not allow explicit control over some basic statistical
properties such as the moments. Secondly, the use of SPDE requires a discretisation, whose reso-
lution is limited by how many triangles can be used in the domain: more triangles result in a more
accurate solution but imply larger matrices. Finally, for this particular model, the choice of basis
function for the scalar and vector field may require a lot of parameters, and other choices are
possible.
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