
Understanding the Effects of Using Parsons Problems to Scaffold
Code Writing for Students with Varying CS Self-Efficacy Levels

Xinying Hou
University of Michigan

Ann Arbor, Michigan, USA
xyhou@umich.edu

Barbara J. Ericson
University of Michigan

Ann Arbor, Michigan, USA
barbarer@umich.edu

Xu Wang
University of Michigan

Ann Arbor, Michigan, USA
xwanghci@umich.edu

ABSTRACT
Introductory programming courses aim to teach students to write
code independently. However, transitioning from studying worked
examples to generating their own code is often difficult and frus-
trating for students, especially those with lower CS self-efficacy
in general. Therefore, we investigated the impact of using Parsons
problems as a code-writing scaffold for students with varying lev-
els of CS self-efficacy. Parsons problems are programming tasks
where students arrange mixed-up code blocks in the correct order.
We conducted a between-subjects study with undergraduate stu-
dents (N=89) on a topic where students have limited code-writing
expertise. Students were randomly assigned to one of two condi-
tions. Students in one condition practiced writing code without
any scaffolding, while students in the other condition were pro-
vided with scaffolding in the form of an equivalent Parsons problem.
We found that, for students with low CS self-efficacy levels, those
who received scaffolding achieved significantly higher practice per-
formance and in-practice problem-solving efficiency compared to
those without any scaffolding. Furthermore, when given Parsons
problems as scaffolding during practice, students with lower CS self-
efficacy were more likely to solve them. In addition, students with
higher pre-practice knowledge on the topic were more likely to ef-
fectively use the Parsons scaffolding. This study provides evidence
for the benefits of using Parsons problems to scaffold students’
write-code activities. It also has implications for optimizing the
Parsons scaffolding experience for students, including providing
personalized and adaptive Parsons problems based on the student’s
current problem-solving status.

CCS CONCEPTS
• Applied computing→ Computer-assisted instruction; In-
teractive learning environments; • Social and professional
topics → Computing education.

KEYWORDS
Parsons problems, Scaffolding, Code writing, Undergraduate CS,
Hint, Introductory Programming, Self-Efficacy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’23, November 13–18, 2023, Koli, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1653-9/23/11. . . $15.00
https://doi.org/10.1145/3631802.3631832

ACM Reference Format:
Xinying Hou, Barbara J. Ericson, and Xu Wang. 2023. Understanding the
Effects of Using Parsons Problems to Scaffold CodeWriting for Students with
Varying CS Self-Efficacy Levels. In 23rd Koli Calling International Conference
on Computing Education Research (Koli Calling ’23), November 13–18, 2023,
Koli, Finland. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3631802.3631832

1 INTRODUCTION
Commonly used techniques to introduce a new programming topic
in college lectures often involve direct instruction and worked ex-
ample code demonstration [31]. After this, students are expected
to gain expertise by solving more programming problems indepen-
dently. However, while students appear to understand the theo-
retical concepts and examples taught in lectures, transitioning to
writing full solutions to new problems remains a huge challenge
[16, 28, 30, 47]. As a result, they often fail to overcome the challenge
of writing their own code independently, particularly students with
low CS self-efficacy, who are less likely to persevere when faced
with difficulties [52, 57].

To tackle this issue, prior work has investigated different scaf-
folding approaches to assist students in learning to write code.
Scaffolding refers to the assistance given to someone to help them
complete a task when they cannot do it independently yet [26].
One-on-one tutoring, which can provide the desired scaffolding,
has been found to be more effective than traditional classroom
instruction with one instructor [5]. However, as computer science
becomes increasingly popular, the number of students in under-
graduate CS classes has grown considerably in recent years, which
in turn presents serious challenges to offering one-on-one tutoring
due to the high cost [21].

Parsons problems are an increasingly popular type of program-
ming exercise that requires students to place mixed-up code blocks
in the correct order [13, 41]. Previous research has shown that Par-
sons problems generally require less cognitive load from students
compared to write-code problems [22] and facilitate greater engage-
ment [15]. This inspired our work to investigate whether Parsons
problems can be used as effective scaffolding when students are
writing code for new topics. As a type of completion problem, they
have the potential to help students transition fromworked examples
to conventional write-code programming problems [40, 51].

To understand the effectiveness of Parsons problems as a scaf-
folding technique when students are learning to write code, we
conducted a between-subjects classroom experiment. In the experi-
ment, we wanted to understand whether and how students with
distinct levels of self-efficacy differ in practice and learning when
they received Parsons problems as scaffolding (Parsons scaffolding

https://orcid.org/0000-0002-1182-5839
https://orcid.org/0000-0001-6881-8341
https://orcid.org/
https://doi.org/10.1145/3631802.3631832
https://doi.org/10.1145/3631802.3631832
https://doi.org/10.1145/3631802.3631832
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631802.3631832&domain=pdf&date_stamp=2024-02-06

Koli Calling ’23, November 13–18, 2023, Koli, Finland Xinying Hou, Barbara J. Ericson, and Xu Wang

- PS condition) during write-code practice versus not (NP condi-
tion). Furthermore, we performed in-depth analyses to understand
students’ experiences when interacting with Parsons problems as a
scaffolding technique, and the relationship between their interac-
tion and CS self-efficacy levels. We examined the following research
questions:

• RQ1.1: Are there differences between conditions in terms
of practice performance, problem-solving efficiency, and
posttest performance for students with low CS self-efficacy
levels?

• RQ1.2: Are there differences between conditions in terms
of practice performance, problem-solving efficiency, and
posttest performance for students with high CS self-efficacy
levels?

• RQ2: In the Parsons Problems as Scaffolding (PS) condition,
how did students with varying CS self-efficacy levels use the
Parsons scaffolding?

• RQ3: In the Parsons problems as Scaffolding (PS) condition,
how did students rate the usefulness of the Parsons scaffold-
ing and why?

2 RELATEDWORK
2.1 Scaffolding Write-Code Problems
Scaffolding strategies help students finish a task or build new un-
derstanding so that they can perform comparable activities on their
own later. By providing desired scaffolding, Bloom demonstrated
that one-on-one human tutoring helps students improve their learn-
ing by two standard deviations over typical classroom instruction
with a single teacher for 30 students [5]. However, providing this
type of support in high student-to-teacher ratio courses, such as
introductory CS courses, can be too expensive.

To address this issue, researchers have looked into computer-
assisted scaffolding techniques at various stages of code develop-
ment. One line of research provides scaffolding to restrict the entry
difficulty of code-writing to avoid cognitive overload. For instance,
Denny et al. showed that letting students review and think about
problem statements before writing any code had a positive influ-
ence on performance [10]. Similarly, Garcia tested design-based
Parsons problems which asked students to put strategic plans in
order, and found that some students used these problems to try to
understand the problem better but that others just used a trial and
error approach to solve the problem [18].

Another line of research focuses on providing scaffolding through-
out the code-writing process, such as by providing next-step hints
in Intelligent Tutoring Systems (ITS). For example, Rivers built
ITAP, which employs a three-stage process to generate next-step
hints for student code submissions [45]. Her initial analysis found
that students with hints spent less time practicing but achieved
the same learning outcomes. Nevertheless, the inconsistency in
the quality of the automated hints is still a problem, affecting stu-
dents’ trust in these systems and future help-seeking behaviors
[43]. Furthermore, automated hints rarely contain comprehensive
guidance, such as examples, that might be leveraged to overcome
the "design barriers" experienced by beginner programmers [27].
As a result, by using low-level hints before starting to program a
task, some novices experienced inefficient help-seeking outcomes

[33]. As we aim to provide scaffolding for students in the early
stages of acquiring coding skills on this topic, we would like to
implement a more comprehensive scaffolding method during the
code-writing process, which is providing students with equivalent
Parsons problems alongside the write-code problems.

2.2 Existing work on Parsons problems
In the original design of Parsons problems, Parsons and Haden
provided students with a problem description and a set of drag-and-
drop code fragments [41]. Each code fragment was made up of one
or more lines, and some of the lines included incorrect code. To
complete a problem, students chose the correct code segments and
arranged them in the correct order. They reported that the majority
of students thought this type of problem was useful for learning
[41].

Subsequent research has produced a range of Parsons problem
varieties, and the difficulty levels of these formats vary depending
on the tasks students need to complete and the code blocks pre-
sented. For instance, in one-dimensional Parsons problems, code
blocks must be organized in the right vertical sequence, while in
two-dimensional Parsons problems, the blocks must additionally be
appropriately indented [25]. In addition, Weinman et al. proposed
faded Parsons problems where students must use valid expressions
to fill in blanks in the lines of code and rearrange the lines of code
to create a proper program [53]. Distractors, code blocks that are
not needed in a correct solution, can also be added to make the
problems more challenging [14]. Distractor blocks typically include
syntactic or semantic flaws. There are two types of display for dis-
tractor blocks: paired distractors, which contain some indication
that students have to pick one of a set, and unpaired distractors,
which are randomly mixed in with the correct blocks. Previous
research has demonstrated that paired distractors make Parsons
problems easier to solve than unpaired distractors [9].

Ericson et al. created two types of adaptation for Parsons prob-
lems: intra-problem and inter-problem adaptation [12]. Intra-problem
adaptation reduces the difficulty of the current Parsons problem,
and inter-problem adaptation affects the difficulty of the next prob-
lem based on students’ performance on the current problem [14].
Learners can initiate the intra-problem adaptation by clicking the
"Help Me" button after at least three full attempts, and the system
will either remove a distractor block or combine two blocks into
one. Inter-problem adaptation happens after the system evaluates
the learner’s performance on the previous Parsons problem. To
make the next problem easier, it will remove or pair distractors
with the correct blocks. To make it harder, it will add all distractors
or randomly mix them with the correct blocks. In this study, we use
two-dimensional Parsons problems with intra-problem adaptation
and paired distractors.

2.3 Cognitive Load Theory
According to cognitive load theory, the human cognitive architec-
ture is made up of numerous memory stores, including a restricted
working memory and an unlimited long-term memory [46]. Work-
ing memory is limited in terms of capacity and duration, especially
when processing new information. Cognitive load refers to the

Understanding the Effects of Using Parsons Problems to Scaffold Code Writing Koli Calling ’23, November 13–18, 2023, Koli, Finland

working memory resources necessary when learning new infor-
mation [49]. Two core cognitive load categories are intrinsic and
extrinsic cognitive load [50]. Intrinsic cognitive load relates to the
material’s inherent difficulty, which is mediated by the learner’s
prior knowledge [50]. Instructional strategies like segmenting and
pre-training can be applied to manage intrinsic cognitive load due
to overly complex content [36]. Extraneous cognitive load is deter-
mined by how the instructional information is delivered and what
the learner is expected to perform [50]. The extraneous load can
be reduced by dealing with typical instructional elements that may
cause extraneous load [7].

Computer programming is a highly cognitive skill that requires
mastering multiple competencies and is recognized as being in-
herently difficult to learn, making cognitive load theory one of
the most relevant theories in computing education research [4].
Previous studies have adopted a wide range of instructional rec-
ommendations provided by cognitive load theory to programming
learning. Among those effects, the use of worked examples is ex-
tremely popular in introductory programming courses [4]. Worked
examples demonstrate an expert’s comprehensive solution to a
problem, allowing students to learn how to solve problems before
they can write correct code independently. They are commonly
used for novice learners to reduce cognitive load [48]. However, in
the traditional way of employing programming examples, there are
dramatic shifts in cognitive demand when moving directly from
fully completed examples to solving a problem by writing code
from scratch [44]. To bridge this gap, one recommended method is
to use completion problems with a partial answer before expecting
students to complete a full problem [50]. Since Parsons problems
provide students with the right code blocks but still require them
to arrange them in the right order, they fall under the category of
completion problems. Therefore, by adding Parsons problems as
scaffolding to code writing problems, we expect to implement a
smoother transition for students from studying examples to solving
write-code problems independently.

2.4 Self-efficacy in CS Learning
Self-efficacy describes people’s perceptions of their own abilities
to complete a task [3]. Self-efficacy is important in education as
individuals’ self-efficacy can influence their willingness to put ef-
fort into a task, decisions about future involvement in a task, and
attitudes when facing obstacles [2]. For example, students with high
self-efficacy are usually more enthusiastic about participating in
and completing learning tasks than students with low self-efficacy.
When facing difficulties, students who believe in their abilities (high
self-efficacy) do not avoid difficult tasks but view them as challenges
that must be overcome. For example, science learners with a greater
degree of self-efficacy will put in more effort on learning activities
and will persevere when faced with difficulties, resulting in learning
success [6, 57].

When it comes to the CS domain, self-efficacy has become among
the most studied constructs to understand programming learning
outcomes and persistence in computing learning and careers [42].
Specifically, Wiedenbeck discovered that self-efficacy was posi-
tively connected with two distinct programming course outcomes:
performance in debugging tasks and the overall course grade [55].
In another study, Lewis et al. interviewed 31 students at two public

universities and discovered that one crucial aspect in their decision
to major in CS was their perception of their CS ability (self-efficacy
in CS) [29]. Similarly, Miura applied self-efficacy surveys and found
students with higher self-efficacy were more likely to enroll in a
computer science course in the college [37]. In this work, we will
investigate how students with varying levels of CS self-efficacy
used the Parsons scaffolding during practice and whether there are
differences between conditions in terms of practice performance,
in-practice problem-solving efficiency, and posttest performance
for students with various CS self-efficacy levels.

2.5 Using Parsons problem to Scaffold Writing
Code

Parsons problems have been explored for both formative assess-
ment (practice) and summative assessment [13]. Prior studies have
provided evidence that most students find Parsons problems en-
gaging [41], and students can achieve the same level of learning
as writing the equivalent code, but with higher learning efficiency
[14]. Morrison et al. also reported that Parsons problems were more
sensitive than writing code for assessing students’ learning gains
[38]. Parsons problems allow students to demonstrate their under-
standing of the meaning and sequence of programs, which helps to
assess students’ knowledge in ways that writing code alone cannot.

An initial study of Parsons problems as scaffolding explored
when, why, and how students apply Parsons problems to scaffold
their write-code problems [24]. The think-aloud study found that
students opened the Parsons problem at three different stages: plan-
ning, implementing, and debugging a solution. In addition, Hou
et al. identified four distinct ways in which students successfully
interacted with Parsons problems to help them complete coding
tasks: "scan Parsons problem", "attempt Parsons problem", "solve
and replace their code", and "solve and modify their code." [24]. In
"scan Parsons problem", the learner looks at the unsolved Parsons
problem for ideas about how to get started or for particular informa-
tion, but does not attempt to solve it. In "attempt Parsons problem",
the learner makes some effort to solve the Parsons problem but does
not completely solve it before finishing the write-code problem. In
"solve and replace their code", learners solve the Parsons problem
and use that solution to replace any code they wrote in the write-
code problem. In "solve and modify their code", learners solve the
Parsons problem and then modify their solution in the write-code
problem. When experimenting with the learning effectiveness of
Parsons problems to scaffold write-code problems, Hou et al. discov-
ered that students who were given Parsons problems as scaffolding
for code writing problems took less time to complete those prob-
lems, however, there was no learning improvement from pretest
to posttest in either condition, indicating that those students had
already mastered the topic [24]. In contrast to the prior study, we
chose a more advanced programming topic to which students had
little prior exposure. Our research investigated if Parsons problems
can help students bridge the gap between learning from worked
examples and solving write-code problems independently.

3 METHOD
Our IRB-approved study was conducted in the fall semester of
2022 at a large public research university in the northern United

Koli Calling ’23, November 13–18, 2023, Koli, Finland Xinying Hou, Barbara J. Ericson, and Xu Wang

States. All participants were enrolled in a data-oriented program-
ming course, which was the second required Python course for
the university’s information science majors, though other majors
take the course as well. This course covered programming con-
cepts including Python basic data structures (list, tuple, and dict),
object-oriented programming concepts (classes, objects, and
inheritance), how to debug, how to use unit testing, basic web
scraping, regular expressions, HTML, XML, JSON, working with
APIs, working with databases, and Matplotlib.

3.1 System Interface
Runestone allows students to write, execute code, and receive im-
mediate feedback from unit test results (Figure 1) [17]. Our study
added an equivalent optional Parsons problem to each write-code
problem to scaffold students’ code-writing practice. When students
have difficulty solving a write-code problem independently, they
could display, interact with, and work on the equivalent Parsons
problem in a previewwindow (Figure 2), but they were still required
to solve the write-code problem to earn points. Students could not
copy and paste the Parsons solution to the write-code problem, they
had to retype it. When students failed to pass all the unit tests after
three submission attempts, they would receive a pop-up prompt
reminding them that help is available ("Help is Available Using the
Toggle Question Selector").

Figure 1: Screenshot of a write-code problem with the unit
test results

3.2 Participants and Procedure
The classroom study was conducted during the 80-minute lecture
period in week three of the class; students who did not attend the
lecture were allowed to finish the study by the end of the day. A total
of 134 students participated in this study. Students were randomly
assigned to one of two conditions: Parsons-Scaffolding condition
(PS) and No-Parsons-Scaffolding condition (NP). Students in the
Parsons-Scaffolding (PS) condition received a text-entry write-code
interface with an equivalent two-dimensional adaptive Parsons
problem as scaffolding (Figure 2), while the No-Parsons Scaffolding
(NP) group only had the write-code interface (Figure 1).

Students first read an introduction to Python classes. It covered
three fundamental concepts: defining a new class, constructing
new objects, and writing new methods. Each concept included
textual instruction, an executable worked example followed by a
task where students were instructed to modify the code (Figure 3).
After finishing the introduction to the concepts, students received
an introduction to the types of problems in the system: scaffolded
code writing or non-scaffolded. Following that, students were asked
to complete a programming self-efficacy survey (6 questions) and a
self-evaluation on their knowledge about writing code for classes
(4 questions). Then, students were given four write-code practice
problems in each of the two conditions, with the only difference
being that students in PS condition had the equivalent Parsons
problems as scaffolding. Students in PS condition were explicitly
told that they had to enter code in the write-code area to earn points.
We generated a random number between 1 to 10 once the student
clicked to start the practice. Based on this number, we assigned them
to the NP condition if it was odd and the PS condition if it was even.
After each practice question, students in the PS condition were
given a question, asking them to rate the perceived usefulness of
using a Parsons problem to help them solve the write-code problem
on a Likert scale from 1-low to 9-high. Students who did not use the
Parsons scaffolding were asked to skip the corresponding survey
question.

Additionally, following the last practice question, PS students
were asked to respond to a brief open-ended question explaining
their general perceived usefulness of a Parsons problem as scaffold-
ing while writing code. Students in both conditions then finished
the posttest. Each section had no time restrictions, allowing stu-
dents to progress through the materials at their own pace until
the end of the day. The final sample contained 89 students who
completed all of the materials in order (41 in PS and 48 in NP).
Only three students chose to finish the materials outside of class
time. They were not outliers after checking their main measures,
including practice performance, problem-solving efficiency, and
posttest scores.

Figure 2: Screenshot of using a Parsons problem to scaffold a
write-code problem

3.3 Materials
There were five parts to the materials: basic knowledge instruction
on how to create classes, methods, objects in Python; a survey
to measure students’ CS self-efficacy level and pre-practice knowl-
edge level about writing class; four write-code practice problems

Understanding the Effects of Using Parsons Problems to Scaffold Code Writing Koli Calling ’23, November 13–18, 2023, Koli, Finland

Table 1: Questions about student general CS self-efficacy level

Question Item
1 - Generally I have felt secure about attempting computer programming problems.
2 - I am sure I could do advanced work in computer science.
3 - I am sure that I can learn programming.
4 - I think I could handle more difficult programming problems.
5 - I can get good grades in computer science.
6 - I have a lot of self-confidence when it comes to programming.

Table 2: Questions and ratings on prior-practice knowledge levels in Python class

Question Item Rate Level
1 - Creating classes like class Person:
and objects like p = Person("XXX")

1 - I am unfamiliar with these concepts

2 - Methods like init and str 2 - I know what they mean, but have not used them in a program

3 - The use of self in class
3 - I have used these concepts in a program, but am not confident
about my ability to use them

4 - Defining instance variables like
self.color = color

4 - I am confident in my ability to use these concepts in simple programs

5 - I am confident in my ability to use these concepts in complex programs

and corresponding equivalent Parsons problems; and an immediate
posttest to assess their learning performance.

3.3.1 Basic knowledge instruction. The knowledge introduction
described how to create a new class, how to override the inherited
init and str methods, how to define a new method, and

how to create objects. For each subtopic, we provided a combina-
tion of textual introduction and an interactive worked example that
the participant could execute and revise to learn how to handle a
specific problem in Python [1]. Students in this study had little prior
experience with creating a new class in Python, so we believed
this basic knowledge instruction part would provide students with
some conceptual and procedural knowledge on this topic (Figure
3).

3.3.2 Survey Items. To gather students’ self-efficacy in computer
science learning in general (their general CS self-efficacy level),
we used the self-efficacy items developed for the computer science
domain [56]. The scale to measure self-efficacy was the first 6 items
from a 13-item subscale developed by Wiebe et al. [54]. Participants
were asked to rate these statements on a five-point scale, ranging
from "1-strongly disagree" to "5-strongly agree" (Table 1). This
resulted in a score scale of 6 to 30.

Additionally, to assess whether there was a significant difference
between the two groups, we used Duran et al.’s method [11] to
collect self-ratings for the pre-practice knowledge level on this topic.
Self-evaluation instruments can be used to capture pedagogically
useful information about students’ prior programming knowledge
[11]. To measure students’ pre-practice knowledge level, we created
a four-question survey around class and asked students to rate
how well they understood the concepts and could proceed with
translating them into actual code (Table 2). For the rate levels,
given that this instrument was used to measure a new topic, we
created five different levels adapted from the original prototype

self-evaluation instrument (Table 2), and assigned a score of 1-low
to 5-high for each level, with a total score range of 4 to 20.

3.3.3 Write-code Practice Problems. We sourced the write-code
problems from an intermediate Python programming course at
a public research university in the United States. We chose four
write-code practice problems, each worth 10 points (Table 3). The
first problem required students to create a class with an init
and str method. The second and third problems involved im-
plementing a third method in addition to init and str .
The fourth problem was the hardest one which required perform-
ing a random selection from a list, in addition to creating a class
and a method. Our goal was to make sure that participants with
different skill levels all had a chance to use a Parsons problem to
scaffold a write-code problem. During practice, students from the
two conditions both received execution-based feedback after each
run, which showed compiler errors and the output from running
the code including the results from unit tests (Figure 1). Each prob-
lem was scored out of 10 points based on the percentage of unit
tests that passed. There were a total of 40 possible points for the
overall practice. In this work, we first extracted the practice results
provided by the auto-grading system. Then, we manually checked
the final code submissions and accounted for any auto-grading
errors before conducting the analyses.
3.3.4 Parsons Problems as Scaffolding. One recent study of Parsons
problems found that a Parsons problem with an unusual solution
increased students’ cognitive load [22]. To address this problem, we
clustered student-written code from previous semesters using the
OverCode software [19], and then used the most common student
solution cluster to create an equivalent Parsons problem (Figure
2). To highlight common misconceptions, we also inserted paired
distractors into the Parsons problems. Experts created the distractor
blocks based on common syntax or semantic errors [41]. Addition-
ally, a “Help Me” button was provided at the bottom of each Parsons

Koli Calling ’23, November 13–18, 2023, Koli, Finland Xinying Hou, Barbara J. Ericson, and Xu Wang

problem to assist students who struggle while solving the Parsons
problem. This button triggered intra-problem adaptation, which
either removes a distractor or combines two blocks into one if
the learner had made at least three attempts to solve the Parsons
problem and there are more than three blocks left in the solution.

3.3.5 Posttest Items. Two types of questions were included in the
posttest: write-code problems (10 points each, 20 points in total)
and fix-code problems (10 points each, 20 points in total). In a
write-code problem, the student needs to write the correct code
from scratch following the problem description, and in a fix-code
problem, the student must fix the errors in the existing buggy
solution. These questions covered similar concepts to the write-
code practice questions. Every time they ran the code, students
would receive execution-based feedback, which showed compiler
errors and the output from running the code, usually including
results from unit tests. We calculated their posttest scores by using
the proportion of passed unit tests in the final submission.

Figure 3: Screenshot of the first part of the basic knowledge
instruction

4 RESULTS
4.1 RQ1: Are there differences between

conditions in terms of practice performance,
problem-solving efficiency, and posttest
performance for students with low CS
self-efficacy levels (RQ1.1) and for students
with high CS self-efficacy levels (RQ1.2)?

Descriptive statistics on student responses to the survey items are
included in Table 4. As shown in Table 4, on average, students in
both conditions reported a pre-practice knowledge level between
"I know what it means, but have not used it in a program" (8 total
points) and "I have used this concept in a program, but am not
confident about my ability to use it" (12 total points). This demon-
strated that, after receiving basic direct instruction with worked
examples, these students gained some confidence in their ability to
write code around class. However, they have not become experts
on this topic. This indicated that those participants reached the
expected skill level for this study. In addition, as the conditions

(NP and PS) were randomly assigned, we expected students in both
conditions to have a similar level of self-rated prior knowledge in
Python class and general CS self-efficacy before they started the
practice. Given that their self-rated pre-practice knowledge and
general CS self-efficacy were not normally distributed, we applied
two Mann-Whitney U tests, and our statistical results indicated that
there were no significant differences between PS and NP conditions
on their basic pre-practice knowledge (U = 1008.0, p = .846, CLES =
.51) or general CS self-efficacy (U = 1146.0, p = .182, CLES = .58),
suggesting that the condition groups were comparable. We also
used Cronbach’s 𝛼 reliability test to check the internal consistency
of the survey questions, resulting in 𝛼 = 0.82 for the general CS
self-efficacy survey and 𝛼 = 0.80 for the pre-practice knowledge in
Python class survey, demonstrating that these two surveys had
good internal consistency [20].

We calculated each student’s in-practice problem-solving effi-
ciency using the likelihood model from Hoffman and Schraw [23].
A learner would have a bigger relative gain and be seen as more
efficient if they spent less time while still achieving more problem-
solving accuracy [23]. Following this model, for each student, the
in-practice problem-solving efficiency was calculated as the ratio
of practice score (Max = 40) and practice time (mins). Practice time
was calculated as the time used for practice, excluding any periods
of inactivity over 5 minutes. The highest problem-solving efficiency
was 4.07, achieved by a student who finished all four write-code
problems (40 points) in 9.83 minutes.

To investigate how Parsons scaffolding may impact learners with
varying CS self-efficacy levels differently, we divided learners into
two groups based on their scores in the general CS self-efficacy
survey. The PS-High (N = 20, M = 25.1, SD = 2.7) and NP-High (N
= 22, M = 23.8, SD = 2.7) are students that scored higher on the CS
self-efficacy survey; the PS-Low (N = 21, M = 17.3, SD = 2.8) and
NP-Low (N = 26, M = 16.2, SD = 2.4) are students that scored lower
in the general CS self-efficacy survey.

We found no differences between PS-High & NP-High groups
in terms of the self-evaluated prior knowledge in Python class (U
= 230.0, p = .810, CLES = .52) and PS-Low & NP-Low groups (U =
275.5, p = .965, CLES = .50). We then conducted a series of analyses
to understand the differences in terms of practice performance,
problem-solving efficiency, and posttest performance among the
groups. In cases where the data was not normally distributed, we
used the Mann–Whitney U test instead of ANOVA. Results are
included in Table 5. We observed significant differences between
PS-Low and NP-Low groups on write-code practice performance
and problem-solving efficiency; PS-Low students had significantly
higher write-code practice performance and problem-solving ef-
ficiency than NP-Low students. However, there is no significant
difference in write-code practice performance and problem-solving
efficiency between students in PS-High and NP-High groups. In ad-
dition, there are no significant differences in posttest performance
between the two conditions for students in both low and high CS
self-efficacy groups.

Understanding the Effects of Using Parsons Problems to Scaffold Code Writing Koli Calling ’23, November 13–18, 2023, Koli, Finland

Table 3: Four Write-code Practice Problems

Problem Name Question Item
1 - Song Write a class Song with an init method that takes a title as a string and len as a number

and initializes these attributes in the current object. Then define the str method to return
the title, len. For example, print(s) when s = Song(’Respect’,150) would print
“Respect, 150”.

2 - Cat Write a class Cat with an init method that takes name as a string and age as a number
and initializes these attributes in the current object. Next create the str method that returns
“name: name, age: age”. For example if c = Cat("Fluffy", 3) then print(c) should print
"name: Fluffy, age: 3". Then define the make_sound method to return "Meow".

3 - Account Create a class Account with an init method that takes id and balance as numbers. Then
create a str method that returns “id, balance”. Next create a deposit method takes amount
as a number and adds that to the balance. For example, if a = Account(32, 100) and
a.deposit(50) is executed, print(a) should print “32, 150”.

4 - FortuneTeller Write a class FortuneTeller with an init method that takes a list of fortunes as strings and
saves that as an attribute. Then create a tell_fortune method that returns one of the fortunes
in the list at random.

Table 4: Pre-practice knowledge level and general CS self-efficacy level by condition, reported in M (SD), Mdn (25th percentile -
75th percentile) format

Category (Score range) PS (N=41) NP (N=48)
pre-practice knowledge in Python class (4-20) 9.3 (4.9), 8.0 (4.0-13.0) 8.8 (4.3), 7.5 (5.8-12.0)

general CS self-efficacy level (6-30) 21.1 (4.8), 21.0 (18.0-24.0) 19.7 (4.6), 19.0 (17.0-23.0)

Table 5: Comparison of practice performance, problem-solving efficiency, and posttest performance by condition at high and
low CS self-efficacy levels, reported in Mdn (25th percentile - 75th percentile) format

Category Parsons Scaffolding - High No Scaffolding - High Statistical Results
Write-code practice 20.0 (10.0-40.0) 22.5 (0.0-35.0) U = 254.5, p = .381, CLES = .58
Problem-solving efficiency 1.5 (0.7-2.4) 1.2 (0-2.7) U = 242.0, p = .585, CLES = .55
Posttest performance 10.0 (0-36.7) 25.0 (0-36.2) U = 211.5, p = .837, CLES = .48
Category Parsons Scaffolding - Low No Scaffolding - Low Statistical Results
Write-code practice 20.0 (10.0-40.0) 0 (0-0) U = 442.5, p < .001, CLES = .81
Problem-solving efficiency 1.3 (0.5-1.7) 0 (0-0) U = 435.0, p < .001, CLES = .80
Posttest performance 0 (0-30.0) 0 (0-5.3) U = 335.0, p = .138, CLES = .61

4.2 RQ2: In the Parsons Problems as Scaffolding
(PS) condition, how did students with
varying CS self-efficacy levels use the
Parsons scaffolding?

In order to answer this RQ, we first need to describe the expected
behavior of utilizing Parsons problems as scaffolding. Since the
Parsons problem is optional and the scaffolding is supposed to be
initiated by the students, we did not expect every student to use
the Parsons problem to solve every write-code problem; we wanted
them to use it when they were in need of help. In addition, as
previously described in Section 2.5 and Section 3, students had the
autonomy to engage with the Parsons problem in any way they
chose. However, the different ways were interdependent because
students were only able to interact with Parsons scaffolding in
one specific way for each question. Therefore, to avoid redundant
analyses, we selected the most extensive use of Parsons scaffolding
(solve) to get a sense of the relationship between students’ overall

CS self-efficacy and their utilization of Parsons scaffolding. We
calculated solve Parsons scaffolding rate as the total number of times
they solved Parsons scaffolding divided by the number of practice
problems, which is four in our study. The mean (M) was 35%, with
a standard deviation (SD) of 38%, ranging from 0% to 100%. We then
computed a Pearson correlation and found a significant negative
correlation between students’ general CS self-efficacy and solve
Parsons scaffolding rate, r = -.32, p = .043. Specifically, when given
Parsons problems as scaffolding during practice, students with
lower CS self-efficacy were more likely to solve them. In other
words, students with higher CS self-efficacy tended to use Parsons
scaffolding more lightly, or even solve problems independently.

Given that the ultimate goal of providing scaffolding is to help
students solve write-code problems, we are also interested in know-
ing the relationship between their CS self-efficacy levels and how
they used Parsons scaffolding to solve write-code problems. As a
result, for each student, we then computed the effective scaffolding
rate as the frequency of using the Parsons scaffolding in any of

Koli Calling ’23, November 13–18, 2023, Koli, Finland Xinying Hou, Barbara J. Ericson, and Xu Wang

the three methods and completing the corresponding write-code
problem divided by the number of times they used the Parsons scaf-
folding. A high effective scaffolding rate (close to 1) indicates that
the scaffolding was more effective in helping the students finish
the write-code practice, while a low rate (close to 0) indicates the
student did not benefit from the scaffolding as much. For instance,
if a student used the Parsons problem for three write-code practice
problems but only finished one write-code problem after using the
scaffolding, then the effective scaffolding rate would be 0.33. The
mean and standard deviation of the effective scaffolding rate isM =
51%, SD = 40%. We then computed the Pearson correlation between
the effective scaffolding rate and students’ general CS self-efficacy
scales, which is r = .18, p = .292.

Posthoc Analysis Considering that the average effective scaf-
folding rate is 51%, this suggests that some Parsons scaffolding
usage did not reach the expected outcome in helping students solve
the write code problem. To better understand why and how some
PS students used Parsons scaffolding less effectively, we conducted
two follow-up analyses. We firstly computed the Pearson corre-
lation between students’ effective scaffolding rate and students’
pre-practice knowledge level on Python class, and observed a
significant positive relationship, r = .40, p = .014.

In addition, for those who utilized the Parsons scaffolding but
still got the write-code practice wrong, we looked deeper into their
final write-code submissions and the corresponding final Parsons
scaffolding problem status. This resulted in a total of 47 Parsons
scaffolding state & write-code state pairs. We classified these pairs
into four categories based on the final Parsons scaffolding state,
followed by the corresponding final code submission state: (1) Only
scanned Parsons blocks (26 instances) - twenty-four (92%) of their
final write code submissions did not compile due to syntax errors,
type errors, or name errors, one student did not write any code
after viewing Parsons blocks, and one student’s code compiled
successfully but had logic errors and did not pass all the unit tests. (2)
Completed Parsons problems but failed write-code task (15 instances)
- twelve of them had code in the write-code box, and three left the
write-code box blank. In all 12 cases, students did the final write-
code submission after getting the Parsons solution but still failed
to solve it. Since they already had the correct solution in hand (the
Parsons solution), we examined their actual code to understand the
specific errors they made better. Our results showed that, while
these students completed the Parsons scaffolding problem, they
still might not have acquired enough skill in writing code on this
topic. For example, in six cases, students received a type error by
writing _init_ or _str_, which should be init or str .
And two students had syntax errors in the longest line of Song:
return self.title + ", " + str(self.len), such as missing
the + or miswriting as str().self.len. We also found one student
incorrectly placed the correct solution after the default test cases for
three problems. (3) Incorrect Parsons completion (2 instances) - both
of them omitted some problem requirements and did not finish the
code. For example, one student did not complete the required def
deposit(self,amount) by leaving this part blank; (4) Attempted
to move Parsons blocks but could not finish (4 instances) - two final
code submissions did not complete the requirements, and two did
not write any code.

In summary, we found that students with lower levels of general
CS self-efficacy were more likely to solve Parsons problems as
scaffolding during practice. Furthermore, when choosing to use
Parsons scaffolding, students with higher pre-practice knowledge
in Python classwere more likely to use it effectively. However, the
effectiveness was not related to students’ CS self-efficacy levels. Our
preliminary analysis of students’ code submissions revealed that the
current Parsons scaffolding method might still be too challenging
for some students.

4.3 RQ3: In the Parsons problems as Scaffolding
(PS) condition, how did students rate the
usefulness of the Parsons scaffolding and
why?

To get a general sense of how useful this scaffolding method was,
we first looked at students’ ratings on the usefulness of the Parsons
problems as scaffolding. If students did not apply the scaffolding for
the write-code question, they were told to skip the related rating
question. The distribution of student ratings for each problem is
shown in Figure 4.We found that for all four problems, nearly 70% of
the ratings were five or more. This indicates that students generally
found Parsons problems helpful in solving the write-code practice
problems, which target new concepts they are learning. In addition,
71% (29 out of 41) of students in the PS condition completed the
open-ended question to explain their ratings. Specifically, 19 (66%)
of them explained how Parsons scaffolding helped them while two
of them reported specific challenges they faced, and the rest of
the eight answers (28%) explained their ratings by discussing how
difficult this practice was for them.

The average usefulness rating for those 19 students was 7.7, indi-
cating that those students found Parsons scaffolding to be helpful.
Of those 19 positive explanations, two responses only stated that
Parsons problems were helpful without further elaboration. For
the rest of the answers, four students (21%) stated that Parsons
problem made it easier for them to solve the write-code problem,
but still learn. For example, one student wrote "The Parsons problem
gives me all the necessary elements of creating a class which I am
unfamiliar with, but I still have to figure out an order which is help-
ing me learn, but not too strenuous". Four students (21%) thought
Parsons problem helped them learn problem-solving strategies, as
one student explained, "I feel like Parsons helped me understand
the different pieces of code and how to think about the problems." A
high proportion of students (47.38%, 9 out of 19 students) valued
the benefit of refining and extending existing programming knowl-
edge by using Parsons scaffolding. One student claimed that "I am
still confused about class , method, and self, but these problems
definitely helped me understand better", another one expressed a
similar idea, "the Parsons problems helped me remember how to cre-
ate methods and enter arguments as necessary." Additionally, one
student elaborated on how the Parsons scaffolding helped to extend
the existing programming knowledge in a more detailed way, "I
understood structurally what I had to do; I just forgot how to return
one of the fortunes in the list at random, so the Parsons problem helped
me figure out how to accomplish that."

However, some participants reported difficulties when using Par-
sons scaffolding to complete write-code problems, as evidenced

Understanding the Effects of Using Parsons Problems to Scaffold Code Writing Koli Calling ’23, November 13–18, 2023, Koli, Finland

Figure 4: Stacked bar chart of Parsons scaffolding usefulness
ratings for each practice problem

by their low usefulness ratings and corresponding negative expla-
nations. For instance, the student who rated Cat three and For-
tuneTeller one did not finish those two problems and explained the
low ratings further as "I still do not understand class and found this
exercise extremely frustrating ..." Similarly, the student who rated
Account one only scanned the Parsons problem and did not finish
the write-code problem. This student emphasized the inherent high
difficulty as "This was really hard to just dive right into." As men-
tioned above, we also had two students who explicitly explained
why Parsons scaffolding was less useful for them. One of the two
students used the Parsons scaffolding four times but was unable
to finish any of the associated write-code problems. This student
gave an average usefulness rating of 4.8 and provided the follow-
ing explanation: "I think it helps me get started, but because this is
completely new to me, it merely helps me see what is there, not how
to put it together." Another student received an effective scaffolding
rate of 0.5 and reported an average usefulness rating of 4.3. This
student explained the rating further as "... Parsons isn’t really that
helpful because you’re just copying. "

5 DISCUSSION
This study investigates whether and how using Parsons problems
can scaffold the write-code practice with students of different CS
self-efficacy levels. We found that, for newly learned difficult pro-
gramming concepts, when having Parsons problem as write-code
scaffolding, students with low CS self-efficacy (PS-Low) achieved
significantly higher practice performance and problem-solving effi-
ciency than those with low CS self-efficacy in the no scaffolding
condition (NP-Low). However, this condition effect did not occur in
students with high CS self-efficacy (PS-High and NP-High). Also,
there were no condition effects on posttest performance among the
groups.

Beyond intervention effects, for PS students, we also examined
the relationship between their general CS self-efficacy and the use
of Parsons scaffolding. We discovered that students with lower
levels of CS self-efficacy are more likely to solve Parsons problems
as scaffolding during practice. To better understand the ineffective
scaffolding use, we also conducted two follow-up analyses and
found that, when choosing to use the Parsons scaffolding, students
with higher pre-practice knowledge in Python class were more
likely to use it effectively; however, this was not related to students’
general CS self-efficacy. Further, our preliminary analysis of student

code found that this Parsons scaffolding method might still be too
challenging for some students. After analyzing students’ useful
ratings and explanations, we found Parsons scaffolding could help
students to learn to write code, but there are still areas to improve.
In this section, we will discuss our findings regarding the condition
effects for students with high and low CS self-efficacy levels (RQ1).
In the next section, we will present some design implications based
on the results of RQ2 and RQ3.

5.1 RQ1: Parsons scaffolding is more beneficial
for students with low CS self-efficacy in
terms of practice performance and
in-practice problem-solving efficiency

According to our results, for students with low general CS self-
efficacy, those who received Parsons scaffolding (PS-Low) achieved
significantly higher practice performance and in-practice problem-
solving efficiency compared to those who did not receive scaffolding
(NP-Low). However, we did not obtain such condition effects be-
tween students with high CS self-efficacy (PS-High and NP-High).
This could be explained by the idea that a person with a higher
level of self-efficacy will exert more effort on learning tasks and will
persevere when confronted with difficulties [6, 52, 57]. Given that
the programming concept we used in this study was relatively new
to students, most of them had little prior experience writing code
about it except for the three examples of code they could execute
in the instruction phase. However, students with high self-efficacy
in computer science, regardless of whether they received Parsons
scaffolding or not, were likely more willing to continue with this
frustrating process of writing code. Therefore, they achieved a sim-
ilar level of practice performance and problem-solving efficiency
during practice.

On the other hand, when there was no scaffolding, solving those
write-code problems may seem hopeless for students with low CS
self-efficacy. Therefore, it was common for NP-Low students to
give up quickly rather than persevere in overcoming the difficulties.
Nevertheless, although PS-Low students were also prone to giving
up, Parsons problems were there to assist them in solving write-
code problems that they would not have been able to solve on
their own. Consequently, by providing a more supportive learning
experience, students with lower CS self-efficacy could finish more
write-code practice and achieve higher in-practice problem-solving
efficiency.

As for posttest performance, we found no significant differences
among the groups. This outcome can be explained by the inherent
high difficulty of writing code for a newly learned concept from
scratch. Although PS students practiced more successfully than NP
students during practice in general, it may not have been enough for
them to become proficient in code writing with class because of
the small number of practice problems we applied in this study [1].
In the future, we could use student models to track their write-code
skill development and determine the number of practice problems
they require to master this topic [8].

Koli Calling ’23, November 13–18, 2023, Koli, Finland Xinying Hou, Barbara J. Ericson, and Xu Wang

5.2 RQ2 & RQ3: Improve the effectiveness of
using Parsons problems to scaffold
write-code exercise

Our result from RQ2 indicated that students with lower CS self-
efficacy were more likely to solve the Parsons problem when they
had the scaffolding. One possible explanation is that learners with
lower CS self-efficacy were less confident in their ability to perform
the write-code problem successfully, similar to Wang et al. [52].
As a result, they were more willing to solve a partially correct
solution (Parsons problem) and follow it. However, students with
higher CS self-efficacy levels were more confident in completing
the write-code exercise. They would rather spend more time on
their own code and, if necessary, use Parsons scaffolding in a more
limited way. In addition, we also found that not all the Parsons
scaffolding usage was effective. We found that students with a
lower pre-practice knowledge level are more likely to use Parsons
scaffolding ineffectually. Our analysis of their code also revealed
several ineffective scenarios, which led to design suggestions for
different groups of students.

Firstly, one possible reason why some students struggle with us-
ing Parsons scaffolding is that it may still be too difficult. Although
we implemented a "Help Me" button for student-initiated difficulty
level adaptation, students still had to complete at least three full
attempts to activate it. It was possible that students became over-
whelmed by the default multiple Parsons blocks, causing them to
give up before even attempting three times. Therefore, an important
enhancement of the current scaffolding approach would be provid-
ing the Parsons problems with appropriate levels of difficulty based
on students’ submission histories or incorrect code. In addition,
to prevent students from feeling overwhelmed by encountering a
new-looking problem (the equivalent Parsons problem) other than
the write-code problem, it is important to establish a connection
between the Parsons scaffolding and their existing code. One way
to achieve this is to personalize the Parsons problem. Instead of
providing the most common previous student solution, we could
create a Parsons problem that is based on the student’s incorrect
code. Furthermore, to give students a sense of accomplishment and
relatedness between existing written code and Parsons scaffolding,
we could make the correct parts of the existing student code static
with positive feedback [34].

Secondly, we found that some students finished the Parsons prob-
lem as scaffolding but still had errors in their write-code submis-
sions. One potential reason is that, while these students finished the
Parsons scaffolding problem, they were unable to localize their er-
rors, such as the double leading and trailing underscores in Python,
and could not use the Parsons solution effectively. Alternatively,
students might prefer not to follow the Parsons solution, and there-
fore keep the errors in their own approach. These call for a more
personalized Parsons scaffolding approach, which includes using
solutions close to the students’ current path and adding paired
distractors that can highlight errors based on the student’s current
code state. Besides refining the scaffolding mechanism, incorporat-
ing explanations is another way to boost the efficiency of Parsons
scaffolding. One direction to achieve this is to provide prompt guid-
ance to make learners’ self-explanation on Parsons scaffoldings

more productive since it helps them concentrate on relevant infor-
mation [32, 39]. Another direction is adding textual explanations
to either Parsons blocks or the finished Parsons solution. A prior
study by Marwan et al. added explanations to next-step hints and
found that novices thought hints with explanations were much
more relevant and understandable [35]. They were also better able
to relate these hints to their code. We believe this method could
improve students’ effective scaffolding rate.

Moreover, given that we found some students finished the Par-
sons scaffolding and left the write-code box blank, it is possible
that those students felt it was unnecessary to retype the correct
Parsons solution into the write-code box. While we think that the
process of retyping might enrich their comprehension and help
them to identify some points that they might not have noticed
without typing on their own, we could add an "AutoFill" button for
those who made considerable progress when utilizing the Parsons
scaffolding.

6 LIMITATION AND FUTUREWORK
One limitation of this work is that we did not collect subjective
ratings or perceptions from participants who did not use Parsons
problems as scaffolding. We plan to add some concrete survey ques-
tions to learn more about why they chose not to use the scaffolding.
In addition, future retrospective interviews are necessary to fully
understand the ineffective scaffolding cases. Moreover, we only
conducted this study on one topic in a medium-scale classroom at
one public university in the United States. With other demographic
groups, computing domains, and educational settings, like data sci-
ence and MOOCs, we might observe other Parsons usage scenarios
and scaffolding effects. Furthermore, in order to save class time
and reduce pretest cognitive overload for students, we only utilized
self-reported measures to assess their pre-practice knowledge level
in Python class, which may be subject to bias.

Regarding future work, we would like to investigate the impact
of Parsons problems as scaffolding with other scaffolding tech-
niques, in other programming languages, and educational settings.
In addition, we are excited to continue our work based on the de-
sign suggestions provided above, such as providing personalized
Parsons problems that are based on the student’s existing incorrect
solution and adapting the Parsons problem scaffolding by setting
the starting state of the Parsons problem as the final state of the
student’s code. In addition, we also look forward to reducing the
cost of developing Parsons problems by automating the process
based on student submissions and large language models.

7 CONCLUSION
In this work, we investigated the effects of Parsons problems as
scaffolding during code writing skill acquisition for students of
various CS self-efficacy levels. We found that lower CS self-efficacy
students in the Parsons as scaffolding condition achieved signifi-
cantly higher practice performance and problem-solving efficiency
than lower CS self-efficacy students in the condition without any
scaffolding. Further investigations into student interaction with the
Parsons scaffolding revealed that students with lower levels of CS
self-efficacy are more likely to solve Parsons scaffolding problems

Understanding the Effects of Using Parsons Problems to Scaffold Code Writing Koli Calling ’23, November 13–18, 2023, Koli, Finland

during practice. In addition, when choosing to use Parsons prob-
lems as scaffolding, students with higher pre-practice knowledge
of the topic were more likely to use them effectively; however, this
was not related to students’ general CS self-efficacy. These findings
direct us to optimize the Parsons scaffolding experience, includ-
ing providing personalized and adaptive versions of the Parsons
problems based on the student’s current problem-solving status.

ACKNOWLEDGMENTS
The funding for this research came from the National Science Foun-
dation award 2143028. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] Robert K Atkinson, Sharon J Derry, Alexander Renkl, and Donald Wortham. 2000.

Learning from examples: Instructional principles from the worked examples
research. Review of educational research 70, 2 (2000), 181–214.

[2] Albert Bandura. 1977. Self-efficacy: toward a unifying theory of behavioral
change. Psychological review 84, 2 (1977), 191.

[3] Albert Bandura and Richard H Walters. 1977. Social learning theory. Vol. 1.
Englewood cliffs Prentice Hall.

[4] João Henrique Berssanette and Antonio Carlos de Francisco. 2021. Cognitive
Load Theory in the Context of Teaching and Learning Computer Programming:
A Systematic Literature Review. IEEE Transactions on Education (2021).

[5] Benjamin S Bloom. 1984. The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring. Educational researcher 13, 6 (1984),
4–16.

[6] Shari L Britner and Frank Pajares. 2006. Sources of science self-efficacy beliefs
of middle school students. Journal of Research in Science Teaching: The Official
Journal of the National Association for Research in Science Teaching 43, 5 (2006),
485–499.

[7] Ünal Çakiroğlu and Dilara Arzugül Aksoy. 2017. Exploring extraneous cognitive
load in an instructional process via the web conferencing system. Behaviour &
Information Technology 36, 7 (2017), 713–725.

[8] Albert T Corbett and John R Anderson. 1994. Knowledge tracing: Modeling the
acquisition of procedural knowledge. User modeling and user-adapted interaction
4, 4 (1994), 253–278.

[9] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the fourth international workshop
on computing education research. 113–124.

[10] Paul Denny, James Prather, Brett A Becker, Zachary Albrecht, Dastyni Loksa, and
Raymond Pettit. 2019. A closer look at metacognitive scaffolding: Solving test
cases before programming. In Proceedings of the 19th Koli Calling International
Conference on Computing Education Research. 1–10.

[11] Rodrigo Duran, Jan-Mikael Rybicki, Juha Sorva, and Arto Hellas. 2019. Exploring
the value of student self-evaluation in introductory programming. In Proceedings
of the 2019 ACM Conference on International Computing Education Research. 121–
130.

[12] Barbara Ericson, Austin McCall, and Kathryn Cunningham. 2019. Investigating
the affect and effect of adaptive parsons problems. In Proceedings of the 19th Koli
Calling International Conference on Computing Education Research. 1–10.

[13] Barbara J Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho
Leinonen, Craig S Miller, Briana B Morrison, Janice L Pearce, and Susan H Rodger.
2022. Parsons problems and beyond: Systematic literature review and empirical
study designs. Proceedings of the 2022 Working Group Reports on Innovation and
Technology in Computer Science Education (2022), 191–234.

[14] Barbara J Ericson, James D Foley, and Jochen Rick. 2018. Evaluating the efficiency
and effectiveness of adaptive parsons problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. 60–68.

[15] Barbara J Ericson, Mark J Guzdial, and Briana B Morrison. 2015. Analysis of
interactive features designed to enhance learning in an ebook. In Proceedings of the
Eleventh Annual International Conference on International Computing Education
Research. 169–178.

[16] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research. 20–29.

[17] Barbara J Ericson and Bradley N Miller. 2020. Runestone: A platform for free, on-
line, and interactive ebooks. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. 1012–1018.

[18] Rita Garcia. 2021. Evaluating Parsons Problems as a Design-Based Intervention.
In 2021 IEEE Frontiers in Education Conference (FIE). IEEE, 1–9.

[19] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI)
22, 2 (2015), 1–35.

[20] Joseph A Gliem and Rosemary R Gliem. 2003. Calculating, interpreting, and
reporting Cronbach’s alpha reliability coefficient for Likert-type scales. Midwest
Research-to-Practice Conference in Adult, Continuing, and Community

[21] Philip J Guo. 2015. Codeopticon: Real-time, one-to-many human tutoring for
computer programming. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology. 599–608.

[22] Carl C Haynes and Barbara J Ericson. 2021. Problem-Solving Efficiency and
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[23] Bobby Hoffman and Gregory Schraw. 2010. Conceptions of efficiency: Appli-
cations in learning and problem solving. Educational Psychologist 45, 1 (2010),
1–14.

[24] Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using Adaptive Par-
sons Problems to Scaffold Write-Code Problems. In Proceedings of the 2022 ACM
Conference on International Computing Education Research-Volume 1. 15–26.

[25] Petri Ihantola and Ville Karavirta. 2011. Two-dimensional parson’s puzzles: The
concept, tools, and first observations. Journal of Information Technology Education
10, 2 (2011), 119–132.

[26] Minchi C Kim and Michael J Hannafin. 2011. Scaffolding problem solving in
technology-enhanced learning environments (TELEs): Bridging research and
theory with practice. Computers & Education 56, 2 (2011), 403–417.

[27] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in end-
user programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing. IEEE, 199–206.

[28] Charles B Kreitzberg and Len Swanson. 1974. A cognitive model for structuring
an introductory programming curriculum. In Proceedings of the May 6-10, 1974,
national computer conference and exposition. 307–311.

[29] Colleen M Lewis, Ken Yasuhara, and Ruth E Anderson. 2011. Deciding to major
in computer science: a grounded theory of students’ self-assessment of ability. In
Proceedings of the seventh international workshop on Computing education research.
3–10.

[30] Raymond Lister. 2020. On the cognitive development of the novice programmer:
and the development of a computing education researcher. In Proceedings of the
9th Computer Science Education Research Conference. 1–15.

[31] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A Becker, Michail Gian-
nakos, Amruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy
Sheard, et al. 2018. Introductory programming: a systematic literature review.
In Proceedings companion of the 23rd annual ACM conference on innovation and
technology in computer science education. 55–106.

[32] Lauren E Margulieux and Richard Catrambone. 2019. Finding the best types of
guidance for constructing self-explanations of subgoals in programming. Journal
of the Learning Sciences 28, 1 (2019), 108–151.

[33] Samiha Marwan, Anay Dombe, and Thomas W Price. 2020. Unproductive help-
seeking in programming: What it is and how to address it. In Proceedings of the
2020 ACM Conference on Innovation and Technology in Computer Science Education.
54–60.

[34] Samiha Marwan, Ge Gao, Susan Fisk, Thomas W Price, and Tiffany Barnes. 2020.
Adaptive immediate feedback can improve novice programming engagement
and intention to persist in computer science. In Proceedings of the 2020 ACM
conference on international computing education research. 194–203.

[35] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas Price. 2019.
The impact of adding textual explanations to next-step hints in a novice pro-
gramming environment. In Proceedings of the 2019 ACM conference on innovation
and technology in computer science education. 520–526.

[36] Richard E Mayer and Roxana Moreno. 2003. Nine ways to reduce cognitive load
in multimedia learning. Educational psychologist 38, 1 (2003), 43–52.

[37] Irene T Miura. 1987. The relationship of computer self-efficacy expectations
to computer interest and course enrollment in college. Sex roles 16, 5 (1987),
303–311.

[38] Briana B Morrison, Lauren E Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals help students solve Parsons problems. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education. 42–47.

[39] Huy A Nguyen, Xinying Hou, Hayden Stec, Sarah Di, John Stamper, and Bruce M
McLaren. 2023. Examining the Learning Benefits of Different Types of Prompted
Self-explanation in a Decimal Learning Game. In International Conference on
Artificial Intelligence in Education. Springer, 681–687.

[40] Fred Paas, Alexander Renkl, and John Sweller. 2003. Cognitive load theory and
instructional design: Recent developments. Educational psychologist 38, 1 (2003),
1–4.

[41] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings of the

Koli Calling ’23, November 13–18, 2023, Koli, Finland Xinying Hou, Barbara J. Ericson, and Xu Wang

8th Australasian Conference on Computing Education-Volume 52. 157–163.
[42] James Prather, Brett A Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and

Lauren Margulieux. 2020. What do we think we think we are doing? Metacogni-
tion and self-regulation in programming. In Proceedings of the 2020 ACM confer-
ence on international computing education research. 2–13.

[43] Thomas W Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A comparison of the quality of data-driven
programming hint generation algorithms. International Journal of Artificial
Intelligence in Education 29, 3 (2019), 368–395.

[44] Alexander Renkl, Robert K Atkinson, and Cornelia S Große. 2004. How fading
worked solution steps works–a cognitive load perspective. Instructional science
32, 1-2 (2004), 59–82.

[45] Kelly Rivers. 2017. Automated data-driven hint generation for learning program-
ming. Ph. D. Dissertation. Carnegie Mellon University.

[46] Wolfgang Schnotz and Christian Kürschner. 2007. A reconsideration of cognitive
load theory. Educational psychology review 19, 4 (2007), 469–508.

[47] Sue Sentance and Andrew Csizmadia. 2017. Computing in the curriculum: Chal-
lenges and strategies from a teacher’s perspective. Education and Information
Technologies 22, 2 (2017), 469–495.

[48] John Sweller. 2010. Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational psychology review 22, 2 (2010), 123–138.

[49] John Sweller and Paul Chandler. 1994. Why some material is difficult to learn.
Cognition and instruction 12, 3 (1994), 185–233.

[50] John Sweller, Jeroen JG van Merriënboer, and Fred Paas. 2019. Cognitive archi-
tecture and instructional design: 20 years later. Educational Psychology Review

31 (2019), 261–292.
[51] Jeroen JG Van Merrienboer and John Sweller. 2005. Cognitive load theory and

complex learning: Recent developments and future directions. Educational psy-
chology review (2005), 147–177.

[52] Jiahui Wang, Abigail Stebbins, and Richard E Ferdig. 2022. Examining the effects
of students’ self-efficacy and prior knowledge on learning and visual behavior in
a physics game. Computers & Education 178 (2022), 104405.

[53] Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving Instruc-
tion of Programming Patterns with Faded Parsons Problems. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. 1–4.

[54] Eric Wiebe, Laurie Ann Williams, Kai Yang, and Carol S Miller. 2003. Computer
science attitude survey. Technical Report. North Carolina State University. Dept.
of Computer Science.

[55] Susan Wiedenbeck. 2005. Factors affecting the success of non-majors in learn-
ing to program. In Proceedings of the first international workshop on Computing
education research. 13–24.

[56] Joseph BWiggins, Joseph F Grafsgaard, Kristy Elizabeth Boyer, Eric NWiebe, and
James C Lester. 2017. Do you think you can? the influence of student self-efficacy
on the effectiveness of tutorial dialogue for computer science. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 130–153.

[57] Amy L Zeldin and Frank Pajares. 2000. Against the odds: Self-efficacy beliefs of
women in mathematical, scientific, and technological careers. American educa-
tional research journal 37, 1 (2000), 215–246.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Scaffolding Write-Code Problems
	2.2 Existing work on Parsons problems
	2.3 Cognitive Load Theory
	2.4 Self-efficacy in CS Learning
	2.5 Using Parsons problem to Scaffold Writing Code

	3 Method
	3.1 System Interface
	3.2 Participants and Procedure
	3.3 Materials

	4 Results
	4.1 RQ1: Are there differences between conditions in terms of practice performance, problem-solving efficiency, and posttest performance for students with low CS self-efficacy levels (RQ1.1) and for students with high CS self-efficacy levels (RQ1.2)?
	4.2 RQ2: In the Parsons Problems as Scaffolding (PS) condition, how did students with varying CS self-efficacy levels use the Parsons scaffolding?
	4.3 RQ3: In the Parsons problems as Scaffolding (PS) condition, how did students rate the usefulness of the Parsons scaffolding and why?

	5 Discussion
	5.1 RQ1: Parsons scaffolding is more beneficial for students with low CS self-efficacy in terms of practice performance and in-practice problem-solving efficiency
	5.2 RQ2 & RQ3: Improve the effectiveness of using Parsons problems to scaffold write-code exercise

	6 Limitation and future work
	7 Conclusion
	Acknowledgments
	References

