N
Check for
Updates

Integrating Personalized Parsons Problems with Multi-Level
Textual Explanations to Scaffold Code Writing

Xinying Hou
University of Michigan
Ann Arbor, Michigan, USA
xyhou@umich.edu

Barbara J. Ericson
University of Michigan
Ann Arbor, Michigan, USA
barbarer@umich.edu

Xu Wang
University of Michigan
Ann Arbor, Michigan, USA
xwanghci@umich.edu

ABSTRACT

Novice programmers need to write basic code as part of the learning
process, but they often face difficulties. To assist struggling students,
we recently implemented personalized Parsons problems, which are
code puzzles where students arrange blocks of code to solve them, as
pop-up scaffolding. Students found them to be more engaging and
preferred them for learning, instead of simply receiving the correct
answer, such as the response they might get from generative Al
tools like ChatGPT. However, a drawback of using Parsons problems
as scaffolding is that students may be able to put the code blocks in
the correct order without fully understanding the rationale of the
correct solution. As a result, the learning benefits of scaffolding are
compromised. Can we improve the understanding of personalized
Parsons scaffolding by providing textual code explanations? In this
poster, we propose a design that incorporates multiple levels of
textual explanations for the Parsons problems. This design will be
used for future technical evaluations and classroom experiments.
These experiments will explore the effectiveness of adding textual
explanations to Parsons problems to improve instructional benefits.

CCS CONCEPTS

+ Human-centered computing; « Applied computing — Inter-
active learning environments;

KEYWORDS

Introductory Programming, Code Explanations, Parsons Problems,
Code Writing, Scaffolding, Hint, Large Language Models

ACM Reference Format:

Xinying Hou, Barbara J. Ericson, and Xu Wang. 2024. Integrating Personal-
ized Parsons Problems with Multi-Level Textual Explanations to Scaffold
Code Writing. In Proceedings of the 55th ACM Technical Symposium on Com-
puter Science Education V. 2 (SIGCSE 2024), March 20-23, 2024, Portland, OR,
USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3626253.
3635606

1 INTRODUCTION

One main goal of introductory programming courses is to develop
basic coding skills. Although AI generation tools are now widely
used in professional code development, it is still crucial for be-
ginners to participate in code-writing activities to fully acquire

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0424-6/24/03.

https://doi.org/10.1145/3626253.3635606

1686

fundamental programming concepts. In recent work, we explored
providing Parsons problems as scaffolding for students who are
struggling while writing code independently in Python [2-4]. By
leveraging the power of LLMs, we designed and implemented a
system called CodeTailor to provide multi-stage personalization
through a Parsons problem to assist students with code writing
(Figure 1). An initial study with 18 novice programming students
showed that CodeTailor is engaging and benefits learning. How-
ever, some students reported challenges as they could not fully
understand the meaning of some code blocks. Textual explanations
could help users understand the program’s components, objectives,
and structure [5]. They can assist beginners in learning more from
the Parsons problem, providing an additional opportunity to read
code blocks, understand the problem, and comprehend the solution.
Hence, we propose a design to incorporate multiple levels of natural
language explanations into CodeTailor. While explanations have
been given with various programming learning materials or activ-
ities, there is limited research on integrating them with Parsons
problems. Given the increasing interest and demonstrated effects of
using Parsons problems to scaffold novice programmers’ learning,
more research is required to explore the integration of explanations
into Parsons problems.

Finish a func bolow: Parsons problem

Exampe input

"' Click to regenerate a
o personalized Parsons problem
v

1def is_ascending(n

r i in range(N:

if nums[i] > nums[i+1]
urn False

a1, 3, 2, 1) The area and number of

blocks that need to be placed

Drop blocks here

return True

Write-code box

A paired distractor block set -

Pre-placed static blocks are
displayed in dark green.

Check to see the timely.
block-based feedback

Figure 1: A write-code box (left) with a pop-up personalized
Parsons problem as scaffolding (right).

2 SYSTEM DESIGN

CodeTailor is a large language model (LLM)-powered system that
provides real-time, on-demand, and multi-staged personalized Par-
sons problems to support students while writing code. It differs
from existing hint systems for programming in that CodeTailor
provides an active learning opportunity through the help. Specifi-
cally, students need to engage in problem-solving with the support

https://orcid.org/0000-0002-1182-5839
https://orcid.org/0000-0001-6881-8341
https://orcid.org/
https://doi.org/10.1145/3626253.3635606
https://doi.org/10.1145/3626253.3635606
https://doi.org/10.1145/3626253.3635606
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626253.3635606&domain=pdf&date_stamp=2024-03-15

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Subgoal Breakdown

Drag from here .
1: Check the Length of the Input List
if len(nums) < 2:
2: Handle the Initial Condition
return True
3:Iterate through the List
if nums(i) > nums [i+1]:
4: Compare Adjacent Elements

|
|

if nums(i] > nums[i+1])

5: Return False on First Decreasing Pair

L2 60 6 b AT) 6: Return True If No Decreasing Pair is

for i in range(len(nums)-1): Found

(o]]

Figure 2: A subgoal list about the Parsons problem solution.

Drag from here Drop blocks here

for 4 in range(len(nuns)): [def 1is_ascending (nuns) J

if nums[i] > nums[i+1] if len(nums) < 2:

return True
It checks if the length of the nums list
is less than 2.
If so, the code block following this line
(indented below it) will be executed.

block-level explanation

for| i in range(ten(nuns) [BF) :

The "-1" is used here to ensure that the loop only iterates
— up to the second-to-last element, avoiding an "out of
range" error when comparing the last two elements.

atom-level explanation

Perfect! It took you 3 tries to solve this. Click Reset to try to solve it in one attempt.

Figure 3: Block-level and atom-level explanations for the

finished Parsons blocks.
provided rather than merely being consumers of a displayed help

message [1]. An overview of CodeTailor’s main interface is shown
in Figure 1. After clicking the “Help" button, CodeTailor provides a
personalized Parsons problem that is dynamically generated based
on the student’s latest code state. The personalized Parsons prob-
lem is partially complete, with the correct student-written code
lines already in place and unmovable. The distractors, which are
unnecessary blocks in the correct solution, are generated from the
student’s own incorrect code lines. Furthermore, CodeTailor adjusts
the difficulty of the Parsons problem based on students’ requests. If
a student fails three times with a fully movable Parsons problem,
CodeTailor allows them to combine two code blocks into one. Once
the student successfully solves the Parsons problem, they can copy
the solution to the write-code box.

We enhance CodeTailor by incorporating multiple levels of
LLM-generated textual explanations. Four types of explanations
will be generated and inserted in real-time, enabling CodeTailor
to provide personalized explanations accompanying the Parsons
problem. We are still exploring methods to assess the quality of
these explanations automatically.

Subgoal guidance explanation: Students will have access to a
subgoal summary of the solution provided in the unsolved Parsons
problem. This is presented in numbered bullet points, breaking
down the current programming task into 4-6 more manageable task
subgoals (Figure 2). The subgoal guidance aims to help students gain
a high-level abstract understanding and guide those who struggle
to start solving a Parsons problem.

Block-level code explanation: After solving the Parsons prob-
lem, students can hover over each block to get an explanation of

1687

Xinying Hou, Barbara J. Ericson, and Xu Wang

each block. These explanations clarify the behavior and purpose
of the Parsons solution at the block level (Figure 3). For paired
distractors, the explanation also provides reasoning for why the
correct block is right and why the corresponding distractor block
is incorrect.

Atom-level code explanation: For each block in the Parsons
solution, students can also click on an atom (individual elements
of the programming language, such as keywords and statements)
within a code block to receive an explanation of the atom’s text
surface, execution (if any), and purpose (Figure 3).

aro sortd i ascending order and

s_ascending(nums) :
or 1 in range(len(nums)):
if nums (1] > nums (1+1]
WM T 1o start, it employs if and len to verify if the list contains
elements, indicating an inherently sorted list
For 1ists with more than one element, it utilizes a for loop
ugh the elements. Employing range, len(nums),
wms[1]), it compares each number with the
fow than the variable 1 is used as within a
Tor 100p to Traverse through the list nums. If any number is
f

greater than its : the g noludes

using return False within the loop
mbers . +inding any

e list's ascending order and

Drop blcks here
L’ det 1s_ascending nums)

If the loop goes
“nismatched” pair .-
uses return True

Figure 4: Students will receive a menu-based self-explanation
question after solving the Parsons problem.

A self-explanation question to reflect on the Parsons so-
lution: After getting the write-code problem correct, this Parsons
solution will appear again without any textual explanations. This
time, students need to explain the reasoning behind this solution
in a menu-based self-explanation prompt. The prompt is designed
to minimize guessing and enhance students’ understanding. In this
case, an LLM will generate the main structure of this explanation,
leaving keywords to be filled in (Figure 4) by the student.

ACKNOWLEDGMENTS

The funding for this research came from the National Science Foun-
dation award 2143028. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Michelene TH Chi and Ruth Wylie. 2014. The ICAP framework: Linking cognitive
engagement to active learning outcomes. Educational psychologist 49, 4 (2014),
219-243.

Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using adaptive par-
sons problems to scaffold write-code problems. In Proceedings of the 2022 ACM
Conference on International Computing Education Research-Volume 1. 15-26.
Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2023. Parsons Problems to
Scaffold Code Writing: Impact on Performance and Problem-Solving Efficiency.
In Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 2. 665-665.

Xinying Hou, Barbara J Ericson, and Xu Wang. 2023. Understanding the Effects of
Using Parsons Problems to Scaffold Code Writing for Students with Varying CS
Self-Efficacy Levels. arXiv preprint arXiv:2311.18115 (2023).

Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran, Mirela
Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo, et al.
2019. Fostering program comprehension in novice programmers-learning activities
and learning trajectories. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education. 27-52.

	Abstract
	1 Introduction
	2 System Design
	Acknowledgments
	References

