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Abstract

Phylogenetic comparative methods have long been a mainstay of evolutionary biology,
allowing for the study of trait evolution across species while accounting for their common ancestry.
These analyses typically assume a single, bifurcating phylogenetic tree describing the shared
history among species. However, modern phylogenomic analyses have shown that genomes are
often composed of mosaic histories that can disagree both with the species tree and with each
other—so-called discordant gene trees. These gene trees describe shared histories that are not
captured by the species tree, and therefore that are unaccounted for in classic comparative
approaches. The application of standard comparative methods to species histories containing
discordance leads to incorrect inferences about the timing, direction, and rate of evolution. Here,
we develop two approaches for incorporating gene tree histories into comparative methods: one
that constructs an updated phylogenetic variance-covariance matrix from gene trees, and another
that applies Felsenstein's pruning algorithm over a set of gene trees to calculate trait histories and
likelihoods. Using simulation, we demonstrate that our new approaches generate much more
accurate estimates of tree-wide rates of trait evolution than standard methods. We apply our
methods to two clades of the wild tomato genus Solanum with varying rates of discordance,
demonstrating the contribution of gene tree discordance to variation in a set of floral traits. Our
new approaches have the potential to be applied to a broad range of classic inference problems in
phylogenetics, including ancestral state reconstruction and the inference of lineage-specific rate
shifts.

Significance statement

Phylogenetic comparative methods allow for the study of trait evolution between species
by accounting for their shared evolutionary history. These methods usually assume that species
relationships can be described by a single tree. However, different parts of the genome can have
their own independent evolutionary histories that can disagree with each other. If these disagreeing
histories contribute to trait evolution over time, standard comparative methods can be misled. In
this work, we developed two new approaches to phylogenetic comparative methods that account
for this variation in histories across the genome. We used these methods to estimate more accurate
rates of floral trait evolution in wild tomatoes. Our work opens new approaches for the study of
trait evolution among species.
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Introduction

A major goal of evolutionary biology is to understand how and why traits vary among
species. One of the major sources of this variation is common ancestry. If left unaccounted for,
this shared history can lead to pseudoreplication and spurious trait correlations (Felsenstein 1985).
Phylogenetic comparative methods have been developed to account for shared history, enabling
more accurate inferences about the tempo and mode of trait evolution (Harvey and Pagel 1991).
With the statistical toolkit offered by phylogenetic comparative methods, researchers can ask
questions about the rate at which traits evolve, whether these rates have changed over time or in
different lineages, what traits may have looked like in ancestral or extinct lineages, and whether
trait shifts are correlated with historical or environmental factors (Martins and Hansen 1996;
Garamszegi 2014; Adams and Collyer 2018; Revell and Harmon 2022).

In classic comparative methods, common ancestry among species is accounted for by using
a single species phylogeny. However, genome-scale analyses of phylogenetic history have
revealed that individual loci can have their own independent histories (Pollard et al. 2006; White
et al. 2009; Fontaine et al. 2015; Pease et al. 2016; Novikova et al. 2016; Copetti et al. 2017; Wu
et al. 2018; Edelman et al. 2019; Vanderpool et al. 2020). The result is gene tree discordance—the
disagreement of trees at individual loci both with each other and with the species phylogeny. Gene
tree discordance has important implications for phylogenetic comparative methods because
discordant gene trees contain branches that are not present in the species phylogeny. Evolution
along such discordant branches can result in trait similarity among species with no shared history
in the species tree (Figure 1). Such patterns of trait variation can mislead standard phylogenetic
comparative methods, particularly by resulting in overestimates of the number of trait transitions
or the rate of trait evolution (Hahn and Nakhleh 2016; Mendes and Hahn 2016; Mendes et al. 2018;
Hibbins et al. 2020; Wang et al. 2021). This effect has been termed "hemiplasy," as single
transitions on discordant gene trees can falsely resemble homoplasy when analyzed on the species
tree (Avise and Robinson 2008).

Discordance is a concern for evolutionary inference because it has biological causes that
cannot be overcome by addressing technical errors or by increasing species sampling (Degnan and
Rosenberg 2009). Two primary causes of discordance, incomplete lineage sorting (ILS) and
introgression, have different effects on gene tree frequencies and branch lengths and are therefore
expected to bias comparative methods in different ways. ILS, a stochastic process that depends on
species tree internal branch lengths and population sizes, generates symmetry in the frequencies
of possible discordant gene trees (Hudson 1983; Pamilo and Nei 1988). Therefore, higher amounts
of ILS lead to broad increases in the occurrence of hemiplasy across multiple possible incongruent
trait patterns (Guerrero and Hahn 2018; Mendes et al. 2018). Introgression is a process of historical
hybridization and back-crossing that, while widespread in modern phylogenomic datasets (Mallet
et al. 2016; Taylor and Larson 2019; Dagilis et al. 2022), is often more limited to specific pairs of
taxa. In particular, post-speciation introgression between non-sister lineages leads to an excess of
gene trees grouping those lineages as sister (Reich et al. 2009; Green et al. 2010; Durand et al.
2011; Patterson et al. 2012). This pattern should result in an excess of trait-sharing for the species
involved in introgression compared to the species not exchanging genes (Hibbins et al. 2020;
Hibbins and Hahn 2021; Wang et al. 2021).
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While some progress has been made in accounting for discordance in the evolution of
discrete traits, especially in nucleotide models (De Maio et al. 2013; De Maio et al. 2015;
Schrempf et al. 2016; Ogilvie et al. 2017; Schrempf et al. 2019), many classic phylogenetic
comparative methods remain unable to account for gene tree discordance when analyzing
quantitative traits. The approaches required to improve these methods will depend on the question
being asked. Some tasks, such as maximum-likelihood estimation of the rate of trait evolution
under Brownian motion (¢?) (e.g. Garland and Ives 2000; O’Meara et al. 2006) or phylogenetic
regression (Grafen 1989), depend on the specification of a matrix that describes the trait variances
and covariances expected from the species phylogeny (often denoted C). Other comparative
approaches, such as ancestral state reconstruction (Pagel 1999) and inference of lineage-specific
rate shifts (Alfaro et al. 2009), can require more sophisticated approaches that calculate state
probabilities on different parts of a phylogeny; one such approach is to use Felsenstein's pruning
algorithm applied to a species tree with specified branch lengths (Felsenstein 1973). Mendes et al.
(2018) showed that failing to account for discordance can bias estimates of 6> upwards and can
lead to falsely inflated numbers of trait-mean transitions. In general, the development of a
comparative framework incorporating gene tree discordance would lead to more accurate
evolutionary inferences in a wide variety of systems with ILS and/or introgression, across a wide
variety of approaches for making inferences about quantitative traits.

Here, we demonstrate the utility of an updated phylogenomic comparative framework,
using two distinct approaches to incorporate the summed history of concordant and discordant
gene trees into evolutionary inference. In the first approach, we show how to construct an updated
phylogenetic variance/covariance matrix (which we denote C*) to include the covariances
introduced by discordant gene trees. We provide a new R package, seastaR, that can construct this
updated matrix for any number of species, either by summing the internal branches of an input set
of gene trees or by calculating expected gene tree internal branches from an input species tree
using the multispecies coalescent model. We show how estimates of the evolutionary rate are made
more accurate by using C*, and suggest how this updated matrix can be passed to other available
software packages to make multiple evolutionary inferences more robust to discordance. In the
second approach, we develop a method for applying the pruning algorithm over a set of gene trees
to return the likelihood of an observed trait across species. Using a pilot implementation of this
approach for a rooted three-species tree, we show how it can be used to accurately estimate the
rate of quantitative trait evolution. Although currently limited to a smaller number of species, this
latter approach has the potential to perform more complicated comparative inferences in the
presence of discordance. Finally, we apply our approaches to empirical morphological data from
wild tomatoes (Haak et al. 2014), finding a greater discrepancy between species tree and gene tree
rate estimates in a clade with a higher rate of gene tree discordance. Overall, our new approaches
pave the way towards more accurate evolutionary inferences in the presence of gene tree
discordance.

Methods
Building a phylogenetic variance/covariance matrix from data with discordance

As previously discussed, one of the most common ways that phylogeny is incorporated
into comparative analyses is by constructing a phylogenetic variance/covariance matrix, C. This
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square matrix has rows and columns corresponding to the number of taxa in the phylogeny, with
the diagonal elements containing the expected trait variances for each species and the off-diagonal
elements containing the expected trait covariances between each species pair. Considering three
species with the relationship ((A,B),C) (Figure 2A), the standard covariance matrix has the
following form:
Var(4A) Cov(AB) 0
C = |Cov(BA) Var(B) 0
0 0 Var(C)

Eql

Trait covariances arise from shared internal branches in the phylogeny. As only species A and B
share an internal branch in the species tree, the other two species pairs have no expected
covariance.

In contrast, if we consider the gene trees that are generated by the species tree in Figure
2A, the two discordant gene trees contain internal branches shared by pairs B-C and A-C.
Discordance due to ILS generates all three possible topologies for this species tree, so all oftf-
diagonal entries in the covariance matrix should have non-zero values (Mendes et al. 2018). We
are interested in estimating this updated covariance matrix, which we denote C*:

Var(4A) Cov(AB) Cov(AC)
C* = |Cov(BA) Var(B) Cov(BC)
Cov(CA) Cov(CB) Var(C)

Eq?

To construct C*, we provide the R package seastaR. seastaR uses two approaches for estimating
C*, both following the same principle: each gene tree topology contributes an internal branch
which, after being weighted by that tree’s expected frequency, fills an off-diagonal entry in the
covariance matrix (Figure 2A). Each gene tree also contributes its total height, weighted by
frequency, to the expected trait variances for each species. Both approaches assume that each
individual gene tree contributes equally to trait variation among species (i.e. the effect size of
mutations that affect trait variation does not differ on average among loci). We also assume that
loci contributing to trait variation follow the same distribution of tree topologies as the genome at
large, so the specified loci do not have to be explicitly related to the trait in question.

The first approach for estimating C*, trees to_vcv, constructs this matrix from a list of
provided gene trees (with branch lengths) and their observed frequencies. The method works by
obtaining all the internal branch lengths present in each gene tree, as well as the height of each
gene tree, and averaging them to get C*. A major advantage of this approach is that it can easily
account for both ILS and introgression as sources of gene tree discordance, as the effects of both
are captured in the distribution of observed gene tree topologies and branch lengths. On the other
hand, individual gene trees may be inferred with error, making their branch lengths and frequencies
less reliable. If accurately estimated gene trees are unavailable, our second approach,
get_full matrix, constructs C* solely from an input species tree in coalescent units. This method
breaks the input phylogeny down into each possible triplet, and for each triplet uses expectations
from the multispecies coalescent model to calculate the expected internal branches and frequencies
for each possible gene tree (see Mendes et al. 2018). For an exemplar five-taxon tree specified in
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coalescent units, we compared the standard C matrix to a C* matrix computed using
get full matrix (Figure 2B). The test tree has three internal branches, each of length of 0.1
coalescent units. Given these branch lengths, we expect 60% of trees to be discordant for each of
these three branches, meaning that only 40% of gene trees will have (for instance) the clade
containing species 5 and 4 sister to the clade containing species 3 and 2. As expected, C* contains
covariance entries for species pairs that do not share an internal branch in the species tree, but that
share internal branches in at least one discordant gene tree (Figure 2B). In addition, the sister
lineages in the species tree have smaller covariances in C* than in C, because they do not share an
internal branch in many discordant trees.

Our package, seastaR, contains several other utilities, including a parser for an input set of
estimated gene trees, a simulator that can simulate trait evolution using C*, and a function to obtain
the maximum-likelihood estimate of o? using C* (see Results). Also note that, although not
currently implemented, seastaR could be extended to construct C* from an input species network
specified in coalescent units, using expectations from the multispecies network coalescent model
(Hibbins and Hahn 2021).

Calculating trait likelihoods over a set of gene trees using Felsenstein’s pruning algorithm

Updating the phylogenetic variance/covariance matrix provides a straightforward solution
to accounting for gene tree discordance that works for several important inference tasks in
comparative methods. However, many questions require more sophisticated models that do not
have straightforward solutions making use of this matrix. For these questions, the field would
benefit from a general approach to calculating likelihoods given a set of gene trees and a model of
trait evolution. Our solution makes use of Felsenstein’s pruning algorithm (Felsenstein 1973), a
dynamic programming algorithm that calculates probabilities for a set of character states across all
nodes in a phylogeny. A tree-wide likelihood can be calculated from the probabilities at the root,
which can be used in conjunction with numerical optimization methods to estimate model
parameters.

We developed an approach to apply the pruning algorithm to a specified set of gene trees,
rather than to a single tree. This approach is implemented in C++ and draws heavily on the
infrastructure of CAFE (Hahn et al. 2005, Mendes et al. 2020), a program that uses the pruning
algorithm to calculate likelihoods for a birth-death model of gene family evolution. We make
several modifications based on the methods presented in Boucher and Démery (2016) and
implemented in CAGEE (https://github.com/hahnlab/CAGEE) that allow CAFE’s implementation
of the pruning algorithm to be applied to continuous traits rather than integer counts of gene
families (see also Bertram et al. 2022). First, the pruning algorithm requires a vector of possible
discrete character states over which probabilities can be calculated. To obtain this vector from an
observed continuous trait, we take the range (—2(max(|X|), 2(max(|X|)) where X is the vector
of observed characters for each species. The vector of character states is then filled with 100
equidistant steps from the lower bound to the higher bound. Second, we need to assign probabilities
to all the character states at the tips of the phylogeny, so that the pruning algorithm has a place to
start. This is straightforward for integer count data, as the observed value can simply be assigned
a probability of 1 at the tip. However, for continuous traits it will often be the case that none of the
values in our discretized trait vector exactly match the observed values at the tips. Therefore, we
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implement an approach that distributes the probability at the tip over the two states in the
discretized vector closest to each of the observed values, proportional to how distant they are from
the observed value (Equation 18 in the appendix of Boucher and Démery 2016). Third, to calculate
the transition probability between each pair of discretized trait values over a branch in the
phylogeny, we use the Brownian motion model. The probability density for Brownian motion is:

( ) 1 _(X—xzo)2
X, Xg,t) = e 204t
P 0 V2nto

Eq 3

where x, is the initial trait value, x is the trait value after time 7, and o? is the evolutionary rate per
unit time. With these methods in place, we can apply the standard pruning algorithm to an
individual tree with observed character states and a specified o value.

To estimate a single likelihood over a set of gene trees, we initially apply the standard
pruning algorithm to each gene tree individually. Like the covariance matrix approach, we assume
that individual loci contribute equally to trait variation among species, and that trait loci follow the
same distribution of tree topologies as the genome at large. These gene trees with branch lengths
are given to the method directly, and must be ultrametric. Any set of trees can be specified, but the
manner in which they are specified will depend on the size of the species tree (i.e. number of tips).
For a large species tree, individual gene trees can be inferred or predicted by theory, similarly to
the two approaches used by seastaR. Because it may not be possible to sample every possible
topology, we recommend sampling a reasonable number of individual gene trees (see Discussion).
For a small species tree, the most efficient approach will be to specify one tree for each possible
topology, along with its frequency. Again, the branch lengths and frequencies of each tree topology
can be averaged from a set of inferred trees or predicted from theory. The total likelihood is then
calculated as:

L = Z f() <—109 (max(pti)))

Eq 4

where T is the set of gene trees, f(t;) is the frequency of gene tree i, and p,, is the vector of
character state probabilities at the root for gene tree i. In words: we obtain a partial negative log-
likelihood for each individual gene tree, these partial likelihoods are then weighted by each gene
tree’s observed frequency, and finally the weighted partial likelihoods are summed together to
produce the total likelihood (Figure 3).

A major advantage of the pruning algorithm method is that maximum-likelihood inference
can be used to estimate parameters for a wide variety of models. In addition, like the trees fo vcv
method of seastaR, this approach can easily handle introgression events if the signals of
introgression are contained in the specified gene trees, or if expected gene trees under the
multispecies network coalescent could be specified by the user. Currently, our implementation
uses the Nelder-Mead algorithm (Nelder and Mead 1965) to find the optimal Brownian motion
evolutionary rate parameter, 6%, In the future, we would like the software to also perform more
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sophisticated inferences, such as ancestral state reconstruction or lineage-specific rate shifts. Our
approach could also be extended to any evolutionary model, not just Brownian motion.

Simulating complex traits with discordance

To demonstrate the utility of our new phylogenomic comparative approaches, we used
simulations to evaluate their performance on a simple inference task: estimating the evolutionary
rate parameter, 62. We simulated traits from a phylogenetic history with increasing rates of gene
tree discordance by making random draws from a multivariate normal distribution (where C*
specifies the covariance structure). This simulation approach assumes an infinitesimal contribution
to the trait from all genomic loci, an approximation that holds reasonably well for many complex
quantitative traits. For each simulated dataset, we applied both standard inference of 6? using the
species tree and our updated inferences that account for gene tree discordance. See the
Supplementary Methods for the exact conditions and parameters used in our simulations.

We simulated our traits under the model parameterization of Mendes et al. (2018). Levels
of discordance in this model are altered by changing the effective population size, N, allowing us
to increase the level of discordance by increasing N. The equations for trait variances and
covariances are also scaled by N, such that branch lengths in units of absolute time are divided by
2N. The evolutionary rate is a compound parameter, 2N o3, where p is the mutation rate and 6%,
is the variance in mutational effect sizes. A consequence of this formulation of the evolutionary
rate is that the true rate used to simulate the data increases as we increase the rate of discordance
by increasing N. This model is akin to the one shown in Figure 1B, in which mutations occur on
gene tree branches with normally distributed effect sizes. Given enough mutations and enough
time, these cumulative effects resemble Brownian motion of trait means along each lineage (Figure
1C; Mendes et al. 2018).

Data availability
Source code and analysis scripts related to seastaR and the covariance matrix method can

be found in https://github.com/larabreithaupt/seastaR. Code and scripts related to the pruning
algorithm method can be found in https://github.com/mhibbins/genetreepruningalg.

Results

Phylogenomic comparative approaches yield more accurate evolutionary rate estimates in the
presence of discordance

We applied both of our new phylogenomic comparative approaches to data simulated with
discordance in order to evaluate their accuracy in estimating the evolutionary rate parameter, o°.
For the approach that uses the updated the variance/covariance matrix, C*, we use the maximum-
likelihood estimator of 62:

o _X—EXI'CX - EX)]
0° =

n
Eq5
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(O’Meara et al. 2006), where X is the vector of observed trait values at the tips, C is the
phylogenetic variance-covariance matrix, and » is the number of tips. E (X) is the vector containing
the expected trait value at the root, calculated as follows:

EX)=1[1Tc 1) *(1Tc1X)]
Eqo6

Where 1 is a column vector of ones of size n x 1. To account for gene tree discordance with this
estimator, we simply use C* in place of C in equations 5 and 6. We have implemented this method
in seastaR to allow users to estimate o2. For this approach, we simulated 1000 trait datasets for
each condition of increasing gene tree discordance, estimating ¢ using both C and C* for each
dataset.

For the approach using the pruning algorithm, we implemented the Nelder-Mead
optimization algorithm. Given a set of input gene trees and tree frequencies, our optimization
approach proposes a new value of 62 in each iteration, returning a single likelihood value over the
set of gene trees each time; the optimal value of 6% is the one that maximizes this total likelihood.
Owing to longer computation times, we simulated 100 trait datasets for each set of parameters with
this method, using either a single tree specified (the species tree) or multiple trees specified (the
gene trees).

As expected, we found that increasing the level of discordance results in an increasingly
upward bias in estimates of the evolutionary rate from the species tree (Figure 4, green lines). As
there are no internal branches in the species tree that can explain the increased trait covariances
between non-sister taxa, such methods must propose a higher evolutionary rate to explain the data.
In contrast, we found that both the covariance matrix approach (i.e. C*; Figure 4A) and pruning
algorithm approach (Figure 4B) yielded more accurate evolutionary rate estimates, ones that
closely tracked the true population-scaled evolutionary rate as the level of discordance increased.
Both phylogenomic comparative approaches can model the increased covariances generated by
the increasing frequencies of discordant gene trees. As can be observed, both approaches tend to
slightly underestimate the true evolutionary rate, but they are much closer to the true value than
standard species tree estimates, especially at higher rates of discordance.

Phylogenomic comparative approaches are robust to the effects of gene tree estimation error

In empirical datasets, it is reasonable to expect gene trees to be estimated with some degree
of error, especially in the limits of short sequence length (such as ultra-conserved elements), long
periods of evolutionary divergence, or high rates of sequencing error. In general, these sources of
technical error should not be biased towards specific lineages, so their effect should be to cause
general overestimation of gene tree discordance. This may in turn result in lower evolutionary rate
estimates when using our approaches, as they might “overcorrect” the problem. More generally,
we were concerned that increasing the rate of discordance might always leads to a lower
evolutionary rate estimate, regardless of the true history that generated the data. Such behavior
would present a potential problem for the application of our approaches to empirical datasets.

To address these concerns, we simulated traits from gene trees under a single, fixed rate of
gene tree discordance (of approximately 15%) using the methods described in the previous section.
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We then applied our approaches to estimating o to this dataset, varying the specified rate of gene
tree discordance from O (in which case we used the standard species tree inference) to
approximately 60%. In contrast to our initial concerns, we found that in both the covariance matrix
(Figure 5A) and pruning algorithm (Figure 5B) approaches: 1) the effect of mis-specifying the rate
of gene tree discordance is relatively small compared to the effect of using the species tree in place
of gene trees; 2) increasing the specified rate of gene tree discordance leads to a small increase,
rather than decrease, in the estimated evolutionary rate, but still closely tracked the true value. This
latter effect may occur because increasing the specified rate of gene tree discordance requires
branch lengths to be scaled down in accordance with N, resulting in less proposed time over which
evolutionary changes can occur. Overall, these results suggest that gene tree estimation error
should not be a major concern for our approaches, as long as the correct set of tree topologies is
specified.

Rate estimates for floral traits in the wild tomato clade Solanum are consistent with evolution on
discordant gene trees

Our simulations show that when traits evolve on discordant gene trees, standard species
tree approaches tend to greatly overestimate the true value, while our gene tree approaches slightly
underestimate the true value but are much more accurate. The degree of discrepancy between
species tree and gene tree approaches grows larger as the rate of discordance increases. To further
test these expectations and to highlight the application of our methods to empirical data, we
estimated the evolutionary rates of several floral traits (anther length, corolla diameter, and stigma
length) measured in wild tomatoes (Solanum) (Haak et al. 2014). We obtained the time-scaled
phylogeny of this clade from Pease et al. (2016) and converted from time in years to coalescent
units assuming N = 100,000 and one generation every two years (Hamlin et al. 2020). We then
pruned the phylogenetic tree into high and low ILS triplets, each consisting of three taxa. The high
ILS group consisted of the following accessions (IDs from the Tomato Genetics Resource Center):
S. galapagense LA0436, S. cheesmaniae LA3124, and S. pimpinellifolium LA1269; the low ILS
group consisted of S. pennellii LA3778, S. pennellii LA0716, and S. pimpinellifolium LA1589.
Based on the internal branch lengths in coalescent units, the high ILS and low ILS triplets had
expected rates of discordance of approximately 47% and 0.9%, respectively. These rates
correspond to the rates of discordance seen in empirically estimated gene trees in Pease et al.
(2016). Based on our simulation results, if discordant gene trees contribute to tomato floral trait
variation, we should see a greater discrepancy between species tree methods and our gene tree
methods in the high ILS triplet.

In both of our approaches, we used the multispecies coalescent model to calculate the
expected gene tree frequencies and branch lengths in each triplet. For the covariance matrix
method, we used these expectations to construct the covariance matrix C* for each triplet using
the get full matrix() method. For the pruning algorithm method, we specified a representative
gene tree of each of the possible topologies with expected branch lengths, and weighted each tree
by its expected frequency. For both methods, we used the standard approach of specifying a single
species tree and our gene tree approaches to estimate the evolutionary rate using the mean trait
values within each accession if multiple individuals were measured.

10



433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

In line with our expectations, rate estimates obtained from standard species tree approaches
are much higher than those obtained from both of our gene tree methods in the high ILS triplet,
for all three traits (Figure 6). The discrepancy is much smaller in the low ILS triplets (Figure 6).
The bias due to discordance was very large for the estimates obtained from the covariance matrix
method in seastaR (Figure 6A), where the species tree rate estimates were several orders of
magnitude higher than the gene tree estimates in the high ILS triplet. This is consistent with our
simulation finding that the estimated evolutionary rate is more biased under discordance when
using covariance methods (Figure 4A). Even when accounting for gene tree discordance, the rate
estimates obtained from the covariance matrix method were substantially higher than those
obtained from the pruning algorithm method (compare Figure 6A and 6B). This discrepancy can
be explained by flat/undefined likelihood surfaces for the proposed values of 6% (Supplementary
Figure 1): the pruning algorithm method, which employs a likelihood search, reaches a likelihood
plateau and does not propose further improvements, whereas the covariance matrix method uses
the analytical likelihood estimator to obtain the maximum value, regardless of the shape of the
likelihood surface. This problem may arise when a small number of taxa are studied, as less
information is available to discern the rate of trait evolution. To help users evaluate this problem
in their datasets, we have implemented a function for calculating trait likelihoods over a range of
proposed o values in seastaR. In this case, we believe the pruning algorithm estimates represent
more biologically realistic rates of evolution.

Discussion

There has been much phylogenetic research focused on the accurate estimation of species
trees in the face of gene tree discordance (e.g. Degnan and Rosenberg 2009; Bryant et al. 2012;
Chifman and Kubatko 2014; Mirarab et al. 2014; Mendes and Hahn 2018; Zhang et al. 2018).
Despite this focus on inferring trees in the face of discordance, standard phylogenetic comparative
methods still rely on a single “resolved” tree to describe the shared history of species. Recent work
has made it clear that, if only a single tree is used, gene tree discordance can shape trait variation
and mislead comparative methods (e.g. Mendes et al. 2018; Hibbins et al. 2020). However, few
solutions have been proposed to solve these problems, especially for quantitative traits evolving
on clades containing discordance. Here, we have developed two approaches, which we refer to as
phylogenomic comparative methods, that can incorporate gene tree discordance into comparative
inference. One approach uses a more complete phylogenetic variance-covariance matrix that
includes the covariance present in discordant gene trees. We have developed an R package,
seastaR, for building this matrix using the frequencies and branch lengths of relevant gene trees.
The second approach applies the pruning algorithm over a set of gene trees—concordant and
discordant—to estimate likelihoods. Using simulation, we demonstrate that these methods
generate more accurate evolutionary rate estimates for traits evolving in the presence of
discordance, and are generally robust to the effects of gene tree estimation error. Finally, we
demonstrate that empirical floral traits in the wild tomato clade Solanum are consistent with
evolution on discordant gene trees, with the clade with a higher rate of gene tree discordance
exhibiting a greater discrepancy in rate estimates between traditional approaches and our new
methods.
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Many phylogenetic comparative methods take the variance-covariance matrix, C, as input
(e.g. Pagel 1999; Housworth et al. 2004; O’Meara et al. 2006; Revell and Harmon 2008). Because
of the wide use of C, we anticipate that a more complete variance-covariance matrix, C*, will be
easy to incorporate into many comparative analyses. The seastaR package provides an easy way
for users to generate C*, either from a set of specified gene trees or from a specified species tree
(assuming a multispecies coalescent process). Here, we have demonstrated how C* can be used to
obtain a maximum-likelihood estimate of the rate of quantitative trait evolution under Brownian
motion, a method that is also implemented in seastaR. One obvious extension of the use of C* is
in phylogenetic generalized linear mixed models (PGLMMSs), where the covariance matrix is often
specified directly in packages such as MCMCglmm (Hadfield 2010). However, many popular
packages for implementing comparative methods—such as phytools (Revell 2012), ape (Paradis
and Schliep 2019), and Geiger (Pennell et al. 2014) —do not take a matrix directly, instead turning
an input species tree into a matrix. Furthermore, they require a strictly bifurcating tree as input to
construct a phylo class object. Integrating the ability to accept C* (or equivalent sets of gene trees)
into these methods would enable a much larger array of inference tasks to take discordance into
account.

The pruning algorithm is widely used in likelihood-based inference of phylogenetic trees
(Felsenstein 1981) and for some applications in quantitative trait evolution (e.g. Hahn et al. 2005;
FitzJohn 2012; Freckleton 2012; Ho and An¢é 2014; Uyeda and Harmon 2014; Hiscott et al. 2016;
Mitov et al. 2020). Our method using the pruning algorithm across a set of gene trees makes many
of the same assumptions as previous implementations, but models each trait as the combined result
of a large number of loci; these loci were represented in our calculations by a smaller number of
exemplar gene tree topologies, each with the mean set of branch lengths for a given topology.
Although it is not as straightforward to incorporate our method into other approaches as with C*,
because the pruning algorithm is a general method for calculating likelihoods, it has enormous
potential to be applied to a wide variety of inference problems. As trees get larger, the
computational cost of the matrix operations in equations 5 and 6 grows exponentially with the
number of taxa. In contrast, the number of calculations in the pruning algorithm only grows
linearly, and therefore trees with thousands of tips can be analyzed (Mitov and Stadler 2019).
Furthermore, even though several methods for dealing with sparse matrices make it possible to
analyze larger numbers of taxa (e.g. Hadfield and Nakagawa 2010), C* has more covariance
entries and is therefore less sparse than C; this again limits matrix-based approaches in
phylogenomic comparative methods.

Both of our approaches can be extended in multiple ways. While we have only considered
Brownian motion models here, there are multiple other trait models that could be used. The
Ornstein-Uhlenbeck process is a popular model for trait evolution, with estimators available using
both matrix (Hansen 1997; Butler and King 2004; Beaulieu et al. 2012; Rohlfs et al. 2014) and
pruning algorithm approaches (FitzJohn 2012; Ho and Ané 2014; Uyeda and Harmon 2014; Mitov
et al. 2020). Additional models for continuous traits include “early burst” (Harmon et al. 2010)
and Lévy (“jump”) processes (Landis and Schraiber 2017). All of these models should be able to
be accommodated by phylogenomic comparative methods. In addition, although we have
described the covariances in our models with a particular set of gene trees in mind, both methods
can be used with any weighted mixture of trees. This means that users do not have to assume a
particular model of species tree evolution (e.g. the multispecies coalescent model) and can even
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ignore ILS altogether in favor of phylogenetic network models (e.g. Bastide et al. 2018). This
should also allow our approaches to accommodate unequal contributions to trait variation across
individual loci, for example, if some loci are known to be functionally related to the trait of interest
and therefore expected to have mutations of larger effect on average.

There are also multiple caveats that come with our proposed approaches, and some
important technical limitations to consider. First, errors in gene tree or species tree specification
might bias inferences. This is especially true if gene trees are being used as inputs, as we require
both accurate and ultrametric trees. Our methods assume that loci controlling trait variation and
the genome at large follow the same distribution of trees; however, if trait loci experience stronger
than average selection, these loci could have proportionally fewer discordant gene trees than the
genomic background (cite something here?). Gene trees may also be mis-specified due to technical
errors in their estimation. We found that error in gene tree frequencies and branch lengths is
relatively inconsequential for our approaches, under the conditions considered here. Specifying a
set of incorrect gene tree topologies may have more of an effect, but since ILS is expected to
generate all possible topologies with respect to a single branch, we do not expect this to be a
significant issue. Obtaining ultrametric gene trees remains challenging due to variation in rates of
evolution among loci and small amounts of data per locus. Even when species trees are used to
generate gene tree frequencies (i.e. get_full matrix), many coalescent-based methods for inferring
species trees do not estimate tip branch lengths (e.g. Liu et al. 2010; Mirarab et al. 2014), further
limiting accurate inferences (but see Bastide et al. 2018; Hibbins et al. 2020). If there is uncertainty
in the species tree topology or branch lengths, a straightforward solution would be to embed the
approaches used here within a Bayesian framework (e.g. Huelsenbeck et al. 2000; Pagel and
Meade 2006). It is important to note, however, that gene tree discordance is not equivalent to
species tree uncertainty: averaging over each gene tree topology on its own in a Bayesian
framework would simply mean averaging over many incorrect trees. Instead, a proper Bayesian
approach to accommodating discordance would have to sum over a new set of gene trees (or
covariances) for each species tree topology proposed, as was done here with a single topology.

A second caveat is that large numbers of taxa make it harder to accurately estimate both
the matrix used in seastaR and the gene trees used within the pruning algorithm. If gene trees are
predicted from theory, seastaR calculates C* from the species tree by breaking the tree into triplets.
While this will return approximately correct covariances for all pairs of species, it necessarily
ignores any covariance structures that might only be possible in trees with four or more taxa. The
problem for the pruning algorithm approach could be even worse, as separate gene tree topologies
must be specified: specifying representative gene trees for all possible topologies becomes
prohibitive with more taxa because the number of gene trees grows super-exponentially. Even if
gene trees are estimated from the data, with only a few dozen taxa there are more possible gene
tree topologies than independent loci in a genome. Two solutions suggest ways around these
issues. First, the problems can be somewhat ameliorated by recognizing that it is not the number
of taxa that is the issue, but instead the number of lineages within “knots” (cf. Ané et al. 2007) on
the larger phylogeny that are prone to gene tree discordance. For instance, even in a tree with 100
species, if only three are undergoing ILS, then only three topologies must be considered. Judicious
choices as to the number of different topologies that must be considered in any particular analysis
could save a lot of computational effort. Second, as mentioned in the Methods, one approach that
can be applied to the pruning algorithm method is to sample a limited number of individual gene
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trees, either directly from the inferred trees or from the multispecies coalescent model applied to
the species tree. Even if we have to sample 100 trees, the likelihood calculations on each are
relatively fast and can be parallelized. Such a sampling scheme will also naturally recapitulate the
degree of discordance associated with every branch in the species tree.

Throughout our analyses, we found that rate estimates using a single species tree differed
from those accounting for gene trees, even when the level of discordance was very low or zero
(Figure 4A). This result occurs because the two modes of inference are fundamentally different:
even with no discordance, “gene tree” analyses are based on gene tree branch lengths, not species
tree branch lengths. Gene tree branch lengths are always longer than species tree branch lengths
because each pair of lineages is expected to coalesce 2N generations before their time of speciation
(Gillespie and Langley 1979; Edwards and Beerli 2000). These longer gene tree branch lengths
result in higher trait variances in the traits, such that a higher evolutionary rate must be proposed
to explain the same data when using the species tree for analysis. This distinction highlights an
additional challenge for a potential application of our pruning algorithm approach — ancestral state
reconstruction. Because the internal nodes of gene trees—including concordant gene trees—do not
exist at the same moment of time as the internal nodes of species trees, reconstructing ancestral
states at the time of speciation requires knowledge of the contribution of each gene tree branch to
trait evolution at that particular time point. This could be accomplished by the insertion of single-
descendant nodes on gene tree lineages that are concurrent with ancestral nodes on the species
tree. Inferring lineage-specific rate shifts will likewise require that each gene tree branch, or
segment of a gene tree branch, be assigned to specific species tree lineages (cf. Ogilvie et al. 2017).
In general, these considerations highlight the fact that using gene trees in place of a species tree is
a fundamentally different mode of inference, and that standard comparative methods using the
species tree may yield incorrect inferences even if there is no discordance.

We consistently found that evolutionary rate estimates for tomato floral traits were much
greater using species tree approaches than our gene tree approaches (Figure 6). For the high ILS
triplet, there was even more bias than in the low ILS knot. These results are consistent with a
contribution of gene trees, rather than a single species phylogeny, to variation in these traits. Our
analysis of gene tree error suggests that this result is not simply an artifact of increasing the
specified rate of gene tree discordance, but is the result of biological variation in the floral traits.
Furthermore, our findings have implications for the study of evolutionary rate variation among
clades. For example, imagine that researchers wished to investigate whether the evolutionary rate
of corolla diameter differed between our high ILS and low ILS triplets. Applying standard species
tree methods, they would find that the corolla diameter of the high ILS species evolves at a much
faster rate than in their low ILS counterparts. However, from our results in Figure 6, after
correcting for the contribution of discordant gene trees, this difference disappears and the trait
appears to evolve at approximately the same rate in both clades. This result highlights how
variation in the rate of gene tree discordance among clades is a confounding factor when studying
the evolution of lineage-specific rate shifts.

An increasingly common finding in phylogenomics is that of rapid and/or highly parallel
trait evolution associated with rapid species radiations (Schluter et al. 1997; Boughman et al. 2005;
Sun et al. 2012; Parins-Fukuchi et al. 2021; Urban et al. 2022). The application of classic
comparative approaches in these systems has suggested that many radiations violate constant-rate
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Brownian motion models, with more complex models being proposed instead (Simpson 1944;
Blomberg et al. 2003; Freckleton and Harvey 2006). However, adaptive radiations often have very
little time between speciation events, resulting in high rates of gene tree discordance and therefore
high potential for hemiplasy (Pease et al. 2016). Here we have found that apparently higher rates
of trait evolution in rapid radiations may be perfectly consistent with a standard Brownian motion
model with a constant evolutionary rate. In this circumstance, higher apparent rates of evolution
are simply the result of a stronger contribution of discordant gene trees to covariance among
species. Our proposed phylogenomic comparative methods help to address these issues, providing
more accurate evolutionary inferences in systems with high rates of discordance.
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Figure 1: Conceptualizing quantitative trait evolution with discordant gene trees. A) Given a
species tree (far left), we model gene trees as arising under the multispecies coalescent process.
One topology is concordant with the species tree (blue), while the other two possible topologies
are discordant (red and yellow). Under ILS these two discordant trees have the same topology and
frequency. B) Over the course of evolution, mutations occur at loci that affect quantitative traits,
each of which has a topology drawn from the multispecies coalescent process. Mutations on the
internal branches of discordant gene trees can introduce shared trait history that is not captured by
the species tree. Here we summarize mutations occurring at different loci on a single tree if the
loci had the same topology, with each mutation at each locus contributing positively or negatively
to the trait value in each species. In the example here, species pairs B-C and A-C might covary in
quantitative trait values due to mutations on shared branches in gene trees, despite sharing no
common ancestor in the species tree. For example, a mutation on the internal branch of the magenta
tree causes species B and C to have more similar trait values. C) Given a large number of mutations
and loci, trait evolution over time can be modelled by Brownian motion on each gene tree topology.
This stochastic process models the trait value as a random walk over time, with species trait values
calculated as the weighted average of the values on each gene tree (Mendes et al. 2018; Hibbins
and Hahn 2021).
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Figure 2: Inferring the gene tree variance/covariance matrix, C*. A) Gene trees are generated from
a species tree under the multispecies coalescent process (note that introgression can readily be
incorporated, but is not shown here for clarity). Each gene tree contributes its internal branch
length (for covariance terms) and its total height (for variance terms) to C*. The contribution of
each tree to C* is weighted by its expected or observed frequency, depending on the approach
taken. Frequencies are denoted as f{IXY), where X and Y are the taxa sister in the gene tree of
interest. B) A comparison of C and C* for a five-taxon species tree with branch lengths labelled
in coalescent units (not precisely to scale). Each internal branch has a length of 0.3, corresponding
to a level of discordance of approximately 50%. This level of discordance means that each clade
descended from these internal branches (5/4/3/2, 5/4, and 3/2) will be present in ~50% of gene
trees. The standard phylogenetic covariance matrix, C, contains no covariance between species 1
and the other taxa, because they do not share an internal branch in the species tree. In contrast,
species 1 covaries with all other species in the tree using C*, because multiple discordant gene
trees have species 2-5 sharing an internal branch with species 1.
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Figure 3: Applying the pruning algorithm to sets of gene trees. In our proposed approach, the
pruning algorithm (shown as upward arrows) is applied to each individual gene tree to obtain
character state probabilities at each node (curved lines) up to the root for a quantitative trait. These
root probabilities are then used to obtain a partial likelihood from each gene tree, which are then
summed together weighted by the gene tree frequency to obtain the final likelihood.
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Figure 4: Phylogenomic comparative methods produce more accurate evolutionary rate estimates.
A) Rate estimates obtained using a maximum-likelihood estimator applied to the covariance matrix
(equation 5). B) Rate estimates obtained using numerical optimization of the likelihood with the
pruning algorithm. In both panels, the green line shows inferences from methods using only the
species tree, the red line shows the inferences from methods accounting for gene tree discordance,
and the blue dashed line shows the true simulated value of the evolutionary rate. The level of gene
tree discordance expected from each simulated species tree (see Supplementary Methods) is shown
on the x-axis. Note that panels A and B have different y-axis scales.
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Figure 5: Phylogenomic comparative methods are robust to gene tree estimation error. In both
panels, the solid vertical line denotes the true rate of discordance used to simulate the trait data,
and the horizontal blue line denotes the true evolutionary rate. The x-axis shows the rate of
discordance supplied to each approach when estimating the evolutionary rate from the simulated
data. For a rate of discordance equal to 0, we used the standard species tree inference rather than
gene tree inference. Specifying too much discordance can also cause overestimation of the
evolutionary rate. Note that panels A and B have different y-axis scales.
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Figure 6: Evolutionary rate estimates for three floral traits in Solanum using our newly developed
approaches (red bars), in comparison to standard species tree methods (blue bars). A) rate estimates
(c?) obtained using the analytical maximum-likelihood estimator as implemented in our R package
seastaR. In the high ILS triplet, the species tree estimates (blue) go far above the scale of the y-
axis, so these bars are labelled with an up arrow and the true estimated values for clarity. B) Rate
estimates (o?) obtained via maximum likelihood optimization using our pruning algorithm
implementation for calculating likelihoods on gene trees. Note that the values on the y-axes are
not the same in the two panels.
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