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Abstract 32 
 33 
 Phylogenetic comparative methods have long been a mainstay of evolutionary biology, 34 
allowing for the study of trait evolution across species while accounting for their common ancestry. 35 
These analyses typically assume a single, bifurcating phylogenetic tree describing the shared 36 
history among species. However, modern phylogenomic analyses have shown that genomes are 37 
often composed of mosaic histories that can disagree both with the species tree and with each 38 
other—so-called discordant gene trees. These gene trees describe shared histories that are not 39 
captured by the species tree, and therefore that are unaccounted for in classic comparative 40 
approaches. The application of standard comparative methods to species histories containing 41 
discordance leads to incorrect inferences about the timing, direction, and rate of evolution. Here, 42 
we develop two approaches for incorporating gene tree histories into comparative methods: one 43 
that constructs an updated phylogenetic variance-covariance matrix from gene trees, and another 44 
that applies Felsenstein's pruning algorithm over a set of gene trees to calculate trait histories and 45 
likelihoods. Using simulation, we demonstrate that our new approaches generate much more 46 
accurate estimates of tree-wide rates of trait evolution than standard methods. We apply our 47 
methods to two clades of the wild tomato genus Solanum with varying rates of discordance, 48 
demonstrating the contribution of gene tree discordance to variation in a set of floral traits. Our 49 
new approaches have the potential to be applied to a broad range of classic inference problems in 50 
phylogenetics, including ancestral state reconstruction and the inference of lineage-specific rate 51 
shifts.  52 
 53 
Significance statement 54 
 55 
 Phylogenetic comparative methods allow for the study of trait evolution between species 56 
by accounting for their shared evolutionary history. These methods usually assume that species 57 
relationships can be described by a single tree. However, different parts of the genome can have 58 
their own independent evolutionary histories that can disagree with each other. If these disagreeing 59 
histories contribute to trait evolution over time, standard comparative methods can be misled. In 60 
this work, we developed two new approaches to phylogenetic comparative methods that account 61 
for this variation in histories across the genome. We used these methods to estimate more accurate 62 
rates of floral trait evolution in wild tomatoes. Our work opens new approaches for the study of 63 
trait evolution among species.  64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
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Introduction  78 
 79 
 A major goal of evolutionary biology is to understand how and why traits vary among 80 
species. One of the major sources of this variation is common ancestry. If left unaccounted for, 81 
this shared history can lead to pseudoreplication and spurious trait correlations (Felsenstein 1985). 82 
Phylogenetic comparative methods have been developed to account for shared history, enabling 83 
more accurate inferences about the tempo and mode of trait evolution (Harvey and Pagel 1991). 84 
With the statistical toolkit offered by phylogenetic comparative methods, researchers can ask 85 
questions about the rate at which traits evolve, whether these rates have changed over time or in 86 
different lineages, what traits may have looked like in ancestral or extinct lineages, and whether 87 
trait shifts are correlated with historical or environmental factors (Martins and Hansen 1996; 88 
Garamszegi 2014; Adams and Collyer 2018; Revell and Harmon 2022).  89 
 90 
 In classic comparative methods, common ancestry among species is accounted for by using 91 
a single species phylogeny. However, genome-scale analyses of phylogenetic history have 92 
revealed that individual loci can have their own independent histories (Pollard et al. 2006; White 93 
et al. 2009; Fontaine et al. 2015; Pease et al. 2016; Novikova et al. 2016; Copetti et al. 2017; Wu 94 
et al. 2018; Edelman et al. 2019; Vanderpool et al. 2020). The result is gene tree discordance—the 95 
disagreement of trees at individual loci both with each other and with the species phylogeny. Gene 96 
tree discordance has important implications for phylogenetic comparative methods because 97 
discordant gene trees contain branches that are not present in the species phylogeny. Evolution 98 
along such discordant branches can result in trait similarity among species with no shared history 99 
in the species tree (Figure 1). Such patterns of trait variation can mislead standard phylogenetic 100 
comparative methods, particularly by resulting in overestimates of the number of trait transitions 101 
or the rate of trait evolution (Hahn and Nakhleh 2016; Mendes and Hahn 2016; Mendes et al. 2018; 102 
Hibbins et al. 2020; Wang et al. 2021). This effect has been termed "hemiplasy," as single 103 
transitions on discordant gene trees can falsely resemble homoplasy when analyzed on the species 104 
tree (Avise and Robinson 2008).  105 
 106 

Discordance is a concern for evolutionary inference because it has biological causes that 107 
cannot be overcome by addressing technical errors or by increasing species sampling (Degnan  and 108 
Rosenberg 2009). Two primary causes of discordance, incomplete lineage sorting (ILS) and 109 
introgression, have different effects on gene tree frequencies and branch lengths and are therefore 110 
expected to bias comparative methods in different ways. ILS, a stochastic process that depends on 111 
species tree internal branch lengths and population sizes, generates symmetry in the frequencies 112 
of possible discordant gene trees (Hudson 1983; Pamilo and Nei 1988). Therefore, higher amounts 113 
of ILS lead to broad increases in the occurrence of hemiplasy across multiple possible incongruent 114 
trait patterns (Guerrero and Hahn 2018; Mendes et al. 2018). Introgression is a process of historical 115 
hybridization and back-crossing that, while widespread in modern phylogenomic datasets (Mallet 116 
et al. 2016; Taylor and Larson 2019; Dagilis et al. 2022), is often more limited to specific pairs of 117 
taxa. In particular, post-speciation introgression between non-sister lineages leads to an excess of 118 
gene trees grouping those lineages as sister (Reich et al. 2009; Green et al. 2010; Durand et al. 119 
2011; Patterson et al. 2012). This pattern should result in an excess of trait-sharing for the species 120 
involved in introgression compared to the species not exchanging genes (Hibbins et al. 2020; 121 
Hibbins and Hahn 2021; Wang et al. 2021). 122 
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While some progress has been made in accounting for discordance in the evolution of 123 
discrete traits, especially in nucleotide models (De Maio et al. 2013; De Maio et al.  2015; 124 
Schrempf et al. 2016; Ogilvie et al. 2017; Schrempf et al. 2019), many classic phylogenetic 125 
comparative methods remain unable to account for gene tree discordance when analyzing 126 
quantitative traits. The approaches required to improve these methods will depend on the question 127 
being asked. Some tasks, such as maximum-likelihood estimation of the rate of trait evolution 128 
under Brownian motion (σ2) (e.g. Garland and Ives 2000; O’Meara et al. 2006) or phylogenetic 129 
regression (Grafen 1989), depend on the specification of a matrix that describes the trait variances 130 
and covariances expected from the species phylogeny (often denoted C). Other comparative 131 
approaches, such as ancestral state reconstruction (Pagel 1999) and inference of lineage-specific 132 
rate shifts (Alfaro et al. 2009), can require more sophisticated approaches that calculate state 133 
probabilities on different parts of a phylogeny; one such approach is to use Felsenstein's pruning 134 
algorithm applied to a species tree with specified branch lengths (Felsenstein 1973). Mendes et al. 135 
(2018) showed that failing to account for discordance can bias estimates of σ2 upwards and can 136 
lead to falsely inflated numbers of trait-mean transitions. In general, the development of a 137 
comparative framework incorporating gene tree discordance would lead to more accurate 138 
evolutionary inferences in a wide variety of systems with ILS and/or introgression, across a wide 139 
variety of approaches for making inferences about quantitative traits.  140 

 141 
Here, we demonstrate the utility of an updated phylogenomic comparative framework, 142 

using two distinct approaches to incorporate the summed history of concordant and discordant 143 
gene trees into evolutionary inference. In the first approach, we show how to construct an updated 144 
phylogenetic variance/covariance matrix (which we denote C*) to include the covariances 145 
introduced by discordant gene trees. We provide a new R package, seastaR, that can construct this 146 
updated matrix for any number of species, either by summing the internal branches of an input set 147 
of gene trees or by calculating expected gene tree internal branches from an input species tree 148 
using the multispecies coalescent model. We show how estimates of the evolutionary rate are made 149 
more accurate by using C*, and suggest how this updated matrix can be passed to other available 150 
software packages to make multiple evolutionary inferences more robust to discordance. In the 151 
second approach, we develop a method for applying the pruning algorithm over a set of gene trees 152 
to return the likelihood of an observed trait across species. Using a pilot implementation of this 153 
approach for a rooted three-species tree, we show how it can be used to accurately estimate the 154 
rate of quantitative trait evolution. Although currently limited to a smaller number of species, this 155 
latter approach has the potential to perform more complicated comparative inferences in the 156 
presence of discordance. Finally, we apply our approaches to empirical morphological data from 157 
wild tomatoes (Haak et al. 2014), finding a greater discrepancy between species tree and gene tree 158 
rate estimates in a clade with a higher rate of gene tree discordance. Overall, our new approaches 159 
pave the way towards more accurate evolutionary inferences in the presence of gene tree 160 
discordance.  161 

 162 
Methods  163 
 164 
Building a phylogenetic variance/covariance matrix from data with discordance  165 
 166 
 As previously discussed, one of the most common ways that phylogeny is incorporated 167 
into comparative analyses is by constructing a phylogenetic variance/covariance matrix, C. This 168 
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square matrix has rows and columns corresponding to the number of taxa in the phylogeny, with 169 
the diagonal elements containing the expected trait variances for each species and the off-diagonal 170 
elements containing the expected trait covariances between each species pair. Considering three 171 
species with the relationship ((A,B),C) (Figure 2A), the standard covariance matrix has the 172 
following form:  173 

𝑪	 = 	 $
𝑉𝑎𝑟(𝐴) 𝐶𝑜𝑣(𝐴𝐵) 0
𝐶𝑜𝑣(𝐵𝐴) 𝑉𝑎𝑟(𝐵) 0

0 0 𝑉𝑎𝑟(𝐶)
0 174 

Eq 1 175 

Trait covariances arise from shared internal branches in the phylogeny. As only species A and B 176 
share an internal branch in the species tree, the other two species pairs have no expected 177 
covariance.  178 
 179 
 In contrast, if we consider the gene trees that are generated by the species tree in Figure 180 
2A, the two discordant gene trees contain internal branches shared by pairs B-C and A-C. 181 
Discordance due to ILS generates all three possible topologies for this species tree, so all off-182 
diagonal entries in the covariance matrix should have non-zero values (Mendes et al. 2018). We 183 
are interested in estimating this updated covariance matrix, which we denote C*:  184 
 185 

𝑪∗ 	= 	 $
𝑉𝑎𝑟(𝐴) 𝐶𝑜𝑣(𝐴𝐵) 𝐶𝑜𝑣(𝐴𝐶)
𝐶𝑜𝑣(𝐵𝐴) 𝑉𝑎𝑟(𝐵) 𝐶𝑜𝑣(𝐵𝐶)
𝐶𝑜𝑣(𝐶𝐴) 𝐶𝑜𝑣(𝐶𝐵) 𝑉𝑎𝑟(𝐶)

0 186 

Eq 2 187 

To construct C*, we provide the R package seastaR. seastaR uses two approaches for estimating 188 
C*, both following the same principle: each gene tree topology contributes an internal branch 189 
which, after being weighted by that tree’s expected frequency, fills an off-diagonal entry in the 190 
covariance matrix (Figure 2A). Each gene tree also contributes its total height, weighted by 191 
frequency, to the expected trait variances for each species. Both approaches assume that each 192 
individual gene tree contributes equally to trait variation among species (i.e. the effect size of 193 
mutations that affect trait variation does not differ on average among loci). We also assume that 194 
loci contributing to trait variation follow the same distribution of tree topologies as the genome at 195 
large, so the specified loci do not have to be explicitly related to the trait in question. 196 
 197 
 The first approach for estimating C*, trees_to_vcv, constructs this matrix from a list of 198 
provided gene trees (with branch lengths) and their observed frequencies. The method works by 199 
obtaining all the internal branch lengths present in each gene tree, as well as the height of each 200 
gene tree, and averaging them to get C*. A major advantage of this approach is that it can easily 201 
account for both ILS and introgression as sources of gene tree discordance, as the effects of both 202 
are captured in the distribution of observed gene tree topologies and branch lengths. On the other 203 
hand, individual gene trees may be inferred with error, making their branch lengths and frequencies 204 
less reliable. If accurately estimated gene trees are unavailable, our second approach, 205 
get_full_matrix, constructs C* solely from an input species tree in coalescent units. This method 206 
breaks the input phylogeny down into each possible triplet, and for each triplet uses expectations 207 
from the multispecies coalescent model to calculate the expected internal branches and frequencies 208 
for each possible gene tree (see Mendes et al. 2018). For an exemplar five-taxon tree specified in 209 
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coalescent units, we compared the standard C matrix to a C* matrix computed using 210 
get_full_matrix (Figure 2B). The test tree has three internal branches, each of length of 0.1 211 
coalescent units. Given these branch lengths, we expect 60% of trees to be discordant for each of 212 
these three branches, meaning that only 40% of gene trees will have (for instance) the clade 213 
containing species 5 and 4 sister to the clade containing species 3 and 2. As expected, C* contains 214 
covariance entries for species pairs that do not share an internal branch in the species tree, but that 215 
share internal branches in at least one discordant gene tree (Figure 2B). In addition, the sister 216 
lineages in the species tree have smaller covariances in C* than in C, because they do not share an 217 
internal branch in many discordant trees.  218 
 219 
 Our package, seastaR, contains several other utilities, including a parser for an input set of 220 
estimated gene trees, a simulator that can simulate trait evolution using C*, and a function to obtain 221 
the maximum-likelihood estimate of σ2 using C* (see Results). Also note that, although not 222 
currently implemented, seastaR could be extended to construct C* from an input species network 223 
specified in coalescent units, using expectations from the multispecies network coalescent model 224 
(Hibbins and Hahn 2021). 225 
 226 
Calculating trait likelihoods over a set of gene trees using Felsenstein’s pruning algorithm 227 
 228 
 Updating the phylogenetic variance/covariance matrix provides a straightforward solution 229 
to accounting for gene tree discordance that works for several important inference tasks in 230 
comparative methods. However, many questions require more sophisticated models that do not 231 
have straightforward solutions making use of this matrix. For these questions, the field would 232 
benefit from a general approach to calculating likelihoods given a set of gene trees and a model of 233 
trait evolution. Our solution makes use of Felsenstein’s pruning algorithm (Felsenstein 1973), a 234 
dynamic programming algorithm that calculates probabilities for a set of character states across all 235 
nodes in a phylogeny. A tree-wide likelihood can be calculated from the probabilities at the root, 236 
which can be used in conjunction with numerical optimization methods to estimate model 237 
parameters. 238 
 239 
 We developed an approach to apply the pruning algorithm to a specified set of gene trees, 240 
rather than to a single tree. This approach is implemented in C++ and draws heavily on the 241 
infrastructure of CAFE (Hahn et al. 2005, Mendes et al. 2020), a program that uses the pruning 242 
algorithm to calculate likelihoods for a birth-death model of gene family evolution. We make 243 
several modifications based on the methods presented in Boucher and Démery (2016) and 244 
implemented in CAGEE (https://github.com/hahnlab/CAGEE) that allow CAFE’s implementation 245 
of the pruning algorithm to be applied to continuous traits rather than integer counts of gene 246 
families (see also Bertram et al. 2022). First, the pruning algorithm requires a vector of possible 247 
discrete character states over which probabilities can be calculated. To obtain this vector from an 248 
observed continuous trait, we take the range (−2(𝑚𝑎𝑥(|𝑿|), 2(𝑚𝑎𝑥(|𝑿|)) where 𝑿 is the vector 249 
of observed characters for each species. The vector of character states is then filled with 100 250 
equidistant steps from the lower bound to the higher bound. Second, we need to assign probabilities 251 
to all the character states at the tips of the phylogeny, so that the pruning algorithm has a place to 252 
start. This is straightforward for integer count data, as the observed value can simply be assigned 253 
a probability of 1 at the tip. However, for continuous traits it will often be the case that none of the 254 
values in our discretized trait vector exactly match the observed values at the tips. Therefore, we 255 
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implement an approach that distributes the probability at the tip over the two states in the 256 
discretized vector closest to each of the observed values, proportional to how distant they are from 257 
the observed value (Equation 18 in the appendix of Boucher and Démery 2016). Third, to calculate 258 
the transition probability between each pair of discretized trait values over a branch in the 259 
phylogeny, we use the Brownian motion model. The probability density for Brownian motion is:  260 
 261 

𝑝(𝑥, 𝑥", 𝑡) =
1

√2𝜋𝑡σ
𝑒#

(%#%!)"
'(")  262 

Eq 3 263 

where 𝑥" is the initial trait value, 𝑥 is the trait value after time t, and σ2 is the evolutionary rate per 264 
unit time. With these methods in place, we can apply the standard pruning algorithm to an 265 
individual tree with observed character states and a specified σ2 value.  266 
 267 
 To estimate a single likelihood over a set of gene trees, we initially apply the standard 268 
pruning algorithm to each gene tree individually. Like the covariance matrix approach, we assume 269 
that individual loci contribute equally to trait variation among species, and that trait loci follow the 270 
same distribution of tree topologies as the genome at large. These gene trees with branch lengths 271 
are given to the method directly, and must be ultrametric. Any set of trees can be specified, but the 272 
manner in which they are specified will depend on the size of the species tree (i.e. number of tips). 273 
For a large species tree, individual gene trees can be inferred or predicted by theory, similarly to 274 
the two approaches used by seastaR. Because it may not be possible to sample every possible 275 
topology, we recommend sampling a reasonable number of individual gene trees (see Discussion). 276 
For a small species tree, the most efficient approach will be to specify one tree for each possible 277 
topology, along with its frequency. Again, the branch lengths and frequencies of each tree topology 278 
can be averaged from a set of inferred trees or predicted from theory. The total likelihood is then 279 
calculated as:  280 
 281 

𝐿	 = 	@𝑓(τ*) C−𝑙𝑜𝑔 F𝑚𝑎𝑥G𝒑𝛕𝒊IJK
,

 282 

Eq 4 283 

where τ is the set of gene trees, 𝑓(τ*) is the frequency of gene tree i, and 𝒑𝛕𝒊 is the vector of 284 
character state probabilities at the root for gene tree i. In words: we obtain a partial negative log-285 
likelihood for each individual gene tree, these partial likelihoods are then weighted by each gene 286 
tree’s observed frequency, and finally the weighted partial likelihoods are summed together to 287 
produce the total likelihood (Figure 3).  288 
 289 

A major advantage of the pruning algorithm method is that maximum-likelihood inference 290 
can be used to estimate parameters for a wide variety of models. In addition, like the trees_to_vcv 291 
method of seastaR, this approach can easily handle introgression events if the signals of 292 
introgression are contained in the specified gene trees, or if expected gene trees under the 293 
multispecies network coalescent could be specified by the user. Currently, our implementation 294 
uses the Nelder-Mead algorithm (Nelder and Mead 1965) to find the optimal Brownian motion 295 
evolutionary rate parameter, σ2. In the future, we would like the software to also perform more 296 



 8 

sophisticated inferences, such as ancestral state reconstruction or lineage-specific rate shifts. Our 297 
approach could also be extended to any evolutionary model, not just Brownian motion. 298 
 299 
Simulating complex traits with discordance 300 
 301 

To demonstrate the utility of our new phylogenomic comparative approaches, we used 302 
simulations to evaluate their performance on a simple inference task: estimating the evolutionary 303 
rate parameter, σ2. We simulated traits from a phylogenetic history with increasing rates of gene 304 
tree discordance by making random draws from a multivariate normal distribution (where C* 305 
specifies the covariance structure). This simulation approach assumes an infinitesimal contribution 306 
to the trait from all genomic loci, an approximation that holds reasonably well for many complex 307 
quantitative traits. For each simulated dataset, we applied both standard inference of σ2 using the 308 
species tree and our updated inferences that account for gene tree discordance. See the 309 
Supplementary Methods for the exact conditions and parameters used in our simulations.  310 
 311 

We simulated our traits under the model parameterization of Mendes et al. (2018). Levels 312 
of discordance in this model are altered by changing the effective population size, N, allowing us 313 
to increase the level of discordance by increasing N. The equations for trait variances and 314 
covariances are also scaled by N, such that branch lengths in units of absolute time are divided by 315 
2N. The evolutionary rate is a compound parameter, 2𝑁µσ-' , where µ is the mutation rate and σ-'  316 
is the variance in mutational effect sizes. A consequence of this formulation of the evolutionary 317 
rate is that the true rate used to simulate the data increases as we increase the rate of discordance 318 
by increasing N. This model is akin to the one shown in Figure 1B, in which mutations occur on 319 
gene tree branches with normally distributed effect sizes. Given enough mutations and enough 320 
time, these cumulative effects resemble Brownian motion of trait means along each lineage (Figure 321 
1C; Mendes et al. 2018).  322 
 323 
Data availability 324 
 325 
 Source code and analysis scripts related to seastaR and the covariance matrix method can 326 
be found in https://github.com/larabreithaupt/seastaR. Code and scripts related to the pruning 327 
algorithm method can be found in https://github.com/mhibbins/genetreepruningalg.   328 
 329 
Results  330 
 331 
 Phylogenomic comparative approaches yield more accurate evolutionary rate estimates in the 332 
presence of discordance  333 
 334 
 We applied both of our new phylogenomic comparative approaches to data simulated with 335 
discordance in order to evaluate their accuracy in estimating the evolutionary rate parameter, σ2. 336 
For the approach that uses the updated the variance/covariance matrix, C*, we use the maximum-337 
likelihood estimator of σ2:  338 
 339 

σN' =
[𝑿 − 𝐸(𝑿)].𝑪#/[𝑿 − 𝐸(𝑿)]

𝑛  340 

Eq 5 341 
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(O’Meara et al. 2006), where 𝑿 is the vector of observed trait values at the tips, 𝑪 is the 342 
phylogenetic variance-covariance matrix, and n is the number of tips. 𝐸(𝑿) is the vector containing 343 
the expected trait value at the root, calculated as follows:  344 
 345 

𝐸(𝑿) = 𝟏[(𝟏.𝑪#/𝟏)#/(𝟏.𝑪#/𝑿)] 346 
Eq 6 347 

Where 1 is a column vector of ones of size n x 1. To account for gene tree discordance with this 348 
estimator, we simply use C* in place of C in equations 5 and 6. We have implemented this method 349 
in seastaR to allow users to estimate σ2. For this approach, we simulated 1000 trait datasets for 350 
each condition of increasing gene tree discordance, estimating σ2 using both C and C* for each 351 
dataset.  352 
 353 
 For the approach using the pruning algorithm, we implemented the Nelder-Mead 354 
optimization algorithm. Given a set of input gene trees and tree frequencies, our optimization 355 
approach proposes a new value of σ2 in each iteration, returning a single likelihood value over the 356 
set of gene trees each time; the optimal value of σ2 is the one that maximizes this total likelihood. 357 
Owing to longer computation times, we simulated 100 trait datasets for each set of parameters with 358 
this method, using either a single tree specified (the species tree) or multiple trees specified (the 359 
gene trees).   360 
 361 
 As expected, we found that increasing the level of discordance results in an increasingly 362 
upward bias in estimates of the evolutionary rate from the species tree (Figure 4, green lines). As 363 
there are no internal branches in the species tree that can explain the increased trait covariances 364 
between non-sister taxa, such methods must propose a higher evolutionary rate to explain the data. 365 
In contrast, we found that both the covariance matrix approach (i.e. C*; Figure 4A) and pruning 366 
algorithm approach (Figure 4B) yielded more accurate evolutionary rate estimates, ones that 367 
closely tracked the true population-scaled evolutionary rate as the level of discordance increased. 368 
Both phylogenomic comparative approaches can model the increased covariances generated by 369 
the increasing frequencies of discordant gene trees. As can be observed, both approaches tend to 370 
slightly underestimate the true evolutionary rate, but they are much closer to the true value than 371 
standard species tree estimates, especially at higher rates of discordance.  372 
 373 
Phylogenomic comparative approaches are robust to the effects of gene tree estimation error  374 
 375 
 In empirical datasets, it is reasonable to expect gene trees to be estimated with some degree 376 
of error, especially in the limits of short sequence length (such as ultra-conserved elements), long 377 
periods of evolutionary divergence, or high rates of sequencing error. In general, these sources of 378 
technical error should not be biased towards specific lineages, so their effect should be to cause 379 
general overestimation of gene tree discordance. This may in turn result in lower evolutionary rate 380 
estimates when using our approaches, as they might “overcorrect” the problem. More generally, 381 
we were concerned that increasing the rate of discordance might always leads to a lower 382 
evolutionary rate estimate, regardless of the true history that generated the data. Such behavior 383 
would present a potential problem for the application of our approaches to empirical datasets.  384 
 385 
 To address these concerns, we simulated traits from gene trees under a single, fixed rate of 386 
gene tree discordance (of approximately 15%) using the methods described in the previous section. 387 
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We then applied our approaches to estimating σ2 to this dataset, varying the specified rate of gene 388 
tree discordance from 0 (in which case we used the standard species tree inference) to 389 
approximately 60%. In contrast to our initial concerns, we found that in both the covariance matrix 390 
(Figure 5A) and pruning algorithm (Figure 5B) approaches: 1) the effect of mis-specifying the rate 391 
of gene tree discordance is relatively small compared to the effect of using the species tree in place 392 
of gene trees; 2) increasing the specified rate of gene tree discordance leads to a small increase, 393 
rather than decrease, in the estimated evolutionary rate, but still closely tracked the true value. This 394 
latter effect may occur because increasing the specified rate of gene tree discordance requires 395 
branch lengths to be scaled down in accordance with N, resulting in less proposed time over which 396 
evolutionary changes can occur. Overall, these results suggest that gene tree estimation error 397 
should not be a major concern for our approaches, as long as the correct set of tree topologies is 398 
specified.  399 
 400 
Rate estimates for floral traits in the wild tomato clade Solanum are consistent with evolution on 401 
discordant gene trees 402 
 403 

Our simulations show that when traits evolve on discordant gene trees, standard species 404 
tree approaches tend to greatly overestimate the true value, while our gene tree approaches slightly 405 
underestimate the true value but are much more accurate. The degree of discrepancy between 406 
species tree and gene tree approaches grows larger as the rate of discordance increases. To further 407 
test these expectations and to highlight the application of our methods to empirical data, we 408 
estimated the evolutionary rates of several floral traits (anther length, corolla diameter, and stigma 409 
length) measured in wild tomatoes (Solanum) (Haak et al. 2014). We obtained the time-scaled 410 
phylogeny of this clade from Pease et al. (2016) and converted from time in years to coalescent 411 
units assuming N = 100,000 and one generation every two years (Hamlin et al. 2020). We then 412 
pruned the phylogenetic tree into high and low ILS triplets, each consisting of three taxa. The high 413 
ILS group consisted of the following accessions (IDs from the Tomato Genetics Resource Center): 414 
S. galapagense LA0436, S. cheesmaniae LA3124, and S. pimpinellifolium LA1269; the low ILS 415 
group consisted of S. pennellii LA3778, S. pennellii LA0716, and S. pimpinellifolium LA1589. 416 
Based on the internal branch lengths in coalescent units, the high ILS and low ILS triplets had 417 
expected rates of discordance of approximately 47% and 0.9%, respectively. These rates 418 
correspond to the rates of discordance seen in empirically estimated gene trees in Pease et al. 419 
(2016). Based on our simulation results, if discordant gene trees contribute to tomato floral trait 420 
variation, we should see a greater discrepancy between species tree methods and our gene tree 421 
methods in the high ILS triplet. 422 
 423 

In both of our approaches, we used the multispecies coalescent model to calculate the 424 
expected gene tree frequencies and branch lengths in each triplet. For the covariance matrix 425 
method, we used these expectations to construct the covariance matrix C* for each triplet using 426 
the get_full_matrix() method. For the pruning algorithm method, we specified a representative 427 
gene tree of each of the possible topologies with expected branch lengths, and weighted each tree 428 
by its expected frequency. For both methods, we used the standard approach of specifying a single 429 
species tree and our gene tree approaches to estimate the evolutionary rate using the mean trait 430 
values within each accession if multiple individuals were measured.  431 
 432 
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In line with our expectations, rate estimates obtained from standard species tree approaches 433 
are much higher than those obtained from both of our gene tree methods in the high ILS triplet, 434 
for all three traits (Figure 6). The discrepancy is much smaller in the low ILS triplets (Figure 6). 435 
The bias due to discordance was very large for the estimates obtained from the covariance matrix 436 
method in seastaR (Figure 6A), where the species tree rate estimates were several orders of 437 
magnitude higher than the gene tree estimates in the high ILS triplet. This is consistent with our 438 
simulation finding that the estimated evolutionary rate is more biased under discordance when 439 
using covariance methods (Figure 4A). Even when accounting for gene tree discordance, the rate 440 
estimates obtained from the covariance matrix method were substantially higher than those 441 
obtained from the pruning algorithm method (compare Figure 6A and 6B). This discrepancy can 442 
be explained by flat/undefined likelihood surfaces for the proposed values of σ2 (Supplementary 443 
Figure 1): the pruning algorithm method, which employs a likelihood search, reaches a likelihood 444 
plateau and does not propose further improvements, whereas the covariance matrix method uses 445 
the analytical likelihood estimator to obtain the maximum value, regardless of the shape of the 446 
likelihood surface. This problem may arise when a small number of taxa are studied, as less 447 
information is available to discern the rate of trait evolution. To help users evaluate this problem 448 
in their datasets, we have implemented a function for calculating trait likelihoods over a range of 449 
proposed σ2 values in seastaR. In this case, we believe the pruning algorithm estimates represent 450 
more biologically realistic rates of evolution. 451 
 452 
   453 
Discussion  454 
 455 
 There has been much phylogenetic research focused on the accurate estimation of species 456 
trees in the face of gene tree discordance (e.g. Degnan and Rosenberg 2009; Bryant et al. 2012; 457 
Chifman and Kubatko 2014; Mirarab et al. 2014; Mendes and Hahn 2018; Zhang et al. 2018). 458 
Despite this focus on inferring trees in the face of discordance, standard phylogenetic comparative 459 
methods still rely on a single “resolved” tree to describe the shared history of species. Recent work 460 
has made it clear that, if only a single tree is used, gene tree discordance can shape trait variation 461 
and mislead comparative methods (e.g. Mendes et al. 2018; Hibbins et al. 2020). However, few 462 
solutions have been proposed to solve these problems, especially for quantitative traits evolving 463 
on clades containing discordance. Here, we have developed two approaches, which we refer to as 464 
phylogenomic comparative methods, that can incorporate gene tree discordance into comparative 465 
inference. One approach uses a more complete phylogenetic variance-covariance matrix that 466 
includes the covariance present in discordant gene trees. We have developed an R package, 467 
seastaR, for building this matrix using the frequencies and branch lengths of relevant gene trees. 468 
The second approach applies the pruning algorithm over a set of gene trees—concordant and 469 
discordant—to estimate likelihoods. Using simulation, we demonstrate that these methods 470 
generate more accurate evolutionary rate estimates for traits evolving in the presence of 471 
discordance, and are generally robust to the effects of gene tree estimation error. Finally, we 472 
demonstrate that empirical floral traits in the wild tomato clade Solanum are consistent with 473 
evolution on discordant gene trees, with the clade with a higher rate of gene tree discordance 474 
exhibiting a greater discrepancy in rate estimates between traditional approaches and our new 475 
methods.  476 
 477 
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 Many phylogenetic comparative methods take the variance-covariance matrix, C, as input 478 
(e.g. Pagel 1999; Housworth et al. 2004; O’Meara et al. 2006; Revell and Harmon 2008). Because 479 
of the wide use of C, we anticipate that a more complete variance-covariance matrix, C*, will be 480 
easy to incorporate into many comparative analyses.  The seastaR package provides an easy way 481 
for users to generate C*, either from a set of specified gene trees or from a specified species tree 482 
(assuming a multispecies coalescent process). Here, we have demonstrated how C* can be used to 483 
obtain a maximum-likelihood estimate of the rate of quantitative trait evolution under Brownian 484 
motion, a method that is also implemented in seastaR. One obvious extension of the use of C* is 485 
in phylogenetic generalized linear mixed models (PGLMMs), where the covariance matrix is often 486 
specified directly in packages such as MCMCglmm (Hadfield 2010). However, many popular 487 
packages for implementing comparative methods—such as phytools (Revell 2012), ape (Paradis 488 
and Schliep 2019), and Geiger (Pennell et al. 2014) —do not take a matrix directly, instead turning 489 
an input species tree into a matrix. Furthermore, they require a strictly bifurcating tree as input to 490 
construct a phylo class object. Integrating the ability to accept C* (or equivalent sets of gene trees) 491 
into these methods would enable a much larger array of inference tasks to take discordance into 492 
account. 493 
 494 
 The pruning algorithm is widely used in likelihood-based inference of phylogenetic trees 495 
(Felsenstein 1981) and for some applications in quantitative trait evolution (e.g. Hahn et al. 2005; 496 
FitzJohn 2012; Freckleton 2012; Ho and Ané 2014; Uyeda and Harmon 2014; Hiscott et al. 2016; 497 
Mitov et al. 2020). Our method using the pruning algorithm across a set of gene trees makes many 498 
of the same assumptions as previous implementations, but models each trait as the combined result 499 
of a large number of loci; these loci were represented in our calculations by a smaller number of 500 
exemplar gene tree topologies, each with the mean set of branch lengths for a given topology. 501 
Although it is not as straightforward to incorporate our method into other approaches as with C*, 502 
because the pruning algorithm is a general method for calculating likelihoods, it has enormous 503 
potential to be applied to a wide variety of inference problems. As trees get larger, the 504 
computational cost of the matrix operations in equations 5 and 6 grows exponentially with the 505 
number of taxa. In contrast, the number of calculations in the pruning algorithm only grows 506 
linearly, and therefore trees with thousands of tips can be analyzed (Mitov and Stadler 2019). 507 
Furthermore, even though several methods for dealing with sparse matrices make it possible to 508 
analyze larger numbers of taxa (e.g. Hadfield and Nakagawa 2010), C* has more covariance 509 
entries and is therefore less sparse than C; this again limits matrix-based approaches in 510 
phylogenomic comparative methods.  511 
 512 

Both of our approaches can be extended in multiple ways. While we have only considered 513 
Brownian motion models here, there are multiple other trait models that could be used. The 514 
Ornstein-Uhlenbeck process is a popular model for trait evolution, with estimators available using 515 
both matrix (Hansen 1997; Butler and King 2004; Beaulieu et al. 2012; Rohlfs et al. 2014) and 516 
pruning algorithm approaches (FitzJohn 2012; Ho and Ané 2014; Uyeda and Harmon 2014; Mitov 517 
et al. 2020). Additional models for continuous traits include “early burst” (Harmon et al. 2010) 518 
and Lévy (“jump”) processes (Landis and Schraiber 2017). All of these models should be able to 519 
be accommodated by phylogenomic comparative methods. In addition, although we have 520 
described the covariances in our models with a particular set of gene trees in mind, both methods 521 
can be used with any weighted mixture of trees. This means that users do not have to assume a 522 
particular model of species tree evolution (e.g. the multispecies coalescent model) and can even 523 
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ignore ILS altogether in favor of phylogenetic network models (e.g. Bastide et al. 2018). This 524 
should also allow our approaches to accommodate unequal contributions to trait variation across 525 
individual loci, for example, if some loci are known to be functionally related to the trait of interest 526 
and therefore expected to have mutations of larger effect on average. 527 

 528 
There are also multiple caveats that come with our proposed approaches, and some 529 

important technical limitations to consider. First, errors in gene tree or species tree specification 530 
might bias inferences. This is especially true if gene trees are being used as inputs, as we require 531 
both accurate and ultrametric trees. Our methods assume that loci controlling trait variation and 532 
the genome at large follow the same distribution of trees; however, if trait loci experience stronger 533 
than average selection, these loci could have proportionally fewer discordant gene trees than the 534 
genomic background (cite something here?). Gene trees may also be mis-specified due to technical 535 
errors in their estimation. We found that error in gene tree frequencies and branch lengths is 536 
relatively inconsequential for our approaches, under the conditions considered here. Specifying a 537 
set of incorrect gene tree topologies may have more of an effect, but since ILS is expected to 538 
generate all possible topologies with respect to a single branch, we do not expect this to be a 539 
significant issue. Obtaining ultrametric gene trees remains challenging due to variation in rates of 540 
evolution among loci and small amounts of data per locus. Even when species trees are used to 541 
generate gene tree frequencies (i.e. get_full_matrix), many coalescent-based methods for inferring 542 
species trees do not estimate tip branch lengths (e.g. Liu et al. 2010; Mirarab et al. 2014), further 543 
limiting accurate inferences (but see Bastide et al. 2018; Hibbins et al. 2020). If there is uncertainty 544 
in the species tree topology or branch lengths, a straightforward solution would be to embed the 545 
approaches used here within a Bayesian framework (e.g. Huelsenbeck et al. 2000; Pagel and 546 
Meade 2006). It is important to note, however, that gene tree discordance is not equivalent to 547 
species tree uncertainty: averaging over each gene tree topology on its own in a Bayesian 548 
framework would simply mean averaging over many incorrect trees. Instead, a proper Bayesian 549 
approach to accommodating discordance would have to sum over a new set of gene trees (or 550 
covariances) for each species tree topology proposed, as was done here with a single topology.  551 

 552 
A second caveat is that large numbers of taxa make it harder to accurately estimate both 553 

the matrix used in seastaR and the gene trees used within the pruning algorithm. If gene trees are 554 
predicted from theory, seastaR calculates C* from the species tree by breaking the tree into triplets. 555 
While this will return approximately correct covariances for all pairs of species, it necessarily 556 
ignores any covariance structures that might only be possible in trees with four or more taxa. The 557 
problem for the pruning algorithm approach could be even worse, as separate gene tree topologies 558 
must be specified: specifying representative gene trees for all possible topologies becomes 559 
prohibitive with more taxa because the number of gene trees grows super-exponentially. Even if 560 
gene trees are estimated from the data, with only a few dozen taxa there are more possible gene 561 
tree topologies than independent loci in a genome. Two solutions suggest ways around these 562 
issues. First, the problems can be somewhat ameliorated by recognizing that it is not the number 563 
of taxa that is the issue, but instead the number of lineages within “knots” (cf. Ané et al. 2007) on 564 
the larger phylogeny that are prone to gene tree discordance. For instance, even in a tree with 100 565 
species, if only three are undergoing ILS, then only three topologies must be considered. Judicious 566 
choices as to the number of different topologies that must be considered in any particular analysis 567 
could save a lot of computational effort. Second, as mentioned in the Methods, one approach that 568 
can be applied to the pruning algorithm method is to sample a limited number of individual gene 569 
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trees, either directly from the inferred trees or from the multispecies coalescent model applied to 570 
the species tree. Even if we have to sample 100 trees, the likelihood calculations on each are 571 
relatively fast and can be parallelized. Such a sampling scheme will also naturally recapitulate the 572 
degree of discordance associated with every branch in the species tree. 573 

 574 
Throughout our analyses, we found that rate estimates using a single species tree differed 575 

from those accounting for gene trees, even when the level of discordance was very low or zero 576 
(Figure 4A). This result occurs because the two modes of inference are fundamentally different: 577 
even with no discordance, “gene tree” analyses are based on gene tree branch lengths, not species 578 
tree branch lengths. Gene tree branch lengths are always longer than species tree branch lengths 579 
because each pair of lineages is expected to coalesce 2N generations before their time of speciation 580 
(Gillespie and Langley 1979; Edwards and Beerli 2000). These longer gene tree branch lengths 581 
result in higher trait variances in the traits, such that a higher evolutionary rate must be proposed 582 
to explain the same data when using the species tree for analysis. This distinction highlights an 583 
additional challenge for a potential application of our pruning algorithm approach – ancestral state 584 
reconstruction. Because the internal nodes of gene trees—including concordant gene trees—do not 585 
exist at the same moment of time as the internal nodes of species trees, reconstructing ancestral 586 
states at the time of speciation requires knowledge of the contribution of each gene tree branch to 587 
trait evolution at that particular time point. This could be accomplished by the insertion of single-588 
descendant nodes on gene tree lineages that are concurrent with ancestral nodes on the species 589 
tree. Inferring lineage-specific rate shifts will likewise require that each gene tree branch, or 590 
segment of a gene tree branch, be assigned to specific species tree lineages (cf. Ogilvie et al. 2017). 591 
In general, these considerations highlight the fact that using gene trees in place of a species tree is 592 
a fundamentally different mode of inference, and that standard comparative methods using the 593 
species tree may yield incorrect inferences even if there is no discordance. 594 

 595 
We consistently found that evolutionary rate estimates for tomato floral traits were much 596 

greater using species tree approaches than our gene tree approaches (Figure 6). For the high ILS 597 
triplet, there was even more bias than in the low ILS knot. These results are consistent with a 598 
contribution of gene trees, rather than a single species phylogeny, to variation in these traits. Our 599 
analysis of gene tree error suggests that this result is not simply an artifact of increasing the 600 
specified rate of gene tree discordance, but is the result of biological variation in the floral traits. 601 
Furthermore, our findings have implications for the study of evolutionary rate variation among 602 
clades. For example, imagine that researchers wished to investigate whether the evolutionary rate 603 
of corolla diameter differed between our high ILS and low ILS triplets. Applying standard species 604 
tree methods, they would find that the corolla diameter of the high ILS species evolves at a much 605 
faster rate than in their low ILS counterparts. However, from our results in Figure 6, after 606 
correcting for the contribution of discordant gene trees, this difference disappears and the trait 607 
appears to evolve at approximately the same rate in both clades. This result highlights how 608 
variation in the rate of gene tree discordance among clades is a confounding factor when studying 609 
the evolution of lineage-specific rate shifts.   610 

 611 
 An increasingly common finding in phylogenomics is that of rapid and/or highly parallel 612 
trait evolution associated with rapid species radiations (Schluter et al. 1997; Boughman et al. 2005; 613 
Sun et al. 2012; Parins-Fukuchi et al. 2021; Urban et al. 2022). The application of classic 614 
comparative approaches in these systems has suggested that many radiations violate constant-rate 615 
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Brownian motion models, with more complex models being proposed instead (Simpson 1944; 616 
Blomberg et al. 2003; Freckleton and Harvey 2006). However, adaptive radiations often have very 617 
little time between speciation events, resulting in high rates of gene tree discordance and therefore 618 
high potential for hemiplasy (Pease et al. 2016). Here we have found that apparently higher rates 619 
of trait evolution in rapid radiations may be perfectly consistent with a standard Brownian motion 620 
model with a constant evolutionary rate. In this circumstance, higher apparent rates of evolution 621 
are simply the result of a stronger contribution of discordant gene trees to covariance among 622 
species. Our proposed phylogenomic comparative methods help to address these issues, providing 623 
more accurate evolutionary inferences in systems with high rates of discordance.     624 
 625 
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 661 
 662 
Figure 1: Conceptualizing quantitative trait evolution with discordant gene trees. A) Given a 663 
species tree (far left), we model gene trees as arising under the multispecies coalescent process. 664 
One topology is concordant with the species tree (blue), while the other two possible topologies 665 
are discordant (red and yellow). Under ILS these two discordant trees have the same topology and 666 
frequency. B) Over the course of evolution, mutations occur at loci that affect quantitative traits, 667 
each of which has a topology drawn from the multispecies coalescent process. Mutations on the 668 
internal branches of discordant gene trees can introduce shared trait history that is not captured by 669 
the species tree. Here we summarize mutations occurring at different loci on a single tree if the 670 
loci had the same topology, with each mutation at each locus contributing positively or negatively 671 
to the trait value in each species. In the example here, species pairs B-C and A-C might covary in 672 
quantitative trait values due to mutations on shared branches in gene trees, despite sharing no 673 
common ancestor in the species tree. For example, a mutation on the internal branch of the magenta 674 
tree causes species B and C to have more similar trait values. C) Given a large number of mutations 675 
and loci, trait evolution over time can be modelled by Brownian motion on each gene tree topology. 676 
This stochastic process models the trait value as a random walk over time, with species trait values 677 
calculated as the weighted average of the values on each gene tree (Mendes et al. 2018; Hibbins 678 
and Hahn 2021).  679 
 680 
 681 
 682 
 683 
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 684 

 685 
 686 
Figure 2: Inferring the gene tree variance/covariance matrix, C*. A) Gene trees are generated from 687 
a species tree under the multispecies coalescent process (note that introgression can readily be 688 
incorporated, but is not shown here for clarity). Each gene tree contributes its internal branch 689 
length (for covariance terms) and its total height (for variance terms) to C*. The contribution of 690 
each tree to C* is weighted by its expected or observed frequency, depending on the approach 691 
taken. Frequencies are denoted as f(XY), where X and Y are the taxa sister in the gene tree of 692 
interest. B) A comparison of C and C* for a five-taxon species tree with branch lengths labelled 693 
in coalescent units (not precisely to scale). Each internal branch has a length of 0.3, corresponding 694 
to a level of discordance of approximately 50%. This level of discordance means that each clade 695 
descended from these internal branches (5/4/3/2, 5/4, and 3/2) will be present in ~50% of gene 696 
trees. The standard phylogenetic covariance matrix, C, contains no covariance between species 1 697 
and the other taxa, because they do not share an internal branch in the species tree. In contrast, 698 
species 1 covaries with all other species in the tree using C*, because multiple discordant gene 699 
trees have species 2-5 sharing an internal branch with species 1.  700 
 701 
 702 
 703 
 704 
 705 
 706 
 707 
 708 
 709 
 710 
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 711 

 712 
 713 
Figure 3: Applying the pruning algorithm to sets of gene trees. In our proposed approach, the 714 
pruning algorithm (shown as upward arrows) is applied to each individual gene tree to obtain 715 
character state probabilities at each node (curved lines) up to the root for a quantitative trait. These 716 
root probabilities are then used to obtain a partial likelihood from each gene tree, which are then 717 
summed together weighted by the gene tree frequency to obtain the final likelihood.  718 
 719 
 720 
 721 
 722 
 723 
 724 
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 725 
Figure 4: Phylogenomic comparative methods produce more accurate evolutionary rate estimates. 726 
A) Rate estimates obtained using a maximum-likelihood estimator applied to the covariance matrix 727 
(equation 5). B) Rate estimates obtained using numerical optimization of the likelihood with the 728 
pruning algorithm. In both panels, the green line shows inferences from methods using only the 729 
species tree, the red line shows the inferences from methods accounting for gene tree discordance, 730 
and the blue dashed line shows the true simulated value of the evolutionary rate. The level of gene 731 
tree discordance expected from each simulated species tree (see Supplementary Methods) is shown 732 
on the x-axis. Note that panels A and B have different y-axis scales.  733 
 734 
 735 
 736 
 737 
 738 
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 739 
 740 
Figure 5: Phylogenomic comparative methods are robust to gene tree estimation error. In both 741 
panels, the solid vertical line denotes the true rate of discordance used to simulate the trait data, 742 
and the horizontal blue line denotes the true evolutionary rate. The x-axis shows the rate of 743 
discordance supplied to each approach when estimating the evolutionary rate from the simulated 744 
data. For a rate of discordance equal to 0, we used the standard species tree inference rather than 745 
gene tree inference. Specifying too much discordance can also cause overestimation of the 746 
evolutionary rate. Note that panels A and B have different y-axis scales.  747 
 748 
 749 
 750 
 751 
 752 
 753 
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 754 
 755 
Figure 6: Evolutionary rate estimates for three floral traits in Solanum using our newly developed 756 
approaches (red bars), in comparison to standard species tree methods (blue bars). A) rate estimates 757 
(s2) obtained using the analytical maximum-likelihood estimator as implemented in our R package 758 
seastaR. In the high ILS triplet, the species tree estimates (blue) go far above the scale of the y-759 
axis, so these bars are labelled with an up arrow and the true estimated values for clarity. B) Rate 760 
estimates (s2) obtained via maximum likelihood optimization using our pruning algorithm 761 
implementation for calculating likelihoods on gene trees. Note that the values on the y-axes are 762 
not the same in the two panels. 763 
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