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ABSTRACT

The emergence and expansion of inequality have been topics of household archaeology for decades. Tradi-
tionally, this question has been informed by ethnographic, ethnohistoric and/or comparative studies. Within sites
and regions, comparative physical, spatial, and architectural studies of households offer an important baseline of
information about status, wealth, and well-being, especially in the Maya lowlands where households are
accessible in the archaeological record. Between sites, more research is necessary to assess how these physical
measurements of household remains compare. This paper investigates the intersection of landscape, household,
and community based on a multi-scalar analysis of households using the Gini index across southeastern Mexico,
in the context of a broader study of land use, land management, and settlement patterns. Notably, this paper
represents a region-wide analysis of nearly continuous LiDAR data within and outside of previously documented
prehispanic Maya settlements. While we conclude that the Gini index is useful for establishing a comparative
understanding of settlement, we also recognize that the index is a starting point to identify other ways to study
how household to community-level social and economic variability intersects with diverse ecological patterns.
Highlighting the opportunities and limitations with applying measures like the Gini index across culturally,
temporally, and geographically heterogeneous areas, we illustrate how systematic studies of settlement can be
coupled to broader studies of landscape archaeology to interpret changing patterns of land management and
settlement across the Maya lowlands.

1. Introduction

among others (Basri and Lawrence, 2020, 690; Coulter, 1989; Tra-
peznikova, 2019). In addition to material wealth, other forms of

The origins and dynamics of economic inequality are fundamental
themes of the archaeology of complex societies (Beck and Quinn, 2022;
Flannery and Marcus, 2012; Kohler and Smith, 2018; Kurnick, 2015;
McGuire, 2022; Paynter, 1989; Smith et al., 2018). As academic and
popular voices condemning the inequitable distributions of wealth and
power in modern nations have grown louder in recent decades (Graeber,
2011; Piketty, 2020, 2014; Stiglitz, 2015; Wilkerson, 2020), some ar-
chaeologists have declared the emergence, growth, and persistence of
inequality as one of the discipline’s grand challenges (Kintigh et al.,
2014). Contemporary assessments of inequality employ various mea-
sures of material wealth including: individual and household income,
accumulated wealth, consumption and expenditures, and quality of life
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embodied, symbolic, relational, and social wealth (Bourdieu, 1986;
Smith et al., 2010; Wilkerson, 2020) are important metrics for assessing
inequality, yet remain challenging to document archaeologically (Smith
et al., 2010). Nonetheless, because inequality impinges on every aspect
of social life, it leaves material signatures that are archaeologically
accessible (Kintigh et al., 2014, 9).

Borrowing from modern economic analyses, some archaeologists
have adopted the Gini index — a quantitative comparison of the differ-
ential distribution of wealth within a population — as one means of
measuring the material signatures of inequality through several
different proxies (Amiel and Cowell, 1999; Brown et al., 2012; Chak-
ravarty, 1990; Dorfman, 1979; Gastwirth, 1972; Giorgi, 1990; Ready
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and Power, 2018; Sen, 1973; Xu, 2003). In archaeology, the use of the
Gini index to assess prestige differentiation has typically focused on site-
level approaches (Hutson and Welch, 2021), with additional studies at
the neighborhood, district, or polity level (Thompson et al., 2021b)
because these scales offer the sample populations on which archaeolo-
gists typically focus. The increasing accessibility of LiDAR and remotely
sensed big data, however, offers the potential to adopt regional and
landscape perspectives (Chase et al., 2012; Chi et al., 2016; Evans, 2016;
VanValkenburgh and Dufton, 2020), thereby enabling macro-regional
scale populations to be used as the unit of analysis.

In this paper, we use publicly available LiDAR data collected by
NASA Goddard’s LiDAR, Hyperspectral, and Thermal Imager (G-LiHT)
over southeastern Mexico and annotated by the authors to compare Gini
coefficients across diverse ecological and cultural contexts. These data
provide a series of cross sections covering portions of southeastern
Mexico and the Maya area. Despite the limited width (300 m) of the
transects, the spatial extent of the total length of the survey encompasses
diverse socioecological contexts. Prior engagement with Gini co-
efficients in Mesoamerica has generally centered on site-based ap-
proaches (Chase, 2017; Hutson and Welch, 2021; Smith et al., 2014),
with promising ongoing research into multiscalar analyses at the
regional, polity, and district levels (Thompson et al., 2021b). The pre-
sent study adopts a landscape-level approach by investigating house size
variability across a large region. Because the G-LiHT data were sampled
without input from archaeologists, these transects provide a “pseudo-
random” or “off-site” perspective (covering understudied areas distant
from the largest known archaeological sites), presenting a unique op-
portunity to interpret regional differentiation in house size across the
Maya Lowlands, especially outside of the largest urban centers. Given
the novelty and scope of these data and this analytical approach, we
therefore highlight general trends in the data, rather than focusing on
the absolute values of the Gini indices, although we compare our find-
ings to prior site-based and regional research into Maya inequality.

The benefit of the G-LiHT data is their spatial coverage; however, a
limitation is that the transects reflect a palimpsest of Maya settlement
with great time depth. While we cannot yet incorporate temporal data
into this analysis, we take the first step to interpret household-level
wealth differentiation based on house size across the Northern, Cen-
tral, and Western Maya Lowlands through remote sensing. We also
discuss other limitations of this method with further plans to incorporate
the larger built environmental and agrarian context of these data into
future studies. Throughout our analysis, we urge discretion when
interpreting Gini coefficients in archaeological contexts, clearly out-
lining and problematizing the methods used, while we remain optimistic
that largescale comparisons of statistical differentiation can have rele-
vance to our understanding of inequality in past societies.

We first offer an overview of the Gini index and related studies of
inequality in archaeology. Next, we discuss the G-LiHT dataset and
methods of analysis, before presenting our results. We conclude that
while absolute values of Gini coefficients vary based on different
architectural metrics, including structure and patio group footprint area
and volume, these values correlate positively with each other across the
dataset. Furthermore, we observe weak correlations between Gini
indices and several cultural and environmental variables, including
settlement density, agricultural terrace density, and rainfall. Additional
patterns emerge when Gini coefficients are compared across physio-
graphic sub-regions of the Maya lowlands.

2. Overview of the Gini index

Over the past decade, some archaeologists have adopted the Gini
index - originally applied to modern, capitalist industrial economies — to
model the relative inequality of wealth distribution in pre-modern so-
cieties (Bogaard et al., 2019; Kohler et al., 2017; Smith et al., 2014). The
Gini index is one of many measurements of statistical dispersion and is
commonly applied by economists to household income data to assess
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inequality (Chakravarty, 1990; Peterson and Drennan, 2018). Although
wealth may be directly measured through income data, wealth
inequality also manifests in human societies through differential access
to material goods or resources (material or financial capital), social ties
or opportunities (social capital), status or credentials (symbolic or cul-
tural capital) or health and skills (human capital) (Bourdieu, 1986).
Adding additional complexity to assessing wealth inequality, archaeol-
ogists typically lack written records of household income, and instead
must rely on proxies for wealth, such as household size, agricultural
landholdings, or artifact assemblages (Smith, 1987).

In the Maya context, assessing wealth inequality is often approached
through a combination of architectural, artistic, epigraphic, and
ethnohistoric sources. Scott Hutson (2020) notes that although re-
searchers have historically characterized Maya society as having two
classes (elites and nonelites), more recent evidence points to multiple
economic and social groups within Maya society. Rather than reflecting
the presence of a “middle class” (Chase and Chase, 1996; Smith, 2018),
the diversity of Maya social groups might be meaningfully differentiated
based on vocation, including royalty, nobles, craftspeople, merchants,
farmers, and other-than-human agents (Harrison-Buck and Hendon,
2018; Houston and Inomata, 2009). Despite the lack of evidence for a
formal bureaucracy among the Classic period Maya, epigraphy reveals
diverse sets of titles relating to inherited noble duties in royal courts
(Foias, 2013; Inomata and Houston, 2018; Jackson, 2013; Miller and
Brittenham, 2013). This perspective notes the existence of both social
and economic hierarchies in Maya society, but that individual and
household attributes vary within groups. Hutson (2020, 411) also notes
the benefits of continuous variables (e.g. house size or labor metrics) for
assessing wealth and inequality. Based on these metrics, he further
points to the lack of clear “strata” in Maya society, highlighting one
strength of the Gini index, namely that the distribution of wealth across
a community can be assessed and visualized.

As a measure of wealth dispersion, the Gini index is closely linked to
the Lorenz curve, first proposed and developed by Max Lorenz (1905).
The Lorenz curve is a graphical representation of wealth concentration
within a population, showing the cumulative proportion of income or
wealth that is owned by a cumulative proportion of the population. This
curve is then compared against a line of equality extending from the
origin point at a 45° angle to the point where 100% of cumulative in-
come is shared by 100% of the cumulative population. The line of
equality represents a hypothetical population where wealth or income is
distributed equally. Lorenz (1905) observed that the curves of unequal
distributions will always intersect with the line of equality at the lowest
and uppermost ends, but the degree to which the bow formed by the
Lorenz curve projects away from the line of equality represents the
magnitude of inequality in the population.

Corrado Gini (1912) proposed that this degree of inequality could be
quantified by calculating the ratio of the area between the line of
equality and the Lorenz curve over the total area under the line of
equality (the latter typically equal to 0.5), yielding a value known as the
Gini coefficient, ranging from 0 to 1. A coefficient of 0 would indicate
that the Lorenz curve and the line of equality are the same, expressing an
equal distribution, while a coefficient of 1 would theoretically occur if
the Lorenz curve protruded to its maximum extent, representing
maximal inequality. Mathematically, the Gini coefficient is equivalent to
half of the relative mean absolute difference of a distribution, repre-
sented by the following formula, where G is the Gini coefficient, n is the
number of observed values, x is a single observation, and X is the sample
mean:

G— > /":1 i — x
2n%
While potentially meaningful, the Gini coefficient reduces the
complexity of inequality distributions to a single value. Adrian Chase
(2017, 35) has noted that two distinct populations can exhibit the same

Gini coefficient while producing Lorenz curves with very different
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forms. Chase has further argued that the shape of a Lorenz curve can
reveal inflection points, or “kinks,” that may reflect clearly defined so-
cial classes with significant wealth disparities. In contrast, a curve
without such inflection points will be smoother without sudden changes
in slopes. However, kinks will also be more discernible in the Lorenz
curves generated with small sample sizes.

Small sample sizes can additionally produce inaccurate results when
calculating the Gini coefficient. Several researchers (Bowles and Carlin,
2017; Deltas, 2003) have observed that Gini coefficients calculated from
small sample sizes tend to underestimate inequality; for example, even
when a single individual holds all wealth within a small population, the
Gini coefficient will fall short of 1. To compensate for small sample bias,
the calculation of a corrected or unbiased Gini coefficient based on
sample size will ensure the value varies over the unit interval (Bowles
and Carlin, 2017, 2), represented by the following formula, where G is
the corrected, adjusted, or unbiased Gini coefficient, G is the uncorrec-
ted or biased Gini coefficient, and n is the number of observed values:

Ge=G-"

n—1

Confidence intervals are additional metrics that help to describe and
compare Gini coefficients, especially important to consider when
working with small sample sizes, as confidence intervals will be wider
for small versus large sample sizes. These confidence intervals ensure
the quantification of the extent to which hypothetical extreme values
absent from the sample might affect the calculation of the Gini coeffi-
cient, which is less likely to occur in larger samples. The most common
approach uses bootstrapping to select repeated random samples
(generally at least 1,000) of the same size at a given confidence level
(80-95%) (Dixon et al., 1987; Peterson and Drennan, 2018, 53;
Thompson et al., 2021b, 10). The result will be a lower and upper
confidence Gini coefficient, providing an error range at the specified
confidence level.

Several archaeological publications and online tutorials outline the
methods to calculate Gini coefficients, typically relying on a spreadsheet
approach to tally cumulative proportions (Chase, 2017; Smith et al.,
2014). This workflow can be automated in the R statistical software
environment, and the DescTools (Tools for Descriptive Statistics) pack-
age (R Core Team, 2021; Signorell, 2022), among others. Within the
DescTools package, the Gini function can calculate the biased and cor-
rected Gini coefficients from a vector of values (which can be imported
from a spreadsheet or data frame), as well as the confidence intervals
using bootstrapping. These data can be output to a spreadsheet for
visualization, or Lorenz curves can be visualized in R using the generic
plot function or the ggplot2 and gglorenz packages (Chen and Cortina,
2020; Wickham, 2016).

While the methods behind the calculation of Gini coefficients and the
generation of Lorenz curves are straightforward, the interpretation of
these metrics is more challenging. Although developed to measure
inequality, these models are fundamentally measures and visualizations
of statistical dispersion. When applied to known metrics of income or
wealth distribution, this statistical dispersion unquestionably relates to
economic inequality. However, when applied to any other metric, the
onus is on the researcher to establish the correlation between inequality
and their chosen metric. Christian Peterson and Robert Drennan (2018,
41), for example, prefer to use the term “differentiation” to highlight the
diversity of a given metric across a population, possibly although not
necessarily correlated with inequality.

When applied to archaeological data, the Gini coefficient is unlikely
to reflect directly income or wealth. Archaeologists, therefore, must
select measurable proxies that they can justify as reasonable indicators
of household wealth in past societies (Chase, 2017; Peterson and
Drennan, 2018; Smith, 1987; Thompson et al., 2021b). The first
archaeological application of the Gini coefficient evaluated the use of
Lorenz curves with examples of metrics of inequality including material
goods and agricultural landholding (McGuire and Netting, 1982;
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McGuire, 1983, 104-105). Other methods have incorporated data
related to grave sizes, forms, and goods (Munson and Scholnick, 2022;
Schulting, 1995; Windler et al., 2013; Yu, 2019). In Mesoamerica,
Michael E. Smith and colleagues (2014) argued that in addition to
agricultural field size, house size is an appropriate measure of household
wealth. According to Smith and colleagues (2014, 312), in agrarian
societies, elite houses are generally larger, more elaborate, and more
costly than those of commoners. The explanation for the correlation
between wealth and house size is that larger houses are more costly to
construct in terms of material, time, and labor, and wealthier house-
holds often intentionally build large and elaborate homes to signal their
prestige (Smith et al., 2014, 312). In addition to household size, ar-
chaeologists have investigated construction labor costs and materials as
a means of assessing wealth (Abrams, 1994; Hutson, 2020; Strawinska-
Zanko et al., 2018). House size can be integrated into an analysis of Gini
coefficients in several ways, including structure footprint area, structure
height, surface area, volume, or some combination of these metrics.
Archaeological studies of inequality of house sizes generally adopt
structure footprint area or structure volume (Barnard, 2021; Brown
et al., 2012; Chase, 2017; Smith et al., 2014; Thompson et al., 2021b).
These metrics are useful proxies for inequality in the Maya area, where
researchers have identified in ethnographic contexts that house size is
primarily related to wealth rather than necessarily to population size
(Netting, 1982; Strawinska-Zanko et al., 2018; Wilk, 1983).

Researchers, however, are presented with an interpretive challenge
to select which structures represent the “house,” and how the eminently
mappable remnants of such structures may be conceptually mapped to a
social “household.” In the Maya area, the first researchers to examine
settlement patterns and household archaeology systematically adopted
the Principle of Abundance. This heuristic argues that because all people
need a residence, and such buildings are typically less costly than
dedicated religious or political architecture (e.g., temples and palaces),
most mounded features found by archaeologists across the landscape
were domestic structures (Ashmore and Willey, 1981). However, the
smallest of these features could not house individuals or their families
and were deemed ancillary structures for storage (Lamoureux-St-Hilaire,
2022). The specific threshold separating houses from ancillary struc-
tures would have varied regionally, but a cutoff of 8 square meters has
been proposed (Ashmore, 1981; Liendo Stuardo, 2002, 59). Further-
more, even as the inclusion of pyramids or ballcourts would improperly
skew the data, certain large structures represented elite residences or
palaces that should not be omitted from the calculation of Gini co-
efficients. To complicate the matter, such residences additionally
included public space and living quarters for servants and other non-
elite individuals. Smith and colleagues (2014, 319-320) presented a
methodology for estimating living space within apartment compounds
at Teotihuacan; however, this approach must be further developed to be
applied to other cultural contexts.

As noted above, an additional challenge is whether single structures
represent Maya households. In reality, Maya households are better
mapped not onto single buildings, but instead onto entire domestic
architectural compounds oriented around plazas (called patio or pla-
zuela groups), as well as space outside of houses, including residential
terraces, yards, gardens, and agricultural fields (Chase, 2017; Nelson,
2005, 137; Robin, 2003, 314; Thompson et al., 2021b). Archaeologists
must also consider that Maya homes were periodically expanded over
time and built over earlier phases of construction (McAnany, 2013).
When these additions represent continuous occupation, architectural
volume can be included as an aspect of accumulated wealth, an
assumption of the Principle of First Occupancy, that the largest house-
holds represent the oldest families in a settlement (Ashmore, 1991;
Blackmore, 2011a, 174, Blackmore, 2011b, 88; McAnany, 2013).
However, if a structure is reoccupied after abandonment, its volume
might reflect the wealth of distinct households across large scales of
time. An additional complication with volume estimates is that values
are calculated based on the mounded rubble left behind by collapsed
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buildings, not the volume of houses or superstructures themselves, many
of which were built with perishable materials. Still, in certain sub-
regions of the Maya Lowlands, for example the Puuc hills, structure
volume may provide a better proxy for differentiation due to the verti-
cality of construction of the largest houses. Across the Maya lowlands,
larger structure volumes may correlate with the presence of vaulted
buildings that correlate with wealth and status (Estrada-Belli et al.,
2023).

Furthermore, not all houses across the landscape were necessarily
occupied at the same time and deciding which structures to include in an
analysis of inequality will affect the results. In this sense, many of the
challenges facing the interpretation of inequality alongside structure
size are shared by the reconstruction of population estimates (Canuto
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et al., 2018). Resolving these issues can be accomplished by establishing
consistent and clearly defined methodologies through collaboration
with other researchers, as well as comparing how the use of different
metrics affect the results of Gini indices.

3. Dataset

The LiDAR data used in this analysis were collected in 2013 by NASA
Goddard’s LiDAR, Hyperspectral, and Thermal Imager (G-LiHT) as part
of a REDD + study over southeastern Mexico (Cook et al., 2013; Golden
et al., 2016). While these data were collected with single flight transects
measuring approximately 300 m wide, the combined length of the study
over southeastern Mexico amounts to 3,200 km and a total area of 1,118
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are color-coded based on flight region, and the two-digit numbers in parentheses refer to the first two numbers in the tile numbers (unique identifiers) shown on the

map. For clarity, not all tiles are numbered.



W. Schroder et al.

square kilometers. Due to the flight pattern of single transects, the
average ground point density varies significantly across the dataset
(with a range from 0.3 to 11.0), reported in more detail in a previous
publication (Schroder et al., 2020), which may bias results in heavily
forested areas, due to the impact of vegetation on ground point density
(Inomata et al., 2017; Schroder et al., 2021b). Still, ground point den-
sities are sufficient (at least 1 point per square meter) in the majority of
tiles to generate high resolution digital elevation models with cell sizes
of 1 square meter or less (Rosenswig et al., 2013, 1497). While limited
along its short axis, the full transect presents a significant cross section of
the Maya landscape of southeastern Mexico. These data offer a unique
opportunity to interpret regional variation across diverse environments,
cultural areas, and physiographic sub-regions of the Maya lowlands.
Furthermore, as these data were collected without input from archae-
ologists, the transects cover understudied areas largely distant from
known archaeological sites, especially the largest political and urban
centers.

We previously reported on the analysis of 458 of the G-LiHT tiles
across southesatern Mexico and their environmental context (Schroder
et al., 2020). These 458 tiles cover a diverse series of cross-sections of
the Maya lowlands, with flight regions including northern Yucatan,
southern Campeche and Quintana Roo, Chiapas (including parts of the
Eastern Highlands and Lowlands, Central Depression, and Central
Plateau), as well as smaller portions of bordering Tabasco and Petén,
Guatemala (Fig. 1). Using the previously annotated structure data that
had informed estimates of settlement density across the dataset
(Schroder et al., 2020), we calculated Gini indices based on structure
dimensions. We then contextualized these Gini indices with several
cultural and environmental variables previously discussed in other
publications, including proximity to known sites, rainfall patterns, and
access to resources, including surface water (Golden et al.,, 2016;
Schroder et al., 2020). Some tiles were necessarily eliminated in the
present study due to small sample sizes, discussed in more detail below.

A lingering issue with the G-LiHT dataset and the annotated
archaeological features is the question of temporality. The data docu-
mented in the G-LiHT survey represent a palimpsest and accretion of
human occupation and modification of the landscape over millennia,
especially given that Maya households periodically expanded their
structures over time, both horizontally and vertically. Despite relatively
successful attempts to distinguish between Preclassic (1000 BCE-250
CE) and Classic period (250-800 CE) constructions in LiDAR data in
defined sub-regions (Garrison et al., 2019), the spatial scale of the G-
LiHT data cover a diversity of Maya settlement patterns that resist
simple categorization. Furthermore, much of the G-LiHT data record
settlement associated with the Colonial period (1521-1821 CE) and
later. The present study focuses on regional variation and automation,
while future research will require a greater engagement with tempo-
rality, through closer visual inspection of the G-LiHT tiles, integration
with site-based approaches, contextualization with the culture histories
of sub-regions, and ground verification. With these caveats, we highlight
regional trends across large portions of the Maya Lowlands, with the
goal of refining these results through additional analyses to incorporate
the temporal dimension. We note that although the issue of temporality
is more pronounced in the G-LiHT data, other LiDAR surveys and site-
based approaches face similar challenges.

The G-LiHT transect data were divided into smaller sample tiles by
the original researchers with an average tile length of approximately 7
km and grouped by the labeled flight regions shown in Fig. 1. These data
are available at https://gliht.gsfc.nasa.gov, all beginning with the prefix
AMIGACarb_, followed by the character strings shown in the legend in
Fig. 1, GLAS or NFI (referring to the general direction of transects), the
month and year of data collection, and ending with a three-digit num-
ber. For consistency, we preserve this naming convention, but for data
processing we named tiles based on a unique identifier, beginning with
the two-digit codes shown in the Fig. 1 legend, followed by the original
three-digit number equivalent to each tile. For example, the
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AMIGACarb_Yuc_South NFI s452 tile shown in Fig. 2 was assigned the
value of 23452.

The 7-km length of tiles arguably encompasses a settlement system
suitable for the calculation of several variables, including structure
density and Gini indices. Researchers in the Belize Valley and Palenque
regions, for example, have noted regularly-spaced population centers at
similar intervals (Driver and Garber, 2004, 289; Liendo Stuardo et al.,
2014; Liendo Stuardo and Lopez Bravo, 2006, 434). Subsequent analyses
can assess variability within G-LiHT tiles, but as a first step we focus on
macroregional patterns that emerge from calculations based on the 0.3
x 7 km polygons. We recognize that Gini coefficients calculated from
these samples may not be representative of entire archaeological com-
munities or settlement systems (Smith et al., 2014, 321); however, the
consistency in the application of this approach across the G-LiHT data is
useful for comparative purposes, and further research can assess how
sampling affects these results. Further analysis could explore how issues
of scale affect Gini coefficients, for example, dividing the data into
smaller “kernel” sizes or feature clusters (i.e. archaeological sites)
(Golden et al., 2021) or expanding coverage of targeted G-LiHT tiles
with additional airborne LiDAR surveys, including the use of unoccupied
aerial vehicles (UAV), for example (Schroder et al., 2021a). We recog-
nize that at the current scale, the G-LiHT data underrepresent the largest
Maya sites, meaning that the Gini coefficients reported here may be
skewed — whether higher or lower will require additional comparisons
with site-based approaches. As such, the values reported here are not
meant to be interpreted absolutely; rather, the comparison of Gini
indices across the G-LiHT dataset is presented as a relative measure to
assess regional variation. We expect that combining LiDAR datasets like
G-LiHT with site-based approaches will improve an overall under-
standing of Maya landscapes and settlement alongside social inequality.

4. Methods

In this section, we present our methodology for calculating and
comparing Gini coefficients used in this analysis. First, we discuss the
architectural metrics adopted in this study that were later used in the
calculation of Gini coefficients. Second, we explain how features were
filtered and selected for this analysis, based primarily on structure and
patio size thresholds to include only domestic architecture. Third, we
review the methodology for the calculation of architectural metrics
based on previously annotated features. Fourth, we acknowledge some
of the complications in the automation of our approach. Finally, we
present the methodology for the automation of the calculation of Gini
coefficients across the large G-LiHT dataset.

In the interest of comparison with other studies, we adopted the
methodology outlined by Amy Thompson and colleagues (2021b) to
calculate Gini coefficients based on architecture. Six separate Gini
indices were calculated in six different ways, based on: 1) structure
footprint area, 2) structure volume, 3) patio group footprint area
(including the patio), 4) patio group volume (including the patio), 5)
footprint area of all structures within patio groups (excluding the patio
itself), and 6) volume of all structures within patio groups (excluding the
patio itself). This methodology is visualized by Thompson and col-
leagues (2021b, 9), and results for a portion of one G-LiHT tile are shown
in Fig. 2. Each of the six Gini indices represents a different type of dif-
ferentiation or inequality (Chase, 2017; Peterson and Drennan, 2018);
therefore, we present a summary of statistics from each method while
focusing primarily on structure footprint area for subsequent analyses.

Given the diverse range of structures present in the sample area, we
refined our sampling strategy to focus on only those structures that we
believe are most closely associated with individual households and
household wealth. This required filtering the data in several key ways,
based on either the structure or patio footprints. For calculations based
on structure footprints and structure volumes, structures with footprints
larger than 275 square meters and below 20 square meters were
excluded. These thresholds, suggested by Thompson and colleagues
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Fig. 2. Subsample of a single G-LiHT flight tile, AMIGACarb_Yuc_South NFI s452 (unique identifier 23452), showing a) all annotated features, b) structures used in
Gini analysis of structure footprint area and volume, c) patio groups used in Gini analysis of patio group footprint area and volume, and d) structures used in Gini

analysis of structure area and volume within patio groups.

(2021b) may require adjustment in future analyses, especially at the
lower end, as Wendy Ashmore (1981) cited 20 square meters as an
average figure for house mound footprints, rather than the minimum.
Average house mound footprints and the necessary thresholds for the
calculation of Gini indices will vary across regions. Still, when relying on
regional comparisons of LiDAR, adopting a lower cutoff can minimize
false positives and ambiguous features; in fact, Scott Hutson and col-
leagues (2021) suggested a higher cutoff for minimum building size (50
square meters) when identifying house mounds from the G-LiHT LiDAR
data. For patio group footprints, we chose a threshold of 4,000 square
meters, described below. Of note, as recommended by Thompson and
colleagues (2021b), patio group metrics (both area and volume) include
all structures within the patio group (even those below 20 square meters
and above 275 square meters).

The data analyzed here are part of a broader long-term study. Pre-
viously, feature annotation identified structures, basal platforms, and
individual plazas (regardless of size) rather than patio groups. Further-
more, we did not distinguish between large public plazas as discussed by
Inomata (2006) and domestic patios in the annotations. In the current
analysis, separating large plazas from domestic patios required a
threshold based on area. Here, the area of these features was calculated
with the Add Geometry Attributes tool in ArcGIS Pro version 2.8.3.
Determining patio group footprint area from the annotated features
required a decision of which structures within certain distances of plazas
would be considered part of the same patio group, an adjacent patio
group, or an individual structure, depending on the relative settlement
density. In some cases, patio groups and structures were built atop basal
platforms, which aided in their identification. In contrast, some plat-
forms, especially those dating to the Preclassic period, can support small
structures difficult to identify in LiDAR (Garrison et al., 2023, 283).

However, any platform without discernible superstructures was elimi-
nated from the analysis by restricting the maximum structure footprint
area to 275 square meters. To semi-automate the definition of an entire
patio group, we adopted the following workflow in ArcGIS Pro: 1)
Spatial Join of structures within 10 m of plazas, assigning a target field
to structures based on the associated plaza, 2) a manual check of
structures joined multiple times (within 10 m of several plazas), fol-
lowed by a manual assigning of a structure to a plaza when appropriate,
3) Minimum Bounding Geometry based on merged structures and plazas
sharing the same target field using the Convex Hull setting, and finally 4)
using the Merge tool to combine the results of the Minimum Bounding
Geometry with intersecting basal platforms. After a visual check of
defined patio groups, we omitted extreme outliers of large, plaza-
oriented architecture over 4,000 square meters, which represent
mixed areas of public, ritual, and administrative architecture at political
centers, rather than individual household areas (Fig. 3).

Density

100 1000 10000
Plaza or Patio Area (square meters)

Fig. 3. Density plot and box plot (half violin plot) showing the distribution
across the G-LiHT dataset of plaza or patio sizes on a logarithmic scale.
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Calculating the volume of features is less straightforward than
calculating their footprint area and additionally necessitates access to a
high-resolution digital elevation or terrain model (DEM/DTM); in our
case, features were previously identified with raster derivatives (hill-
shade) of DEMs produced from the point clouds collected by the G-LiHT
study. Without access to DEMs, feature volume could theoretically be
estimated if the height is known using cubic solid calculations (e.g.,
rectangular prisms, cones, etc.) (Lacquement, 2010; Magnani and
Schroder, 2015). To calculate volume of features, we modified a method
developed by Adrian Chase and colleagues (forthcoming) that 1) ex-
tracts the point coordinates from the vertices of features, 2) interpolates
a DEM between these vertices (a hypothetical ground surface under-
neath features), 3) subtracts the interpolated, hypothetical DEM from
the archaeological DTM, 4) multiplies the result by the horizontal res-
olution of the DTM, then 5) uses Zonal Statistics to sum the resulting
cells assigned to each feature class. Our modification altered step 3 by
creating a conditional evaluation to remove negative values, so that in
step 5 only positive values would be summed. We incorporated this
script into a model in ArcGIS Pro that iterated through the folders that
contained the raster DEMs of all G-LiHT tiles analyzed in the present
study.

Semi-automation was not perfect, however, and aside from the visual
checks already mentioned and the reassignment of certain features to
appropriate patio groups, some of the volume calculations returned false
estimates. For example, the interpolation of feature vertices that fell
outside of the corresponding G-LiHT tile returned elevation values and
volume estimates that were too large. These features were either
removed or redrawn manually. In addition, features that were improp-
erly annotated also resulted in excessive volume estimates. Such outliers
were manually removed from the analysis.

Sample sizes also vary significantly from metrics comparing struc-
tures to plazas because the study area contains fewer plazas than
structures (each plaza will often have 2 or more structures). Addition-
ally, due to the manner of feature annotation based on a visual analysis
of DEMs, plazas were only identified when evidently sunken or raised, or
when clearly defined by the orientation of structures on at least 3 sides
(Schroder et al., 2020). Many plazas, therefore, were likely left un-
marked because of the variable resolution of the data and when struc-
tures were harder to distinguish, especially in lower density settlement
without sufficient contextual clues. Without systematic ground verifi-
cation across the dataset, any calculations based on plazas will be
speculative.

Because of the complications in defining patio groups, which re-
quires better consideration of regional variability in form and ground
verification, we chose to focus on Gini indices calculated from structure
footprint area for this analysis. Structure footprint area is more complete
in the annotated G-LiHT data considered here. Namely, 75 of the
analyzed G-LiHT tiles include structures without plazas, so we are able
to include more data by analyzing structures rather than patio groups.
For comparative purposes, we recommend calculating Gini coefficients
using several lines of evidence, but other researchers should determine
the appropriate metrics based on the regional, cultural, and ecological
contexts of their datasets.

Once calculated in ArcGIS Pro, area and volume figures were
matched to the value of their relevant G-LiHT tile, based on their fea-
tures’ centroids. Each G-LiHT tile was assigned a unique identifier based
on flight region and the 3-digit value already stored in its file path
(Fig. 1). Feature data were exported as a single comma separated values
(.csv) table consisting of 2 columns, where each row represented a
feature, with a unique identifier column and a geometry metric column.
These data were then imported as a data frame to R, where the Gini
function from the DescTools package was applied to grouped data based
on the unique identifier, with statistics for each unique identifier or G-
LiHT tile output to a new data frame. To advance open science and the
utility of these research methods, the code used in this analysis is made
publicly available (https://github.com/whitschroder/Gini-automatio
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n). G-LiHT data are available through NASA (https://gliht.gsfc.nasa.
gov). The code used in this study could be applied to any dataset
where archaeological features have been assigned to a unique value (for
example, a series of archaeological sites, regions, districts, or samples).
Results were then imported back into ArcGIS Pro and joined (Join Field
tool in ArcGIS) to a G-LiHT tile’s environmental and archaeological data
previously compiled and reported (Schroder et al., 2020). When linked
to this previously compiled data, each tile’s Gini coefficient was then
compared to its environmental and cultural variables, including distance
to known archaeological sites (Witschey and Brown, 2010), distance to
surface water (INEGI, 2000), settlement and feature density (Schroder
et al., 2020), and rainfall and seasonality of precipitation expressed as
the coefficient of variation of monthly rainfall (Fick and Hijmans, 2017,
https://www.worldclim.org). These variables were selected due to their
availability, relationship to known archaeological contexts and core
ecological contexts identified in a preliminary study (Golden et al.,
2016), and because a follow-up analysis identified these socio-
environmental variables as the most closely correlated with settlement
density in the study area (Schroder et al., 2020).

5. Results

Several authors have noted the need for robust samples when
calculating and interpreting Gini coefficients, observing that lower
sample sizes tend to underestimate the Gini index while increasing the
difference between upper and lower limits of the confidence interval
(Bowles and Carlin, 2017, 2; Peterson and Drennan, 2018, 41). Larger
samples will narrow the confidence interval, as additional data are un-
likely to affect results significantly. The G-LiHT data analyzed in this
study presented a valuable opportunity to test the effects of sample size
on Gini coefficients.

Out of 458 sample tiles, the number of structures per tile ranged from
0 to 1,076, while the number of plazas per tile ranged from 0 to 97.
Calculating Gini coefficients from structure area and volume, therefore,
provided higher sample sizes. In an exercise to compare how sample
sizes affect the results of the Gini coefficient calculation, we first filtered
G-LiHT tiles to include only those with two or more structures (at least 2
values are necessary to calculate a Gini index) with footprint areas be-
tween 20 and 275 square meters resulted in a total of 393 G-LiHT tiles.
The uncorrected (biased) and corrected (unbiased) Gini coefficients
based on structure footprint area were calculated for each tile, and the
difference between these values was plotted against the sample size of
structures per G-LiHT tile (Fig. 4). The results show that the lowest
sample sizes can increase the corrected Gini coefficient by a value of
more than 0.4 compared to the uncorrected value. This bias is largely
eliminated with sample sizes of 10 or higher, where the difference be-
tween uncorrected and corrected Gini indices amounts to less than 0.05.
The confidence intervals for smaller samples had a wide range of values
(at a 95% confidence level), with the largest range between upper and
lower Gini coefficients reaching higher than 0.8 with a sample size of 2.
Above a sample size of 10, the highest confidence interval range is less
than 0.3. We found that sample sizes of more than 100 were necessary to
reach confidence interval ranges below 0.1. Based on this exercise, we
therefore opted to limit our study to G-LiHT tiles with 10 or more fea-
tures (structures or plazas), and all subsequent findings presented here
are based on this sample size (Fig. 5). Other researchers should deter-
mine appropriate sample sizes based on their own data, although our
findings may provide a guideline. By adopting a sample size of 10 in this
study, we attempt to minimize the effects of the limited horizontal
spatial coverage of the G-LiHT tiles.

Quantiles of analyzed data are presented in Table 1. Across the
dataset, corrected Gini coefficients range from as low as 0.12 (based on
patio group area) to 0.82 (based on structure volume within patio
groups). As Adrian Chase (2017, 37) has cautioned, Gini indices
generated from different metrics should not necessarily be assumed to
represent the same type of inequality; in the present study Gini indices
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varied significantly depending on the metric used. In some cases, when
Gini coefficients calculated from distinct metrics differ significantly, the
data may be demonstrating several kinds of differentiation (or
inequality) that are worth investigating further (Peterson and Drennan,
2018, 54). We divided the distribution of Gini coefficients calculated
from each metric into 5 quantiles, shown in Table 1 alongside structure
densities and sample sizes. A clear pattern emerges that Gini coefficients
tend to increase across the table columns from left to right, with the
lowest Gini indices calculated from structure footprint area (ranging
from 0.14 to 0.45) and the highest based on the volume of structures
within patio groups (ranging from 0.24 to 0.81) (Fig. 6). Notably,
dispersion also increases across each metric, with Gini coefficients
calculated from structure volume in patio group showing the largest
range of values. Due to space constraints, we cannot present Lorenz
curves for each of the 6 metrics for each G-LiHT tile, but examples are
shown in Fig. 7.

We propose several reasons for the higher Gini coefficients based on
volume metrics compared to area values. With some exceptions (Smith
et al., 2014), other studies have reported higher values for Gini indices
based on volume versus area, especially in the Maya area (Chase, 2017;
Thompson et al., 2021b, 14). Volume estimates based on LiDAR or a
DEM more than likely include at times the natural topography around
and under features. Proper volume estimates require careful annotation
of features, often confirmed by ground verification; therefore, while
minor annotation errors will not negatively influence footprint area
estimates, these same errors could profoundly impact volume estimates,
especially in areas of high topographic variation. Many Maya house-
holds took advantage of natural topography, and accurate volume esti-
mates require excavation to determine the extent of construction over
bedrock. Due to the size of the G-LiHT tiles (averaging approximately 7
km in length), natural topography can vary significantly from upland
areas to bajos, or lowlands. As the natural topography affects volume
estimates, upland areas with higher volumes will skew Gini coefficients
when compared to lowland structures in flat areas. Following the
guidelines established by Amy Thompson and colleagues (2021b), for
Gini coefficients calculated for individual structures we eliminated
structure areas that did not fall between 20 and 275 square meters, but
these same structures were included when calculating Gini coefficients
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based on patio groups. In addition, all tiles in the current study had
fewer than 100 plazas, resulting in small sample sizes for patio group-
based metrics, which we have established can contribute to wide con-
fidence intervals. Aside from these observations, we can conclude that
across the dataset (and the Maya lowlands in general), higher differen-
tiation exists in plaza form in relation to structure form, and addition-
ally, structure volume is more variable than structure area, based on the
higher Gini coefficients generated from these metrics.

In another effort to interpret Gini coefficients based on different
metrics, we generated a correlation matrix showing statistically signif-
icant positive correlations across all bivariate comparisons (Fig. 8)
(correlation coefficients and p-values are included in supplementary
materials). This analysis suggests that despite the variation in results
based on each architectural metric, the Gini coefficients increase
somewhat predictably, and that tiles with high or low Gini coefficients
based on one metric tend to exhibit high or low Gini indices based on
other metrics, respectively. Furthermore, the relative magnitude of
correlation coefficients shows that the strongest correlations are be-
tween Gini indices based on similar metrics, for example when
comparing areas or volumes of structures and patio groups, or when
comparing structure metrics or patio group metrics. Predictably, a
strong correlation exists between the indices generated from patio group
area and patio group structure area, as larger patio groups tend to have
more structures and higher structure footprint areas. Still, discrepancies
in the comparisons are due to the methodological challenges discussed
above and the fact that such measurements of differentiation are distinct
though related. We believe that including the additional vertical
dimension of structures adds more uncertainty, and although Smith and
colleagues (2014) suggest that the verticality of Mesoamerican archi-
tecture might be more relevant than area when assessing inequality, we
opt to focus on structure area in this study. Presently, we are less con-
cerned with the absolute values of the Gini coefficients presented here
and more interested in the relative values and trends across the study
area.

In a previous analysis, we calculated and presented settlement den-
sity across the 458 G-LiHT tiles analyzed (Schroder et al., 2020), and the
resulting categorical quantiles of these data are also presented in
Table 1. In the same analysis, we compared settlement density to several
environmental variables. Here, we expand this study to include a com-
parison of these environmental variables alongside Gini coefficients.
Due to space constraints and the limitations of calculating Gini indices
based on patio groups and volumes, we focus only on Gini coefficients
calculated from structure footprint area, although we have established
correlations between each metric. The comparisons between previously
identified environmental variables such as rainfall and seasonality,
settlement density (Schroder et al., 2020), and Gini coefficients are
shown in the correlation matrix in Fig. 9. While correlations between
structure density and distance to Type 1 or Type 2 site, terrace density,
rainfall, seasonality, and distance to surface water are statistically sig-
nificant (at p less than 0.05), these results indicate statistically insig-
nificant, weak positive correlation between Gini coefficients and these
same variables, including settlement density, meaning that Gini co-
efficients do not necessarily increase linearly relative to structure den-
sity. In other words, denser, more urban settlements in the study area are
not necessarily characterized by higher differentiation in structure size.
Amy Thompson and colleagues (2021b) reached a similar conclusion in
their comparison of sites in southern Belize with Chunchucmil, Caracol,
Uxul, Palenque, and Tikal. Still, the tiles with the highest feature den-
sities generally have the highest Gini coefficients, while more variability
is present in lower density tiles. Gini indices, however, cluster between
0.2 and 0.4 despite feature density. In addition, when separated by flight
region, some areas show stronger trends between Gini coefficient and
settlement density, notably the AMIGACarb_Yuc_Norte, AMIGA-
Carb_Out_of the_Yuc, and AMIGACarb_Chiaps tiles, although these re-
sults are not statistically significant (Fig. 10) (correlation coefficients
and p-values are included in supplementary materials).
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Fig. 5. Map of the Maya lowlands showing Type 1 and 2 archaeological sites (Witschey and Brown, 2010) and the analyzed G-LiHT tiles, color-coded to the corrected

Gini coefficient based on structure footprint area quantiles shown in Table 1.

A related comparison is the relationship between a tile’s Gini coef-
ficient and its distance to known urban centers or large sites. Here, we
rely on the Walter Witschey and Clifford Brown (2010) electronic atlas
of Maya settlement. Despite flaws and inconsistencies in the data, the
largest — typically well-documented — archaeological sites (classified as
Type 1 and Type 2 in the dataset) tend to be placed with reasonable
accuracy. Notably, the correlation matrix in Fig. 9 shows no significant
linear correlation between a G-LiHT tile centroid’s distance to the
nearest Type 1 or Type 2 site and its Gini coefficient. In contrast, as
noted earlier, we have established a negative correlation between set-
tlement density and distance to Type 1 or Type 2 site, meaning that

settlement density increases with proximity to large sites (Schroder
et al., 2020). Yet clearer patterns emerge when data are separated by
flight region, showing that Gini coefficients across regions tend to
decrease as distance to large sites increases (Fig. 11). Of note, the only
flight region with a statistically significant (p less than 0.05) negative
correlation between Gini coefficients and distance to Type 1 or Type 2
sites is the Yuc_Centro flight region (correlation coefficients and p-
values are included in supplementary materials).

Other weak relationships are shown between Gini coefficients and
agricultural terrace linear density (positive), rainfall (negative), and
seasonality (positive); however, these results are not statistically
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Table 1
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Feature density and corrected Gini coefficients by G-LiHT tile divided into 5 quantiles.

Quantile Structure and Platform Gini Coefficients
Density per Ha . . . . .
Structure Patio Group Structure Area in Patio Structure Patio Group Structure Volume in
Area Area Group Volume Volume Patio Group
Highest 20% 0.93-3.75 0.37-0.45 0.45-0.60 0.47-0.60 0.59-0.79 0.69-0.81 0.67-0.82
Higher 0.52-0.93 0.34-0.37 0.41-0.45 0.41-0.47 0.55-0.59 0.60-0.69 0.61-0.67
Middle 0.21-0.52 0.31-0.34 0.36-0.41 0.35-0.41 0.52-0.55 0.55-0.60 0.52-0.61
Lower 0.02-0.21 0.28-0.31 0.30-0.36 0.29-0.35 0.48-0.52 0.47-0.55 0.45-0.52
Lowest 20% 0-0.02 0.14-0.28 0.12-0.30 0.19-0.29 0.26-0.48 0.33-0.47 0.24-0.45
Sample Size (# of 458 333 126 126 332 126 126
Tiles)
n=126
Structure Volume ferls
in Patio Group ~ Median = 0.56
Range =0.24 - 0.82
n=126
Patio Group_ Median = 0.58
Volume
Range = 0.33 - 0.81
n =332
Structure Aol
Volume ~ S O U Median = 0.53
o Range =0.26 - 0.79
-
n=126
Structure Area _ Median = 0.38
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Fig. 6. Box plots comparing the distributions of corrected Gini coefficients by calculation metric across the entire dataset.

significant, complicating the potential to understand the relationship
between access to resources and inequality. As trends, Gini coefficients
seem to increase in relation to the density of agricultural intensification
in the form of terracing. Furthermore, as rainfall decreases and sea-
sonality increases, Gini coefficients increase — could more variable ac-
cess to water be reflected in higher Gini indices? Yet, no significant
linear correlation exists between distance to surface water and Gini
coefficients — perhaps in future studies, access to subsurface water could
be incorporated into this analysis. Such analyses could be paired with
other studies, such as agricultural capability drawn from soil maps. We
present these results merely as observations for future work, but the
takeaway is that correlations between settlement density and these
chosen environmental variables are not matched by comparisons with
Gini coefficients, shown in Fig. 9 and discussed in more detail by
Schroder and colleagues (Schroder et al., 2020). The values of these Gini
coefficients (and perhaps inequality) do not follow the same patterns
across the Maya landscape as does settlement density.

Another goal of this study is to compare the nature of settlement
across subregions of the Maya lowlands. The simplest approach is to use
the flight paths of the LiDAR scans, classified into 7 flight regions, from
north to south, Yuc_Norte, Yuc_North_2, Out_of the_Yuc, Yuc_Centro,
Yuc_South, Chiap_Campeche, and Chiaps. Fig. 12 shows the distribu-
tions of settlement density and Gini coefficients by flight region.

10

Although the highest Gini coefficients between 0.37 and 0.45 appear
across the dataset, the largest concentrations of the highest Gini values
occur in the Yucatan Centro NFI, Yucatan South GLAS, and Yucatan
South NFI transects, corresponding with the Central Lowlands of
southern Campeche and Quintana Roo. These same data suggest marked
differences between settlement density and Gini coefficients in Highland
Chiapas and its foothills compared to other portions of the Central and
Northern Lowlands.

We suggested previously that much of the variation in feature dis-
tribution across the G-LiHT dataset of southeastern Mexico can be better
understood in relation to the physiographic sub-regions defined by
Timothy Beach and colleagues (2015) (Fig. 13). When each tile is
assigned one of the 17 physiographic sub-regions encompassed by the
study area based on the tile’s centroid, some clearer patterns emerge.
Despite some differences, the majority of physiographic sub-regions
show a similar distribution, with medians hovering between Gini co-
efficients of 0.3 to 0.35. The North Coast, however, shows a smaller
median, while the Puuc-Bolonchen Hills and Edzna-Silvituk Trough
exhibit higher medians. The results from the Puuc hills and adjacent sub-
regions again raise issues surrounding the verticality of architecture, and
furthermore, the temporality challenge. For example, based on structure
area data from Sayil, Strawinska-Zanko and colleagues (2018, 176),
attributed a high Gini index (0.71) at the site not to geography but to the
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Fig. 7. Lorenz curves of cumulative proportions from the same, single G-LiHT tile (AMIGACarb_Yuc_South NFI s452 or unique identifier 23452) shown in Fig. 2

comparing the 6 different Gini metrics.

Terminal Classic period (800-1000 CE) occupation of the region, a time
characterized by increasing social inequality.

Smaller data ranges in the Highland Ranges and Valleys, Rio de la
Pasion, and Uayamil regions are also notable. Although not shown in
Fig. 13 due to small sample sizes, the Caribbean Reef and Eastern Coastal
Margin and Chiapas, Grijalva River regions also exhibit lower Gini co-
efficients. These findings suggest regional patterns in the distribution of

inequality across the Maya lowlands, with several key exceptions,
notably representing the northwestern, southwestern, and eastern
geographic extremes of the study area. These sub-regions are the most
peripheral parts of the Maya lowlands, and they are additionally located
in resource rich coastal and riverine environments where inequality may
be reduced (Glover and Rissolo, 2023; Rogers et al., 2011). Such phys-
iographic sub-regions may generally have more widely dispersed and
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accessible resources, rather than geographically localized resources
more readily controlled by individuals or communities.

6. Conclusions

In an effort to quantify and measure inequality, archaeologists have
adopted economic methods to assess statistical dispersion through the
calculation of Gini coefficients. As Christian Peterson and Robert
Drennan (2018) observe, archaeologists can calculate Gini coefficients
with several lines of data, including house size, agricultural field extent,
and artifact assemblages (Munson and Scholnick, 2022). Such lines of
evidence are intended as proxies for inequality through more direct
measurement of differentiation. Spatial differentiation in Gini co-
efficients can be used to infer social inequality across sites, and when
combined with temporal data, changes in wealth inequality can be
traced over time (Kohler et al., 2017).

We explored the possibility of such an analysis at a landscape scale,
calculating Gini coefficients based on the scale of the built environment
in the form of structures and patio groups annotated from LiDAR terrain
data collected by the NASA G-LiHT system over southeastern Mexico.
While the results presented here serve as a first step to interpret regional
differentiation across the Maya lowlands, they suggest that a landscape
approach could offer important context to traditional site-based studies.
We can also begin to identify some key findings and patterns in the G-
LiHT dataset that will be useful to compare with future analyses of social
inequality in the Maya area.

First, we can generalize that across the G-LiHT dataset of south-
eastern Mexico, Gini values calculated from structure footprint area are
typically low. All uncorrected Gini values based on structure footprint
area are under 0.5, which is consistent with other values calculated in
Mesoamerica and the New World (Kohler et al., 2017; Smith et al.,
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2014). Furthermore, 20% of all tiles analyzed exhibit Gini coefficients
under 0.28. Incorporating the additional height dimension to compare
architectural volume profoundly affects the calculation of Gini indices in
this study. Aside from possible methodological issues we have discussed,
this discrepancy highlights important differentiation in architectural
form across the Maya lowlands (Peterson and Drennan, 2018). Future
studies of inequality might compare the values of a topographic position
index to determine possible correlations between architectural volume,
height, and relative prominence with inequality metrics.

Based on the G-LiHT data Gini coefficients, we can identify trends in
higher values in areas of higher density of settlement, but regional
variation is an important factor. Only in the Yuc_Centro flight region do
Gini coefficients show a statistically significant correlation with distance
to larger political centers, perhaps highlighting distinct differences be-
tween the Central Lowlands and more peripheral areas of the Maya
lowlands. In our 2020 study, we determined that proximity to known
sites was a variable associated with higher settlement density. Using the
Witschey and Brown (2010) dataset of Maya site locations, we found
that 59% of the highest settlement density tiles were located within 10
km of Witschey and Brown’s (2010) Type 1 and Type 2 sites, generally
corresponding with the largest known archaeological sites in the Maya
lowlands. Gini coefficients, however, do not follow a clear pattern when
compared to distance from Type 1 or Type 2 sites, although separating
the data by region points to areas where future research might be
beneficial, particularly in the Central Lowlands. These patterns may
reflect the presence of seasonal field houses across the landscape that
might explain the clearer correlation between settlement density and
proximity to known sites compared to weaker correlations between Gini
coefficients, structure density, and distance to large centers (Garrison
et al., 2016; Kohler, 1992; Taschek and Ball, 2003). Variable manifes-
tations of differentiation or inequality across the landscape may also
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Fig. 9. Correlation matrix showing correlations between corrected Gini coefficients across the entire dataset (only the 333 tiles with 10 or more structures) based on
structure area and other variables. Correlations range from positive (blue) to negative (red). Color intensity and circle size are proportional to correlation coefficients.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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point to the decentralized nature of Maya economies (Golden et al.,
2020). Generally weak correlations between settlement density and Gini
coefficients may also relate to other observed characteristics of low-
density urban Maya settlements, for example, that population growth
did not necessarily lead to denser cities as predicted by settlement
scaling theory (Hutson et al., 2023; Smith et al., 2021).

We are still assessing agricultural intensification across the G-LiHT
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dataset of southeastern Mexico, but current findings point to a weak
correlation between Gini coefficients and agricultural terrace density.
Further studies will examine land tenure in the context of agricultural
intensification identified in the G-LiHT data (Barnard, 2021; LeCount
et al., 2019; Thompson and Prufer, 2021). Manus Midlarsky (1999), for
example, has related the emergence of inequality to land scarcity in
agrarian societies alongside population growth (Boserup, 1965;
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Strawinska-Zanko et al., 2018, 165). In this interpretation, the presence
of landesque capital to improve land and increase agricultural yield over
a limited area should correlate with settlement density and Gini co-
efficients. Our preliminary results, however, do not reveal clear pat-
terns. While the tiles with the highest density of agricultural terraces
have the highest Gini coefficients above 0.3, the majority of tiles with
Gini coefficients above 0.3 have low densities of agricultural terraces.
Regional variation in agricultural terracing likely contributes to this
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weak correlation between agricultural intensification and Gini co-
efficients. Access to agricultural resources, alongside the evidence pre-
sented here on rainfall and seasonality, provides an important path to
pursue in future calculations of Gini indices to interpret inequality.
Additional studies could assess intensification through field channeling,
and agricultural capability using soil maps, and other similar indices to
map inequal access to agricultural landscapes.

Clearer patterns emerge when the data are separated by
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physiographic sub-region. The distribution of Gini coefficients by sam-
ple tile is similar across all defined physiographic sub-regions, except in
several key areas of Chiapas, the Pasién River, and the North Coast. The
peripheral and resource rich locations of these regions may contribute to
the lower Gini coefficients that we have presented. Expanding on this
landscape and regional scale analysis, comparison of Gini coefficients
alongside access to natural resources, likely trade routes, and least cost
paths might be beneficial (Thompson et al., 2021a).

Finally, the results of the present study can inform ongoing site-based
analyses of Gini coefficients in the Maya area. Thompson and colleagues
(2021b, Table 5) provide a useful summary of Gini coefficients across
Mesoamerica. Some of the G-LiHT tiles, especially those in the northern
Yucatan are near archaeological sites where researchers have calculated
Gini coefficients, with better control for temporality. For instance,
Clifford Brown and colleagues (2012) report a Gini coefficient of 0.32
for Mayapan and 0.71 for Sayil based on structure footprint area. The
value for Mayapan is consistent with results from the G-LiHT data in the
Northwest Karst Plain (Yuc_Norte NFI), where the tile with the highest
value results in 0.34 (approximately 4 km to the northeast of the
Mayapan site center), while the Gini coefficient for Sayil is notably high.
Although none of the G-LiHT tiles exhibit such high Gini coefficients
based on structure area on par with that of Sayil, data from the phys-
iographic regions of the Puuc-Bolonchen Hills and the adjacent Central
Hills represent some of the highest values in the G-LiHT. The discrep-
ancy between Sayil’s Gini coefficient and those from nearby areas of the
G-LiHT survey is likely due to the G-LiHT samples’ avoiding the largest
Puuc sites (suggesting in this sub-region proximity to known archaeo-
logical centers and urban areas contributes to differentiation in house
size), as well as the question of temporality, highlighted by Strawinska-
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Zanko and colleagues (2018) who also discuss the high Gini coefficient
for Sayil. Strawinska-Zanko and colleagues (Strawinska-Zanko et al.,
2018, 176) also noted a high Gini coefficient for Komchén (0.56 based
on structure area). Our findings from the G-LiHT data are also consistent
with the figures cited for Chunchucmil (0.34 based on structure area,
0.56 based on structure volume) (Hutson and Welch, 2021; Magnoni
et al., 2012). Another site with a high Gini coefficient, Uxul (0.62), is
also consistent with relatively higher Gini coefficients from G-LiHT tiles
in the southern Campeche sub-region of the Petén Karst Plateau and
Mirador Basin (Barnard, 2021). While outside the G-LiHT study area but
in the same sub-region, Tikal reflects the same value (0.62) (Kohler
et al., 2018, 294; Thompson et al., 2021b, 14).

Other regions sampled by the G-LiHT study have not undergone the
same degree of quantification of Gini indices. In Chiapas, for example,
Palenque’s Gini coefficient has been reported as 0.44 based on structure
area (Brown et al., 2012; Hutson, 2016; Strawinska-Zanko et al., 2018),
slightly higher than the Rio Candelaria-Rio San Pedro tiles in the G-
LiHT, again suggesting lower Gini coefficients outside of the densest
urban areas in this part of the Western Lowlands. At El Infiernito,
Chiapas, a fortified village near Piedras Negras, Guatemala, the Pre-
classic period West Group was characterized by a Gini coefficient of
0.29, which increased to 0.37 in the site’s Terminal Classic period Upper
Group (Schroder, 2019, 386), based on structure area, consistent with
values from the Highland Ranges and Valleys sub-region in the G-LiHT
data. Finally, Jessica Munson and Jonathan Scholnick’s (2022) calcu-
lations of Gini coefficients at Altar de Sacrificios are not directly com-
parable to the G-LiHT findings due to the data sources originating from
burials rather than house size, but the values range from 0.15 to 0.99,
highlighting the importance of calculating Gini coefficients through
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several different metrics to characterize differentiation.

Although the G-LiHT data do not include LiDAR in Belize, our results
shown in Fig. 6, comparing Gini coefficients across the 6 metrics
(structure footprint area and volume, patio group area and volume, and
structure area and volume in patio groups) align closely with results
shown in Table 4 of Amy Thompson and colleagues’ (2021a) research in
southern Belize. For example, Gini coefficients calculated based on
structure area range from 0.14 to 0.45 in the G-LiHT and from 0.27 to
0.38 across the 8 sites in Belize (Uxbenkd, Ix Kuku’il, Muklebal Tzul,
Nimli Punit, Xnaheb, Lubaantun, Ek Xux, and Kaq'ru’ Ha’). Meanwhile,
the values calculated from structure volume range from 0.24 to 0.84 in
the G-LiHT and from 0.33 to 0.62 at the sites in southern Belize.
Structure area (0.19 to 0.60 in the G-LiHT, 0.31 to 0.55 in southern
Belize) and structure volume in patio groups or plazuelas (0.24 to 0.82 in
the G-LiHT, 0.29 to 0.75 in southern Belize) show similar trends. Com-
parable results are reported in Thompson and colleagues (2021b).
Findings from Caracol (0.34 based on structure area and 0.6 based on
structure volume) are also well in line with our findings across the G-
LiHT dataset (Chase, 2017). Furthermore, we expect to test and improve
the results of the current analysis by expanding the G-LiHT sampling in
targeted areas with UAV LiDAR to explore more fully the surrounding
archaeological and ecological context of tiles (Murtha et al., 2019;
Schroder et al., 2021a, 2021b). Despite the limitations and complica-
tions of calculating Gini coefficients that we have outlined in this study,
the consistency in results across Maya sub-regions and research projects
is heartening and shows potential for the methodology. Again, the
calculation of Gini coefficients is relatively straightforward, while the
interpretation remains the true challenge.

The scope of the G-LiHT data enables a regional comparison of
multiple variables that can be used as proxies for examining differenti-
ation or wealth inequality. The advantages of big data approaches are
clear: the same researchers can use the same information to systemati-
cally develop a comparative, region-wide dataset. However, a challenge
of this big data approach lies in the volume of analytic datasets and
visualizations created. For example, each metric (e.g. structure area,
patio group volume, etc.) can be used to produce a distinct Lorenz curve
for each tile in the dataset. Applied across the entire dataset, this would
produce far too many visualizations to be meaningfully compared in a
single paper. Yet, the strength of this approach is that these calculations
and visualizations can be used as a baseline from which to further
investigate how inequality and settlement patterns manifest at more
localized spatial scales. Future studies might also investigate the po-
tential of combining the results presented here with alternate measures
of wealth, population distributions, and inequality. Calculating Gini
coefficients offers insights into overall levels of inequality, while looking
at the shape of wealth distributions can reveal more about how
inequality was experienced across a community. For example,
Strawinska-Zanko and colleagues (2018, 186) test for Pareto or power-
law distributions as ways of understanding how wealth is distributed
within Maya communities alongside Lorenz curves and Gini coefficients.
Ideal Distribution Models (IDM) such as the Ideal Free Distribution (IFD)
and others are additional models that are increasingly used by archae-
ologists and anthropologists to examine inequality in settlement and
distribution patterns (Weitzel and Codding, 2022). Prufer and col-
leagues (2017) applied distribution models to settlement systems at
Uxbenka, suggesting promise for further applications across the Maya
area. Future studies integrating multiple measures of inequality applied
across the regional analysis presented here will further clarify what the
calculated Gini coefficients might mean in context.

While this study is a regional comparison of inequality, using mea-
sures of differentiation, we caution interpretations of comparisons of
Gini indices across diverse spatial and time scales. Discretion must be
exercised when comparing cultures with distinct architectural traditions
if houses are to be used as an inequality metric (Basri and Lawrence,
2020, 690). The current study has benefited from a nearly continuous
cross-section of the Maya landscape, aiding in regional comparisons
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across the G-LiHT dataset, although additional integration with site-
based approaches will be necessary to extrapolate findings outside of
the G-LiHT flight paths. Temporality continues to be a challenging
dimension when interpreting the G-LiHT data, which will require
ongoing closer inspection of the LiDAR data, integration with site-based
approaches, in-depth knowledge of local cultural histories and archi-
tectural form, and ground verification. With increasing access to large
remotely sensed datasets and LiDAR, we can gather more complete and
more accurate datasets of settlement. Basic statistics related to settle-
ment, for example population estimates, feature density, and Gini
indices, are simple enough to calculate, but interpretations of inequality
will require multimodal evidence and collaboration to interpret how
social differences manifest across the landscape.
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