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A B S T R A C T   

The emergence and expansion of inequality have been topics of household archaeology for decades. Tradi
tionally, this question has been informed by ethnographic, ethnohistoric and/or comparative studies. Within sites 
and regions, comparative physical, spatial, and architectural studies of households offer an important baseline of 
information about status, wealth, and well-being, especially in the Maya lowlands where households are 
accessible in the archaeological record. Between sites, more research is necessary to assess how these physical 
measurements of household remains compare. This paper investigates the intersection of landscape, household, 
and community based on a multi-scalar analysis of households using the Gini index across southeastern Mexico, 
in the context of a broader study of land use, land management, and settlement patterns. Notably, this paper 
represents a region-wide analysis of nearly continuous LiDAR data within and outside of previously documented 
prehispanic Maya settlements. While we conclude that the Gini index is useful for establishing a comparative 
understanding of settlement, we also recognize that the index is a starting point to identify other ways to study 
how household to community-level social and economic variability intersects with diverse ecological patterns. 
Highlighting the opportunities and limitations with applying measures like the Gini index across culturally, 
temporally, and geographically heterogeneous areas, we illustrate how systematic studies of settlement can be 
coupled to broader studies of landscape archaeology to interpret changing patterns of land management and 
settlement across the Maya lowlands.   

1. Introduction 

The origins and dynamics of economic inequality are fundamental 
themes of the archaeology of complex societies (Beck and Quinn, 2022; 
Flannery and Marcus, 2012; Kohler and Smith, 2018; Kurnick, 2015; 
McGuire, 2022; Paynter, 1989; Smith et al., 2018). As academic and 
popular voices condemning the inequitable distributions of wealth and 
power in modern nations have grown louder in recent decades (Graeber, 
2011; Piketty, 2020, 2014; Stiglitz, 2015; Wilkerson, 2020), some ar
chaeologists have declared the emergence, growth, and persistence of 
inequality as one of the discipline’s grand challenges (Kintigh et al., 
2014). Contemporary assessments of inequality employ various mea
sures of material wealth including: individual and household income, 
accumulated wealth, consumption and expenditures, and quality of life 

among others (Basri and Lawrence, 2020, 690; Coulter, 1989; Tra
peznikova, 2019). In addition to material wealth, other forms of 
embodied, symbolic, relational, and social wealth (Bourdieu, 1986; 
Smith et al., 2010; Wilkerson, 2020) are important metrics for assessing 
inequality, yet remain challenging to document archaeologically (Smith 
et al., 2010). Nonetheless, because inequality impinges on every aspect 
of social life, it leaves material signatures that are archaeologically 
accessible (Kintigh et al., 2014, 9). 

Borrowing from modern economic analyses, some archaeologists 
have adopted the Gini index – a quantitative comparison of the differ
ential distribution of wealth within a population – as one means of 
measuring the material signatures of inequality through several 
different proxies (Amiel and Cowell, 1999; Brown et al., 2012; Chak
ravarty, 1990; Dorfman, 1979; Gastwirth, 1972; Giorgi, 1990; Ready 
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and Power, 2018; Sen, 1973; Xu, 2003). In archaeology, the use of the 
Gini index to assess prestige differentiation has typically focused on site- 
level approaches (Hutson and Welch, 2021), with additional studies at 
the neighborhood, district, or polity level (Thompson et al., 2021b) 
because these scales offer the sample populations on which archaeolo
gists typically focus. The increasing accessibility of LiDAR and remotely 
sensed big data, however, offers the potential to adopt regional and 
landscape perspectives (Chase et al., 2012; Chi et al., 2016; Evans, 2016; 
VanValkenburgh and Dufton, 2020), thereby enabling macro-regional 
scale populations to be used as the unit of analysis. 

In this paper, we use publicly available LiDAR data collected by 
NASA Goddard’s LiDAR, Hyperspectral, and Thermal Imager (G-LiHT) 
over southeastern Mexico and annotated by the authors to compare Gini 
coefficients across diverse ecological and cultural contexts. These data 
provide a series of cross sections covering portions of southeastern 
Mexico and the Maya area. Despite the limited width (300 m) of the 
transects, the spatial extent of the total length of the survey encompasses 
diverse socioecological contexts. Prior engagement with Gini co
efficients in Mesoamerica has generally centered on site-based ap
proaches (Chase, 2017; Hutson and Welch, 2021; Smith et al., 2014), 
with promising ongoing research into multiscalar analyses at the 
regional, polity, and district levels (Thompson et al., 2021b). The pre
sent study adopts a landscape-level approach by investigating house size 
variability across a large region. Because the G-LiHT data were sampled 
without input from archaeologists, these transects provide a “pseudo
random” or “off-site” perspective (covering understudied areas distant 
from the largest known archaeological sites), presenting a unique op
portunity to interpret regional differentiation in house size across the 
Maya Lowlands, especially outside of the largest urban centers. Given 
the novelty and scope of these data and this analytical approach, we 
therefore highlight general trends in the data, rather than focusing on 
the absolute values of the Gini indices, although we compare our find
ings to prior site-based and regional research into Maya inequality. 

The benefit of the G-LiHT data is their spatial coverage; however, a 
limitation is that the transects reflect a palimpsest of Maya settlement 
with great time depth. While we cannot yet incorporate temporal data 
into this analysis, we take the first step to interpret household-level 
wealth differentiation based on house size across the Northern, Cen
tral, and Western Maya Lowlands through remote sensing. We also 
discuss other limitations of this method with further plans to incorporate 
the larger built environmental and agrarian context of these data into 
future studies. Throughout our analysis, we urge discretion when 
interpreting Gini coefficients in archaeological contexts, clearly out
lining and problematizing the methods used, while we remain optimistic 
that largescale comparisons of statistical differentiation can have rele
vance to our understanding of inequality in past societies. 

We first offer an overview of the Gini index and related studies of 
inequality in archaeology. Next, we discuss the G-LiHT dataset and 
methods of analysis, before presenting our results. We conclude that 
while absolute values of Gini coefficients vary based on different 
architectural metrics, including structure and patio group footprint area 
and volume, these values correlate positively with each other across the 
dataset. Furthermore, we observe weak correlations between Gini 
indices and several cultural and environmental variables, including 
settlement density, agricultural terrace density, and rainfall. Additional 
patterns emerge when Gini coefficients are compared across physio
graphic sub-regions of the Maya lowlands. 

2. Overview of the Gini index 

Over the past decade, some archaeologists have adopted the Gini 
index – originally applied to modern, capitalist industrial economies – to 
model the relative inequality of wealth distribution in pre-modern so
cieties (Bogaard et al., 2019; Kohler et al., 2017; Smith et al., 2014). The 
Gini index is one of many measurements of statistical dispersion and is 
commonly applied by economists to household income data to assess 

inequality (Chakravarty, 1990; Peterson and Drennan, 2018). Although 
wealth may be directly measured through income data, wealth 
inequality also manifests in human societies through differential access 
to material goods or resources (material or financial capital), social ties 
or opportunities (social capital), status or credentials (symbolic or cul
tural capital) or health and skills (human capital) (Bourdieu, 1986). 
Adding additional complexity to assessing wealth inequality, archaeol
ogists typically lack written records of household income, and instead 
must rely on proxies for wealth, such as household size, agricultural 
landholdings, or artifact assemblages (Smith, 1987). 

In the Maya context, assessing wealth inequality is often approached 
through a combination of architectural, artistic, epigraphic, and 
ethnohistoric sources. Scott Hutson (2020) notes that although re
searchers have historically characterized Maya society as having two 
classes (elites and nonelites), more recent evidence points to multiple 
economic and social groups within Maya society. Rather than reflecting 
the presence of a “middle class” (Chase and Chase, 1996; Smith, 2018), 
the diversity of Maya social groups might be meaningfully differentiated 
based on vocation, including royalty, nobles, craftspeople, merchants, 
farmers, and other-than-human agents (Harrison-Buck and Hendon, 
2018; Houston and Inomata, 2009). Despite the lack of evidence for a 
formal bureaucracy among the Classic period Maya, epigraphy reveals 
diverse sets of titles relating to inherited noble duties in royal courts 
(Foias, 2013; Inomata and Houston, 2018; Jackson, 2013; Miller and 
Brittenham, 2013). This perspective notes the existence of both social 
and economic hierarchies in Maya society, but that individual and 
household attributes vary within groups. Hutson (2020, 411) also notes 
the benefits of continuous variables (e.g. house size or labor metrics) for 
assessing wealth and inequality. Based on these metrics, he further 
points to the lack of clear “strata” in Maya society, highlighting one 
strength of the Gini index, namely that the distribution of wealth across 
a community can be assessed and visualized. 

As a measure of wealth dispersion, the Gini index is closely linked to 
the Lorenz curve, first proposed and developed by Max Lorenz (1905). 
The Lorenz curve is a graphical representation of wealth concentration 
within a population, showing the cumulative proportion of income or 
wealth that is owned by a cumulative proportion of the population. This 
curve is then compared against a line of equality extending from the 
origin point at a 45◦ angle to the point where 100% of cumulative in
come is shared by 100% of the cumulative population. The line of 
equality represents a hypothetical population where wealth or income is 
distributed equally. Lorenz (1905) observed that the curves of unequal 
distributions will always intersect with the line of equality at the lowest 
and uppermost ends, but the degree to which the bow formed by the 
Lorenz curve projects away from the line of equality represents the 
magnitude of inequality in the population. 

Corrado Gini (1912) proposed that this degree of inequality could be 
quantified by calculating the ratio of the area between the line of 
equality and the Lorenz curve over the total area under the line of 
equality (the latter typically equal to 0.5), yielding a value known as the 
Gini coefficient, ranging from 0 to 1. A coefficient of 0 would indicate 
that the Lorenz curve and the line of equality are the same, expressing an 
equal distribution, while a coefficient of 1 would theoretically occur if 
the Lorenz curve protruded to its maximum extent, representing 
maximal inequality. Mathematically, the Gini coefficient is equivalent to 
half of the relative mean absolute difference of a distribution, repre
sented by the following formula, where G is the Gini coefficient, n is the 
number of observed values, x is a single observation, and x is the sample 
mean: 

G =

∑n
i=1

∑n
j=1|xi − xj|

2n2x 

While potentially meaningful, the Gini coefficient reduces the 
complexity of inequality distributions to a single value. Adrian Chase 
(2017, 35) has noted that two distinct populations can exhibit the same 
Gini coefficient while producing Lorenz curves with very different 
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forms. Chase has further argued that the shape of a Lorenz curve can 
reveal inflection points, or “kinks,” that may reflect clearly defined so
cial classes with significant wealth disparities. In contrast, a curve 
without such inflection points will be smoother without sudden changes 
in slopes. However, kinks will also be more discernible in the Lorenz 
curves generated with small sample sizes. 

Small sample sizes can additionally produce inaccurate results when 
calculating the Gini coefficient. Several researchers (Bowles and Carlin, 
2017; Deltas, 2003) have observed that Gini coefficients calculated from 
small sample sizes tend to underestimate inequality; for example, even 
when a single individual holds all wealth within a small population, the 
Gini coefficient will fall short of 1. To compensate for small sample bias, 
the calculation of a corrected or unbiased Gini coefficient based on 
sample size will ensure the value varies over the unit interval (Bowles 
and Carlin, 2017, 2), represented by the following formula, where GC is 
the corrected, adjusted, or unbiased Gini coefficient, G is the uncorrec
ted or biased Gini coefficient, and n is the number of observed values: 

GC = G
n

n − 1 

Confidence intervals are additional metrics that help to describe and 
compare Gini coefficients, especially important to consider when 
working with small sample sizes, as confidence intervals will be wider 
for small versus large sample sizes. These confidence intervals ensure 
the quantification of the extent to which hypothetical extreme values 
absent from the sample might affect the calculation of the Gini coeffi
cient, which is less likely to occur in larger samples. The most common 
approach uses bootstrapping to select repeated random samples 
(generally at least 1,000) of the same size at a given confidence level 
(80–95%) (Dixon et al., 1987; Peterson and Drennan, 2018, 53; 
Thompson et al., 2021b, 10). The result will be a lower and upper 
confidence Gini coefficient, providing an error range at the specified 
confidence level. 

Several archaeological publications and online tutorials outline the 
methods to calculate Gini coefficients, typically relying on a spreadsheet 
approach to tally cumulative proportions (Chase, 2017; Smith et al., 
2014). This workflow can be automated in the R statistical software 
environment, and the DescTools (Tools for Descriptive Statistics) pack
age (R Core Team, 2021; Signorell, 2022), among others. Within the 
DescTools package, the Gini function can calculate the biased and cor
rected Gini coefficients from a vector of values (which can be imported 
from a spreadsheet or data frame), as well as the confidence intervals 
using bootstrapping. These data can be output to a spreadsheet for 
visualization, or Lorenz curves can be visualized in R using the generic 
plot function or the ggplot2 and gglorenz packages (Chen and Cortina, 
2020; Wickham, 2016). 

While the methods behind the calculation of Gini coefficients and the 
generation of Lorenz curves are straightforward, the interpretation of 
these metrics is more challenging. Although developed to measure 
inequality, these models are fundamentally measures and visualizations 
of statistical dispersion. When applied to known metrics of income or 
wealth distribution, this statistical dispersion unquestionably relates to 
economic inequality. However, when applied to any other metric, the 
onus is on the researcher to establish the correlation between inequality 
and their chosen metric. Christian Peterson and Robert Drennan (2018, 
41), for example, prefer to use the term “differentiation” to highlight the 
diversity of a given metric across a population, possibly although not 
necessarily correlated with inequality. 

When applied to archaeological data, the Gini coefficient is unlikely 
to reflect directly income or wealth. Archaeologists, therefore, must 
select measurable proxies that they can justify as reasonable indicators 
of household wealth in past societies (Chase, 2017; Peterson and 
Drennan, 2018; Smith, 1987; Thompson et al., 2021b). The first 
archaeological application of the Gini coefficient evaluated the use of 
Lorenz curves with examples of metrics of inequality including material 
goods and agricultural landholding (McGuire and Netting, 1982; 

McGuire, 1983, 104–105). Other methods have incorporated data 
related to grave sizes, forms, and goods (Munson and Scholnick, 2022; 
Schulting, 1995; Windler et al., 2013; Yu, 2019). In Mesoamerica, 
Michael E. Smith and colleagues (2014) argued that in addition to 
agricultural field size, house size is an appropriate measure of household 
wealth. According to Smith and colleagues (2014, 312), in agrarian 
societies, elite houses are generally larger, more elaborate, and more 
costly than those of commoners. The explanation for the correlation 
between wealth and house size is that larger houses are more costly to 
construct in terms of material, time, and labor, and wealthier house
holds often intentionally build large and elaborate homes to signal their 
prestige (Smith et al., 2014, 312). In addition to household size, ar
chaeologists have investigated construction labor costs and materials as 
a means of assessing wealth (Abrams, 1994; Hutson, 2020; Strawinska- 
Zanko et al., 2018). House size can be integrated into an analysis of Gini 
coefficients in several ways, including structure footprint area, structure 
height, surface area, volume, or some combination of these metrics. 
Archaeological studies of inequality of house sizes generally adopt 
structure footprint area or structure volume (Barnard, 2021; Brown 
et al., 2012; Chase, 2017; Smith et al., 2014; Thompson et al., 2021b). 
These metrics are useful proxies for inequality in the Maya area, where 
researchers have identified in ethnographic contexts that house size is 
primarily related to wealth rather than necessarily to population size 
(Netting, 1982; Strawinska-Zanko et al., 2018; Wilk, 1983). 

Researchers, however, are presented with an interpretive challenge 
to select which structures represent the “house,” and how the eminently 
mappable remnants of such structures may be conceptually mapped to a 
social “household.” In the Maya area, the first researchers to examine 
settlement patterns and household archaeology systematically adopted 
the Principle of Abundance. This heuristic argues that because all people 
need a residence, and such buildings are typically less costly than 
dedicated religious or political architecture (e.g., temples and palaces), 
most mounded features found by archaeologists across the landscape 
were domestic structures (Ashmore and Willey, 1981). However, the 
smallest of these features could not house individuals or their families 
and were deemed ancillary structures for storage (Lamoureux-St-Hilaire, 
2022). The specific threshold separating houses from ancillary struc
tures would have varied regionally, but a cutoff of 8 square meters has 
been proposed (Ashmore, 1981; Liendo Stuardo, 2002, 59). Further
more, even as the inclusion of pyramids or ballcourts would improperly 
skew the data, certain large structures represented elite residences or 
palaces that should not be omitted from the calculation of Gini co
efficients. To complicate the matter, such residences additionally 
included public space and living quarters for servants and other non- 
elite individuals. Smith and colleagues (2014, 319–320) presented a 
methodology for estimating living space within apartment compounds 
at Teotihuacan; however, this approach must be further developed to be 
applied to other cultural contexts. 

As noted above, an additional challenge is whether single structures 
represent Maya households. In reality, Maya households are better 
mapped not onto single buildings, but instead onto entire domestic 
architectural compounds oriented around plazas (called patio or pla
zuela groups), as well as space outside of houses, including residential 
terraces, yards, gardens, and agricultural fields (Chase, 2017; Nelson, 
2005, 137; Robin, 2003, 314; Thompson et al., 2021b). Archaeologists 
must also consider that Maya homes were periodically expanded over 
time and built over earlier phases of construction (McAnany, 2013). 
When these additions represent continuous occupation, architectural 
volume can be included as an aspect of accumulated wealth, an 
assumption of the Principle of First Occupancy, that the largest house
holds represent the oldest families in a settlement (Ashmore, 1991; 
Blackmore, 2011a, 174, Blackmore, 2011b, 88; McAnany, 2013). 
However, if a structure is reoccupied after abandonment, its volume 
might reflect the wealth of distinct households across large scales of 
time. An additional complication with volume estimates is that values 
are calculated based on the mounded rubble left behind by collapsed 
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buildings, not the volume of houses or superstructures themselves, many 
of which were built with perishable materials. Still, in certain sub- 
regions of the Maya Lowlands, for example the Puuc hills, structure 
volume may provide a better proxy for differentiation due to the verti
cality of construction of the largest houses. Across the Maya lowlands, 
larger structure volumes may correlate with the presence of vaulted 
buildings that correlate with wealth and status (Estrada-Belli et al., 
2023). 

Furthermore, not all houses across the landscape were necessarily 
occupied at the same time and deciding which structures to include in an 
analysis of inequality will affect the results. In this sense, many of the 
challenges facing the interpretation of inequality alongside structure 
size are shared by the reconstruction of population estimates (Canuto 

et al., 2018). Resolving these issues can be accomplished by establishing 
consistent and clearly defined methodologies through collaboration 
with other researchers, as well as comparing how the use of different 
metrics affect the results of Gini indices. 

3. Dataset 

The LiDAR data used in this analysis were collected in 2013 by NASA 
Goddard’s LiDAR, Hyperspectral, and Thermal Imager (G-LiHT) as part 
of a REDD + study over southeastern Mexico (Cook et al., 2013; Golden 
et al., 2016). While these data were collected with single flight transects 
measuring approximately 300 m wide, the combined length of the study 
over southeastern Mexico amounts to 3,200 km and a total area of 1,118 

Fig. 1. Map of the Maya lowlands showing the analyzed G-LiHT tiles with unique identifiers based on NASA file names (with the AMIGACarb_prefix removed). Tiles 
are color-coded based on flight region, and the two-digit numbers in parentheses refer to the first two numbers in the tile numbers (unique identifiers) shown on the 
map. For clarity, not all tiles are numbered. 
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square kilometers. Due to the flight pattern of single transects, the 
average ground point density varies significantly across the dataset 
(with a range from 0.3 to 11.0), reported in more detail in a previous 
publication (Schroder et al., 2020), which may bias results in heavily 
forested areas, due to the impact of vegetation on ground point density 
(Inomata et al., 2017; Schroder et al., 2021b). Still, ground point den
sities are sufficient (at least 1 point per square meter) in the majority of 
tiles to generate high resolution digital elevation models with cell sizes 
of 1 square meter or less (Rosenswig et al., 2013, 1497). While limited 
along its short axis, the full transect presents a significant cross section of 
the Maya landscape of southeastern Mexico. These data offer a unique 
opportunity to interpret regional variation across diverse environments, 
cultural areas, and physiographic sub-regions of the Maya lowlands. 
Furthermore, as these data were collected without input from archae
ologists, the transects cover understudied areas largely distant from 
known archaeological sites, especially the largest political and urban 
centers. 

We previously reported on the analysis of 458 of the G-LiHT tiles 
across southesatern Mexico and their environmental context (Schroder 
et al., 2020). These 458 tiles cover a diverse series of cross-sections of 
the Maya lowlands, with flight regions including northern Yucatán, 
southern Campeche and Quintana Roo, Chiapas (including parts of the 
Eastern Highlands and Lowlands, Central Depression, and Central 
Plateau), as well as smaller portions of bordering Tabasco and Petén, 
Guatemala (Fig. 1). Using the previously annotated structure data that 
had informed estimates of settlement density across the dataset 
(Schroder et al., 2020), we calculated Gini indices based on structure 
dimensions. We then contextualized these Gini indices with several 
cultural and environmental variables previously discussed in other 
publications, including proximity to known sites, rainfall patterns, and 
access to resources, including surface water (Golden et al., 2016; 
Schroder et al., 2020). Some tiles were necessarily eliminated in the 
present study due to small sample sizes, discussed in more detail below. 

A lingering issue with the G-LiHT dataset and the annotated 
archaeological features is the question of temporality. The data docu
mented in the G-LiHT survey represent a palimpsest and accretion of 
human occupation and modification of the landscape over millennia, 
especially given that Maya households periodically expanded their 
structures over time, both horizontally and vertically. Despite relatively 
successful attempts to distinguish between Preclassic (1000 BCE–250 
CE) and Classic period (250–800 CE) constructions in LiDAR data in 
defined sub-regions (Garrison et al., 2019), the spatial scale of the G- 
LiHT data cover a diversity of Maya settlement patterns that resist 
simple categorization. Furthermore, much of the G-LiHT data record 
settlement associated with the Colonial period (1521–1821 CE) and 
later. The present study focuses on regional variation and automation, 
while future research will require a greater engagement with tempo
rality, through closer visual inspection of the G-LiHT tiles, integration 
with site-based approaches, contextualization with the culture histories 
of sub-regions, and ground verification. With these caveats, we highlight 
regional trends across large portions of the Maya Lowlands, with the 
goal of refining these results through additional analyses to incorporate 
the temporal dimension. We note that although the issue of temporality 
is more pronounced in the G-LiHT data, other LiDAR surveys and site- 
based approaches face similar challenges. 

The G-LiHT transect data were divided into smaller sample tiles by 
the original researchers with an average tile length of approximately 7 
km and grouped by the labeled flight regions shown in Fig. 1. These data 
are available at https://gliht.gsfc.nasa.gov, all beginning with the prefix 
AMIGACarb_, followed by the character strings shown in the legend in 
Fig. 1, GLAS or NFI (referring to the general direction of transects), the 
month and year of data collection, and ending with a three-digit num
ber. For consistency, we preserve this naming convention, but for data 
processing we named tiles based on a unique identifier, beginning with 
the two-digit codes shown in the Fig. 1 legend, followed by the original 
three-digit number equivalent to each tile. For example, the 

AMIGACarb_Yuc_South NFI s452 tile shown in Fig. 2 was assigned the 
value of 23452. 

The 7-km length of tiles arguably encompasses a settlement system 
suitable for the calculation of several variables, including structure 
density and Gini indices. Researchers in the Belize Valley and Palenque 
regions, for example, have noted regularly-spaced population centers at 
similar intervals (Driver and Garber, 2004, 289; Liendo Stuardo et al., 
2014; Liendo Stuardo and López Bravo, 2006, 434). Subsequent analyses 
can assess variability within G-LiHT tiles, but as a first step we focus on 
macroregional patterns that emerge from calculations based on the 0.3 
× 7 km polygons. We recognize that Gini coefficients calculated from 
these samples may not be representative of entire archaeological com
munities or settlement systems (Smith et al., 2014, 321); however, the 
consistency in the application of this approach across the G-LiHT data is 
useful for comparative purposes, and further research can assess how 
sampling affects these results. Further analysis could explore how issues 
of scale affect Gini coefficients, for example, dividing the data into 
smaller “kernel” sizes or feature clusters (i.e. archaeological sites) 
(Golden et al., 2021) or expanding coverage of targeted G-LiHT tiles 
with additional airborne LiDAR surveys, including the use of unoccupied 
aerial vehicles (UAV), for example (Schroder et al., 2021a). We recog
nize that at the current scale, the G-LiHT data underrepresent the largest 
Maya sites, meaning that the Gini coefficients reported here may be 
skewed – whether higher or lower will require additional comparisons 
with site-based approaches. As such, the values reported here are not 
meant to be interpreted absolutely; rather, the comparison of Gini 
indices across the G-LiHT dataset is presented as a relative measure to 
assess regional variation. We expect that combining LiDAR datasets like 
G-LiHT with site-based approaches will improve an overall under
standing of Maya landscapes and settlement alongside social inequality. 

4. Methods 

In this section, we present our methodology for calculating and 
comparing Gini coefficients used in this analysis. First, we discuss the 
architectural metrics adopted in this study that were later used in the 
calculation of Gini coefficients. Second, we explain how features were 
filtered and selected for this analysis, based primarily on structure and 
patio size thresholds to include only domestic architecture. Third, we 
review the methodology for the calculation of architectural metrics 
based on previously annotated features. Fourth, we acknowledge some 
of the complications in the automation of our approach. Finally, we 
present the methodology for the automation of the calculation of Gini 
coefficients across the large G-LiHT dataset. 

In the interest of comparison with other studies, we adopted the 
methodology outlined by Amy Thompson and colleagues (2021b) to 
calculate Gini coefficients based on architecture. Six separate Gini 
indices were calculated in six different ways, based on: 1) structure 
footprint area, 2) structure volume, 3) patio group footprint area 
(including the patio), 4) patio group volume (including the patio), 5) 
footprint area of all structures within patio groups (excluding the patio 
itself), and 6) volume of all structures within patio groups (excluding the 
patio itself). This methodology is visualized by Thompson and col
leagues (2021b, 9), and results for a portion of one G-LiHT tile are shown 
in Fig. 2. Each of the six Gini indices represents a different type of dif
ferentiation or inequality (Chase, 2017; Peterson and Drennan, 2018); 
therefore, we present a summary of statistics from each method while 
focusing primarily on structure footprint area for subsequent analyses. 

Given the diverse range of structures present in the sample area, we 
refined our sampling strategy to focus on only those structures that we 
believe are most closely associated with individual households and 
household wealth. This required filtering the data in several key ways, 
based on either the structure or patio footprints. For calculations based 
on structure footprints and structure volumes, structures with footprints 
larger than 275 square meters and below 20 square meters were 
excluded. These thresholds, suggested by Thompson and colleagues 
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(2021b) may require adjustment in future analyses, especially at the 
lower end, as Wendy Ashmore (1981) cited 20 square meters as an 
average figure for house mound footprints, rather than the minimum. 
Average house mound footprints and the necessary thresholds for the 
calculation of Gini indices will vary across regions. Still, when relying on 
regional comparisons of LiDAR, adopting a lower cutoff can minimize 
false positives and ambiguous features; in fact, Scott Hutson and col
leagues (2021) suggested a higher cutoff for minimum building size (50 
square meters) when identifying house mounds from the G-LiHT LiDAR 
data. For patio group footprints, we chose a threshold of 4,000 square 
meters, described below. Of note, as recommended by Thompson and 
colleagues (2021b), patio group metrics (both area and volume) include 
all structures within the patio group (even those below 20 square meters 
and above 275 square meters). 

The data analyzed here are part of a broader long-term study. Pre
viously, feature annotation identified structures, basal platforms, and 
individual plazas (regardless of size) rather than patio groups. Further
more, we did not distinguish between large public plazas as discussed by 
Inomata (2006) and domestic patios in the annotations. In the current 
analysis, separating large plazas from domestic patios required a 
threshold based on area. Here, the area of these features was calculated 
with the Add Geometry Attributes tool in ArcGIS Pro version 2.8.3. 
Determining patio group footprint area from the annotated features 
required a decision of which structures within certain distances of plazas 
would be considered part of the same patio group, an adjacent patio 
group, or an individual structure, depending on the relative settlement 
density. In some cases, patio groups and structures were built atop basal 
platforms, which aided in their identification. In contrast, some plat
forms, especially those dating to the Preclassic period, can support small 
structures difficult to identify in LiDAR (Garrison et al., 2023, 283). 

However, any platform without discernible superstructures was elimi
nated from the analysis by restricting the maximum structure footprint 
area to 275 square meters. To semi-automate the definition of an entire 
patio group, we adopted the following workflow in ArcGIS Pro: 1) 
Spatial Join of structures within 10 m of plazas, assigning a target field 
to structures based on the associated plaza, 2) a manual check of 
structures joined multiple times (within 10 m of several plazas), fol
lowed by a manual assigning of a structure to a plaza when appropriate, 
3) Minimum Bounding Geometry based on merged structures and plazas 
sharing the same target field using the Convex Hull setting, and finally 4) 
using the Merge tool to combine the results of the Minimum Bounding 
Geometry with intersecting basal platforms. After a visual check of 
defined patio groups, we omitted extreme outliers of large, plaza- 
oriented architecture over 4,000 square meters, which represent 
mixed areas of public, ritual, and administrative architecture at political 
centers, rather than individual household areas (Fig. 3). 

Fig. 2. Subsample of a single G-LiHT flight tile, AMIGACarb_Yuc_South NFI s452 (unique identifier 23452), showing a) all annotated features, b) structures used in 
Gini analysis of structure footprint area and volume, c) patio groups used in Gini analysis of patio group footprint area and volume, and d) structures used in Gini 
analysis of structure area and volume within patio groups. 

Fig. 3. Density plot and box plot (half violin plot) showing the distribution 
across the G-LiHT dataset of plaza or patio sizes on a logarithmic scale. 
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Calculating the volume of features is less straightforward than 
calculating their footprint area and additionally necessitates access to a 
high-resolution digital elevation or terrain model (DEM/DTM); in our 
case, features were previously identified with raster derivatives (hill
shade) of DEMs produced from the point clouds collected by the G-LiHT 
study. Without access to DEMs, feature volume could theoretically be 
estimated if the height is known using cubic solid calculations (e.g., 
rectangular prisms, cones, etc.) (Lacquement, 2010; Magnani and 
Schroder, 2015). To calculate volume of features, we modified a method 
developed by Adrian Chase and colleagues (forthcoming) that 1) ex
tracts the point coordinates from the vertices of features, 2) interpolates 
a DEM between these vertices (a hypothetical ground surface under
neath features), 3) subtracts the interpolated, hypothetical DEM from 
the archaeological DTM, 4) multiplies the result by the horizontal res
olution of the DTM, then 5) uses Zonal Statistics to sum the resulting 
cells assigned to each feature class. Our modification altered step 3 by 
creating a conditional evaluation to remove negative values, so that in 
step 5 only positive values would be summed. We incorporated this 
script into a model in ArcGIS Pro that iterated through the folders that 
contained the raster DEMs of all G-LiHT tiles analyzed in the present 
study. 

Semi-automation was not perfect, however, and aside from the visual 
checks already mentioned and the reassignment of certain features to 
appropriate patio groups, some of the volume calculations returned false 
estimates. For example, the interpolation of feature vertices that fell 
outside of the corresponding G-LiHT tile returned elevation values and 
volume estimates that were too large. These features were either 
removed or redrawn manually. In addition, features that were improp
erly annotated also resulted in excessive volume estimates. Such outliers 
were manually removed from the analysis. 

Sample sizes also vary significantly from metrics comparing struc
tures to plazas because the study area contains fewer plazas than 
structures (each plaza will often have 2 or more structures). Addition
ally, due to the manner of feature annotation based on a visual analysis 
of DEMs, plazas were only identified when evidently sunken or raised, or 
when clearly defined by the orientation of structures on at least 3 sides 
(Schroder et al., 2020). Many plazas, therefore, were likely left un
marked because of the variable resolution of the data and when struc
tures were harder to distinguish, especially in lower density settlement 
without sufficient contextual clues. Without systematic ground verifi
cation across the dataset, any calculations based on plazas will be 
speculative. 

Because of the complications in defining patio groups, which re
quires better consideration of regional variability in form and ground 
verification, we chose to focus on Gini indices calculated from structure 
footprint area for this analysis. Structure footprint area is more complete 
in the annotated G-LiHT data considered here. Namely, 75 of the 
analyzed G-LiHT tiles include structures without plazas, so we are able 
to include more data by analyzing structures rather than patio groups. 
For comparative purposes, we recommend calculating Gini coefficients 
using several lines of evidence, but other researchers should determine 
the appropriate metrics based on the regional, cultural, and ecological 
contexts of their datasets. 

Once calculated in ArcGIS Pro, area and volume figures were 
matched to the value of their relevant G-LiHT tile, based on their fea
tures’ centroids. Each G-LiHT tile was assigned a unique identifier based 
on flight region and the 3-digit value already stored in its file path 
(Fig. 1). Feature data were exported as a single comma separated values 
(.csv) table consisting of 2 columns, where each row represented a 
feature, with a unique identifier column and a geometry metric column. 
These data were then imported as a data frame to R, where the Gini 
function from the DescTools package was applied to grouped data based 
on the unique identifier, with statistics for each unique identifier or G- 
LiHT tile output to a new data frame. To advance open science and the 
utility of these research methods, the code used in this analysis is made 
publicly available (https://github.com/whitschroder/Gini-automatio 

n). G-LiHT data are available through NASA (https://gliht.gsfc.nasa. 
gov). The code used in this study could be applied to any dataset 
where archaeological features have been assigned to a unique value (for 
example, a series of archaeological sites, regions, districts, or samples). 
Results were then imported back into ArcGIS Pro and joined (Join Field 
tool in ArcGIS) to a G-LiHT tile’s environmental and archaeological data 
previously compiled and reported (Schroder et al., 2020). When linked 
to this previously compiled data, each tile’s Gini coefficient was then 
compared to its environmental and cultural variables, including distance 
to known archaeological sites (Witschey and Brown, 2010), distance to 
surface water (INEGI, 2000), settlement and feature density (Schroder 
et al., 2020), and rainfall and seasonality of precipitation expressed as 
the coefficient of variation of monthly rainfall (Fick and Hijmans, 2017, 
https://www.worldclim.org). These variables were selected due to their 
availability, relationship to known archaeological contexts and core 
ecological contexts identified in a preliminary study (Golden et al., 
2016), and because a follow-up analysis identified these socio
environmental variables as the most closely correlated with settlement 
density in the study area (Schroder et al., 2020). 

5. Results 

Several authors have noted the need for robust samples when 
calculating and interpreting Gini coefficients, observing that lower 
sample sizes tend to underestimate the Gini index while increasing the 
difference between upper and lower limits of the confidence interval 
(Bowles and Carlin, 2017, 2; Peterson and Drennan, 2018, 41). Larger 
samples will narrow the confidence interval, as additional data are un
likely to affect results significantly. The G-LiHT data analyzed in this 
study presented a valuable opportunity to test the effects of sample size 
on Gini coefficients. 

Out of 458 sample tiles, the number of structures per tile ranged from 
0 to 1,076, while the number of plazas per tile ranged from 0 to 97. 
Calculating Gini coefficients from structure area and volume, therefore, 
provided higher sample sizes. In an exercise to compare how sample 
sizes affect the results of the Gini coefficient calculation, we first filtered 
G-LiHT tiles to include only those with two or more structures (at least 2 
values are necessary to calculate a Gini index) with footprint areas be
tween 20 and 275 square meters resulted in a total of 393 G-LiHT tiles. 
The uncorrected (biased) and corrected (unbiased) Gini coefficients 
based on structure footprint area were calculated for each tile, and the 
difference between these values was plotted against the sample size of 
structures per G-LiHT tile (Fig. 4). The results show that the lowest 
sample sizes can increase the corrected Gini coefficient by a value of 
more than 0.4 compared to the uncorrected value. This bias is largely 
eliminated with sample sizes of 10 or higher, where the difference be
tween uncorrected and corrected Gini indices amounts to less than 0.05. 
The confidence intervals for smaller samples had a wide range of values 
(at a 95% confidence level), with the largest range between upper and 
lower Gini coefficients reaching higher than 0.8 with a sample size of 2. 
Above a sample size of 10, the highest confidence interval range is less 
than 0.3. We found that sample sizes of more than 100 were necessary to 
reach confidence interval ranges below 0.1. Based on this exercise, we 
therefore opted to limit our study to G-LiHT tiles with 10 or more fea
tures (structures or plazas), and all subsequent findings presented here 
are based on this sample size (Fig. 5). Other researchers should deter
mine appropriate sample sizes based on their own data, although our 
findings may provide a guideline. By adopting a sample size of 10 in this 
study, we attempt to minimize the effects of the limited horizontal 
spatial coverage of the G-LiHT tiles. 

Quantiles of analyzed data are presented in Table 1. Across the 
dataset, corrected Gini coefficients range from as low as 0.12 (based on 
patio group area) to 0.82 (based on structure volume within patio 
groups). As Adrian Chase (2017, 37) has cautioned, Gini indices 
generated from different metrics should not necessarily be assumed to 
represent the same type of inequality; in the present study Gini indices 
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varied significantly depending on the metric used. In some cases, when 
Gini coefficients calculated from distinct metrics differ significantly, the 
data may be demonstrating several kinds of differentiation (or 
inequality) that are worth investigating further (Peterson and Drennan, 
2018, 54). We divided the distribution of Gini coefficients calculated 
from each metric into 5 quantiles, shown in Table 1 alongside structure 
densities and sample sizes. A clear pattern emerges that Gini coefficients 
tend to increase across the table columns from left to right, with the 
lowest Gini indices calculated from structure footprint area (ranging 
from 0.14 to 0.45) and the highest based on the volume of structures 
within patio groups (ranging from 0.24 to 0.81) (Fig. 6). Notably, 
dispersion also increases across each metric, with Gini coefficients 
calculated from structure volume in patio group showing the largest 
range of values. Due to space constraints, we cannot present Lorenz 
curves for each of the 6 metrics for each G-LiHT tile, but examples are 
shown in Fig. 7. 

We propose several reasons for the higher Gini coefficients based on 
volume metrics compared to area values. With some exceptions (Smith 
et al., 2014), other studies have reported higher values for Gini indices 
based on volume versus area, especially in the Maya area (Chase, 2017; 
Thompson et al., 2021b, 14). Volume estimates based on LiDAR or a 
DEM more than likely include at times the natural topography around 
and under features. Proper volume estimates require careful annotation 
of features, often confirmed by ground verification; therefore, while 
minor annotation errors will not negatively influence footprint area 
estimates, these same errors could profoundly impact volume estimates, 
especially in areas of high topographic variation. Many Maya house
holds took advantage of natural topography, and accurate volume esti
mates require excavation to determine the extent of construction over 
bedrock. Due to the size of the G-LiHT tiles (averaging approximately 7 
km in length), natural topography can vary significantly from upland 
areas to bajos, or lowlands. As the natural topography affects volume 
estimates, upland areas with higher volumes will skew Gini coefficients 
when compared to lowland structures in flat areas. Following the 
guidelines established by Amy Thompson and colleagues (2021b), for 
Gini coefficients calculated for individual structures we eliminated 
structure areas that did not fall between 20 and 275 square meters, but 
these same structures were included when calculating Gini coefficients 

based on patio groups. In addition, all tiles in the current study had 
fewer than 100 plazas, resulting in small sample sizes for patio group- 
based metrics, which we have established can contribute to wide con
fidence intervals. Aside from these observations, we can conclude that 
across the dataset (and the Maya lowlands in general), higher differen
tiation exists in plaza form in relation to structure form, and addition
ally, structure volume is more variable than structure area, based on the 
higher Gini coefficients generated from these metrics. 

In another effort to interpret Gini coefficients based on different 
metrics, we generated a correlation matrix showing statistically signif
icant positive correlations across all bivariate comparisons (Fig. 8) 
(correlation coefficients and p-values are included in supplementary 
materials). This analysis suggests that despite the variation in results 
based on each architectural metric, the Gini coefficients increase 
somewhat predictably, and that tiles with high or low Gini coefficients 
based on one metric tend to exhibit high or low Gini indices based on 
other metrics, respectively. Furthermore, the relative magnitude of 
correlation coefficients shows that the strongest correlations are be
tween Gini indices based on similar metrics, for example when 
comparing areas or volumes of structures and patio groups, or when 
comparing structure metrics or patio group metrics. Predictably, a 
strong correlation exists between the indices generated from patio group 
area and patio group structure area, as larger patio groups tend to have 
more structures and higher structure footprint areas. Still, discrepancies 
in the comparisons are due to the methodological challenges discussed 
above and the fact that such measurements of differentiation are distinct 
though related. We believe that including the additional vertical 
dimension of structures adds more uncertainty, and although Smith and 
colleagues (2014) suggest that the verticality of Mesoamerican archi
tecture might be more relevant than area when assessing inequality, we 
opt to focus on structure area in this study. Presently, we are less con
cerned with the absolute values of the Gini coefficients presented here 
and more interested in the relative values and trends across the study 
area. 

In a previous analysis, we calculated and presented settlement den
sity across the 458 G-LiHT tiles analyzed (Schroder et al., 2020), and the 
resulting categorical quantiles of these data are also presented in 
Table 1. In the same analysis, we compared settlement density to several 
environmental variables. Here, we expand this study to include a com
parison of these environmental variables alongside Gini coefficients. 
Due to space constraints and the limitations of calculating Gini indices 
based on patio groups and volumes, we focus only on Gini coefficients 
calculated from structure footprint area, although we have established 
correlations between each metric. The comparisons between previously 
identified environmental variables such as rainfall and seasonality, 
settlement density (Schroder et al., 2020), and Gini coefficients are 
shown in the correlation matrix in Fig. 9. While correlations between 
structure density and distance to Type 1 or Type 2 site, terrace density, 
rainfall, seasonality, and distance to surface water are statistically sig
nificant (at p less than 0.05), these results indicate statistically insig
nificant, weak positive correlation between Gini coefficients and these 
same variables, including settlement density, meaning that Gini co
efficients do not necessarily increase linearly relative to structure den
sity. In other words, denser, more urban settlements in the study area are 
not necessarily characterized by higher differentiation in structure size. 
Amy Thompson and colleagues (2021b) reached a similar conclusion in 
their comparison of sites in southern Belize with Chunchucmil, Caracol, 
Uxul, Palenque, and Tikal. Still, the tiles with the highest feature den
sities generally have the highest Gini coefficients, while more variability 
is present in lower density tiles. Gini indices, however, cluster between 
0.2 and 0.4 despite feature density. In addition, when separated by flight 
region, some areas show stronger trends between Gini coefficient and 
settlement density, notably the AMIGACarb_Yuc_Norte, AMIGA
Carb_Out_of_the_Yuc, and AMIGACarb_Chiaps tiles, although these re
sults are not statistically significant (Fig. 10) (correlation coefficients 
and p-values are included in supplementary materials). 

Fig. 4. Effect of sample size on a) difference between corrected and uncor
rected Gini coefficients based on structure footprint area and b) upper and 
lower confidence intervals of Gini coefficients based on structure footprint area. 

W. Schroder et al.                                                                                                                                                                                                                              



Journal of Anthropological Archaeology 72 (2023) 101552

9

A related comparison is the relationship between a tile’s Gini coef
ficient and its distance to known urban centers or large sites. Here, we 
rely on the Walter Witschey and Clifford Brown (2010) electronic atlas 
of Maya settlement. Despite flaws and inconsistencies in the data, the 
largest – typically well-documented – archaeological sites (classified as 
Type 1 and Type 2 in the dataset) tend to be placed with reasonable 
accuracy. Notably, the correlation matrix in Fig. 9 shows no significant 
linear correlation between a G-LiHT tile centroid’s distance to the 
nearest Type 1 or Type 2 site and its Gini coefficient. In contrast, as 
noted earlier, we have established a negative correlation between set
tlement density and distance to Type 1 or Type 2 site, meaning that 

settlement density increases with proximity to large sites (Schroder 
et al., 2020). Yet clearer patterns emerge when data are separated by 
flight region, showing that Gini coefficients across regions tend to 
decrease as distance to large sites increases (Fig. 11). Of note, the only 
flight region with a statistically significant (p less than 0.05) negative 
correlation between Gini coefficients and distance to Type 1 or Type 2 
sites is the Yuc_Centro flight region (correlation coefficients and p- 
values are included in supplementary materials). 

Other weak relationships are shown between Gini coefficients and 
agricultural terrace linear density (positive), rainfall (negative), and 
seasonality (positive); however, these results are not statistically 

Fig. 5. Map of the Maya lowlands showing Type 1 and 2 archaeological sites (Witschey and Brown, 2010) and the analyzed G-LiHT tiles, color-coded to the corrected 
Gini coefficient based on structure footprint area quantiles shown in Table 1. 
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significant, complicating the potential to understand the relationship 
between access to resources and inequality. As trends, Gini coefficients 
seem to increase in relation to the density of agricultural intensification 
in the form of terracing. Furthermore, as rainfall decreases and sea
sonality increases, Gini coefficients increase – could more variable ac
cess to water be reflected in higher Gini indices? Yet, no significant 
linear correlation exists between distance to surface water and Gini 
coefficients – perhaps in future studies, access to subsurface water could 
be incorporated into this analysis. Such analyses could be paired with 
other studies, such as agricultural capability drawn from soil maps. We 
present these results merely as observations for future work, but the 
takeaway is that correlations between settlement density and these 
chosen environmental variables are not matched by comparisons with 
Gini coefficients, shown in Fig. 9 and discussed in more detail by 
Schroder and colleagues (Schroder et al., 2020). The values of these Gini 
coefficients (and perhaps inequality) do not follow the same patterns 
across the Maya landscape as does settlement density. 

Another goal of this study is to compare the nature of settlement 
across subregions of the Maya lowlands. The simplest approach is to use 
the flight paths of the LiDAR scans, classified into 7 flight regions, from 
north to south, Yuc_Norte, Yuc_North_2, Out_of_the_Yuc, Yuc_Centro, 
Yuc_South, Chiap_Campeche, and Chiaps. Fig. 12 shows the distribu
tions of settlement density and Gini coefficients by flight region. 

Although the highest Gini coefficients between 0.37 and 0.45 appear 
across the dataset, the largest concentrations of the highest Gini values 
occur in the Yucatán Centro NFI, Yucatán South GLAS, and Yucatán 
South NFI transects, corresponding with the Central Lowlands of 
southern Campeche and Quintana Roo. These same data suggest marked 
differences between settlement density and Gini coefficients in Highland 
Chiapas and its foothills compared to other portions of the Central and 
Northern Lowlands. 

We suggested previously that much of the variation in feature dis
tribution across the G-LiHT dataset of southeastern Mexico can be better 
understood in relation to the physiographic sub-regions defined by 
Timothy Beach and colleagues (2015) (Fig. 13). When each tile is 
assigned one of the 17 physiographic sub-regions encompassed by the 
study area based on the tile’s centroid, some clearer patterns emerge. 
Despite some differences, the majority of physiographic sub-regions 
show a similar distribution, with medians hovering between Gini co
efficients of 0.3 to 0.35. The North Coast, however, shows a smaller 
median, while the Puuc-Bolonchen Hills and Edzna-Silvituk Trough 
exhibit higher medians. The results from the Puuc hills and adjacent sub- 
regions again raise issues surrounding the verticality of architecture, and 
furthermore, the temporality challenge. For example, based on structure 
area data from Sayil, Strawinska-Zanko and colleagues (2018, 176), 
attributed a high Gini index (0.71) at the site not to geography but to the 

Table 1 
Feature density and corrected Gini coefficients by G-LiHT tile divided into 5 quantiles.  

Quantile Structure and Platform 
Density per Ha 

Gini Coefficients 

Structure 
Area 

Patio Group 
Area 

Structure Area in Patio 
Group 

Structure 
Volume 

Patio Group 
Volume 

Structure Volume in 
Patio Group 

Highest 20% 0.93–3.75 0.37–0.45 0.45–0.60 0.47–0.60 0.59–0.79 0.69–0.81 0.67–0.82 
Higher 0.52–0.93 0.34–0.37 0.41–0.45 0.41–0.47 0.55–0.59 0.60–0.69 0.61–0.67 
Middle 0.21–0.52 0.31–0.34 0.36–0.41 0.35–0.41 0.52–0.55 0.55–0.60 0.52–0.61 
Lower 0.02–0.21 0.28–0.31 0.30–0.36 0.29–0.35 0.48–0.52 0.47–0.55 0.45–0.52 
Lowest 20% 0–0.02 0.14–0.28 0.12–0.30 0.19–0.29 0.26–0.48 0.33–0.47 0.24–0.45 
Sample Size (# of 

Tiles) 
458 333 126 126 332 126 126  

Fig. 6. Box plots comparing the distributions of corrected Gini coefficients by calculation metric across the entire dataset.  
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Terminal Classic period (800–1000 CE) occupation of the region, a time 
characterized by increasing social inequality. 

Smaller data ranges in the Highland Ranges and Valleys, Rio de la 
Pasion, and Uayamil regions are also notable. Although not shown in 
Fig. 13 due to small sample sizes, the Caribbean Reef and Eastern Coastal 
Margin and Chiapas, Grijalva River regions also exhibit lower Gini co
efficients. These findings suggest regional patterns in the distribution of 

inequality across the Maya lowlands, with several key exceptions, 
notably representing the northwestern, southwestern, and eastern 
geographic extremes of the study area. These sub-regions are the most 
peripheral parts of the Maya lowlands, and they are additionally located 
in resource rich coastal and riverine environments where inequality may 
be reduced (Glover and Rissolo, 2023; Rogers et al., 2011). Such phys
iographic sub-regions may generally have more widely dispersed and 

Fig. 7. Lorenz curves of cumulative proportions from the same, single G-LiHT tile (AMIGACarb_Yuc_South NFI s452 or unique identifier 23452) shown in Fig. 2 
comparing the 6 different Gini metrics. 
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accessible resources, rather than geographically localized resources 
more readily controlled by individuals or communities. 

6. Conclusions 

In an effort to quantify and measure inequality, archaeologists have 
adopted economic methods to assess statistical dispersion through the 
calculation of Gini coefficients. As Christian Peterson and Robert 
Drennan (2018) observe, archaeologists can calculate Gini coefficients 
with several lines of data, including house size, agricultural field extent, 
and artifact assemblages (Munson and Scholnick, 2022). Such lines of 
evidence are intended as proxies for inequality through more direct 
measurement of differentiation. Spatial differentiation in Gini co
efficients can be used to infer social inequality across sites, and when 
combined with temporal data, changes in wealth inequality can be 
traced over time (Kohler et al., 2017). 

We explored the possibility of such an analysis at a landscape scale, 
calculating Gini coefficients based on the scale of the built environment 
in the form of structures and patio groups annotated from LiDAR terrain 
data collected by the NASA G-LiHT system over southeastern Mexico. 
While the results presented here serve as a first step to interpret regional 
differentiation across the Maya lowlands, they suggest that a landscape 
approach could offer important context to traditional site-based studies. 
We can also begin to identify some key findings and patterns in the G- 
LiHT dataset that will be useful to compare with future analyses of social 
inequality in the Maya area. 

First, we can generalize that across the G-LiHT dataset of south
eastern Mexico, Gini values calculated from structure footprint area are 
typically low. All uncorrected Gini values based on structure footprint 
area are under 0.5, which is consistent with other values calculated in 
Mesoamerica and the New World (Kohler et al., 2017; Smith et al., 

2014). Furthermore, 20% of all tiles analyzed exhibit Gini coefficients 
under 0.28. Incorporating the additional height dimension to compare 
architectural volume profoundly affects the calculation of Gini indices in 
this study. Aside from possible methodological issues we have discussed, 
this discrepancy highlights important differentiation in architectural 
form across the Maya lowlands (Peterson and Drennan, 2018). Future 
studies of inequality might compare the values of a topographic position 
index to determine possible correlations between architectural volume, 
height, and relative prominence with inequality metrics. 

Based on the G-LiHT data Gini coefficients, we can identify trends in 
higher values in areas of higher density of settlement, but regional 
variation is an important factor. Only in the Yuc_Centro flight region do 
Gini coefficients show a statistically significant correlation with distance 
to larger political centers, perhaps highlighting distinct differences be
tween the Central Lowlands and more peripheral areas of the Maya 
lowlands. In our 2020 study, we determined that proximity to known 
sites was a variable associated with higher settlement density. Using the 
Witschey and Brown (2010) dataset of Maya site locations, we found 
that 59% of the highest settlement density tiles were located within 10 
km of Witschey and Brown’s (2010) Type 1 and Type 2 sites, generally 
corresponding with the largest known archaeological sites in the Maya 
lowlands. Gini coefficients, however, do not follow a clear pattern when 
compared to distance from Type 1 or Type 2 sites, although separating 
the data by region points to areas where future research might be 
beneficial, particularly in the Central Lowlands. These patterns may 
reflect the presence of seasonal field houses across the landscape that 
might explain the clearer correlation between settlement density and 
proximity to known sites compared to weaker correlations between Gini 
coefficients, structure density, and distance to large centers (Garrison 
et al., 2016; Kohler, 1992; Taschek and Ball, 2003). Variable manifes
tations of differentiation or inequality across the landscape may also 

Fig. 8. Correlation matrix showing correlations between corrected Gini coefficient metrics across the entire dataset (only the 126 tiles for which all 6 metrics could 
be calculated). Correlations range from positive (blue) to negative (red). Color intensity and circle size are proportional to correlation coefficients. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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point to the decentralized nature of Maya economies (Golden et al., 
2020). Generally weak correlations between settlement density and Gini 
coefficients may also relate to other observed characteristics of low- 
density urban Maya settlements, for example, that population growth 
did not necessarily lead to denser cities as predicted by settlement 
scaling theory (Hutson et al., 2023; Smith et al., 2021). 

We are still assessing agricultural intensification across the G-LiHT 

dataset of southeastern Mexico, but current findings point to a weak 
correlation between Gini coefficients and agricultural terrace density. 
Further studies will examine land tenure in the context of agricultural 
intensification identified in the G-LiHT data (Barnard, 2021; LeCount 
et al., 2019; Thompson and Prufer, 2021). Manus Midlarsky (1999), for 
example, has related the emergence of inequality to land scarcity in 
agrarian societies alongside population growth (Boserup, 1965; 

Fig. 9. Correlation matrix showing correlations between corrected Gini coefficients across the entire dataset (only the 333 tiles with 10 or more structures) based on 
structure area and other variables. Correlations range from positive (blue) to negative (red). Color intensity and circle size are proportional to correlation coefficients. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Scatter plot comparing Gini coefficients based on structure area to structure and platform density by G-LiHT tile, color-coded to flight regions shown 
in Fig. 1. 
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Strawinska-Zanko et al., 2018, 165). In this interpretation, the presence 
of landesque capital to improve land and increase agricultural yield over 
a limited area should correlate with settlement density and Gini co
efficients. Our preliminary results, however, do not reveal clear pat
terns. While the tiles with the highest density of agricultural terraces 
have the highest Gini coefficients above 0.3, the majority of tiles with 
Gini coefficients above 0.3 have low densities of agricultural terraces. 
Regional variation in agricultural terracing likely contributes to this 

weak correlation between agricultural intensification and Gini co
efficients. Access to agricultural resources, alongside the evidence pre
sented here on rainfall and seasonality, provides an important path to 
pursue in future calculations of Gini indices to interpret inequality. 
Additional studies could assess intensification through field channeling, 
and agricultural capability using soil maps, and other similar indices to 
map inequal access to agricultural landscapes. 

Clearer patterns emerge when the data are separated by 

Fig. 11. Scatter plot comparing G-LiHT tiles based on distance to the nearest Type 1 or Type 2 site and corrected Gini coefficients based on structure footprint area, 
color-coded to flight region. 

Fig. 12. Bar plots showing the count of G-LiHT tiles by feature density, corrected Gini coefficient based on structure area, and flight region.  
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physiographic sub-region. The distribution of Gini coefficients by sam
ple tile is similar across all defined physiographic sub-regions, except in 
several key areas of Chiapas, the Pasión River, and the North Coast. The 
peripheral and resource rich locations of these regions may contribute to 
the lower Gini coefficients that we have presented. Expanding on this 
landscape and regional scale analysis, comparison of Gini coefficients 
alongside access to natural resources, likely trade routes, and least cost 
paths might be beneficial (Thompson et al., 2021a). 

Finally, the results of the present study can inform ongoing site-based 
analyses of Gini coefficients in the Maya area. Thompson and colleagues 
(2021b, Table 5) provide a useful summary of Gini coefficients across 
Mesoamerica. Some of the G-LiHT tiles, especially those in the northern 
Yucatán are near archaeological sites where researchers have calculated 
Gini coefficients, with better control for temporality. For instance, 
Clifford Brown and colleagues (2012) report a Gini coefficient of 0.32 
for Mayapan and 0.71 for Sayil based on structure footprint area. The 
value for Mayapan is consistent with results from the G-LiHT data in the 
Northwest Karst Plain (Yuc_Norte NFI), where the tile with the highest 
value results in 0.34 (approximately 4 km to the northeast of the 
Mayapan site center), while the Gini coefficient for Sayil is notably high. 
Although none of the G-LiHT tiles exhibit such high Gini coefficients 
based on structure area on par with that of Sayil, data from the phys
iographic regions of the Puuc-Bolonchen Hills and the adjacent Central 
Hills represent some of the highest values in the G-LiHT. The discrep
ancy between Sayil’s Gini coefficient and those from nearby areas of the 
G-LiHT survey is likely due to the G-LiHT samples’ avoiding the largest 
Puuc sites (suggesting in this sub-region proximity to known archaeo
logical centers and urban areas contributes to differentiation in house 
size), as well as the question of temporality, highlighted by Strawinska- 

Zanko and colleagues (2018) who also discuss the high Gini coefficient 
for Sayil. Strawinska-Zanko and colleagues (Strawinska-Zanko et al., 
2018, 176) also noted a high Gini coefficient for Komchén (0.56 based 
on structure area). Our findings from the G-LiHT data are also consistent 
with the figures cited for Chunchucmil (0.34 based on structure area, 
0.56 based on structure volume) (Hutson and Welch, 2021; Magnoni 
et al., 2012). Another site with a high Gini coefficient, Uxul (0.62), is 
also consistent with relatively higher Gini coefficients from G-LiHT tiles 
in the southern Campeche sub-region of the Petén Karst Plateau and 
Mirador Basin (Barnard, 2021). While outside the G-LiHT study area but 
in the same sub-region, Tikal reflects the same value (0.62) (Kohler 
et al., 2018, 294; Thompson et al., 2021b, 14). 

Other regions sampled by the G-LiHT study have not undergone the 
same degree of quantification of Gini indices. In Chiapas, for example, 
Palenque’s Gini coefficient has been reported as 0.44 based on structure 
area (Brown et al., 2012; Hutson, 2016; Strawinska-Zanko et al., 2018), 
slightly higher than the Río Candelaria-Río San Pedro tiles in the G- 
LiHT, again suggesting lower Gini coefficients outside of the densest 
urban areas in this part of the Western Lowlands. At El Infiernito, 
Chiapas, a fortified village near Piedras Negras, Guatemala, the Pre
classic period West Group was characterized by a Gini coefficient of 
0.29, which increased to 0.37 in the site’s Terminal Classic period Upper 
Group (Schroder, 2019, 386), based on structure area, consistent with 
values from the Highland Ranges and Valleys sub-region in the G-LiHT 
data. Finally, Jessica Munson and Jonathan Scholnick’s (2022) calcu
lations of Gini coefficients at Altar de Sacrificios are not directly com
parable to the G-LiHT findings due to the data sources originating from 
burials rather than house size, but the values range from 0.15 to 0.99, 
highlighting the importance of calculating Gini coefficients through 

Fig. 13. Box plots showing the distribution of Gini coefficients classified by physiographic sub-regions.  
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several different metrics to characterize differentiation. 
Although the G-LiHT data do not include LiDAR in Belize, our results 

shown in Fig. 6, comparing Gini coefficients across the 6 metrics 
(structure footprint area and volume, patio group area and volume, and 
structure area and volume in patio groups) align closely with results 
shown in Table 4 of Amy Thompson and colleagues’ (2021a) research in 
southern Belize. For example, Gini coefficients calculated based on 
structure area range from 0.14 to 0.45 in the G-LiHT and from 0.27 to 
0.38 across the 8 sites in Belize (Uxbenká, Ix Kuku’il, Muklebal Tzul, 
Nimli Punit, Xnaheb, Lubaantun, Ek Xux, and Kaq’ru’ Ha’). Meanwhile, 
the values calculated from structure volume range from 0.24 to 0.84 in 
the G-LiHT and from 0.33 to 0.62 at the sites in southern Belize. 
Structure area (0.19 to 0.60 in the G-LiHT, 0.31 to 0.55 in southern 
Belize) and structure volume in patio groups or plazuelas (0.24 to 0.82 in 
the G-LiHT, 0.29 to 0.75 in southern Belize) show similar trends. Com
parable results are reported in Thompson and colleagues (2021b). 
Findings from Caracol (0.34 based on structure area and 0.6 based on 
structure volume) are also well in line with our findings across the G- 
LiHT dataset (Chase, 2017). Furthermore, we expect to test and improve 
the results of the current analysis by expanding the G-LiHT sampling in 
targeted areas with UAV LiDAR to explore more fully the surrounding 
archaeological and ecological context of tiles (Murtha et al., 2019; 
Schroder et al., 2021a, 2021b). Despite the limitations and complica
tions of calculating Gini coefficients that we have outlined in this study, 
the consistency in results across Maya sub-regions and research projects 
is heartening and shows potential for the methodology. Again, the 
calculation of Gini coefficients is relatively straightforward, while the 
interpretation remains the true challenge. 

The scope of the G-LiHT data enables a regional comparison of 
multiple variables that can be used as proxies for examining differenti
ation or wealth inequality. The advantages of big data approaches are 
clear: the same researchers can use the same information to systemati
cally develop a comparative, region-wide dataset. However, a challenge 
of this big data approach lies in the volume of analytic datasets and 
visualizations created. For example, each metric (e.g. structure area, 
patio group volume, etc.) can be used to produce a distinct Lorenz curve 
for each tile in the dataset. Applied across the entire dataset, this would 
produce far too many visualizations to be meaningfully compared in a 
single paper. Yet, the strength of this approach is that these calculations 
and visualizations can be used as a baseline from which to further 
investigate how inequality and settlement patterns manifest at more 
localized spatial scales. Future studies might also investigate the po
tential of combining the results presented here with alternate measures 
of wealth, population distributions, and inequality. Calculating Gini 
coefficients offers insights into overall levels of inequality, while looking 
at the shape of wealth distributions can reveal more about how 
inequality was experienced across a community. For example, 
Strawinska-Zanko and colleagues (2018, 186) test for Pareto or power- 
law distributions as ways of understanding how wealth is distributed 
within Maya communities alongside Lorenz curves and Gini coefficients. 
Ideal Distribution Models (IDM) such as the Ideal Free Distribution (IFD) 
and others are additional models that are increasingly used by archae
ologists and anthropologists to examine inequality in settlement and 
distribution patterns (Weitzel and Codding, 2022). Prufer and col
leagues (2017) applied distribution models to settlement systems at 
Uxbenká, suggesting promise for further applications across the Maya 
area. Future studies integrating multiple measures of inequality applied 
across the regional analysis presented here will further clarify what the 
calculated Gini coefficients might mean in context. 

While this study is a regional comparison of inequality, using mea
sures of differentiation, we caution interpretations of comparisons of 
Gini indices across diverse spatial and time scales. Discretion must be 
exercised when comparing cultures with distinct architectural traditions 
if houses are to be used as an inequality metric (Basri and Lawrence, 
2020, 690). The current study has benefited from a nearly continuous 
cross-section of the Maya landscape, aiding in regional comparisons 

across the G-LiHT dataset, although additional integration with site- 
based approaches will be necessary to extrapolate findings outside of 
the G-LiHT flight paths. Temporality continues to be a challenging 
dimension when interpreting the G-LiHT data, which will require 
ongoing closer inspection of the LiDAR data, integration with site-based 
approaches, in-depth knowledge of local cultural histories and archi
tectural form, and ground verification. With increasing access to large 
remotely sensed datasets and LiDAR, we can gather more complete and 
more accurate datasets of settlement. Basic statistics related to settle
ment, for example population estimates, feature density, and Gini 
indices, are simple enough to calculate, but interpretations of inequality 
will require multimodal evidence and collaboration to interpret how 
social differences manifest across the landscape. 
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