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Abstract
A main goal in the field of statistical shape analysis is to define computable and
informative metrics on spaces of immersed manifolds, such as the space of curves in
a Euclidean space. The approach taken in the elastic shape analysis framework is to
define such a metric by starting with a reparametrization-invariant Riemannian metric
on the space of parametrized shapes and inducing a metric on the quotient by the
group of diffeomorphisms. This quotient metric is computed, in practice, by finding
a registration of two shapes over the diffeomorphism group. For spaces of Euclidean
curves, the initial Riemannianmetric is frequently chosen froma two-parameter family
of Sobolev metrics, called elastic metrics. Elastic metrics are especially convenient
because, for several parameter choices, they are known to be locally isometric to
Riemannian metrics for which one is able to solve the geodesic boundary problem
explicitly—well-known examples of these local isometries include the complex square
root transform of Younes, Michor, Mumford and Shah and square root velocity (SRV)
transform of Srivastava, Klassen, Joshi and Jermyn. In this paper, we show that the
SRV transform extends to elastic metrics for all choices of parameters, for curves in
any dimension, thereby fully generalizing the work of many authors over the past
two decades. We give a unified treatment of the elastic metrics: we extend results of
Trouvé and Younes, Bruveris as well as Lahiri, Robinson and Klassen on the existence
of solutions to the registration problem,wedevelop algorithms for computing distances
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and geodesics, and we apply these algorithms to metric learning problems, where we
learn optimal elastic metric parameters for statistical shape analysis tasks.

Keywords Shape analysis · Elastic metrics · Infinite-dimensional Riemannian
geometry · Metric learning

Mathematics Subject Classification 49Q10 · 53Z50 · 68T10

1 Introduction

Shape is a fundamental physical property of objects and a key characteristic of their
appearance in images.As a result, shape analysis plays a central role in various applica-
tions including computer vision, medical imaging, graphics, biology, bioinformatics
and anthropology, among others. In these applications, one generally first extracts
objects of interest from the imaging data and then studies their shapes via appropriate
mathematical representations and metrics. In statistical shape analysis, each observed
shape is treated as a random object with the primary goal of developing tools for
shape registration, comparison, statistical summarization, exploration of variability,
clustering, classification and other statistical procedures. Each of the aforementioned
statistical tasks heavily depends on the underlying representation and associatedmetric
chosen for shape analysis.

There is a rich literature on shape analysis that considers various representations
of shape including deformable templates (Grenander and Miller 1998), ordered and
unordered point sets (Dryden and Mardia 1998), level sets (Osher and Fedkiw 2003),
medial axes (Gorczowski et al. 2010) and others. However, perhaps the most natu-
ral representation of a boundary of an object captured in an image is a parametrized
curve. While accounting for the shape preserving transformations of rigid motion
and scaling is fairly standard in this setting (Srivastava and Klassen 2016), one must
additionally deal with parametrization variability inherent in the given data. Some
past methods standardize parametrizations of observed curves to arc length (Zahn and
Roskies 1972), but this has been shown to be suboptimal in many applications (Srivas-
tava and Klassen 2016). A better solution is to determine optimal reparametrizations
in a pairwise manner via a process referred to as registration. This, in turn, requires
a metric on the space of parametrized curves that is invariant to reparametrizations.
The metric plays a key role in shape analysis as it is used for joint registration and
comparison of shapes. Further, it serves as a backbone of other statistical procedures
for shape data including averaging and principal component analysis.

In this article,we focus on shapeswhich are represented as curves inEuclidean space
R
d , d ≥ 2. Our shape metrics arise as geodesic distances with respect to Riemannian

metrics on the (infinite-dimensional) manifold I(D,Rd), whose points are immer-
sions, with domain D either an interval or a circle. That is, each element of I(D,Rd)

is a smooth parametrized curve c : D → R
d with nowhere-vanishing derivative. In

order to induce a metric on the shape space of unparametrized curves, one requires the
Riemannian metric on I(D,Rd) to be invariant under reparametrizations. To be pre-
cise, the group D(D) of diffeomorphisms of D acts on I(D,Rd) by precomposition,
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and this action should be by isometries for the chosen Riemannian metric. Due to this
property, the metric then descends to the quotient space I(D,Rd)/D(D) of curves
considered up to precomposition with a diffeomorphism—that is, the quotient space
can be considered as the space of unparametrized curves. The process of computing
geodesic distances in that quotient space naturally involves solving a registration prob-
lem, so that the estimated geodesic distance eventually provides a meaningful metric
for shape comparison. Moreover, the Riemannian formalism gives powerful tools for
demonstrating the existence of optimal registrations, along with well-defined notions
of tangent spaces, means, principal components and other statistical concepts.

In this setup, a variety of different Riemannian metrics have been proposed in
the literature. The arguably simplest one, the invariant L2-metric, has a surprising
degeneracy: it induces vanishing geodesic distance on both parametrized (Bauer et al.
2012) and unparametrized (Mumford and Michor 2006) curves, i.e., any two curves
(shapes) are regarded the same under the corresponding path-length distance. This
behavior renders the L2-metric unsuitable for any applications in shape analysis. Sub-
sequently, several stronger Riemannian metrics have been proposed that consequently
induce a meaningful measure of similarity on shape space. This includes the class
of almost local metrics (Mumford and Michor 2006), but also the family of (higher
order) Sobolev typemetrics, see e.g. Michor andMumford (2007), Bauer et al. (2014),
Srivastava et al. (2010), Sundaramoorthi et al. (2007) and the references therein. In
particular, Sobolev metrics of order one have attracted a large body of work and a
two-parameter family of Riemannian metrics Ga,b, a, b > 0, has been proposed (Mio
et al. 2007); elements of this family are usually called elastic metrics, for reasons that
are highlighted in “Appendix A.” The goal of this paper is to develop a comprehensive
theoretical and computational framework for the Ga,b metrics on I(D,Rd) and the
quotient I(D,Rd)/D(D), for all parameters a, b > 0 and all dimensions d ≥ 2.
Before precisely stating our main contributions, we first give an overview of related
work to provide appropriate context.

A crucial component of an efficient algorithm for computing the desired geodesic
distances in the quotient space I(D,Rd)/D(D) is a method for computing distances
in the space I(D,Rd). The family of elastic metrics is special: it has been shown that,
for several values of the parameters a, b and d, the geodesic boundary value problem,
and consequently the induced geodesic distance, can be solved explicitly. The typical
method in the literature for deriving such explicit solutions is to construct an isometry
(I(D,Rd),Ga,b) → (M,G), for particular values of a, b and d, to someRiemannian
manifold with explicit formulas for geodesics, and to then describe geodesics in the
source space via pulling back. For the choice of parameters a = 1 and b = 1

2 , such
an isometry is given by the well known square root velocity transform, as developed
in Srivastava et al. (2010) for arbitrary d ≥ 2. For a = b = 1

2 and d = 2, an isometry
is given by the complex square root mapping constructed in Younes et al. (2008),
which is based on identifying R

2 with the complex plane. The complex square root
mapping was generalized to curves in R

3 by replacing complex constructions with
their quaternionic counterparts in Needham (2018, 2019b). For a ≤ 2b and d = 2,
a related construction has been developed in Bauer et al. (2014), where the target
manifold is a space of curves in a Euclidean cone. Finally, for curves with values
in R

2, the transformations of Younes et al. (2008), Srivastava et al. (2010), Bauer
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et al. (2014) have been extended to general values of the parameters a and b using
a local isometry defined, once again, via the identification of R2 with the complex
plane (Needham and Kurtek 2020).

We can now state our main contributions and outline the structure of the paper.

• Simplifying isometry for general elastic metric parameters (Sect. 2). We show that
the square root velocity transform mentioned above can, in fact, be used as a sim-
plifying isometry ofGa,b for general parameters a and b and for curves in arbitrary
dimension (Theorem 2.1), thereby fully generalizing the results of Srivastava et al.
(2010), Bauer et al. (2014), Needham and Kurtek (2020) and completing the story
started over a decade ago in Younes et al. (2008). We use this result to characterize
the metric completion of the space of curves and give an explicit formula for the
distance in this space (Theorem 2.1). This completion includes curves of lower
regularity—in particular, it includes the class of piecewise linear curves, which
is important for representing smooth curves in a discrete computational setting.
We also present a (to our knowledge, novel) relation between elastic metrics and
classical elasticity theory (“Appendix A”).

• Existence of optimal reparametrizations (Sect. 3). To obtain the distance on the
quotient shape space, one needs to consider the following problem: given two
curves c1, c2 ∈ I(D,Rd), find a reparametrization γ ∈ D(D) such that the
geodesic distance between c1 and c2◦γ , with respect to a given elasticmetricGa,b,
is minimized. It has been shown that a minimizer exists (within certain extensions
of the set D(D)) for parameters a = 1 and b = 1

2 (the original setting of the
square root velocity transform), under certain regularity assumptions on the curves
ci (Lahiri et al. 2015; Bruveris 2016).We extend these results to general parameters
a, b > 0, under technical regularity assumptions (Theorems 3.1 and 3.2) and lay
out some precise open questions regarding dependence on regularity. Our proof
uses classical results of Trouvé and Younes (2000)

• Computational framework (Sect. 4). We develop a comprehensive framework for
computing geodesics for Ga,b-metrics in the quotient space I(D,Rd)/D(D) and
arbitrary values ofa andb. This computation involves optimizinggeodesic distance
over reparametrizations, as was described in the previous paragraph. Therefore, we
generalize two algorithms, that have been originally developed for the case a = 1,
b = 1

2 to the present situation (Lahiri et al. 2015; Trouvé and Younes 2000; Mio
et al. 2007; Srivastava and Klassen 2016): the first one is an explicit polynomial-
time algorithm to find exact solutions in the setting of piecewise linear curves
(Theorem 4.1) and the second one is a (faster) dynamic programming algorithm
for approximating the optimizer (Sect. 4.2).We illustrate this approachwith several
computational examples (Sect. 4.3). Our code is available under an open source
license.1

• Metric Learning (Sect. 5). Finally, we consider the following question: given a
dataset of shapes, which metric from the family of elastic metrics gives the best
performance on various statistical analysis tasks? We frame this as ametric learn-
ing problem. A general approach to learning the appropriate parameters for a
given dataset is suggested (Sect. 5.1), based on foundational work in metric learn-

1 https://github.com/charoncode/Gab_metrics
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ing (Xing et al. 2002).We also give an alternative approach to parameter estimation
with the aim of training for geometric protein classification (Sect. 5.2).

2 Simplifying Transform for General Elastic Metrics

In this section, we will introduce the basic concepts and spaces under consideration
and introduce the class of Riemannian metrics that will be of central interest. We then
define a new family of transforms for simplifying these Riemannian metrics.

2.1 Spaces of Curves and Elastic Metrics

In the following, assume d ≥ 2 and let

I(D,Rd) = {c ∈ C∞(D,Rd) : c′(u) 	= 0 ∀u ∈ D} ,

where D is either the interval I = [0, 1] for open curves or the unit circle S1 for
closed curves. This space is an open subset of the Fréchet space C∞(D,Rd) and
is thus an infinite-dimensional manifold with tangent space TcI(D,Rd) at a curve
c ∈ I(D,Rd) satisfying TcI(D,Rd) ≈ C∞(D,Rd); specifically, the identification
is made by taking C∞(D,Rd) to be the space of smooth vector fields (or deformation
fields) along c.

This article is concerned with the family of elastic Ga,b-metrics on I(D,Rd),
indexed over pairs of positive constants a, b > 0:

Ga,b
c (h, k) =

∫
D
a2(Dsh

⊥ · Dsk
⊥) + b2(Dsh


 · Dsk

)ds , (1)

where h, k ∈ TcI(D,Rd) are deformation fields (tangent vectors) to the curve c ∈
I(D,R2), · denotes the Euclidean inner product with norm | · | (evaluated pointwise),
Ds = 1

|c′|
rmd
rmdu and ds = |c′|du are differentiation and integration with respect to arc

length, respectively (u denoting the parameter of c), and •
 and •⊥ denote projection
onto the normal and tangential part of a tangent vector, i.e.,

Dsh

 =

(
Dsh · c′

|c′|
)

c′
|c′| and Dsh

⊥ = Dsh − Dsh

.

The terminology of "elastic metrics" for (1) often used in the literature (Younes 1998;
Mio et al. 2007; Jermyn et al. 2012; Needham 2019a) can be in fact justified from
the theory of linear material elasticity, specifically as the limit of the linear elastic
energy of a deforming shell as it becomes infinitely thin. Such a connection was
recently emphasized in Charon and Younes (2022) for the class of first-order metrics
on surfaces. We provide in “Appendix A” a similar and more direct derivation in the
case of parametrized planar curves.

The group R
d acts on I(D,Rd) by rigid translations. Each bilinear form (1) is

degenerate on the space of all curves and therefore only defines a Riemannian metric
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on the quotient I(D,Rd)/Rd , which can be identified with the space I0(D,Rd) of
curves starting at the origin. Once we have defined a Riemannian metric, we can
consider the corresponding geodesic distance function

da,b(c0, c1) = inf
∫ 1

0

√
Gc(ct , ct )dt,

where the infimum is taken over all paths c : [0, 1] → I0(D,Rd) : t �→ ct interpo-
lating between the curves c0 and c1. For finite-dimensional Riemannian manifolds,
geodesic distance is indeed a true metric, but this is not necessarily true in infinite
dimensions: there are Riemannian metrics such that the corresponding geodesic dis-
tance function is degenerate or might even vanish identically (Mumford and Michor
2006; Bauer et al. 2020). For the Ga,b-metrics, this misbehavior has been ruled
out (Mumford and Michor 2006; Srivastava et al. 2010), which consequently renders
them as viable candidates for shape analysis.

On the space of immersions, there is a natural action by the orientation-preserving
diffeomorphism group D(D) of the domain D: the reparametrization action. Given
a curve c ∈ I0(D,Rd) and a diffeomorphism ϕ ∈ D(D), this action is given by
composition from the right, i.e.,

I0(D,Rd) × D(D) → I0(D,Rd), (c, ϕ) �→ c ◦ ϕ.

A straightforward calculation shows that the Ga,b-metrics are invariant under this
action, i.e.,

Ga,b
c (h, k) = Ga,b

c◦ϕ(h ◦ ϕ, k ◦ ϕ), h, k ∈ TcI0(D,Rd), ϕ ∈ D(D).

Consequently, they descend to Riemannian metrics on the quotient shape space of
immersions modulo parametrizations S(D,Rd) := I0(D,Rd)/D(D). On the quo-
tient space, the corresponding geodesic distance function can be calculated via

dSa,b([c0], [c1]) = inf
ϕ∈D(D)

da,b(c0, c1 ◦ ϕ).

2.2 The Square Root Velocity Transform for General Elastic Metrics

As we overviewed in the introduction, there have been many approaches in the lit-
erature to understanding elastic metrics through simplifying transformations (Younes
et al. 2008; Srivastava et al. 2010; Bauer et al. 2014; Needham and Kurtek 2020). That
is, these works establish (local) isometries of the form (I(D,Rd),Ga,b) → (M,G),
for some choice of parameters a, b, and d, where the target space is some Riemannian
manifold with an easy-to-describe geodesic structure. Such a transformation allows
efficient computations involving the elastic metric by transferring them to the simple
target space. Of particular interest for this paper is the square root velocity transform
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of Srivastava et al., which we denote as

R : I0([0, 1],Rd) → C∞([0, 1],Rd \ {0})
c �→ c′

√|c′| .
(2)

It was shown in Srivastava et al. (2010) that R is an isometry of the elastic metric G1, 12

and the standard L2 metric on C∞([0, 1],Rd \ {0}), for any d ≥ 2. Our first main
result below will show that R is, for general parameters a, b, an isometry of Ga,b and
a Riemannian metric on C∞([0, 1],Rd \ {0}) which is non-Euclidean, but still simple
enough to admit explicit geodesic distances.

In order to formulate this result, we first introduce a Riemannian metric onRd \{0}.
For q ∈ R

d \{0}, we identify Tq
(
R
d \{0}) with R

d in the obvious way. We then
decompose the tangent space via Tq

(
Rd \ {0}) = V ⊕ W , where V = R q and

W = V⊥, where the orthogonal complement is with respect to the standard dot
product on R

d . We then define a Riemannian metric gλ on Tq
(
R
d \{0}) as follows:

gλ
q (v,w) = λ2(v⊥ · w⊥) + (v
 · w
),

where, in analogy with the notation used in Sect. 2.1, w
 = (w·q)
(q·q)

q is the projection

of w onto V and w⊥ = w − w
 is the projection of w onto W . For λ = 1, this is
just a restriction of the standard Euclidean metric on Rd ; for λ < 1, it makes Rd \{0}
isometric to a dense subset of a cone in R

d+1 with an acute angle at the cone point;
for λ > 1, (Rd \{0}, gλ) does not isometrically embed in Rd+1.

The metric gλ induces an L2-metric on the space of smooth curves in Rd \{0}:

G
L2

λ
q (q1, q2) =

∫ 1

0
gλ
q (q1, q2)du.

We now state our first main result, whose proof is postponed to “Appendix C.”

Theorem 2.1 For λ = a
2b , the square root velocity transform R, defined in (2), is an

isometry of
(I0([0, 1],Rd),Ga,b

)
and

(
C∞([0, 1],Rd\{0}), 4b2 GL2

λ

)
. Furthermore,

for each c0 ∈ I0([0, 1],Rd) there exists a neighborhood U(c0) such that the geodesic
distance between c0 and any c1 ∈ U(c0) is given by:

dista,b(c1, c2) = 2b

√
�c1 + �c2 − 2

∫
D

√
|c′
1||c′

2| cos
( a
2b θ
)
du, (3)

where
θ(u) = cos−1(R(c1) · R(c2)/|R(c1)||R(c2)|).
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If d ≥ 3, then the formula for the geodesic distance holds globally, i.e., for arbitrary
c1 ∈ I0([0, 1],Rd), after replacing the formula for θ by

θ(u) = min
(
cos−1(R(c1) · R(c2)/|R(c1)||R(c2)|), 2bπ

a

)
.

To deal with the difficulty in the d = 2 case (the formula of the geodesic dis-
tance being only valid locally), we can extend geodesics across the origin and obtain
C∞(I ,Rd

λ) as the geodesic completion in the sense of Wurzbacher (2004), Bruveris
(2016). This allows us to interpret (3) as the geodesic distance on the geodesic com-
pletion. We will now extend the formula for the geodesic distance of Theorem 2.1
to the metric completion, which will be important in the next section where we will
prove the existence of optimal reparametrizations.

Corollary 2.1 The completion (in the sense of Lemma B.2) of I0([0, 1],Rd) with the
Ga,b metric is the space of absolutely continuous open curves AC0([0, 1],Rd). For
any two curves c1, c2 ∈ AC0([0, 1],Rd), their corresponding geodesic distance is
given by

dista,b(c1, c2) = 2b

√
�c1 + �c2 − 2

∫ 1

0

√
|c′
1||c′

2| cos
( a
2b θ
)
du.

where �c j is the length of the curve c j and

θ(u) =
{
min

(
cos−1(c′

1(u) · c′
2(u)/|c′

1(u)||c′
2(u)|), 2bπ

a

)
if c′

1(u), c′
2(u) 	= 0

2bπ
a otherwise.

2.3 Relation to PreviousWork

In this subsection, we pin down the precise relationship between Theorem 2.1 and
previous work on simplifying transforms (Younes et al. 2008; Srivastava et al. 2010;
Bauer et al. 2014; Needham and Kurtek 2020).

The transform in the literature which is most relevant to our result is obviously the
square root velocity transform (2), which was shown in Srivastava et al. (2010) to be

an isometry of G1, 12 and the standard L2 metric on C∞([0, 1],Rd \{0}) for arbitrary
d ≥ 2. This result is recovered directly from Theorem 2.1.

The complex square root map of Younes et al. (2008) takes an immersion c in the
plane to the curve

√
c′, where the square root is computed pointwise by considering c as

a complex-valued function—there is some ambiguity here, so the square root curve is
chosen in away tomake it continuous. This transformwas shown to be a local isometry

ofG
1
2 , 12 with the standard L2 metric onC∞([0, 1],C) ≈ C∞([0, 1],R2). InNeedham

and Kurtek (2020), it was shown that the complex square root map fits into a family of

maps Fa,b, defined on a smooth plane curve c by Fa,b(c) = 2b|c′| 12 (c′/|c′|) a
2b , with

exponentiation once again performed using the identification of R2 with the complex
plane and choosing a continuous curve as the image; when a = b = 1

2 , Fa,b reduces to
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the complex square root map. It was shown in Needham and Kurtek (2020) that Fa,b

defines a local isometry between Ga,b and the L2 metric, for any choices of a, b > 0.
In fact, the Fa,b transform factors as
(
Imm0([0, 1],C),Ga,b

) (
C∞([0, 1],C∗), 4b2GL2

λ

) (
C∞([0, 1],C∗),GL2

)
R Sa,b

Fa,b

where C
∗ = C \ {0}, λ = a

2b , G
L2 = GL2

1 is the standard L2 metric and Sa,b is a
local isometry defined by Sa,b(q) = 2b|q|1−λqλ—the local isometry claim can be
seen via calculations in complex coordinates, similar to the proof of (Needham and
Kurtek 2020, Theorem 2.3). The takeaway from Theorem 2.1 is that the geometry
of the metric GL2

λ is simple enough that we can work in the middle space of this
diagram, allowing us to avoid technical issues with isometries only being local, while
simultaneously allowing the result to be generalized to arbitrary dimension.

We should also mention (Bauer et al. 2014), which gave a similar family of general-
izations of the complex square root map for plane curves, valid for Ga,b with a ≤ 2b.
In this case, a curve c in C is mapped to the curve in R3 ≈ C × R given by

Ra,b(c) = |c′| 12
(
a
c′

|c′| ,
√
4b2 − a2

)
.

The image of Ra,b lies on a certain cone in R
3 and it is shown in Bauer et al. (2014)

that the transform is an isometry of Ga,b and the metric on the cone induced from the
ambient Euclidean metric. As in the case of the Fa,b transform described above, one
can factor Ra,b as the SRV transform R followed by an isometry between the space
of curves in the plane and the space of curves in the cone.

3 Existence of Optimal Reparametrizations

3.1 Existence of Optimal Reparametrizations for Open Curves

In the previous section, we saw that the set of absolutely continuous functions
provides the natural space for studying the geodesic distance function of the fam-
ily of elastic metrics. In the following, we aim to prove the existence of optimal
reparametrizations in this space. Let distSa,b be the induced distance of the elastic

Ga,b-metric on the space of absolutely continuous, unparametrized and open curves
S(I ,Rd) := AC0(I ,Rd)/�, which is defined by

distSa,b([c1], [c2]) = infγ∈�dista,b(c1, c2 ◦ γ ), (4)

where dista,b denotes the geodesic distance function on the space of parametrized
open curves AC0(I ,Rd) and where � denotes the group of absolutely continuous
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diffeomorphisms on I , i.e.,

� = {γ ∈ AC(I , I ) : γ (0) = 0, γ (1) = 1, γ ′ > 0 a.e.}.

Wewill also need the closure �̄ (with respect to theW 1,1-norm topology) of �, which
is the semigroup of weakly increasing, absolutely continuous functions, i.e.,

�̄ = {γ ∈ AC(I , I ) : γ (0) = 0, γ (1) = 1, γ ′ ≥ 0 a.e.}.

With this notation, the induced distance distSa,b on the quotient space S(I ,Rd) can be
equivalently expressed via

distSa,b([c1], [c2]) = inf
γ∈�

dista,b(c1, c2 ◦ γ ) = inf
γ1,γ2∈�

dista,b(c1 ◦ γ1, c2 ◦ γ2)

= inf
γ1,γ2∈�̄

dista,b(c1 ◦ γ1, c2 ◦ γ2). (5)

Here, the second equality in the first line follows from the invariance of the distance,
whereas the third equality follows from the density of � in �̄. Our main result of
this section concerns the existence of optimal reparametrizations, i.e., the existence
of reparametrization functions such that the infimum is attained. We will see that
for a ≤ b we really need two reparametrization functions in �̄, while for a > b
the infimum can attained by one reparametrization function. Before we formulate the
theorem,we need to introduce the function space of piecewise differentiable functions:

PC1(I ,Rd) :=
{
c ∈ C(I ,Rd) : ∃ 0 = t0 < t1 < . . . < tn = 1

s.t. c|(ti ,ti+1) ∈ C1((ti , ti+1),R
d )} .

Note that PC1(I ,Rd) ⊂ AC(I ,Rd). We also need to introduce the space D∗ of all
functions that can be written as φ(s) = μ([0, s[), where μ is a probability measure
on I . These are equivalently (c.f. Cohn 2013, Chapter 4) bounded variation (BV)
functions, which are non-decreasing and left-continuous on I . Wewill denote the right
limit of φ at x by φ(x + 0+). Furthermore, we recall that since φ is nondecreasing,
φ is differentiable almost everywhere. For φ ∈ D∗, we also introduce a generalized
inverse φ− ∈ D∗ defined by:

φ−(y) = sup{x ∈ [0, 1], φ(x) < y},

where we use the convention sup ∅ = 0; c.f. (Trouvé and Younes 2000, Section 5.2.3).
We are now able to formulate the main result of this section.
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Theorem 3.1 Let c1, c2 ∈ PC1(I ,Rd). Then the distance distSa,b on the quotient space

S(I ,Rd) is equivalently given by a supremum over the space D∗, i.e.,

distSa,b([c1], [c2]) = 2b

√
�c1 + �c2 − 2 sup

φ∈D∗

∫
I

√
φ̇(x) fa,b (x, φ(x)) dx,

where fa,b : I × I → R is defined by

fa,b(x, y) =
{√|ċ1(x)||ċ2(y)| cos

(
a
2b cos

−1
(

ċ1(x)·ċ2(y)
|ċ1(x)||ċ2(y)|

))
if a

2b cos
−1
(

ċ1(x)·ċ2(y)
|ċ1(x)||ċ2(y)|

)
≤ π

2

0 otherwise.
(6)

We have the following statements concerning the existence of optimal reparametriza-
tions:

1. a < b : for any c1, c2 ∈ PC1(I ,Rd) there exists a strictly increasing homeo-
morphism such that the infimum in (4) is attained. If the derivatives ċ1, ċ2 are
Lipschitz continuous then γ ∈ DiffC1(I ), i.e., the optimal reparametrization is a
C1-diffeomorphism.

2. a ≥ b : for c1, c2 ∈ PC1(I ,Rd) there exists a pair of generalized reparametriza-
tions γ1, γ2 ∈ �̄ such that the infimum in (5) is attained. On the other hand, there
exists a pair of curves c1, c2 ∈ AC(I ,Rd) such that the infimum in (5) is not
attained in �̄ and consequently neither in � or D∗.

Our proof of this result, which makes repeated use of results by Trouve and
Younes (2000), is presented in “Appendix C.”

Remark 3.1 (Open questions). This result suggests the following questions, which
remain open for future research.

• Counterexample for a < b: The proof of the non-existence result for a ≥ b will
be based on constructing curves c1, c2 such that fa,b(x, x) ≤ 0 for x ∈ B, where
B is a closed but nowhere dense subset. For a < b, fa,b is positive, and thus, the
same strategy fails.

• Higher regularity: One would hope that a higher regularity of the curves c1 and
c2 would lead to a higher regularity of the obtained optimal reparametrization
functions. To deduce this result from the theoremofTrouve andYounes (2000), one
would need that a higher regularity of the curves ci also leads to a higher regularity
of the function fa,b. This function is, however, at best Lipschitz continuous and
only locally of a higher regularity. One can use the local regularity of fa,b and
localize the arguments of Trouvé and Younes (2000) to show that the optimal
reparametrization functions are locally of class Ck−1 provided that the curves are
of class Ck , but as of now we do not know how one could go a step further and
obtain a global regularity result.

Remark 3.2 In the limit (and degenerate) case a = 0, one can further show that for
any regular curves c1, c2 ∈ PC1(I ,Rd) the infimum in (4) is attained by the constant
speed reparametrizations of c1 and c2, i.e.,

distSa,b([c1], [c2]) = dista,b(c1 ◦ ψ−1
c1 ◦ ψc2 , c2)
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whereψc(u) = ∫ u0 |ċ(s)|ds. Indeed, let us first assume that c1 and c2 are both constant
speed parametrized, i.e., |ċ1| and |ċ2| are constant on I and equal to the curve lengths
�c1 and �c2 , respectively. Therefore, fa,b is just constant, and the optimization problem
becomes:

distSa,b([c1], [c2]) = 2b

√
�c1 + �c2 − 2 fa,b (0, 0) sup

φ∈D∗

∫
I

√
φ̇(x)dx .

We have by Cauchy–Schwarz

(∫
I

√
φ̇(x)dx

)2

≤ 1 ·
∫
I
φ̇(x)dx ≤ 1 · 1 = 1

and for φ = id, the previous inequality is an equality. The result follows and we also
obtain that the (pseudo-)distance is given by:

distSa,b([c1], [c2]) =
√

�c1 + �c2 − 2
√

�c1�c2 =
∣∣∣√�c1 −√�c2

∣∣∣

In the general case, where c1, c2 ∈ PC1(I ,Rd), one has that c1 ◦ ψ−1
c1 and c2 ◦ ψ−1

c2
have constant speed, and

distSa,b([c1], [c2]) = dista,b(c1 ◦ ψ−1
c1 ◦ ψc2 , c2).

3.2 Existence of Optimal Reparametrizations on the Space of Closed Curves

Wewill now extend the previous result to the case of closed curves, i.e., when D = S1.
For closed parametrized curves, there does not exist anymore an explicit formula for
the geodesic distance associatedwith general elasticGa,b-metrics—to our knowledge,
the only Ga,b metric with explicit geodesics for closed curves is the a = b case for
plane curves (Younes et al. 2008) and space curves (Needham 2019b), both of which
rely on specific constructions involving Hopf maps. Nevertheless, the formula we
obtained for open curves in Theorem 2.1 still defines a reparametrization invariant
distance function on the space of closed, parametrized curves: the next result follows
by the same analysis applied in the open curve setting.

Corollary 3.1 For c1, c2 ∈ AC0(S1,Rd), let dista,b(c1, c2) be given by the same for-
mula as in (3) with integration over I replaced by integration over S1. Then dista,b

defines a metric on the space of closed, absolutely continuous curves AC0(S1,Rd).

As previously, this allows us to construct a distance on the quotient space of
unparametrized closed curves by defining

distS,cl
a,b ([c1], [c2]) := inf

γ∈�cl
dista,b(c1, c2 ◦ γ ),
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where dista,b is given by (3) and where �cl denotes the group of absolutely continuous
reparametrizations on the circle, i.e.,

�cl = {γ ∈ AC(S1, S1) : γ is bijective and γ ′ > 0 a.e.}

We introduce the shift operator on S1:

Sτ :
{
S1 → S1

θ �→ θ + τ

where τ ∈ S1. Then we can rewrite the group of absolutely continuous reparametriza-
tions on the circle as

�cl = {Sτ ◦ γ : γ ∈ � and τ ∈ S1},

and we also need, as before, the closure of this group �̄cl = {Sτ ◦ γ : γ ∈ �̄ and τ ∈
S1}. Then, the induced distance distS,cl

a,b can be expressed as

distS,cl
a,b ([c1], [c2]) = inf

γ∈�cl
dista,b(c1, c2 ◦ γ ) = inf

γ1,γ2∈�cl
dista,b(c1 ◦ γ1, c2 ◦ γ2)

= inf
γ1,γ2∈�̄cl

dista,b(c1 ◦ γ1, c2 ◦ γ2). (7)

We can now formulate the existence result of optimal reparametrizations for closed
curves. Our proof, which will use the same method as Hartman et al. (2021) where
the result was shown for the SRV metric, is postponed to “Appendix D.”

Theorem 3.2 Let c1, c2 ∈ PC1(S1,Rd). We have the following statements concerning
the existence of optimal reparametrizations:

1. a < b : for any c1, c2 ∈ PC1(S1,Rd) there exists a strictly increasing homeo-
morphism such that the infimum in (7) is attained. If the derivatives ċ1, ċ2 are
Lipschitz continuous, then γ ∈ DiffC1(S1), i.e., the optimal reparametrization is a
C1-diffeomorphism..

2. a ≥ b : for c1, c2 ∈ PC1(S1,Rd) there exists a pair of generalized reparametriza-
tion γ1, γ2 ∈ �̄cl such that the infimum in (7) is attained.

4 Algorithms for the Computation of Quotient Distances and
Geodesics

In the following, we will describe two different algorithms for the numerical computa-
tion of the optimal reparametrization on the space of open curves: an exact algorithm
based on the work of Lahiri et al. (2015) and a faster dynamic programming-based
approximation. Solving the registration problem on the space of closed curves simply
requires an additional optimization over the starting point, i.e., one has to solve the
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registration problem on the space of open curves for any choice of starting point. Con-
sequently, the numerical solution on the space of closed curves is significantly more
expensive.

4.1 Exact Algorithm for Piecewise Linear Curves

By the results of the previous section,we obtain the existence of optimal reparametriza-
tions in the case of open, piecewise linear curves. Furthermore, using a result of Lahiri
et al. (2015) we obtain an explicit algorithm for the optimal reparametrizations γ1 and
γ2. We have the following result that follows directly from the corresponding analysis
for the SRV-metric.

Theorem 4.1 Let c1, c2 be two piecewise linear curves with values inRd . Then the pair
of generalized reparametrizations γ1, γ2 ∈ �̄ that attains the infimum in (5) consists
of two piecewise linear maps.

Proof First we note that piecewise linear curves are piecewise smooth and thus in
particular piecewise C1. This guarantees the existence of optimal reparametrization
by the results of Theorem 3.1.

Next, we introduce a notion from Lahiri et al. (2015) and let f : I × I → R.
We call f rectangular if there exist partitions 0 = i0 < i1 < · · · < im = 1 and
0 = j0 < i1 < · · · < jn = 1 such that f is constant on each rectangle of the form
[ir−1, ir ] × [ js−1, js].

Using again Theorem 3.1, we have shown that finding optimal reparametrizations
for the geodesic distance is equivalent to the optimization problem

sup
γ1,γ2∈�̄

∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u)) du,

where fa,b is defined in (6). It is clear that the function fa,b is rectangular if the curves
c1 and c2 are piecewise linear. From here, the proof given in Lahiri et al. (2015) goes
through verbatim. ��

Consequently, the exact algorithm from Lahiri et al. (2015) can be adapted to
find optimal reparametrizations in our setting. This algorithm can find the optimal
piecewise linear trajectory γ1, γ2 that maximizes

∫
I×I W (γ1(u), γ2(u))

√
γ̇1(u)γ̇2(u)

for general W ∈ L2(I × I ,R). For the Ga,b-metrics, we simply have W = fa,b. We
use the implementation from Martins Bruveris [30] that computes reparametrization
for the usual G1,1/2-metric, i.e., with W (x, y) = q1(x) · q2(y). Recall that closed
curves require an additional optimization step to determine the starting point. For
each vertex of the piecewise linear curve c1, we simply compute the resulting distance
with c2 and choose the minimum.

4.2 Dynamic Programming Approach

The previous algorithm gives the exact optimal piecewise linear reparametrization,
but is in practice very slow to compute. An alternative method is to use a dynamic
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programming scheme to estimate an approximation of the optimal reparametrization,
similar to the approach proposed in Trouvé and Younes (2000), Mio et al. (2007),
Srivastava and Klassen (2016). We now describe this method.

We define a discretization I = {x0, ..., xn} of the interval [0, 1] and restrict the
search to piecewise linear functions on the grid I × I. We denote by PLI the set of
piecewise linear increasing functions with vertices on I × I. For k < i , l < j and
φ ∈ PLI , we define the partial cost function

E(k, l, φ) =
∫ xi

xk

√
φ̇(x) fa,b(x, φ(x))dx .

Let Lk,l,i, j (x) = xl + x j−xl
xi−xk

(x − xk) be the line between (xk, xl) and (xi , x j ), and
with a slight abuse of notation, we shall write E(k, l, i, j) = E(k, l, Lk,l,i, j ) as
the energy of the segment. By additivity, if φ ∈ PLI is defined by the segments
Lk1,l1,k2,l2 , Lk2,l2,k3,l3 , ..., Lkp−1,l p−1,kp,l p , the total energy of φ is

E(φ) =
p−1∑
n=1

E(kn, ln, kn+1, ln+1).

We thus have to find the sequence of nodes (kn, ln) that minimizes the energy. We
define the partial value function to reach node (i, j) by

H(i, j) = min
k<i,l< j

E(k, l, i, j) + H(k, l) (8)

with H(0, 0) = 0; in other words, H is defined recursively. Due to the specific additive
form of E , if for all k < i, l < j , H(k, l) is the minimal energy between (0, 0) and
(k, l), then by definition H(i, j) is the minimal energy between (0, 0) and (i, j).
Consequently, the global minimal energy that we aim to find is given by H(1, 1).

The algorithm proceeds in two steps. First, we compute different values of H on the
grid I × I using equation (8). Then, we determine the optimal path by backtracking
from vertex (1, 1): if (xi , x j ) is a vertex of the optimizer, we compute the node that
joins (xi , x j ) by solving the problem:

(k̂, l̂) = argmin
k<i,l< j

E(k, l, i, j) + H(k, l).

To speed-up the computation of the value function and optimal reparametrization, a
standard approach (Mio et al. 2007) is to restrict the search of the node that connects
to (i, j) to a smaller set than {k, l : k < i, l < j}. In our case, we define

Ni, j = {k, l : i − 6 ≤ k < i, j − 6 ≤ l < j}
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Fig. 1 Geodesics between open plane curves. Each panel shows several geodesics between a pair of curves,
with each row corresponding to a different choice of parameters in the elastic metric. In the left panel, the
source and target curves are simple synthetic curves, designed to clearly illustrate the dependence of the
geodesic on the metric parameters. In the right panel, the source and target curves are real leaf shapes—
although the source and target curves are actually closed, we compute each geodesic in the space of open

curves. In both the left and right panels, the metric parameters vary by row and are given by Ga, 12 , with
a = 0.1, 0.5, 1 and 5, as indicated

and the corresponding partial energy

H(i, j) = min
(k,l)∈Ni, j

E(k, l, i, j) + H(k, l).

This will lead to a restriction of the admissible slopes and in general to a less precise
approximation of the reparametrization. Nevertheless, in all of our experiments, this
restriction still yields good approximations of the true reparametrization functions,
c.f. Fig. 2.

4.3 Examples

Figure 1 shows several geodesics between pairs of plane curves—a pair of simple
synthetic curves and a pair of real leaf shapes, all sampled with 100 points in total.
Geodesics are computed for a variety of elastic metrics Ga,b; we fix b = 1

2 and
compute geodesics for a ∈ {0.1, 0.5, 1, 5}. All geodesics in this figure were computed
using our dynamic programming algorithm. These first examples clearly illustrate that
the intermediate shapes along the geodesics strongly depend on the choice of metric
parameters. Figure2 compares the estimated reparametrization functions found via
the dynamic programming algorithm to those found by the exact algorithm. We see
here that the dynamic programming algorithm typically returns registrations which are
close to the true optimal ones,while incurring a lower numerical burden. Indeed, for the
synthetic example, the average computational times for exact registrations were 306s,
269s, 40 s, and 0.2s, respectively, for a = 0.1, 0.5, 1, 5; their counterparts computed
using the dynamic programming algorithm were orders of magnitude smaller: 0.23s,
0.09s, 0.07s, and 0.06s. A similar trend held for the leaf shapes, where we got 299s,
253s, 34 s, and 0.19s for the exact algorithm and 0.22s, 0.03s, 0.025s, and 0.021s
for dynamic programming. In the figure, we report the performance of the dynamic
programming algorithm by giving its relative error (ddyn − dex)/dex, where ddyn is
geodesic distance (for given metric parameters) computed via dynamic programming
and dex is the exact distance.
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Fig. 2 Comparison of registrations via the exact and dynamic programming algorithms. The top row shows
the registrations (i.e., optimal diffeomorphisms of [0, 1]) between the synthetic curves from Fig. 1 with
respect to metric parameters b = 1

2 and a = 0.1, 0.5, 1, 5, as indicated. In each figure, the exact registration
is plotted in blue and the dynamic programming registration is plotted in red. The last graph in the row
plots the relative error of dynamic programming versus the exact algorithm (see the text) for a finer range of
parameters a ∈ {0, 0.1, 0.2, . . . , 2}, b = 1

2 . The bottom row shows the same experiment for the registrations
between the leaf shapes of Fig. 1. Observe that the relative error is generally on the order of a single digit
percentage in each case (Color figure online)

Fig. 3 Geodesics between space curves. Each row shows a geodesic between the same pair of protein
backbones, modeled as space curves, for a particular choice of elastic metric. The elastic metric parameters
for the rows are b = 1

2 , a = 0.1, 0.5, 1, 5, respectively

Figure 3 applies our framework to compute geodesics between 3D curves (protein
backbones), for a variety of elasticmetric parameters. These geodesicswere computed,
once again, using the dynamic programming algorithm.

5 Metric Learning

The numerical experiments of the previous section illustrate both the influence and
importance of the choice of metric when comparing and matching shapes. While
certain heuristics may sometimes guide the selection of the parameters a and b of
the elastic metric for a given dataset and application, it is often done via empirical
trial and error approaches. Thus, in recent years, there has been a growing interest in
developing methods for automatically estimating metrics on shape spaces.
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Obviously, there is a priori no natural criterion to prefer one metric over another
for the basic task of matching two shapes. However, when considering shape datasets
and problems such as clustering or classification, it should be expected that different
metrics will lead to different ways of quantifying differences across samples and con-
sequently different properties from a statistical perspective. This suggests the idea of
attempting to optimize (or learn) the choice of metric in order to improve the statistical
power of shape analysis methods. The elastic framework of this paper appears quite
amenable to such a task as learning the metric here reduces to learning a single param-
eter (the ratio of a and b). In this section, we consider the issue of metric learning for
shape classification using two differentmodels. Our primary focus is on demonstrating
the feasibility and advantages of optimizing the choice of the metric in such a context;
we leave an in depth study of the issue of developing efficient numerical algorithms
for metric learning for future work.

The literature on metric learning is vast, and we only summarize some main ideas
here—for more details, there are several surveys on the topic, e.g., Yang and Jin
(2006), Bellet et al. (2013), Kulis et al. (2013), Kaya and Bilge (2019). Generally,
metric learning is a supervised machine learning technique for choosing a metric from
a parametric family which optimally separates data coming from different classes.
Classically, the data consist of Euclidean feature vectors, and the metrics under con-
sideration are Mahalanobis distances (Xing et al. 2002; Davis et al. 2007; Ying and
Li 2012), which allows training via standard techniques from convex optimization
theory. Closer to the topic of this paper, there has also been recent interest in metric
learning on parametric families of Riemannian metrics on manifolds, such as spaces
of SPD matrices (Vemulapalli and Jacobs 2015), spaces of histograms (Le and Cuturi
2015) and graphs (Heitz et al. 2021).

A common paradigm inmetric learning is to represent data via pairwise constraints,
where the training data consist of two sets S = {(xi , x j )} and D = {(xk, x�)} so that
each pair (xi , x j ) ∈ S consists of similar points (coming from the same class) and
each pair (xk, x�) ∈ D consists of dissimilar points (coming from different classes).
One then designs a loss function on the metric parameter space which encourages
distances between similar points to be small and distances between dissimilar points
to be large—the particulars of the loss function are application-dependent, and several
choices are described in the survey papers cited above. An optimal metric with respect
to a given loss can then be used for downstream distance-based analysis tasks, such
as clustering, dimension reduction and k-nearest neighbors classification. This is the
approach that we take in Sect. 5.1, where we us the pairwise constraints method to
train metrics for various 2-dimensional shape datasets. On the other hand, if one has
a particular classification task in mind, then it is sensible to learn the metric which
optimizes performance on this task directly. We take this approach in Sect. 5.2 to learn
a metric which optimally classifies 3-dimensional protein backbone curves.

5.1 Pairwise Constraints

Let us first consider the goal of estimating, in a supervised fashion, the metric that will
best separate 2-dimensional shapes according to the pairwise constraints paradigm
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described above. In other words, suppose that we have training data consisting of a
collection of unparametrized curves X = {c j }Nj=1 together with known labels y =
{y j }Nj=1 with each y j ∈ {1, . . . , K } (that is, there are K distinct classes). We seek to

determine the optimal parameters (a, b) for the elastic metricGa,b so that the geodesic
distance distSa,b optimally separates those classes. By a simple normalization argument,
we may fix one of the two metric parameters, which we shall do in the following by
setting b = 1/2 and optimize over a ≥ 0.

The above task can be stated formally by introducing an adequate pairwise con-
straint loss function depending on the distances distSa,b(ci , c j ) between the curves of
the training set. There have been various families of such loss functions appearing
most notably in the machine learning literature. As a proof of concept, we choose here
a simple loss which we can loosely think of as the ratio of the intra-class variance
by the inter-class variance of the shape distances. Specifically, let S ⊂ X × X be
the collection of ordered pairs (ci , c j ) of curves with the same label (yi = y j ) and
D ⊂ X × X the collection of ordered pairs with different labels (yi 	= y j ). We define
our loss function by:

L(a) =
⎛
⎝ 1

|S|
∑

(ci ,c j )∈S
distSa,1/2(ci , c j )

2

⎞
⎠

1
2

·
⎛
⎝ 1

|D|
∑

(ck ,c�)∈D
distSa,1/2(ck, c�)

2

⎞
⎠

− 1
2

.

(9)
Minimizing L(a) shouldbe achievedwhenone strikes a balancebetween concentrating
curves from the sameclass close to one another,while giving a large separationbetween
different classes. As was recently observed in Ghojogh et al. (2019), Ghojogh et al.
(2022), minimizing this loss function is essentially equivalent to solving the metric
learning optimization problem described in the pioneering work of Xing et al. (2002).

For a given value of a, this loss function is calculated by first computing each of
the N (N − 1)/2 pairwise distances {distSa,1/2(ci , c j )}, which requires solving each of
the corresponding registration problems. In our experiments, this is done using the
dynamic programming scheme for the sake of computational efficiency. For the pur-
pose of this work, we evaluate the loss function over a range of different values for a in
order to determine the approximate value of theminimizer. Note that, while the expres-
sion of the loss when reparametrizations are fixed is relatively simple and could be
optimized easily with respect to a, the difficulty is that the optimal reparametrizations
leading to each pairwise distance value also depend on a. This makes the derivation
of more sophisticated and efficient schemes for the minimization of (9) a non-trivial
problem that we leave to future investigation, c.f. the discussion below.

Results. We tested our metric learning pipeline on two shape datasets. Results from
the first dataset are reported in Fig. 4. Here, the data consisted of leaf shapes coming
from four classes with 20 samples in each class. We chose 7 random examples from
each class as training data and created pairwise data S and D, with S consisting of
all pairs from the same class and D consisting of all pairs from different classes.
We then minimized the loss function (9) via a grid search over the one-dimensional
parameter space (a gradient descent algorithm was also implemented, which gave
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Fig. 4 Metric learning on the leaf dataset. The left panel shows representatives of each of the four classes
in the leaf dataset. The middle and right panels showMDS (multidimensional scaling) plots of the pairwise
distance matrices with respect to the learned metric for the training and testing data, respectively. The
optimal metric parameter learned for the loss function (9) is a = 0.71. The Rand indices (see text for a full
description) for the training and testing sets are 1 and 1, respectively

Fig. 5 Metric learning on the animal dataset. Similar to Fig. 5, from left to right the panels show representa-
tive shapes from each of the four classes, an MDS plot for the training data and an MDS plot for the testing
data, both with respect to the pairwise distance matrices computed with the optimal metric parameter. For
this experiment, the optimal parameter was a = 0.52 and the Rand indices for the training and testing sets
were both equal to 1 (i.e., perfect clustering)

the same results). The efficacy of the learned metric was validated by testing the
ability of the resulting geodesic distance to separate shapes from different classes. We
measured this by computing the pairwise distance matrices for both the training and
testing data, partitioning each dataset into four classes by applying complete linkage
hierarchical clustering to the distance matrices and computing the Rand index of the
inferred clusters against the ground truth classes. Similar results for the second dataset,
consisting of shapes of four different species of animals, are reported in Fig. 5. Notably,
the optimal metrics computed for the two datasets are quite different, indicating that
the choice of optimal metric is data-dependent.

5.2 Metric Learning for Shape Classification

As an alternative to optimizing the metric parameters with respect to the loss (9), one
may instead consider trying to maximize classification scores on the training set in a
cross-validation fashion. A simple approach could be, for example, to evaluate leave-
one-out nearest neighbor classification scores for varying values of a. A usually more
robust way however is to rather rely on the estimation of conditional probabilities for
different classes. We present one possible approach in the following description.

With the same notation as in the previous section, we introduce a leave-one-out
scheme in which for each j = 1, . . . , N , we denote by p j (�|X̂ j ) the probability of
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c j to be in the class � ∈ {1, . . . , K } knowing only the curves in X̂ j = {ci }i 	= j and
their labels. In order to estimate the conditional probabilities p j , we adapt a standard
approach in many machine learning works, see e.g. Goodfellow et al. (2016), Chapter
6.2. Namely, we introduce the estimator p( j)(�|X̂ j ) = σ(z( j))� where the vector
z( j) ∈ R

k is defined by

(z( j))� = − 1

|{i 	= j : yi = l}|
∑

i 	= j,yi=l

dista(ci , c j )
2

and σ is the softmax function given by

σ(z)� = eβz�∑K
m=1 e

βz�

with β > 0 a fixed (or tunable) parameter. Then, for each j = 1, . . . , N , p( j)(y j |X̂ j )

gives an estimate of the probability for the correct class y j of curve j . Thus, we seek
to maximize the sum of the log-likelihoods over all instances of the leave-one-out
scheme. In other words, we define the loss function to minimize to be:

L(a) = −
N∑
j=1

log(p( j)(y j |X̂ j )).

Note that − log(p( j)(y j |X̂ j )) can also be interpreted as the Kullback–Leibler diver-
gence between the true probability distribution δy j and the estimated one p( j)(·|X̂ j ).
As in the previous section, we can calculate the above loss for each value of the met-
ric parameter a by first solving all pairwise matching problems to obtain the set of
distances {dista(ci , c j )}.
Results. We used data from the 3D Shape Retrieval Contest 2010 (SHREC’10)
(Mavridis et al. 2010) which contains a training dataset of 1000 protein structures
from 100 classes, each class containing 10 proteins. Only the 3D curves representing
the protein backbones were extracted and used in our experiments; two examples of
such protein shapes are shown in Fig. 3. In addition, 50 more proteins from random
classes formed the testing dataset that we used to evaluate the metric learning pro-
cess. Our goal is to compare results obtained with the above approach to the methods
fromMavridis et al. (2010).We calculated the classification loss for a sample of values
of the metric parameter a between 0 and 2 (Fig. 6) and found the optimal value to be
a = 0.61.

For evaluation, we use this optimal parameter to compute a matrix of the distances
between the 50 proteins in the testing set and each of the proteins in the training set.
The performance of the method is measured in the same two ways as in the original
contest.

• Nearest neighbor: for each of the 50 proteins, we find the closest protein from the
training dataset to predict the class of the testing protein. We calculate the overall

123



56 Page 22 of 37 Journal of Nonlinear Science (2024) 34 :56

Fig. 6 Scores for different values of a, where the parameter a is plotted on the horizontal axis. In the left
panel the vertical axis shows the loss function described in Sect. 5.2. For comparison, on the right, we also
evaluate the cross-validation leave-one-out accuracy based on nearest neighbor classification

Fig. 7 Left: Aggregate ROC curves for different metric parameters: a = 2 (green), a = 1 (blue), and
the optimal value a = 0.61 (red). Right: Bar chart showing the AUC for optimal metric parameter value
a = 0.61 for each testing protein (Color figure online)

percentage of correct predictions. For the optimal value of the metric parameter
determined by our method—a = 0.61—we obtain 82% of correct predictions,
which beats all methods from Mavridis et al. (2010) (the best method in the paper
reaches 80%).

• Receiver operating characteristic (ROC) curve: for each of the 50 proteins in the
testing dataset, we create a ranked list of the proteins from the training dataset,
from the closest protein to the most distant. This ranked list contains 10 proteins
in the actual class of the testing protein (the true positives) and 990 proteins in a
different class (the true negatives). The ranked list is traversed sequentially and
we plot the cumulative rate of true positives against the cumulative rate of false
positives. Figure7 shows aggregate ROCcurves for all of the 50 test protein curves,
for different parameters of the metric. For the optimal value of a, we also compute
the area under the curve (AUC) for the ROC curves of each testing protein and
plot it in the right panel of the figure.
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Appendix A. An Interpretation from Linear Elasticity Theory

In the following section, we will formally derive the Ga,b-metric as a membrane
limit (order-one energy density) of a linear elastic energy model. With the definitions
and notations of Sect. 2.1, let us consider a portion of an open smooth curve which is
parametrized on an interval we will denote I , i.e., c : I → R

2 is an immersion of class
C∞, and define the thin shell domain � ⊂ R

2 of “thickness” δ > 0 around that curve.
Specifically,we take� as being given by the parametrizationω : [−δ/2, δ/2]×I → �

defined by ω(t, u) = c(u)+ tn(u) where n(u) is the unit normal vector to the curve c
at u. It is easy to see that for δ small enough, ω is a diffeomorphism that we can view
as a foliation of �. Indeed, we note that ω(0, ·) = c(·) and for any t ∈ [−δ/2, δ/2],
ωt : u �→ ω(t, u) defines a parametrized curve which corresponds to layer t of the
foliation. Moreover, ω′

t (u) = c′(u) + tn′(u) and, as n(u) is a unit vector orthogonal
to c′(u), we get that ω′

t (u) is parallel to c′(u) which implies that n(u) is also the
unit normal vector to ωt at u. Thus, for any x = ω(t, u) ∈ �, we can define the
orthonormal vector frame F(x) = (τ (x), n(x)) by:

τ(x) = ω′
t (u)

|ω′
t (u)| = ∂uω(t, u)

|∂uω(t, u)| , n(x) = n(u)

See the illustration given in Fig. 8.
Now, we model � as a linear elastic material which undergoes an infinitesimal

deformation given by a smooth vector field v : � → R
2. We shall further assume that

this deformation field is uniform along the transversal direction, in other words that it
takes the following form: for any x = ω(t, u), v(x) = h(u) where h is a vector field
defined along the curve c as in the previous section, c.f. again Fig. 8 for visualization.
Note that this is a natural assumption in the small thickness laminar model that we are
interested in here. Then, following the approach of classical linear elasticity (Gurtin
1981; Ciarlet 1988), one introduces the (2 × 2) symmetric tensor field defined for

all x ∈ � as ε(x) = dv(x)+dv(x)T

2 . This is known as the strain tensor associated
with the deformation field v and expressed in the canonical basis. Given the specific
laminar structure of the domain here, it will be more convenient to instead consider
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the strain tensor relative to the above orthonormal frame F(x), which is specifically
S(x) = F(x)T ε(x)F(x). The linear elastic energy associated with the deformation
field is obtained from Hooke’s law and takes the general form:

E(v) =
∫

�

U (x, S(x))dx

where U (x, ·) is a quadratic form on the space of symmetric (2 × 2) matrices which
is usually referred to as the elastic or stiffness tensor. In the present context, we will
restrict the class of such elastic tensors by making a few additional assumptions.
First, we will consider the elastic properties of the material to be uniform in the
sense that U (x, ·) does not depend on x ∈ �. Then, viewing any symmetric matrix
S = (si j )i, j=1,2 as the (3 × 1) vector (s11, s22, s12)T , the quadratic form U can be
identified with a single symmetric positive definite (3× 3) matrix which we write as:

U =
⎛
⎝ u1,1 u1,2 u1,12
u1,2 u2,2 u2,12
u1,12 u2,12 u12,12

⎞
⎠ .

The coefficients in U assign weights to different terms in the elastic energy in the
following way. Both coefficients u1,1 and u2,2 correspond to spring-like stiffness
coefficients in the tangential and normal directions, respectively. Coefficient u1,2, on
the other hand, weighs the relative compression/stretching between tangential and
normal directions. The coefficient u12,12 can be associated with bending energy that
results from a change of angle between the two directions. We will make some further
symmetry assumptions on the material, namely that it is orthotropic with respect
to the two directions τ(x) and n(x) at each point x . This leads to the conditions
u1,12 = u2,12 = 0. Note that the orthotropy assumption is relatively common in
many materials (with the exception of certain crystals) and include in particular fully
isotropic materials, c.f. Remark A.1.

Going back more specifically to the deformation of the foliated domain �, due to
the particular form of the vector field v, we can see that for any x = ω(t, u) ∈ �,

Fig. 8 Illustration of the thin shell elastic domain model
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dv(x) · n(x) = 0. This implies that the strain tensor is of the form:

S(x) =
(

τ(x)T dv(x) · τ(x) 1
2 (dv(x) · τ(x))T n(x)

1
2 (dv(x) · τ(x))T n(x) 0

)

and so, identified as a (3× 1) vector, we have S(x) = (s11(x), 0, s12(x))T . Under the
previous assumptions on the elastic tensor, we find the following elastic energy:

E(v) =
∫

�

(u1,1s11(x)
2 + u12,12s12(x)

2)dx

=
∫ + δ

2

− δ
2

∫
I
(u1,1s11(ω(t, u))2 + u12,12s12(ω(t, u))2) |Jω(t, u)| dudt .

where Jω denotes the Jacobian determinant of ω. We have seen that ∂tω(t, u) = n(u)

and ∂uω(t, u) = c′(u) + tn′(u) with c′(u) and n′(u) being parallel vectors both
orthogonal to n(u). Thus, for all (t, u), |Jω(t, u)| = |c′(u) + tn′(u)|.

Now, using the continuity with respect to t of the inside integral and the mean value
theorem, we obtain that:

lim
δ→0

1

δ
E(v) =

∫
I
(u1,1s11(ω(0, u))2 + u12,12s12(ω(0, u))2)|c′(u)|du.

In addition, from v(ω(0, u)) = h(u), we get by differentiating that dv(ω(0, u)) ·
τ(ω(0, u)) = h′(u)/|c′(u)|. We can then rewrite the above expressions of s11 and s12
as:

s11(ω(0, u)) = τ(ω(0, u))T
(

h′(u)

|c′(u)|
)

=
(

c′(u)

|c′(u)|
)T h′(u)

|c′(u)|
s12(ω(0, u)) = 1

2

n(ω(0, u))T h′(u)

|c′(u)|
which finally leads to:

lim
δ→0

1

δ
E(v) =

∫
I

[
u1,1(Dsh


)2 + u12,12
4

(Dsh
⊥)2
]
ds

In summary, we have shown that the expression of the Riemannian metric
Ga,b(h, h) of (1) is obtained as the limit of the elastic energy of an orthotropic laminar
thin shell domain as the thickness δ → 0, in which a2 = u11 and b2 = u12,12/4 can
be interpreted as stretching and bending energy coefficients, respectively.

Remark A.1 In the special case of an isotropic elastic domain � (still with respect to
the frame vectors τ(x) and n(x)), the elastic tensor takes the particular form:

U =
⎛
⎝2μ + λ λ 0

λ 2μ + λ 0
0 0 2μ

⎞
⎠ .
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in which λ,μ ≥ 0 are the so called Lamé coefficients of the material. This leads to
Ga,b metric for which a2 = 2μ + λ and b2 = μ/2 i.e.

b

a
= 1

2

√
2μ

2μ + λ
≤ 1

2
.

It is thus interesting to note that this stronger isotropy assumption on the elastic domain
imposes the constraint that b ≤ a/2, the limiting caseb = a/2 corresponding precisely
to the square root velocity (SRV) metric of Srivastava et al. (2010).

Remark A.2 The previous derivations can be extended to curves in higher dimensions
relatively easily. In the case of a 3D curve for example, one can introduce a tubular
neighborhood of small radius δ around that curve that is again deformed by a vector
field uniform in the transverse direction. Then, assuming a material with transversely
isotropic elastic properties, one can show that, as δ goes to 0, the resulting elastic
energy is again given by (1).

Appendix B. Proof of Theorem 2.1 and Corollary 2.1

To derive the formula for geodesic distance (3), we will first prove a lemma on dis-
tances in the finite-dimensional space (Rd \{0}, gλ). Clearly R

d\{0} is incomplete
with respect to gλ for any λ > 0. We can complete it as a metric space by reinserting
the origin. Let Rd

λ denote the metric space that is the completion with respect to the
gλ metric. Note that, as a point set, Rd

λ is just Rd , but Rd
λ is not a Riemannian man-

ifold when λ 	= 1, as the Riemannian metric gλ cannot be smoothly extended to the
origin in this case. We obtain the following explicit formula for the distance dλ on this
completion:

Lemma B.1 For q1, q2 ∈ R
d
λ. we let

dλ(q1, q2) =
√

|q1|2 + |q2|2 − 2|q1||q2| cos(λθ),

where

θ =
{
min

(
cos−1(q1 · q2/|q1||q2|), π

λ

)
if q1 and q2 are both nonzero

π
λ

if q1 or q2 is zero

Then (Rd
λ, dλ) is the metric completion of the Riemannian manifold (Rd \ {0}, gλ).

Proof First we consider the case d = 2. Without loss of generality, assume that q1 =
(h, 0) and q2 = (k cos θ, k sin θ), where h, k > 0 and 0 ≤ θ ≤ π . (This can easily be
arranged, since reflections in the x-axis and rotations about the origin are isometries of
R
2
λ.) Define the sector Vθ ⊂ R

n
λ by Vθ = {(r cosα, r sin α) : 0 ≤ α ≤ θ and r ≥ 0}.

Define a function F : Vθ → R
2 by

F(r cosα, r sin α) = (r cos λα, r sin λα).
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We now consider the case λθ ≤ π , and we show that F is an isometry from Vθ

with metric given by the completion of the Riemannian manifold (V̊θ , gλ) into R
2

with the Euclidean metric. In the following computations, we fix a basepoint q =
(r cosα, r sin α) in the interior V̊θ , and v,w ∈ Tq V̊θ .We can easily see that F ◦O−α =
O−λα ◦ F where Oφ : R2 → R

2 is rotation by angle φ. Therefore, as rotations are
isometries for the Euclidian metric g1, we have

g1F(q)(dq F(v), dq F(w)) = g1O−λα◦F(q)(dF(q)O−λα ◦ dq F(v), dF(q)O−λα ◦ dq F(w))

= g1F◦O−α(q)(dO−α(q)F ◦ dq O−α(v), dO−α(q)F ◦ dq O−α(w))

= g1F(r ,0)(d(r ,0)F(ṽ), d(r ,0)F(w̃))

with ṽ := dqO−α(v) = O−α(v) and w̃ := dqO−α(w) = O−α(w). We can easily
compute that d(r ,0)F(ṽ) = (ṽ
, λṽ⊥), and putting this together with the calculation
above yields

g1F(q)(dq F(v), dq F(w)) = g1F(r ,0)

(
(ṽ
, λṽ⊥), (w̃
, λw̃⊥)

)

= ṽ
w̃
 + λ2ṽ⊥w̃⊥

= gλ
(r ,0)(ṽ, w̃)

As gλ is invariant under rotations, we have

gλ
(r ,0)(ṽ, w̃) = gλ

Oα(r ,0)(Oα(v), Oα(w)) = gλ
q (v,w)

and it follows that F is aRiemannian isometric embedding from (V̊θ , gλ) into (R2, g1).
It extends to a metric isometric embedding from Vθ into R2 by completion.

F is also injective and F(Vθ ) is a convex subset ofR2, so the geodesic (i.e., straight
line) in F(Vθ ) joining F(q1) to F(q2) remains in F(Vθ ). Thus, if we apply F−1 to
this straight line, we obtain a geodesic inR2

λ joining u to v. Since F is an isometry, the
length of the geodesic in R2

λ is the same as the length of the straight line, and is given
by the desired formula, as a simple application of the law of cosines in R2 shows.

In case that λθ ≥ π , let λ′ = λθ
π
. We have λ′ ≥ 1. We consider once again

Fπ
θ

: Vθ → Vπ :

Fπ
θ
(r cosα, r sin α) =

(
r cos

π

θ
α, r sin

π

θ
α
)

Then Fπ
θ
is an isometry from (Vθ , gλ) to (Vπ , g

λθ
π ), and therefore:

distgλ ((h, 0) , (r cos θ, r sin θ)) = distgλ′ ((h, 0), (−r , 0))

Because λ′ ≥ 1, for all ω ∈ R
2, gλ′

(ω, ω) ≥ |ω′|2euc, and therefore, distgλ′ ≥
disteuc. But taking the straight line between (h, 0) and (−r , 0), we then have
distgλ′ ((h, 0), (−r , 0)) ≤ h + r , and therefore distgλ′ ((h, 0), (−r , 0)) = h + r .
This yields again the desired formula.
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Having proved the theorem for d = 2, it follows for general d, since any pair of
elements u, v is contained in a totally geodesic copy of R2

λ ⊂ R
d
λ. ��

Proof of Theorem 2.1 and Corollary 2.1 The statement that R is a diffeomorphism is
clear from the definition of the involved spaces; see also Bruveris (2016), Lahiri et al.
(2015). It remains to show that R is a Riemannian isometry. To this end, we calculate
the derivative of R at c ∈ I0([0, 1],Rd) in the direction h ∈ Tc I0([0, 1],Rd) as

dcR(h) = 1√|c′|
(
h′ − 1

2

(
h′ · c′

|c′|
)

c′

|c′|
)

.

The component of dcR(h) tangential to R(c) is

(
dcR(h)

)
 =
(
dcR(h) · c′

|c′|
)

c′

|c′| = 1

2
√|c′|

(
h′ · c′

|c′|
)

c′

|c′|
=

√|c′|
2

(
1

|c′|h
′ · c′

|c′|
)

c′

|c′| =
√|c′|
2

Dsh

.

Similarly, the orthogonal component is given by
(
dcR(h)

)⊥ = √|c′|Dsh⊥.Therefore,
for h, k ∈ Tc I0([0, 1],Rd), we have

4b2G
L2

λ

R(c)(dcR(h), dcR(k)) = 4b2
∫ 1

0
λ2|c′|(Dsh

⊥ · Dsk
⊥)+ |c′|

4

(
Dsh


 · Dsk

) du

=
∫ 1

0
a2
(
Dsh

⊥ · Dsk
⊥)+ b2

(
Dsh


 · Dsk

) ds = Ga,b

c (h, k),

where, in the last line, we use that λ = a
2b and ds = |c′(u)|du. The proves that R is

an isometry.
It remains to derive the geodesic distance formula. To do so, we recall a general

fact about geodesics in path spaces. Let (M, g) be a (finite-dimensional) Riemannian
manifold and consider the space

M := C∞([0, 1], M).

By Bruveris (2018), a path in M given by t �→ ct is a length minimizing geodesic
with respect to the L2-Riemannian metric (defined by

GL2

c (h, k) =
∫ 1

0
gc(u)(h(u), k(u))du

for h, k ∈ TcM parametrized smooth vector fields along c) if and only if for (almost
all) fixed u0, the curve given by t �→ ct (u0) is a length-minimizing geodesic in M .
Consequently, the geodesic distance between c0, c1 ∈ M is given by

√∫ 1

0
distM (c0(u), c1(u))2du,
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where distM denotes geodesic distance in the finite-dimensional manifold M .
We can now apply the above result with (M, g) = (Rd\{0}, gλ). Let c0, c1 ∈

I0([0, 1],Rd) such that the geodesic in (Rd , gλ) between R(c0)(u) and R(c1)(u)

does not pass through the origin for any u ∈ [0, 1]. Then the formula for the geodesic
distance follows directly by the formula fromLemmaB.1 and the above considerations
– note that in this case the minimum in the definition of θ is always given by the arccos
term. This proves the local formula for the geodesic distance. To obtain the global
formula one needs to smoothly perturb any path that passes through the origin in such
a way that the perturbed path avoids the origin. It is easy to see that this is possible if
d ≥ 3, which shows the global formula for the geodesic distance. For d = 2 and λ = 1
a counterexample, i.e., two curves where the minimizing path cannot be perturbed to
avoid the origin, has been constructed in Bruveris (2016). A similar argument works
for general λ, and thus, the formula for the geodesic distance is only valid locally in
this case. ��

To prove the statements on the metric completion, we will first study these com-
pletions in the space of R-transforms, i.e., on C∞(I ,Rd \ {0}):
Lemma B.2 For q1, q2 ∈ L2([0, 1],Rd), we let

d
GL2

λ
(q1, q2) =

√∫ 1

0
|q1(u)|2 + |q2(u)|2 − 2|q1(u)||q2(u)| cos(λθ(u))du,

where

θ(u) =
{
min

(
cos−1(q1(u) · q2(u)/|q1(u)||q2(u)|), π

λ

)
if q1(u), q2(u) 	= 0

π
λ

otherwise.

We have the following two statements regarding the completion of the space of smooth

functions: The space
(
L2([0, 1],Rd

λ), d
GL2

λ

)
is the metric completion of the geodesic

completion C∞([0, 1],Rd
λ). If d ≥ 3, then

(
L2([0, 1],Rd

λ), d
GL2

λ

)
is also the metric

completion of
(
C∞([0, 1],Rd\{0}),GL2

λ

)
.

Proof This follows directly from the definition of the geodesic distance onC∞([0, 1],
R
d \ {0}), the proof of Theorem 2.1, and Lemma B.1. ��
Now corollary 2.1 follows from the results above and the formula for R.

Appendix C. Proof of Theorem 3.1.

The main ingredient for the existence proof is the following result by Trouve and
Younes, concerning the existence of minimizers for a wide class of optimization prob-
lems:
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Theorem C.1 (Theorem 3.1 and Prop. 5.1 in Trouvé and Younes (2000)). Let f :
[0, 1] × [0, 1] → R≥0 be a bounded measurable function that satisfies the following
condition

(H1) There exists a finite family of closed segments ([a j , b j ]) j∈J such that each of
them is horizontal or vertical and f is continuous on [0, 1]2\⋃ j∈J [a j , b j ]

Then there exists an non-decreasing BV-functionφ ∈ D∗ thatmaximizes the functional
φ �→ ∫

D

√
φ̇(x) f (x, φ(x))dx. Let fs be defined by

fs(x0, y0) = lim
δ→0

⎛
⎝inf

⎧⎨
⎩ f (x, y) | (x, y) ∈ [0, 1]2\

⋃
j∈J

[a j , b j ], | (x, y) − (x0, y0) | < δ

⎫⎬
⎭
⎞
⎠

Assume that fs satisfies in addition the condition:

(H2) There does not exist any nonempty open vertical or horizontal segment ]a, b[
such that fs vanishes on ]a, b[.

Then the optimizer φ∗ ∈ D∗ is a strictly increasing homeomorphism.

For the statements regarding the higher regularity case, we will in addition need
the following technical result:

Theorem C.2 (Theorem 3.3 in Trouvé and Younes (2000)). Let f be a nonneg-
ative measurable function on [0, 1]2, and assume that U f : D∗ → R, φ �→∫
D

√
φ̇(x) f (x, φ(x))dx reaches its maximal value at a strictly increasing continuous

function φ∗ ∈ D∗. Then for any x0 ∈ [0, 1], if f (x0, φ(x0)) > 0 and if f is locally
Hölder continuous, then φ∗ is differentiable at x0, with strictly positive derivative, and
φ̇∗ is continuous in a neighborhood of x0.

Proof of Theorem 3.1 We start by proving the formula for the geodesic distance. Using
the explicit formula for parametrized curves that are obtained in Theorem 2.1, we can
write the geodesic distance as

distSa,b([c1], [c2]) = 2b

√
�c1 + �c2 − 2 sup

γ1,γ2∈�̄

∫
I

√
γ̇1(u)γ̇2(u) f̃a,b (γ1(u), γ2(u))) du,

where f̃a,b : I × I → R is defined by

f̃a,b(x, y) =
{√|ċ1(x)||ċ2(y)| cos

(
a
2b cos

−1
(

ċ1(x)·ċ2(y)
|ċ1(x)||ċ2(y)|

))
if a

2b cos
−1
(

ċ1(x)·ċ2(y)
|ċ1(x)||ċ2(y)|

)
≤ π

−1 otherwise.

This formulation is, however, not convenient for us, as the function f̃a,b is not non-
negative, and thus, one cannot directly apply the results of Trouvé and Younes (2000).
Thus, we will first show that the above optimization problem does not change when
we substitute f̃a,b by the non-negative function fa,b, as defined in (6). Since fa,b =
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max ( f̃a,b, 0), we have

sup
γ1,γ2∈�̄

∫
I

√
γ̇1(u)γ̇2(u) f̃a,b (γ1(u), γ2(u))) du

≤ sup
γ1,γ2∈�̄

∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u))) du

Let γ1, γ2 ∈ �̄, and let A = {u ∈ I , f̃a,b (γ1(u), γ2(u))) < 0} the open set of negative
parts of f̃a,b. We can write A as an at most countable disjoint union of open intervals
A = ⋃

n In with In =]u−
n , u+

n [. Now let us construct reparametrizations γ̃1, γ̃2 with
derivatives equal to zero on A. We set γ̃1(u) = γ1(u), γ̃2(u) = γ2(u) for u ∈ I\A
and:

γ̃1(u) =
{

γ1(2u − u−
n ) for u ∈]u−

n , 1/2(u−
n + u+

n )[
γ1(u+

n ) for u ∈]1/2(u−
n + u+

n ), u+
n [

γ̃2(u) =
{

γ2(u−
n ) for u ∈]u−

n , 1/2(u−
n + u+

n )[
γ2(2u − u+

n ) for u ∈]1/2(u−
n + u+

n ), u+
n [

We clearly have γ̃1, γ̃2 ∈ �̄ and for u ∈ In ,
√

γ̇1(u)γ̇2(u) = 0, so

∫
I

√
˙̃γ1(u) ˙̃γ2(u) f̃a,b (γ̃1(u), γ̃2(u))) du =

∫
I\A

√
γ̇1(u)γ̇2(u) f̃a,b (γ1(u), γ2(u)))

=
∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u))) ,

which proves the equivalence of the two optimization problems.
Next we will prove the equivalent definition of the distance, where the infimum is

taken over one BV function in the space D∗. Thus, we consider the two functionals

D∗ → R

φ �→ ∫
I

√
φ̇(x) fa,b(x, φ(x))dx

(C.1)

and

�̄ × �̄ → R

(γ1, γ2) �→ ∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u)) du.

We will show a slightly stronger statement, namely the following claim:
Claim A: For φ ∈ D∗, there exist γ1, γ2 ∈ �̄, such that

∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u)) du =

∫
I

√
φ̇(x) fa,b(x, φ(x))dx .
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Conversely, for γ1, γ2 ∈ �̄, there exists φ ∈ D∗ such that

∫
I

√
φ̇(x) fa,b(x, φ(x))dx =

∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u)) du.

To show Claim A, let φ ∈ D∗ and μ the corresponding probability measure given
by 3.1. By Lebesgue’s decomposition theorem, we may write μ = ωφdx + νφ +∑

n∈N anδxn , where ωφdx is the absolutely continuous part of μ with respect to the
Lebesgue measure, νφ the singular continuous part, and for all n ∈ N, xn ∈ I and
an ≥ 0. The latter part can be seen as the (at most countable) jumps of φ located at
the points xn and of amplitude an . We then consider the set

C = Graph(φ) ∪
⋃
n∈N

{xn} × [φ(xn), φ(xn) + an]

Then C is compact as it is clearly bounded and its closedness can be shown from the
definition using the left continuity ofφ. Furthermore,C is connected andH1(C) < ∞,
since φ is of bounded variation and

∑
n an ≤ 1 < ∞. Therefore, C is the image of

a rectifiable curve, that can be reparametrized as an injective, Lipschitz continuous
curve γ , cf. (Falconer 1985, Lemmas 3.1 and 3.12). We write

γ :
{ [0, 1] → [0, 1]2

u �→ (γ1(u), γ2(u))
,

where γ1 and γ2 are Lipschitz continuous, non-decreasing and differentiable almost
everywhere (andwewill let γ̇i (u) = 0 ifγi is not differentiable inu).We then calculate:

∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u)) du

=
∫
I

√
γ̇1(u)γ̇2(u) fa,b(γ1(u), γ2(u))1γ̇1(u)>0(u)du

=
∫
I
γ̇1(u)

√
γ̇2(u)

γ̇1(u)
fa,b(γ1(u), γ2(u))1γ̇1(u)>0(u)du

=
∫
I

∑
u∈γ −1

1 (x)

√
γ̇2(u)

γ̇1(u)
fa,b(γ1(u), γ2(u))1γ̇1(u)>0(u)dx,

where γ −1
1 (x) = {u ∈ I , γ1(u) = x} and 1C denotes the indicator function for

condition C . The last equality follows from the area formula (Federer 1968, Theorem
3.2.3). Indeed, given the assumptions on γ1, it is differentiable almost everywhere and
we have by (Mattila 1999, p.103) that {γ1(u), γ̇1(u) = 0} is of Lebesgue measure
zero. Thus, for almost all x ∈ [0, 1], γ −1

1 (x) is reduced to a single point. Then, by
setting x = γ1(u), we have (γ1(u), γ2(u)) = (x, φ(x)) with φ(x) = γ2(γ

−1
1 (x)).
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It follows that for almost all u such that γ̇1(u) > 0, one has:

γ̇2(u) = d

du
(φ ◦ γ1(u)) = φ̇(γ1(u))γ̇1(u) = φ̇(x)γ̇1(u),

and thus φ̇(x) = γ̇2(u)
γ̇1(u)

. Going back to the original equality, this leads to

∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u)) du =

∫
I

∑
u∈γ −1

1 (x)

√
γ̇2(u)

γ̇1(u)
fa,b(γ1(u), γ2(u))1γ̇1(u)>0(u)dx

=
∫
I

√
φ̇(x) fa,b(x, φ(x))dx,

which proves the first direction of Claim A.
To prove the converse direction of Claim A, we let γ1, γ2 ∈ �̄, where we can

choose γ1, γ2, up to a reparametrization, to be Lipschitz continuous. We consider the
generalized inverse γ −

1 ∈ D∗, and let φ = γ2 ◦ γ −
1 . By (Trouvé and Younes 2000,

Lemma 5.8) the generalized inverse is again an element of D∗. Since γ2 is Lipschitz
continuous, and since composition with Lipschitz functions keeps D∗ invariant, we
have that φ ∈ D∗, see e.g. (Josephy 1981, Theorem 4). Now one can obtain the desired
equality

∫
I

√
φ̇(x) fa,b(x, φ(x))dx =

∫
I

√
γ̇1(u)γ̇2(u) fa,b (γ1(u), γ2(u)) du,

by a similar computation as above, which concludes the proof of Claim A.
Now the first statement of item 1—a < b and c1, c2 ∈ PC1(I ,Rd)– follows

directly from Theorem C.1: since c1 and c2 are assumed to be piecewise C1, the
function fa,b is bounded and continuous when ċ1 and ċ2 are continuous. For x (resp.
y) a point of discontinuity of ċ1 (resp. ċ2), fa,b is not continuous on the vertical segment
{x} × [0, 1] (resp. the horizontal segment [0, 1] × {y}. Thus, fa,b satisfies (H1). For
a < b, we have in addition that fa,b > c where c > 0, and thus, we also have fs > c
does not vanish. By Theorem C.1 this implies that the minimizer exists in D∗ and is
a strictly increasing homeomorphism.

It remains to prove the statements assuming additional smoothness of the curves
c1 and c2, namely that ċi are Lipschitz continuous. Therefore, we show that in
this case the function fa,b is also Lipschitz continuous: the application θ �→
cos( a

2b cos
−1(θ)) is differentiable on ]−1, 1[, and its derivative is bounded; therefore,

θ �→ cos( a
2b cos

−1(θ)) is Lipschitz continuous on [−1, 1]. As ċ1 and ċ2 are Lipschitz
continuous, the function x, y �→ ċ1(x)·ċ2(y)

|ċ1(x)||ċ2(y)| is also Lipschitz continuous. Therefore,
by composition, fa,b is Lipschitz continuous and thus also Hölder continuous since
we are working on a compact domain. We have already shown that the minimizer φ

is strictly increasing and continuous. As fa,b is strictly positive everywhere we obtain
by Theorem C.2 that φ is of class C1 on all of I , which concludes the proof of the
second statement of point 1.

For the second item, a ≥ b, there may exist areas where fa,b = 0, which leads to
optimizers that have jumps and are thus not continuous. Todealwith these difficulty,we
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will follow the same approach as in Bruveris (2016) and consider a pair of generalized
reparametrization functions, that might have vertical parts but no jumps. Using Claim
Awe can still focus onmaximizing (C.1) on the space ofBV functions,which allows us
to use again the result of Trouvé and Younes (2000). In particular, by Theorem C.1, cf.
(Trouvé and Younes 2000, Proposition 5.1), there exists φ ∈ D∗ that maximizes (C.1),
and thus by Claim A, there exist γ1, γ2 ∈ �̄ such that distSa,b([c1], [c2]) = dista,b(c1 ◦
γ1, c2 ◦ γ2), which proves the existence result in item 2.

Finally, we shall construct a counter-example when a > b if the curves c1 and c2
are only in the space AC(I ,Rd). To that end, we adapt the counter-example from
(Bruveris 2016, Section 6). Let 0 < ε < 1

6 and define

v1(t) =
(
cos 2aπ

b εt
sin 2aπ

b εt

)
, v2 =

(
cos 4aπ

3b
sin 4aπ

3b

)
, and v3 =

(
cos 4aπ

3b− sin 4aπ
3b

)
.

Then we have that b
2a cos

−1(
vi (t)·v j (t)

|vi (t)||v j (t)| ) ≥ π
2 for each i 	= j , and therefore fa,b ≤ 0

for those vectors. We define two curves c1, c2 ∈ AC(I ,Rd ) such that:

ċ1(u) = v1(u)1A(u) + v21B(u)

ċ2(u) = v1(u)1A(u) + v31B(u)

where B ⊂ I a modified Cantor set such that B is closed, nowhere dense with λ(B) =
1
2 , and A = I\B. Following the same proof as in (Bruveris 2016, section 6), we have
that

sup
γ1,γ2∈�̄

∫
I
fa,b (γ1(u), γ2(u)) dt = λ(A)

and is not attained. ��

Appendix D. Proof of Theorem 3.2

Proof For c1, c2 ∈ PC1(S1,Rd) and a, b > 0 we define the functional

F :
{
S1 → R

τ �→ infγ1,γ2∈�̄ dista,b(c1 ◦ γ1, c2 ◦ Sτ ◦ γ2)
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Weaim to show that F is continuous, whichwill directly lead to the desired conclusion.
Therefore, let ε > 0, τ, τ ′ ∈ S1. Then

|F(xτ) − F(τ ′)| = | inf
γ1,γ2∈�̄

dista,b(c1 ◦ γ1, c2 ◦ Sτ ◦ γ2)

− inf
γ ′
1,γ

′
2∈�̄

dista,b(c1 ◦ γ ′
1, c2 ◦ Sτ ′ ◦ γ ′

2)|

= |distSa,b([c1], [c2 ◦ Sτ ]) − distSa,b([c1], [c2 ◦ Sτ ′ ])|
≤ distSa,b([c2 ◦ Sτ ], [c2 ◦ Sτ ′ ]
≤ inf

γ,γ ′∈�̄
dista,b(c2 ◦ Sτ ◦ γ, c2 ◦ Sτ ′ ◦ γ ′)

= inf
γ,γ ′∈�

distL
2
a/(2b)

(
Q(c2 ◦ Sτ ◦ γ ), Q(c2 ◦ Sτ ′ ◦ γ ′)

)

≤ distL
2
a/(2b) (Q(c2 ◦ Sτ ), Q(c2 ◦ Sτ ′)) .

By definition, we have that GL2
a/(2b) ≤ max( a

2b , 1)2 GL2
; therefore, we can deduce

that

distL
2
a/(2b) (Q(c2 ◦ Sτ ), Q(c2 ◦ Sτ ′)) ≤ max

( a

2b
, 1
)
||Q(c2 ◦ Sτ ) − Q(c2 ◦ Sτ ′)‖L2 .

Since the spaceC(I ,Rd) is dense in L2(I ,Rd), we can choose g ∈ C(I ,Rd) such that
‖Q(c2)−g‖L2 ≤ ε/3. By change of variable, we also have ‖Q(c2)◦ Sτ −g◦ Sτ‖L2 ≤
ε/3 and ‖Q(c2) ◦ Sτ ′ − g ◦ Sτ ′ ‖L2 ≤ ε/3. Since g is continuous and I is compact, g
is also uniformly continuous by the Heine–Borel theorem. Thus, we have, for |τ − τ ′|
small enough,

‖g ◦ Sτ − g ◦ Sτ ′ ‖L2 ≤ ε/3

Finally, we have:

∣∣F(τ ) − F(τ ′)
∣∣ ≤ max

( a

2b
, 1
)
‖Q(c2 ◦ Sτ ) − Q(c2 ◦ Sτ ′)‖L2

≤ max
( a

2b
, 1
) (‖Q(c2 ◦ Sτ ) − g ◦ Sτ‖L2

+ ‖g ◦ Sτ − g ◦ Sτ ′ ‖L2 + ‖g ◦ Sτ ′ − Q(c2 ◦ Sτ ′ ‖L2
)

≤ max
( a

2b
, 1
)
(ε/3 + ε/3 + ε/3) = a

2b
ε

Thus, we have shown that F is continuous function on the compact set S1. Conse-
quently, there exists an optimal τ ∈ S1 such that F(τ ) = inf S1 F . Now the remaining
statement follows directly from Theorem 3.1. ��
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