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Abstract

Machine learning has increasingly been applied to a wide range of questions in phylogenetic
inference. Supervised machine learning approaches that rely on simulated training data have been
used to infer tree topologies and branch lengths, to select substitution models, and to perform
downstream inferences of introgression and diversification. Here, we review how researchers have
used several promising machine learning approaches to make phylogenetic inferences. Despite the
promise of these methods, several barriers prevent supervised machine learning from reaching its
full potential in phylogenetics. We discuss these barriers and potential paths forward. In the
future, we expect that the application of careful network designs and data encodings will allow
supervised machine learning to accommodate the complex processes that continue to confound
traditional phylogenetic methods.

1 Introduction

Phylogenetics aims to elucidate the evolutionary relationships among species. In recent decades,
owing to rapid growth in the availability of genomic data, phylogenetic analysis has been able to
use hundreds to thousands of loci (Delsuc et al., 2005). Using whole genomes, or even near-whole
genomes, may allow for a more comprehensive view of the evolutionary events shaping species
(Scornavacca et al., 2020). However, the accuracy of inference may be compromised when using
such large datasets, as even small biases can be magnified many-fold. Biases in phylogenetics are
often due to unmodeled heterogeneity in the evolutionary process, including heterogeneity across
time, sites, genes, or lineages (Kapli et al., 2020). These processes may arise either individually
or in combination, presenting challenges in subsequent analyses.

Recently, machine learning techniques have been used across fields, demonstrating impres-
sive power in uncovering intricate relationships from data that contains extensive heterogeneity.
Notable examples include successful applications in image classification (Krizhevsky et al., 2017),
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language models (Devlin et al., 2019), protein structure prediction (Jumper et al., 2021), and pop-
ulation genetics (Schrider and Kern, 2018). Machine learning is comprised of two fundamental
paradigms—supervised and unsupervised approaches. Supervised learning relies on the availabil-
ity of labeled training data, where the true underlying state or value of the data is known. In
phylogenetics and related fields, large amounts of labeled training data are generally unavailable,
so simulations are often used to generate such data. The primary objective of supervised machine
learning is to learn a function that can map input data to appropriate outputs. Within supervised
learning, there are two primary tasks: classification and regression. While classification aims to
predict discrete labels or categories, regression predicts continuous-valued outputs. In contrast,
unsupervised learning operates without the need for labeled data, focusing instead on discerning
underlying structures or patterns in the input data. Unsupervised approaches include tasks such
as clustering and dimensionality reduction. Notably, deep learning is a specialized subset of ma-
chine learning that leverages neural networks (NNs) with many layers (hence "deep”). Some NN
architectures are adept at automatically extracting hierarchical features from raw data, obviating
the need for manual feature engineering—a significant advantage over traditional machine learning
methods.

In the context of phylogenetics, machine learning algorithms are extremely flexible, both with
regards to the structuring of input data, and the data used for training. Furthermore, machine
learning approaches can learn complex relationships from input data without calculating likeli-
hoods. This facilitates the application of machine learning to complex models, especially scenarios
in which standard likelihood and Bayesian inference may be intractable. Given the lack of ana-
lytical phylogenetic solutions that can be reasonably applied to large genomic datasets, machine
learning offers the promise of moving beyond conventional methods.

Despite the promise that machine learning in general has for addressing many biological prob-
lems, there is uncertainty about its superiority over conventional approaches in many applications
to phylogenetics. While a growing number of papers have applied machine learning to multiple
problems in the field, researchers have not yet seen a clear advantage to such approaches. Here,
we review recent applications of machine learning to different tasks in phylogenetics (Table 1),
examining their limitations and strengths. We attempt to provide a general overview of the types
of machine learning approaches that have been used—and those that could be used—in the hope
that future work will bring the promise of machine learning to fruition.

2 Tree Reconstruction

Reconstructing evolutionary relationships among taxa is a central goal in evolutionary biology.
A phylogenetic tree is composed of two primary components: a topology and a set of branch
lengths. The topology serves as a representation of the hierarchical evolutionary relationships
among species. The branch lengths represent evolutionary change, measured either in absolute
time, in the number of nucleotide substitutions, or in other units. This section reviews machine
learning approaches for inferring both components of phylogenetic trees.
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2.1 Topology inference

Perhaps the most natural framing of the problem of topology inference is to use supervised ma-
chine learning approaches for classification, since the goal is to predict a discrete output (topology)
from sequence data. Recall that supervised machine learning approaches require labeled training
data, which are generally unavailable in phylogenetics. Because of this, in most phylogenetic
applications simulations are performed under each model of interest prior to inference, and these
simulated data are used to train the machine learning network. When the goal is topology in-
ference, the model space includes, at a minimum, the number of possible tree topologies. With
as few as ten taxa, there are more than two million unrooted topologies, making it infeasible to
use such approaches to infer tree topologies for even moderate numbers of taxa. The challenges
associated with a large state-space of topologies are not unique to machine learning approaches:
even conventional methods have difficulties in inferring trees for large numbers of species (Roch,
2006; Felsenstein, 1978b). To circumvent this problem, researchers have used three different types
of approaches in order to apply machine learning to phylogenetic inference (Figure 1). Here we
review these approaches and the specific models that have been used.

2.1.1 Quartet-based methods

The first machine learning approaches in phylogenetics used quartet-based methods. In general,
quartet-based methods involve extracting sets of four taxa from the full dataset, building trees
for each set of four taxa, and then constructing a phylogeny from these quartet trees using one
of several quartet amalgamation approaches, such as quartet puzzling (Bryant and Steel, 2001;
Snir and Satish, 2012; Reaz et al., 2014). Because there are only three possible topologies for an
unrooted quartet, such approaches are not plagued by the need to consider a very large state-
space of topologies. Quartet-based methods therefore provide efficient inference algorithms that
are scalable to very large datasets.

Several supervised learning approaches have been used to infer quartet trees. Suvorov et
al. (2020) used a convolutional neural network (CNN) that takes integer-encoded nucleotide
alignments as input. Machine learning algorithms generally require that input data are numerical,
and integer-encoding can be used to represent categorical variables. In this application, each
nucleotide was encoded as an integer between 0 and 3, with gaps encoded as 4, and each alignment
was represented as a matrix in which rows correspond to sequences and columns correspond to
sites in the alignment. The topology associated with each alignment was an integer-encoded class
label. Training data were simulated under a wide range of branch lengths, several substitution
models, with site heterogeneity, and with or without gaps. In the absence of gaps, the CNN
generally performed as well as or better than traditional approaches. On datasets that included
gaps, the CNN substantially outperformed traditional approaches, likely because it better utilized
this significant source of phylogenetic signal. The CNN initially exhibited reduced accuracy in
some zones of branch length space (e.g., the Felsentstein zone; (Felsenstein, 1978a)). However,
when more training data were included from these regions the CNN was able to outperform other
approaches, highlighting the importance of carefully considering where to put effort in training
such models.

In a similar approach, Zou et al. (2020) used a residual neural network, which takes as input
one-hot encoded amino acid sequences. One-hot encoding is an alternative to integer-encoding for
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representing categorical variables as numeric input. In this application, each site was represented
by twenty channels, with each channel corresponding to an amino acid. For an individual site,
the channel corresponding to the amino acid present in the position is set to one, while all other
channels are set to zero. One-hot encoding may be more appropriate than integer-encoding, since
it avoids implicit ordered relationships among states. In Zou et al.’s approach, models were trained
on amino acid sequences simulated on large, random trees, which were then pruned to subsets
of four taxa. Both site and time heterogeneity were included in the simulations; additionally,
the training data intentionally included a sizable proportion of trees susceptible to long-branch
attraction, to ensure that a large number of difficult examples were included. When benchmarked
against existing inference approaches, the residual network predictors consistently delivered better
results with less computational time (not including training time), especially when dealing with
several cases that confound existing methods—such as long branch attraction and heterotachy.
By combining their approach with a quartet amalgamation approach, these authors were able to
infer larger species trees with moderate accuracy.

Both of the methods described above treat alignments as images. While this approach to
representing data has been found to be powerful in population genetics (Flagel et al., 2019), there
are several limitations in the context of phylogenetics. For example, when inferring relationships
among taxa, we would like the order in which sequences are included in the model to be irrelevant
(a property referred to as ” permutation equivariant”). However, most network architectures do not
perform in this way. Zou et al. (2020) accommodated this behavior by including all permutations
of the alignment when training, but such an approach increases the compute time and memory
needed to train a neural network. Solis-Lemus et al. (2023) address this issue using a symmetry-
preserving long short-term memory (LSTM) recurrent neural network (RNN). By avoiding the
need to include permutations of the training alignments, they substantially improved compute
times and memory usage compared to Zou et al. (2020). These approaches have also been limited
in the ease with which they can be applied to empirical datasets both due to limitations in the
lengths of alignments than can be considered and the lack of a user-friendly pipeline. Fusang
(Wang et al., 2023) addresses these issues by using a sliding window approach to accommodate
variable alignment lengths and developing an easy-to-use pipeline. Fusang takes as input an
alignment including no more than 40 sequences, infers quartet topologies, and then uses a stepwise
addition algorithm with beam search to infer larger trees from quartet trees.

Even though NNs can be very efficient for inferring quartet trees, considering larger trees
remains prohibitive—the approaches described above still must rely on quartet-amalgamation
approaches to build larger trees. Additionally, as with all supervised machine learning, accuracy
is likely limited in cases where the training data is not reflective of real data. Zaharias et al.
(2022) explored these limitations by comparing the networks from Zou et al. (2020) to standard
approaches on larger trees and on test datasets with higher rates of nucleotide evolution and/or
shorter alignment lengths. They found that the neural networks only outperformed traditional
approaches when the goal was to infer a quartet tree from relatively long amino acid sequences
simulated under model conditions very similar to those used for training. Furthermore, when larger
trees were considered, traditional approaches outperformed the combination of neural networks
and quartet amalgamation. Machine learning approaches are therefore severely limited by their
inability to directly infer trees from larger numbers of taxa, as well as by the specifics of the data
used in training.
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Figure 1: Methods for topology inference using machine learning. A. Quartet-based methods infer
one of the three topologies possible with unrooted quartets. Trees from each quartet are inferred
with NNs; a collection of such trees are then fed into existing quartet amalgamation algorithms
(e.g. Quartet Puzzling) to infer a larger phylogeny. B. Distance-based methods estimate pairwise
distances using NNs (e.g. Phyloformer). Distances are combined using standard methods (e.g.
Neighbor Joining) to reconstruct trees. C. Direct methods infer a tree directly from an alignment
using NNs (e.g. phyloGAN).
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2.1.2 Distance-based methods

Rather than using machine learning to directly infer trees from sequence alignments, it is possible
to instead infer evolutionary distances, which can then be used as input to standard distance-based
approaches. Although often scoffed at by modern phylogeneticists, distance-based approaches such
as neighbor joining (Saitou and Nei, 1987) are in fact guaranteed to infer the correct tree in most
of parameter space, as long as distances are accurately inferred. In addition, they are much more
accurate than maximum likelihood in the presence of high amounts of incomplete lineage sorting
(Liu and Edwards, 2009; Mendes and Hahn, 2018). Therefore, it makes sense to apply machine
learning to the task of accurately inferring distances.

Nesterenko et al.(2022) developed Phyloformer, which uses self-attention networks to infer
evolutionary distances for up to 100 species. Their model encapsulates alignment in a pairwise
way, introducing a representation for each pair with the attention mechanism. The process entails
an iterative sharing of information, first across sites within each pair (referred to as site-level
attention) and subsequently across pairs within each site (termed pair-level attention). Such
an approach is permutation-equivariant, and accommodates alignments of varying sizes. After
inferring distances, these authors used neighbor joining for tree construction. Their approach
outperformed traditional distance-based approaches, and was competitive with (and much faster
than) maximum likelihood when training and testing data included similar numbers of species.
However, Phyloformer does not always compare favorably to standard methods, especially on
trees with more than twenty leaves.

In a related approach, Bhattacharjee and Bayzid (2020) used autoencoders and matrix factor-
ization to impute missing values in distance matrices. Alternatively, Jiang et al. (2023) use a CNN
for phylogenetic placement—placing sequences from individual genes onto trees that may have
been inferred using different genomic regions. In this case they inferred evolutionary distances for
these new sequences, and then used a distance-based algorithm to place the new sequences on the
tree (Balaban et al., 2022). Inferring evolutionary distances reframes phylogenetic inference as a
regression problem, rather than as a classification problem. This reframing makes it possible to
scale machine learning approaches to larger trees.

2.1.3 Direct methods

In maximum likelihood and Bayesian approaches to phylogenetic inference, the large number of
possible topologies is accommodated by using heuristic searches to explore tree space; such ap-
proaches could also be used for direct inference of tree topologies from sequence data in machine
learning contexts. Generative adversarial networks (GANs) consist of a generator, which aims to
produce realistic data, and a discriminator, which aims to distinguish real and fake data (Good-
fellow et al., 2020). Recently, Smith and Hahn (2023) proposed phyloGAN. phyloGAN consists
of a generator, which generates topologies and branch lengths, and a CNN-based discriminator,
which attempts to distinguish alignments simulated under these topologies and branch lengths
from empirical (real) alignments. Ideally, at the end of training, it should be virtually impossible
to distinguish simulated and empirical alignments. Once this level of accuracy is achieved, the
topology that underpins the simulated data is considered to be the inferred topology. phylo-
GAN was tested on up to fifteen species, and a version incorporating gene tree heterogeneity was
tested on six species. While phyloGAN worked well with small numbers of species (up to ten), it
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was computationally intensive, and several metrics indicated issues during training. Additionally,
since phyloGAN performs a heuristic exploration of tree space, it must be trained anew for each
empirical dataset, and thus many of the potential computational benefits of machine learning
approaches are not realized. Future work may explore alternative approaches for heuristically
exploring model spaces using machine learning frameworks, including approaches covered in the
next section.

2.1.4 Improving steps in topology inference

Machine learning approaches have been used to assist standard phylogenetic approaches for topol-
ogy inference. For example, machine learning approaches have been used to improve heuristic
searches for tree topologies. Azouri et al. (2021) used a random forest (RF) regressor to predict
likelihood scores for subtree-prune-regraft (SPR) moves, a standard and important step in heuris-
tic tree searches. Given a starting topology, their network could accurately predict the change in
likelihood associated with different SPR moves, which suggests that such an approach could be
used to limit search space and therefore to reduce the computational requirements for heuristic
searches. In a follow-up paper, Azouri et al. (2023) used reinforcement learning as an alternative
to traditional heuristic search algorithms. By allowing for suboptimal moves that, nonetheless,
improved the final outcome of the search, this approach out-competed greedy search strategies.

Machine learning approaches have also been used to guide researchers in their decisions about
which standard approaches to use for topological inference. Leuchtenberger et al. (2020) developed
a feed-forward neural network to classify alignments as belonging to the Farris (Siddall, 1998) or
Felstenstein zone (Felsenstein, 1978a; Huelsenbeck and Hillis, 1993). They based their choice to
use maximum parsimony (in the Farris Zone) or maximum likelihood (in the Felsenstein zone) on
the predictions of this neural network. Using this approach resulted in higher overall accuracy
compared to always using either maximum parsimony or maximum likelihood. In a follow-up
paper, Leuchtenberger and von Haeseler (2024) simplified this neural network to develop a simple,
more interpretable classifier, illustrating how subsequent investigations into complex networks can
yield theoretical insights. In a similar application, Haag et al. (2022) developed a random forest
regressor, Pythia, to predict the difficulty of inferring a tree from a particular alignment. They
suggested that the predicted level of difficulty be used to guide decisions regarding analysis design,
including potentially collecting more data prior to analyses for difficult alignments.

2.2 Branch length inference

In addition to a tree topology, most researchers are also interested in inferring the branch
lengths of a tree. However, few studies have successfully inferred branch lengths using machine
learning. While it may seem that this regression problem should be easier than the classification
problem of inferring topologies, the size of the output vector depends on the number of edges in
the tree—there are 2n — 2 branches in a rooted tree with n tips. The dependence on the number
of tips complicates the use of machine learning approaches.

Suvorov and Schrider (2022) employed both a CNN and a multilayer perceptron (MLP) to
infer branch lengths on fixed tree topologies with four or eight taxa. For the CNN-based approach,
they adapted a previously proposed architecture (Suvorov et al., 2020). Instead of a classification
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task, the model was restructured for regression, aiming to predict all branch lengths simultane-
ously. Meanwhile, the MLP was fed with feature vectors derived from site pattern frequencies
present within each alignment. Notably, the predictions generated by their models showed slightly
superior accuracy compared to maximum likelihood estimates. Despite these promising results,
there remains a degree of skepticism regarding the scalability of machine learning to infer branch
lengths, especially when considering more species. Nevertheless, the flexibility of machine learning
approaches with respect to the types of input data that can be considered offers many interesting
possibilities. For instance, in the future such methods could facilitate the integration of hetero-
geneous fossil data in estimating time-calibrated trees.

As with topological inference, machine learning approaches can also be used to guide re-
searchers in decisions about which approaches may be most appropriate for inferring branch
lengths. For example, Tao et al. (2019) used a logistic regression model to predict whether rates
of molecular evolution are autocorrelated in inferred phylogenies. Their approach, CorrTest, can
be used to determine whether an independent branch-rate model or an autocorrelated branch-rate
model should be used to estimate divergence times.

3 Other kinds of phylogenetic inferences

In addition to phylogenetic tree inference, machine learning approaches have been applied
to both upstream and downstream tasks in phylogenetics. Prior to tree inference using many
approaches (e.g., Bayesian inference, maximum likelihood, neighbor joining) it is necessary to
infer a sequence substitution model. After tree inference, researchers are often interested in
detecting and quantifying discordance, testing for introgression, and inferring macroevolutionary
parameters. Below, we review some recent machine learning approaches to these upstream and
downstream tasks.

3.1 Substitution models

It is crucial to select a suitable substitution model for accurate phylogenetic inference from
sequence data, as it has long been known that misspecified models can lead to inaccurate estimates
of trees (Buckley, 2002; Sanderson, 2002) and branch lengths (Abadi et al., 2019). Existing
methods for model selection infer the model that provides the best fit to the data, using one of
several criteria. Popular criteria include likelihood ratio tests (LRTs), Akaike information criteria
(AIC), corrected AIC (AICc), Bayesian information criteria (BIC), and decision theory (DT).
However, these criteria rely on assumptions that are often not met in phylogenetics, and there
is a lack of consensus regarding which criteria are the most appropriate (Abadi et al., 2019).
Additionally, substitution model choice tends to impact branch length estimates more-so than
topology inference (Abadi et al., 2019), but no criteria to-date have been designed to select the
model best-suited for branch length inference. Finally, using these criteria to perform substitution
model selection is computationally expensive, as it requires computation of the likelihood. Here
we discuss two recent machine learning approaches that attempt to address these gaps.

ModelTeller (Abadi et al., 2020) is a machine learning approach that uses an RF regressor to
rank 24 potential substitution models according to their accuracy in downstream branch length
inference. Features fed into the model included over 50 summary statistics that can be broadly
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categorized into four primary groups: features inherent to the alignment, features drawn from
an approximated tree inferred through a distance-based method, parameters inferred under a
parameter-rich substitution model, and sequence similarity within certain subsets. ModelTeller’s
primary distinction compared to traditional approaches lies in selecting a substitution model that
improves accuracy in branch length inference. This leads to improved performance in terms of
the accuracy of branch length estimates under the models selected using ModelTeller compared
to models selected using more standard approaches, particularly on datasets simulated under
realistic models. Additionally, ModelTeller was substantially faster than standard methods.

A later model, ModelRevelator (Burgstaller-Muehlbacher et al., 2023) aims to infer the cor-
rect generating model of nucleotide substitution using two neural networks. The first network,
NNmodelfinder, takes as input a set of statistics calculated from pairwise alignments and predicts
the best substitution model from a set of six possible models. The second network, NNalphafind,
takes as input base composition profiles and predicts whether a site homogeneous model is ap-
propriate or not. If a site homogeneous model is not appropriate, then NNalphafind estimates
the a parameter of a model with I'-distributed rate heterogeneity among sites. Used together,
these networks can predict the best substitution model for a given sequence alignment, whether
rate heterogeneity should be included, and, when rate heterogeneity is included, the o parameter
to use in downstream inference. ModelRevelator performed comparably to maximum likelihood
combined with substitution model selection under BIC as implemented in IQ-TREE (Minh et al.,
2020), with substantially reduced computation times on large alignments.

Both ModelTeller and ModelRevelator are designed to select a substitution model that is
suitable for inference; however, each uses different criteria for assessing suitability. ModelTeller is
particularly focused on identifying a model that results in the most accurate estimates of branch
lengths. The primary objective of ModelRevelator is to select the best substitution model and
estimate the o parameter when the best model includes rate heterogeneity. One-ean-therefore-se

N‘ 5 5 g
3.2 Levels of discordance

Gene tree topologies often differ from the species tree topology due to several biological fac-
tors, including incomplete lineage sorting, introgression, and gene duplication and loss (Maddison,
1997). Two recent studies used deep learning to estimate the amount of discordance in phyloge-
netic datasets (Rosenzweig et al., 2022; Zhang et al., 2023). Rosenzweig et al. (2022) used several
approaches, including a deep neural network (DNN), to estimate the amount of discordance in
four-taxon datasets using a set of summary statistics calculated from alignments and inferred gene
trees. Estimates from their DNN were more accurate than relying on inferred gene trees alone to
estimate discordance, particularly when branch lengths were long. In addition to their network
for estimating the amount of discordance, they introduced a network for inferring the quartet
species tree topology from the same set of statistics. Similarly, Zhang et al. (2023) used CNNs to
estimate the proportion of all different possible topologies for four and five-taxon datasets from
multiple sequence alignments. Their CNN, called ERICA, was able to accurately infer topology
proportions. The authors then used these inferred proportions to try to infer introgression and
to identify potentially introgressed genomic windows. The ability of these approaches to estimate
the proportions of quartet topologies more accurately than standard pipelines—which rely on
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inferred gene trees alone—offers promise for improving many quartet-based methods for species
tree inference, as these generally assume that quartet frequencies are accurately estimated from
input gene trees (Mirarab and Warnow, 2015).

3.3 Introgression

Most machine learning approaches for studying introgression have focused on population-scale
data, rather than phylogenetic data. For example, Schrider et al. (2018) used ExtraTrees classifiers
to detect introgressed regions between closely related species, while Ray et al. (2023) used a CNN
and image segmentation for a similar task. Similarly, Gower et al. (2021) developed a CNN to
detect adaptive introgression given data from three closely related populations or species. Several
recent papers have also addressed introgression from a phylogenetic perspective using machine
learning.

Two recent studies used supervised machine learning to determine whether there was evidence
for reticulation in a dataset. Blischak et al. (2021) used a CNN to detect various types of reticula-
tion in four-taxon trees, including hybrid speciation and introgression. Their CNN took as input
mean and minimum values of dxy (a measure of sequence divergence) between sets of popula-
tions. They compared HyDe-CNN to an RF classifier trained on several phylogenetic statistics for
detecting introgression and found that HyDe-CNN had increased power. In a similar approach,
Burbrink and Gehara (2018) trained a neural network to distinguish a bifurcating species tree from
models including reticulation between two parent clades and one clade with a putative reticulate
history. As input, their network takes pairwise distances between all sequences in the phylogeny
(11 sequences from three clades). Their network had moderate power to distinguish among mod-
els with and without reticulations. When applied to their empirical data, the model supported
a reticulate history for a clade in which reticulation was also inferred using SNaQ (Solis-Lemus
and Ané, 2016). Most recently, Hibbins and Hahn (2022) used supervised machine learning to
distinguish speciation and introgression histories. Under many regions of parameter space, gene
trees and site patterns matching the introgression history can become more common than those
matching the species tree, challenging many traditional approaches to species tree inference. By
using several summary statistics calculated from gene trees, Hibbins and Hahn were able to accu-
rately infer the speciation history for rooted three-taxon trees, even in regions of parameter space
where traditional approaches fail. While powerful, these approaches have primarily focused on
four or fewer taxa. Future work may expand machine learning approaches to study introgression
on larger trees.

3.4 Diversification rates

In addition to the kinds of inferences described above, recent studies have attempted to use
inferred phylogenies for downstream inference of diversification rates. One challenge in any such
analysis is determining the optimal way to encode phylogenetic trees. To address this issue,
Voznica et al. (2022) introduced the compact bijective ladderized vector (CBLV), an encoding
of phylogenetic trees that can be used as input into a CNN. They trained a CNN that took as
input the CBLV to infer parameters of phylodynamic birth-death models and to perform model
selection. They compared the performance of this CNN to a feed-forward neural network trained
on summary statistics calculated from phylogenetic trees. Both networks were able to accurately

10
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infer parameters and distinguish among phylodynamic models. Lambert et al. (2023) used similar
networks to infer speciation and turnover rates under a constant rate birth-death (CRBD) model
and to infer the parameters of a binary state speciation and extinction (BiSSE) model. Lajaaiti
et al. (2023) compared these networks to several other networks for inferring diversification
parameters. They trained an additional CNN and RNN on lineage through time (LTT) plots.
They also trained a graph neural network (GNN) that took phylogenies encoded as graphs directly
as input. Under the CRBD model, the RNN and CNN trained on LTT plots outperformed the
network trained on CBLV encodings. However, these same networks performed poorly under
the BiSSE model, likely because the LTT plots did not include additional information about
tip states, which was included in the other networks. Perhaps surprisingly, the GNN performed
poorly across both models. These approaches highlight the importance of carefully choosing
network architectures and data encodings for the task at hand.

4 Discussion

Recent progress has revealed the promise of machine learning in phylogenetics. However, infer-
ences have often been limited to relatively small trees and relatively limited regions of parameter
space. Moving forward, careful considerations of training datasets, network architectures, and
data encodings will facilitate the use of machine learning to address fundamental challenges in
phylogenetic inference.

Supervised machine learning requires a labeled training set. In the context of phylogenetics,
however, we do not have labels for many real-world examples—we therefore have to simulate data.
Despite attempts to simulate realistic data across a wide range of parameter space, biases will
inevitably creep in. For example, training data generated under one substitution model may not
generalize to empirical datasets that evolved under a different model. Importantly, this challenge
is not specific to machine learning, and likelihood-based approaches may also fail due to model
misspecification. The relative robustness of machine learning approaches and likelihood-based
approaches to misspecified models remains unclear, with recent work suggesting similar impacts
of model violations (Thompson et al., 2024). Just as it is important to evaluate the robustness of
likelihood-based approaches to prevalent model misspecifications, it is important to evaluate the
robustness of machine learning approaches to misspecifications of the model(s) used to simulate
training data. Because of the flexibility of machine learning approaches, one approach to avoiding
such biases would be to generate synthetic training data across increasingly large sets of models
and parameters. However, this is computationally costly, and even when researchers attempt to
consider a broad range of relevant parameters, there will inevitably be mismatches between train-
ing and empirical data, potentially leading to poor generalization to unseen data. To develop more
robust networks, widely used techniques such as dropout, regularization, and ensemble methods
can be employed. Alternatively, noise can be added to training data to improve generalization
(as is done with image augmentation). In the context of phylogenetics, adding noise could in-
volve masking regions of the alignment during training. Alternatively, techniques from domain
adaptation have emerged as promising solutions. Domain adaptation aims to develop networks
that are robust to differences between the distribution of training data and the distribution of
target or empirical data. Mo and Siepel (2024) used domain adaptation to make more accurate
inferences of recombination rates and selection coefficients in the presence of domain differences.
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Their approach used adversarial domain-invariant feature extraction, which incorporates an ad-
ditional layer to prevent the model from extracting features that differ between the training and
target data. Such an approach promotes the extraction of domain-invariant features, and could
be used to make robust inferences in phylogenetics.

A major intended advantage of machine learning is that, once trained, models can be ap-
plied to new datasets with minimal computational expenses. Even though a trained model makes
inferences almost instantaneously, training remains computationally expensive. Ideally, trained
networks would be applicable across a wide range of empirical datasets, but this is limited by
the details of the training data used and the choice of network architectures. Specifically, many
network architectures (e.g., most CNNs) are not invariant to dataset size. In other words, only
datasets with the exact dimensions of the training data can be analyzed. However, in phyloge-
netics, datasets may vary in size due to different alignment lengths or different numbers of taxa.
This challenge has been addressed in population genetics through padding (Flagel et al., 2019),
and by designing appropriate network architectures that are size invariant (Sanchez et al., 2021).
Approaches that treat alignments as images in phylogenetics have often not considered align-
ments of variable sizes. However, Suvorov et al. (2020) used padding to accommodate simulated
alignments that vary in length due to indels; since their model was only applicable to quartets,
it did not consider variation in the number of taxa. Similarly, Wang et al. (2023) used a sliding
window approach to accommodate variable alignment lengths. Approaches that rely on sum-
mary statistics can generally accommodate variable alignment lengths and numbers of taxa, as
long as the statistics themselves do not change in dimensionality (Abadi et al., 2020; Burgstaller-
Muehlbacher et al., 2023). Alternatively, Nesterenko et al. (2022) accommodated variable input
sizes in Phyloformer through a carefully designed network, rather than through any manipulation
of the input data. Moving forward, designing machine learning approaches that can be applied
to alignments varying in size should be a central goal. To facilitate the reuse of networks in new
empirical systems, techniques from transfer learning could also be used. Specifically, supervised
transfer learning can be useful when limited training data are available from a new domain. For
example, a network that has already been trained on data from one domain can be reused in a
related, but distinct, domain. Supervised transfer learning and limited simulations in the new
domain can be used to generate a robust network with reduced computational expenses compared
to training the network from scratch. Combined, these approaches may facilitate more efficient
uses of supervised machine learning in phylogenetic contexts.

Another major consideration is how to encode input data —ferneural-networks. Most com-
monly, encoded alignments (Zou et al., 2020; Suvorov et al., 2020; Suvorov and Schrider, 2022),
or summary statistics (Abadi et al., 2020; Burgstaller-Muehlbacher et al., 2023) have been used
as input. When using encoded alignments, a primary challenge is scalability to longer alignments
or more taxa. This is especially pertinent as available genomic data continues to grow. Encoded
alignments can also pose challenges to network reusability, as discussed above. Alternatively,
the input can be represented with summary statistics that are explanatory features drawn from
alignments and trees for the task at hand. However, selecting a good set of features relies on
prior knowledge, and the choice of statistics can heavily impact inference. Alternative strategies
for representing alignments have been proposed, using attention mechanisms (Rao et al., 2021;
Nesterenko et al., 2022; Burgstaller-Muehlbacher et al., 2023) or language models (Lupo et al.,
2022). Such approaches can lead to networks that can accept variable input sizes, and are ca-
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pable of incorporating relationships among sites and lineages simultaneously. It is also essential
to develop a suitable representation for phylogenetic trees. Several efforts in this direction have
been made, from explanatory summary statistics (Voznica et al., 2022), to embeddings such as the
CBLV (Voznica et al., 2022), to graphical representations in GNNs (Lajaaiti et al., 2023). While
early uses are promising, these encodings have only been explored for a small set of inferential
tasks, and it is unclear which encodings will prove most useful over a wider range of questions.

The promise of supervised machine learning is to efficiently consider a wide range of the
complex processes that complicate phylogenetic inference. To date, most machine learning ap-
proaches for tree inference have largely not addressed heterogeneity introduced by incomplete
lineage sorting (ILS), gene duplication and loss, and introgression (though several exceptions have
been described here). While standard phylogenetic approaches also have trouble modeling this
heterogeneity, machine learning shows potential to include multiple of these processes at once. For
example, if machine learning approaches can be used to more accurately infer quartet frequencies
in the presence of these processes (as demonstrated in the case of ILS by (Rosenzweig et al., 2022;
Zhang et al., 2023)) then the accuracy of phylogenetic trees could be improved. Moving forward,
we expect that creative network architectures, data encodings, and task designs will facilitate the
use of machine learning to improve phylogenetic inferences in the presence of complex processes
that cannot be accommodated by standard approaches.
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Table 1: Recent machine learning applications in phylogenetics

Algorithm/ q 0
Purpose Method type . Input/alignment format Encoding Output Reference
classification CNN Nucleotide Integer Suvorov et al., 2020
I N . . PhyDL
- Quartet topolo
classification Residual NN Amino acid One-hot pology (Zou et al., 2020)
classification LSTM Amino acid Integer + Embedding Solis-Lemus et al., 2023
" . . Fusang
classification CNN Nucleotide Integer Tree topology (Wang et al., 2023)
. . . s " " Phyloformer
Topology regression Transformer Amino acid One-hot Pairwise evolutionary distances (Nesterenko et al., 2022)
inference
Matrix Factorizati " AU
regression atrix Factorization Distance matm.( with missing None An imputed distance matrix Bhattacharjee & Bayzid, 2020
Autoencoder entries
regression CNN Reference tree and sequences One-hot Distances between the query and all backbone sequences Jiang et al., 2023
from reference and query species
" . phyloGAN
generative GAN Nucleotide Integer Tree topology (Smith & Hahn, 2023)
Random forest Phylogeny Ranking of possible SPR moves Azouri et al., 2021
) regression Reinforcement " Summary statistics The Phylogenetic Game
Improving learning Nucleofide Tree topology (Azouri et al., 2023)
steps in
topology " " " " . " . " o ny F-zoneNN
inforenon classification MLP Nucleotide Site pattern frequencies Classification of alignment as Felsenstein- or Farris-type (Leuchtenberger et al., 2020)
regression Random forest Nucleotide, amino acid, or Summary statistics The degree of difficulty of a phylogenetic dataset Haag et al., 2022
morphological data
MLP Sits ttern fr i
regression Nucleotide e patiern frequencies Branch lengths Suvorov & Schrider, 2022
Branch length CNN Integer
inference classification | Logistic regression Phylogen Summary statistics Whether an independent branch-rates model should be rejected in favor of an CorrTest
g 9 viogeny v autocorrelated model (Tao et al., 2019)
regression Random forest Nucleotide Summary statistics Ranking of substitution models based on_thelr predicted performance in branch length MgdeITeIIer
estimation (Abadi et al., 2020)
Substitution
model classification Residual NN Nucleotide Summary statistics Model of sequence evolution (Burgstallenl\'\/‘l,:g;]lljlg:clfrl]rg etal, 2023)
selection
classlflcatlgn Bidirectional LSTM Nucleotide Summary statistics Whether rate heterogeneity should be considered, and if so an estimation of the shape NNalphafind
and regression parameter (Burgstaller-Muehlbacher et al., 2023)
Linear regression il
) " - - . . midils
Discordance regression Ensemble Nucleotide Summary statistics The amount of biological discordance in a set of gene trees (Rosenzweig et al., 2022)
detection MLP
. " . . ERICA
regression CNN Nucleotide One-hot The proportion of each possible topology for four- or five-taxon trees (Zhang et al., 2023)
classification | Extra-Trees classifier Nucleotide Summary statistics Classification of a genomic region as introgressed or not FILET
Y 9 g 9 (Schrider et al., 2018)
classification CNN (U-Net) biallelic SNP matrix Integer Classification of alleles as introgressed or not IntroUNET
(Ray et al., 2023)
. " " N N N Counts of minor alleles . . . . - . Genomatnn
Introgregswn classification CNN biallelic SNP matrix per haplotype per window Classification of regions experiencing adaptive introgression (Gower et al., 2021)
detection
classification CNN Nucleotide Summary statistics Best scenario of hybridization and admixture . HyDe-CNN
(Blishak et al., 2021)
classification MLP Nucleotide Summary statistics Best scenario of hybridization and admixture Burbrink & Gehara, 2018
N Various machine . . o ST - . . . . .
classification N N Gene trees in coalescent units Summary statistics Distinguishing the speciation history from the introgression history Hibbins & Hahn, 2022
learning algorithms
L MLP Summary statistics . . . .
classification One of three possible phylodynamic models or estimates of phylodynamic model PhyloDeep
5 Phylogeny .
and regression CNN Vectorized representation parameters (Voznica et al., 2022)
MLP Summary statistics
Diversification regression N . Lambert et al., 2023
rate inference CNN ) . . Vectorized representation
Phylogenyt wy:h or \glthout binary Estimates of diversification model parameters
Various neural raits on tips Summary statistics,
regression Vectorized Lajaaiti et al., 2023
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