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Abstract

Machine learning has increasingly been applied to a wide range of questions in phylogenetic
inference. Supervised machine learning approaches that rely on simulated training data have been
used to infer tree topologies and branch lengths, to select substitution models, and to perform
downstream inferences of introgression and diversification. Here, we review how researchers have
used several promising machine learning approaches to make phylogenetic inferences. Despite the
promise of these methods, several barriers prevent supervised machine learning from reaching its
full potential in phylogenetics. We discuss these barriers and potential paths forward. In the
future, we expect that the application of careful network designs and data encodings will allow
supervised machine learning to accommodate the complex processes that continue to confound
traditional phylogenetic methods.

1 Introduction1

Phylogenetics aims to elucidate the evolutionary relationships among species. In recent decades,2

owing to rapid growth in the availability of genomic data, phylogenetic analysis has been able to3

use hundreds to thousands of loci (Delsuc et al., 2005). Using whole genomes, or even near-whole4

genomes, may allow for a more comprehensive view of the evolutionary events shaping species5

(Scornavacca et al., 2020). However, the accuracy of inference may be compromised when using6

such large datasets, as even small biases can be magnified many-fold. Biases in phylogenetics are7

often due to unmodeled heterogeneity in the evolutionary process, including heterogeneity across8

time, sites, genes, or lineages (Kapli et al., 2020). These processes may arise either individually9

or in combination, presenting challenges in subsequent analyses.10

Recently, machine learning techniques have been used across fields, demonstrating impres-11

sive power in uncovering intricate relationships from data that contains extensive heterogeneity.12

Notable examples include successful applications in image classification (Krizhevsky et al., 2017),13
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language models (Devlin et al., 2019), protein structure prediction (Jumper et al., 2021), and pop-14

ulation genetics (Schrider and Kern, 2018). Machine learning is comprised of two fundamental15

paradigms—supervised and unsupervised approaches. Supervised learning relies on the availabil-16

ity of labeled training data, where the true underlying state or value of the data is known. In17

phylogenetics and related fields, large amounts of labeled training data are generally unavailable,18

so simulations are often used to generate such data. The primary objective of supervised machine19

learning is to learn a function that can map input data to appropriate outputs. Within supervised20

learning, there are two primary tasks: classification and regression. While classification aims to21

predict discrete labels or categories, regression predicts continuous-valued outputs. In contrast,22

unsupervised learning operates without the need for labeled data, focusing instead on discerning23

underlying structures or patterns in the input data. Unsupervised approaches include tasks such24

as clustering and dimensionality reduction. Notably, deep learning is a specialized subset of ma-25

chine learning that leverages neural networks (NNs) with many layers (hence ”deep”). Some NN26

architectures are adept at automatically extracting hierarchical features from raw data, obviating27

the need for manual feature engineering—a significant advantage over traditional machine learning28

methods.29

In the context of phylogenetics, machine learning algorithms are extremely flexible, both with30

regards to the structuring of input data, and the data used for training. Furthermore, machine31

learning approaches can learn complex relationships from input data without calculating likeli-32

hoods. This facilitates the application of machine learning to complex models, especially scenarios33

in which standard likelihood and Bayesian inference may be intractable. Given the lack of ana-34

lytical phylogenetic solutions that can be reasonably applied to large genomic datasets, machine35

learning offers the promise of moving beyond conventional methods.36

Despite the promise that machine learning in general has for addressing many biological prob-37

lems, there is uncertainty about its superiority over conventional approaches in many applications38

to phylogenetics. While a growing number of papers have applied machine learning to multiple39

problems in the field, researchers have not yet seen a clear advantage to such approaches. Here,40

we review recent applications of machine learning to different tasks in phylogenetics (Table 1),41

examining their limitations and strengths. We attempt to provide a general overview of the types42

of machine learning approaches that have been used—and those that could be used—in the hope43

that future work will bring the promise of machine learning to fruition.44

2 Tree Reconstruction45

Reconstructing evolutionary relationships among taxa is a central goal in evolutionary biology.46

A phylogenetic tree is composed of two primary components: a topology and a set of branch47

lengths. The topology serves as a representation of the hierarchical evolutionary relationships48

among species. The branch lengths represent evolutionary change, measured either in absolute49

time, in the number of nucleotide substitutions, or in other units. This section reviews machine50

learning approaches for inferring both components of phylogenetic trees.51
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2.1 Topology inference52

Perhaps the most natural framing of the problem of topology inference is to use supervised ma-53

chine learning approaches for classification, since the goal is to predict a discrete output (topology)54

from sequence data. Recall that supervised machine learning approaches require labeled training55

data, which are generally unavailable in phylogenetics. Because of this, in most phylogenetic56

applications simulations are performed under each model of interest prior to inference, and these57

simulated data are used to train the machine learning network. When the goal is topology in-58

ference, the model space includes, at a minimum, the number of possible tree topologies. With59

as few as ten taxa, there are more than two million unrooted topologies, making it infeasible to60

use such approaches to infer tree topologies for even moderate numbers of taxa. The challenges61

associated with a large state-space of topologies are not unique to machine learning approaches:62

even conventional methods have difficulties in inferring trees for large numbers of species (Roch,63

2006; Felsenstein, 1978b). To circumvent this problem, researchers have used three different types64

of approaches in order to apply machine learning to phylogenetic inference (Figure 1). Here we65

review these approaches and the specific models that have been used.66

2.1.1 Quartet-based methods67

The first machine learning approaches in phylogenetics used quartet-based methods. In general,68

quartet-based methods involve extracting sets of four taxa from the full dataset, building trees69

for each set of four taxa, and then constructing a phylogeny from these quartet trees using one70

of several quartet amalgamation approaches, such as quartet puzzling (Bryant and Steel, 2001;71

Snir and Satish, 2012; Reaz et al., 2014). Because there are only three possible topologies for an72

unrooted quartet, such approaches are not plagued by the need to consider a very large state-73

space of topologies. Quartet-based methods therefore provide efficient inference algorithms that74

are scalable to very large datasets.75

Several supervised learning approaches have been used to infer quartet trees. Suvorov et76

al. (2020) used a convolutional neural network (CNN) that takes integer-encoded nucleotide77

alignments as input. Machine learning algorithms generally require that input data are numerical,78

and integer-encoding can be used to represent categorical variables. In this application, each79

nucleotide was encoded as an integer between 0 and 3, with gaps encoded as 4, and each alignment80

was represented as a matrix in which rows correspond to sequences and columns correspond to81

sites in the alignment. The topology associated with each alignment was an integer-encoded class82

label. Training data were simulated under a wide range of branch lengths, several substitution83

models, with site heterogeneity, and with or without gaps. In the absence of gaps, the CNN84

generally performed as well as or better than traditional approaches. On datasets that included85

gaps, the CNN substantially outperformed traditional approaches, likely because it better utilized86

this significant source of phylogenetic signal. The CNN initially exhibited reduced accuracy in87

some zones of branch length space (e.g., the Felsentstein zone; (Felsenstein, 1978a)). However,88

when more training data were included from these regions the CNN was able to outperform other89

approaches, highlighting the importance of carefully considering where to put effort in training90

such models.91

In a similar approach, Zou et al. (2020) used a residual neural network, which takes as input92

one-hot encoded amino acid sequences. One-hot encoding is an alternative to integer-encoding for93
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representing categorical variables as numeric input. In this application, each site was represented94

by twenty channels, with each channel corresponding to an amino acid. For an individual site,95

the channel corresponding to the amino acid present in the position is set to one, while all other96

channels are set to zero. One-hot encoding may be more appropriate than integer-encoding, since97

it avoids implicit ordered relationships among states. In Zou et al.’s approach, models were trained98

on amino acid sequences simulated on large, random trees, which were then pruned to subsets99

of four taxa. Both site and time heterogeneity were included in the simulations; additionally,100

the training data intentionally included a sizable proportion of trees susceptible to long-branch101

attraction, to ensure that a large number of difficult examples were included. When benchmarked102

against existing inference approaches, the residual network predictors consistently delivered better103

results with less computational time (not including training time), especially when dealing with104

several cases that confound existing methods—such as long branch attraction and heterotachy.105

By combining their approach with a quartet amalgamation approach, these authors were able to106

infer larger species trees with moderate accuracy.107

Both of the methods described above treat alignments as images. While this approach to108

representing data has been found to be powerful in population genetics (Flagel et al., 2019), there109

are several limitations in the context of phylogenetics. For example, when inferring relationships110

among taxa, we would like the order in which sequences are included in the model to be irrelevant111

(a property referred to as ”permutation equivariant”). However, most network architectures do not112

perform in this way. Zou et al. (2020) accommodated this behavior by including all permutations113

of the alignment when training, but such an approach increases the compute time and memory114

needed to train a neural network. Soĺıs-Lemus et al. (2023) address this issue using a symmetry-115

preserving long short-term memory (LSTM) recurrent neural network (RNN). By avoiding the116

need to include permutations of the training alignments, they substantially improved compute117

times and memory usage compared to Zou et al. (2020). These approaches have also been limited118

in the ease with which they can be applied to empirical datasets both due to limitations in the119

lengths of alignments than can be considered and the lack of a user-friendly pipeline. Fusang120

(Wang et al., 2023) addresses these issues by using a sliding window approach to accommodate121

variable alignment lengths and developing an easy-to-use pipeline. Fusang takes as input an122

alignment including no more than 40 sequences, infers quartet topologies, and then uses a stepwise123

addition algorithm with beam search to infer larger trees from quartet trees.124

Even though NNs can be very efficient for inferring quartet trees, considering larger trees125

remains prohibitive—the approaches described above still must rely on quartet-amalgamation126

approaches to build larger trees. Additionally, as with all supervised machine learning, accuracy127

is likely limited in cases where the training data is not reflective of real data. Zaharias et al.128

(2022) explored these limitations by comparing the networks from Zou et al. (2020) to standard129

approaches on larger trees and on test datasets with higher rates of nucleotide evolution and/or130

shorter alignment lengths. They found that the neural networks only outperformed traditional131

approaches when the goal was to infer a quartet tree from relatively long amino acid sequences132

simulated under model conditions very similar to those used for training. Furthermore, when larger133

trees were considered, traditional approaches outperformed the combination of neural networks134

and quartet amalgamation. Machine learning approaches are therefore severely limited by their135

inability to directly infer trees from larger numbers of taxa, as well as by the specifics of the data136

used in training.137
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Figure 1: Methods for topology inference using machine learning. A. Quartet-based methods infer
one of the three topologies possible with unrooted quartets. Trees from each quartet are inferred
with NNs; a collection of such trees are then fed into existing quartet amalgamation algorithms
(e.g. Quartet Puzzling) to infer a larger phylogeny. B. Distance-based methods estimate pairwise
distances using NNs (e.g. Phyloformer). Distances are combined using standard methods (e.g.
Neighbor Joining) to reconstruct trees. C. Direct methods infer a tree directly from an alignment
using NNs (e.g. phyloGAN).
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2.1.2 Distance-based methods138

Rather than using machine learning to directly infer trees from sequence alignments, it is possible139

to instead infer evolutionary distances, which can then be used as input to standard distance-based140

approaches. Although often scoffed at by modern phylogeneticists, distance-based approaches such141

as neighbor joining (Saitou and Nei, 1987) are in fact guaranteed to infer the correct tree in most142

of parameter space, as long as distances are accurately inferred. In addition, they are much more143

accurate than maximum likelihood in the presence of high amounts of incomplete lineage sorting144

(Liu and Edwards, 2009; Mendes and Hahn, 2018). Therefore, it makes sense to apply machine145

learning to the task of accurately inferring distances.146

Nesterenko et al.(2022) developed Phyloformer, which uses self-attention networks to infer147

evolutionary distances for up to 100 species. Their model encapsulates alignment in a pairwise148

way, introducing a representation for each pair with the attention mechanism. The process entails149

an iterative sharing of information, first across sites within each pair (referred to as site-level150

attention) and subsequently across pairs within each site (termed pair-level attention). Such151

an approach is permutation-equivariant, and accommodates alignments of varying sizes. After152

inferring distances, these authors used neighbor joining for tree construction. Their approach153

outperformed traditional distance-based approaches, and was competitive with (and much faster154

than) maximum likelihood when training and testing data included similar numbers of species.155

However, Phyloformer does not always compare favorably to standard methods, especially on156

trees with more than twenty leaves.157

In a related approach, Bhattacharjee and Bayzid (2020) used autoencoders and matrix factor-158

ization to impute missing values in distance matrices. Alternatively, Jiang et al. (2023) use a CNN159

for phylogenetic placement—placing sequences from individual genes onto trees that may have160

been inferred using different genomic regions. In this case they inferred evolutionary distances for161

these new sequences, and then used a distance-based algorithm to place the new sequences on the162

tree (Balaban et al., 2022). Inferring evolutionary distances reframes phylogenetic inference as a163

regression problem, rather than as a classification problem. This reframing makes it possible to164

scale machine learning approaches to larger trees.165

2.1.3 Direct methods166

In maximum likelihood and Bayesian approaches to phylogenetic inference, the large number of167

possible topologies is accommodated by using heuristic searches to explore tree space; such ap-168

proaches could also be used for direct inference of tree topologies from sequence data in machine169

learning contexts. Generative adversarial networks (GANs) consist of a generator, which aims to170

produce realistic data, and a discriminator, which aims to distinguish real and fake data (Good-171

fellow et al., 2020). Recently, Smith and Hahn (2023) proposed phyloGAN. phyloGAN consists172

of a generator, which generates topologies and branch lengths, and a CNN-based discriminator,173

which attempts to distinguish alignments simulated under these topologies and branch lengths174

from empirical (real) alignments. Ideally, at the end of training, it should be virtually impossible175

to distinguish simulated and empirical alignments. Once this level of accuracy is achieved, the176

topology that underpins the simulated data is considered to be the inferred topology. phylo-177

GAN was tested on up to fifteen species, and a version incorporating gene tree heterogeneity was178

tested on six species. While phyloGAN worked well with small numbers of species (up to ten), it179
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was computationally intensive, and several metrics indicated issues during training. Additionally,180

since phyloGAN performs a heuristic exploration of tree space, it must be trained anew for each181

empirical dataset, and thus many of the potential computational benefits of machine learning182

approaches are not realized. Future work may explore alternative approaches for heuristically183

exploring model spaces using machine learning frameworks, including approaches covered in the184

next section.185

2.1.4 Improving steps in topology inference186

Machine learning approaches have been used to assist standard phylogenetic approaches for topol-187

ogy inference. For example, machine learning approaches have been used to improve heuristic188

searches for tree topologies. Azouri et al. (2021) used a random forest (RF) regressor to predict189

likelihood scores for subtree-prune-regraft (SPR) moves, a standard and important step in heuris-190

tic tree searches. Given a starting topology, their network could accurately predict the change in191

likelihood associated with different SPR moves, which suggests that such an approach could be192

used to limit search space and therefore to reduce the computational requirements for heuristic193

searches. In a follow-up paper, Azouri et al. (2023) used reinforcement learning as an alternative194

to traditional heuristic search algorithms. By allowing for suboptimal moves that, nonetheless,195

improved the final outcome of the search, this approach out-competed greedy search strategies.196

Machine learning approaches have also been used to guide researchers in their decisions about197

which standard approaches to use for topological inference. Leuchtenberger et al. (2020) developed198

a feed-forward neural network to classify alignments as belonging to the Farris (Siddall, 1998) or199

Felstenstein zone (Felsenstein, 1978a; Huelsenbeck and Hillis, 1993). They based their choice to200

use maximum parsimony (in the Farris Zone) or maximum likelihood (in the Felsenstein zone) on201

the predictions of this neural network. Using this approach resulted in higher overall accuracy202

compared to always using either maximum parsimony or maximum likelihood. In a follow-up203

paper, Leuchtenberger and von Haeseler (2024) simplified this neural network to develop a simple,204

more interpretable classifier, illustrating how subsequent investigations into complex networks can205

yield theoretical insights. In a similar application, Haag et al. (2022) developed a random forest206

regressor, Pythia, to predict the difficulty of inferring a tree from a particular alignment. They207

suggested that the predicted level of difficulty be used to guide decisions regarding analysis design,208

including potentially collecting more data prior to analyses for difficult alignments.209

2.2 Branch length inference210

In addition to a tree topology, most researchers are also interested in inferring the branch211

lengths of a tree. However, few studies have successfully inferred branch lengths using machine212

learning. While it may seem that this regression problem should be easier than the classification213

problem of inferring topologies, the size of the output vector depends on the number of edges in214

the tree—there are 2n− 2 branches in a rooted tree with n tips. The dependence on the number215

of tips complicates the use of machine learning approaches.216

Suvorov and Schrider (2022) employed both a CNN and a multilayer perceptron (MLP) to217

infer branch lengths on fixed tree topologies with four or eight taxa. For the CNN-based approach,218

they adapted a previously proposed architecture (Suvorov et al., 2020). Instead of a classification219
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task, the model was restructured for regression, aiming to predict all branch lengths simultane-220

ously. Meanwhile, the MLP was fed with feature vectors derived from site pattern frequencies221

present within each alignment. Notably, the predictions generated by their models showed slightly222

superior accuracy compared to maximum likelihood estimates. Despite these promising results,223

there remains a degree of skepticism regarding the scalability of machine learning to infer branch224

lengths, especially when considering more species. Nevertheless, the flexibility of machine learning225

approaches with respect to the types of input data that can be considered offers many interesting226

possibilities. For instance, in the future such methods could facilitate the integration of hetero-227

geneous fossil data in estimating time-calibrated trees.228

As with topological inference, machine learning approaches can also be used to guide re-229

searchers in decisions about which approaches may be most appropriate for inferring branch230

lengths. For example, Tao et al. (2019) used a logistic regression model to predict whether rates231

of molecular evolution are autocorrelated in inferred phylogenies. Their approach, CorrTest, can232

be used to determine whether an independent branch-rate model or an autocorrelated branch-rate233

model should be used to estimate divergence times.234

3 Other kinds of phylogenetic inferences235

In addition to phylogenetic tree inference, machine learning approaches have been applied236

to both upstream and downstream tasks in phylogenetics. Prior to tree inference using many237

approaches (e.g., Bayesian inference, maximum likelihood, neighbor joining) it is necessary to238

infer a sequence substitution model. After tree inference, researchers are often interested in239

detecting and quantifying discordance, testing for introgression, and inferring macroevolutionary240

parameters. Below, we review some recent machine learning approaches to these upstream and241

downstream tasks.242

3.1 Substitution models243

It is crucial to select a suitable substitution model for accurate phylogenetic inference from244

sequence data, as it has long been known that misspecified models can lead to inaccurate estimates245

of trees (Buckley, 2002; Sanderson, 2002) and branch lengths (Abadi et al., 2019). Existing246

methods for model selection infer the model that provides the best fit to the data, using one of247

several criteria. Popular criteria include likelihood ratio tests (LRTs), Akaike information criteria248

(AIC), corrected AIC (AICc), Bayesian information criteria (BIC), and decision theory (DT).249

However, these criteria rely on assumptions that are often not met in phylogenetics, and there250

is a lack of consensus regarding which criteria are the most appropriate (Abadi et al., 2019).251

Additionally, substitution model choice tends to impact branch length estimates more-so than252

topology inference (Abadi et al., 2019), but no criteria to-date have been designed to select the253

model best-suited for branch length inference. Finally, using these criteria to perform substitution254

model selection is computationally expensive, as it requires computation of the likelihood. Here255

we discuss two recent machine learning approaches that attempt to address these gaps.256

ModelTeller (Abadi et al., 2020) is a machine learning approach that uses an RF regressor to257

rank 24 potential substitution models according to their accuracy in downstream branch length258

inference. Features fed into the model included over 50 summary statistics that can be broadly259
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categorized into four primary groups: features inherent to the alignment, features drawn from260

an approximated tree inferred through a distance-based method, parameters inferred under a261

parameter-rich substitution model, and sequence similarity within certain subsets. ModelTeller’s262

primary distinction compared to traditional approaches lies in selecting a substitution model that263

improves accuracy in branch length inference. This leads to improved performance in terms of264

the accuracy of branch length estimates under the models selected using ModelTeller compared265

to models selected using more standard approaches, particularly on datasets simulated under266

realistic models. Additionally, ModelTeller was substantially faster than standard methods.267

A later model, ModelRevelator (Burgstaller-Muehlbacher et al., 2023) aims to infer the cor-268

rect generating model of nucleotide substitution using two neural networks. The first network,269

NNmodelfinder, takes as input a set of statistics calculated from pairwise alignments and predicts270

the best substitution model from a set of six possible models. The second network, NNalphafind,271

takes as input base composition profiles and predicts whether a site homogeneous model is ap-272

propriate or not. If a site homogeneous model is not appropriate, then NNalphafind estimates273

the α parameter of a model with Γ-distributed rate heterogeneity among sites. Used together,274

these networks can predict the best substitution model for a given sequence alignment, whether275

rate heterogeneity should be included, and, when rate heterogeneity is included, the α parameter276

to use in downstream inference. ModelRevelator performed comparably to maximum likelihood277

combined with substitution model selection under BIC as implemented in IQ-TREE (Minh et al.,278

2020), with substantially reduced computation times on large alignments.279

Both ModelTeller and ModelRevelator are designed to select a substitution model that is280

suitable for inference; however, each uses different criteria for assessing suitability. ModelTeller is281

particularly focused on identifying a model that results in the most accurate estimates of branch282

lengths. The primary objective of ModelRevelator is to select the best substitution model and283

estimate the α parameter when the best model includes rate heterogeneity. One can therefore use284

both methods together on a single dataset.285

3.2 Levels of discordance286

Gene tree topologies often differ from the species tree topology due to several biological fac-287

tors, including incomplete lineage sorting, introgression, and gene duplication and loss (Maddison,288

1997). Two recent studies used deep learning to estimate the amount of discordance in phyloge-289

netic datasets (Rosenzweig et al., 2022; Zhang et al., 2023). Rosenzweig et al. (2022) used several290

approaches, including a deep neural network (DNN), to estimate the amount of discordance in291

four-taxon datasets using a set of summary statistics calculated from alignments and inferred gene292

trees. Estimates from their DNN were more accurate than relying on inferred gene trees alone to293

estimate discordance, particularly when branch lengths were long. In addition to their network294

for estimating the amount of discordance, they introduced a network for inferring the quartet295

species tree topology from the same set of statistics. Similarly, Zhang et al. (2023) used CNNs to296

estimate the proportion of all different possible topologies for four and five-taxon datasets from297

multiple sequence alignments. Their CNN, called ERICA, was able to accurately infer topology298

proportions. The authors then used these inferred proportions to try to infer introgression and299

to identify potentially introgressed genomic windows. The ability of these approaches to estimate300

the proportions of quartet topologies more accurately than standard pipelines—which rely on301
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inferred gene trees alone—offers promise for improving many quartet-based methods for species302

tree inference, as these generally assume that quartet frequencies are accurately estimated from303

input gene trees (Mirarab and Warnow, 2015).304

3.3 Introgression305

Most machine learning approaches for studying introgression have focused on population-scale306

data, rather than phylogenetic data. For example, Schrider et al. (2018) used ExtraTrees classifiers307

to detect introgressed regions between closely related species, while Ray et al. (2023) used a CNN308

and image segmentation for a similar task. Similarly, Gower et al. (2021) developed a CNN to309

detect adaptive introgression given data from three closely related populations or species. Several310

recent papers have also addressed introgression from a phylogenetic perspective using machine311

learning.312

Two recent studies used supervised machine learning to determine whether there was evidence313

for reticulation in a dataset. Blischak et al. (2021) used a CNN to detect various types of reticula-314

tion in four-taxon trees, including hybrid speciation and introgression. Their CNN took as input315

mean and minimum values of dXY (a measure of sequence divergence) between sets of popula-316

tions. They compared HyDe-CNN to an RF classifier trained on several phylogenetic statistics for317

detecting introgression and found that HyDe-CNN had increased power. In a similar approach,318

Burbrink and Gehara (2018) trained a neural network to distinguish a bifurcating species tree from319

models including reticulation between two parent clades and one clade with a putative reticulate320

history. As input, their network takes pairwise distances between all sequences in the phylogeny321

(11 sequences from three clades). Their network had moderate power to distinguish among mod-322

els with and without reticulations. When applied to their empirical data, the model supported323

a reticulate history for a clade in which reticulation was also inferred using SNaQ (Soĺıs-Lemus324

and Ané, 2016). Most recently, Hibbins and Hahn (2022) used supervised machine learning to325

distinguish speciation and introgression histories. Under many regions of parameter space, gene326

trees and site patterns matching the introgression history can become more common than those327

matching the species tree, challenging many traditional approaches to species tree inference. By328

using several summary statistics calculated from gene trees, Hibbins and Hahn were able to accu-329

rately infer the speciation history for rooted three-taxon trees, even in regions of parameter space330

where traditional approaches fail. While powerful, these approaches have primarily focused on331

four or fewer taxa. Future work may expand machine learning approaches to study introgression332

on larger trees.333

3.4 Diversification rates334

In addition to the kinds of inferences described above, recent studies have attempted to use335

inferred phylogenies for downstream inference of diversification rates. One challenge in any such336

analysis is determining the optimal way to encode phylogenetic trees. To address this issue,337

Voznica et al. (2022) introduced the compact bijective ladderized vector (CBLV), an encoding338

of phylogenetic trees that can be used as input into a CNN. They trained a CNN that took as339

input the CBLV to infer parameters of phylodynamic birth-death models and to perform model340

selection. They compared the performance of this CNN to a feed-forward neural network trained341

on summary statistics calculated from phylogenetic trees. Both networks were able to accurately342
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infer parameters and distinguish among phylodynamic models. Lambert et al. (2023) used similar343

networks to infer speciation and turnover rates under a constant rate birth-death (CRBD) model344

and to infer the parameters of a binary state speciation and extinction (BiSSE) model. Lajaaiti345

et al. (2023) compared these networks to several other networks for inferring diversification346

parameters. They trained an additional CNN and RNN on lineage through time (LTT) plots.347

They also trained a graph neural network (GNN) that took phylogenies encoded as graphs directly348

as input. Under the CRBD model, the RNN and CNN trained on LTT plots outperformed the349

network trained on CBLV encodings. However, these same networks performed poorly under350

the BiSSE model, likely because the LTT plots did not include additional information about351

tip states, which was included in the other networks. Perhaps surprisingly, the GNN performed352

poorly across both models. These approaches highlight the importance of carefully choosing353

network architectures and data encodings for the task at hand.354

4 Discussion355

Recent progress has revealed the promise of machine learning in phylogenetics. However, infer-356

ences have often been limited to relatively small trees and relatively limited regions of parameter357

space. Moving forward, careful considerations of training datasets, network architectures, and358

data encodings will facilitate the use of machine learning to address fundamental challenges in359

phylogenetic inference.360

Supervised machine learning requires a labeled training set. In the context of phylogenetics,361

however, we do not have labels for many real-world examples—we therefore have to simulate data.362

Despite attempts to simulate realistic data across a wide range of parameter space, biases will363

inevitably creep in. For example, training data generated under one substitution model may not364

generalize to empirical datasets that evolved under a different model. Importantly, this challenge365

is not specific to machine learning, and likelihood-based approaches may also fail due to model366

misspecification. The relative robustness of machine learning approaches and likelihood-based367

approaches to misspecified models remains unclear, with recent work suggesting similar impacts368

of model violations (Thompson et al., 2024). Just as it is important to evaluate the robustness of369

likelihood-based approaches to prevalent model misspecifications, it is important to evaluate the370

robustness of machine learning approaches to misspecifications of the model(s) used to simulate371

training data. Because of the flexibility of machine learning approaches, one approach to avoiding372

such biases would be to generate synthetic training data across increasingly large sets of models373

and parameters. However, this is computationally costly, and even when researchers attempt to374

consider a broad range of relevant parameters, there will inevitably be mismatches between train-375

ing and empirical data, potentially leading to poor generalization to unseen data. To develop more376

robust networks, widely used techniques such as dropout, regularization, and ensemble methods377

can be employed. Alternatively, noise can be added to training data to improve generalization378

(as is done with image augmentation). In the context of phylogenetics, adding noise could in-379

volve masking regions of the alignment during training. Alternatively, techniques from domain380

adaptation have emerged as promising solutions. Domain adaptation aims to develop networks381

that are robust to differences between the distribution of training data and the distribution of382

target or empirical data. Mo and Siepel (2024) used domain adaptation to make more accurate383

inferences of recombination rates and selection coefficients in the presence of domain differences.384

11



Their approach used adversarial domain-invariant feature extraction, which incorporates an ad-385

ditional layer to prevent the model from extracting features that differ between the training and386

target data. Such an approach promotes the extraction of domain-invariant features, and could387

be used to make robust inferences in phylogenetics.388

A major intended advantage of machine learning is that, once trained, models can be ap-389

plied to new datasets with minimal computational expenses. Even though a trained model makes390

inferences almost instantaneously, training remains computationally expensive. Ideally, trained391

networks would be applicable across a wide range of empirical datasets, but this is limited by392

the details of the training data used and the choice of network architectures. Specifically, many393

network architectures (e.g., most CNNs) are not invariant to dataset size. In other words, only394

datasets with the exact dimensions of the training data can be analyzed. However, in phyloge-395

netics, datasets may vary in size due to different alignment lengths or different numbers of taxa.396

This challenge has been addressed in population genetics through padding (Flagel et al., 2019),397

and by designing appropriate network architectures that are size invariant (Sanchez et al., 2021).398

Approaches that treat alignments as images in phylogenetics have often not considered align-399

ments of variable sizes. However, Suvorov et al. (2020) used padding to accommodate simulated400

alignments that vary in length due to indels; since their model was only applicable to quartets,401

it did not consider variation in the number of taxa. Similarly, Wang et al. (2023) used a sliding402

window approach to accommodate variable alignment lengths. Approaches that rely on sum-403

mary statistics can generally accommodate variable alignment lengths and numbers of taxa, as404

long as the statistics themselves do not change in dimensionality (Abadi et al., 2020; Burgstaller-405

Muehlbacher et al., 2023). Alternatively, Nesterenko et al. (2022) accommodated variable input406

sizes in Phyloformer through a carefully designed network, rather than through any manipulation407

of the input data. Moving forward, designing machine learning approaches that can be applied408

to alignments varying in size should be a central goal. To facilitate the reuse of networks in new409

empirical systems, techniques from transfer learning could also be used. Specifically, supervised410

transfer learning can be useful when limited training data are available from a new domain. For411

example, a network that has already been trained on data from one domain can be reused in a412

related, but distinct, domain. Supervised transfer learning and limited simulations in the new413

domain can be used to generate a robust network with reduced computational expenses compared414

to training the network from scratch. Combined, these approaches may facilitate more efficient415

uses of supervised machine learning in phylogenetic contexts.416

Another major consideration is how to encode input data for neural networks. Most com-417

monly, encoded alignments (Zou et al., 2020; Suvorov et al., 2020; Suvorov and Schrider, 2022),418

or summary statistics (Abadi et al., 2020; Burgstaller-Muehlbacher et al., 2023) have been used419

as input. When using encoded alignments, a primary challenge is scalability to longer alignments420

or more taxa. This is especially pertinent as available genomic data continues to grow. Encoded421

alignments can also pose challenges to network reusability, as discussed above. Alternatively,422

the input can be represented with summary statistics that are explanatory features drawn from423

alignments and trees for the task at hand. However, selecting a good set of features relies on424

prior knowledge, and the choice of statistics can heavily impact inference. Alternative strategies425

for representing alignments have been proposed, using attention mechanisms (Rao et al., 2021;426

Nesterenko et al., 2022; Burgstaller-Muehlbacher et al., 2023) or language models (Lupo et al.,427

2022). Such approaches can lead to networks that can accept variable input sizes, and are ca-428
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pable of incorporating relationships among sites and lineages simultaneously. It is also essential429

to develop a suitable representation for phylogenetic trees. Several efforts in this direction have430

been made, from explanatory summary statistics (Voznica et al., 2022), to embeddings such as the431

CBLV (Voznica et al., 2022), to graphical representations in GNNs (Lajaaiti et al., 2023). While432

early uses are promising, these encodings have only been explored for a small set of inferential433

tasks, and it is unclear which encodings will prove most useful over a wider range of questions.434

The promise of supervised machine learning is to efficiently consider a wide range of the435

complex processes that complicate phylogenetic inference. To date, most machine learning ap-436

proaches for tree inference have largely not addressed heterogeneity introduced by incomplete437

lineage sorting (ILS), gene duplication and loss, and introgression (though several exceptions have438

been described here). While standard phylogenetic approaches also have trouble modeling this439

heterogeneity, machine learning shows potential to include multiple of these processes at once. For440

example, if machine learning approaches can be used to more accurately infer quartet frequencies441

in the presence of these processes (as demonstrated in the case of ILS by (Rosenzweig et al., 2022;442

Zhang et al., 2023)) then the accuracy of phylogenetic trees could be improved. Moving forward,443

we expect that creative network architectures, data encodings, and task designs will facilitate the444

use of machine learning to improve phylogenetic inferences in the presence of complex processes445

that cannot be accommodated by standard approaches.446
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Table 1: Recent machine learning applications in phylogenetics

Purpose Method type Algorithm/
architecture Input/alignment format Encoding Output Reference

classification CNN Nucleotide Integer Suvorov et al., 2020

classification Residual NN Amino acid One-hot PhyDL 
(Zou et al., 2020)

classification LSTM Amino acid Integer + Embedding Solís-Lemus et al., 2023

classification CNN Nucleotide Integer Tree topology Fusang 
(Wang et al., 2023)

Matrix Factorization
Autoencoder

Random forest Phylogeny Ranking of possible SPR moves Azouri et al., 2021

Reinforcement 
learning Nucleotide Tree topology The Phylogenetic Game 

(Azouri et al., 2023)

classification MLP Nucleotide Site pattern frequencies Classification of alignment as Felsenstein- or Farris-type F-zoneNN
(Leuchtenberger et al., 2020)

MLP Site pattern frequencies
CNN Integer

classification Logistic regression Phylogeny Summary statistics Whether an independent branch-rates model should be rejected in favor of an 
autocorrelated model

CorrTest
(Tao et al., 2019)

regression Random forest Nucleotide Summary statistics Ranking of substitution models based on their predicted performance in branch length 
estimation

ModelTeller
(Abadi et al., 2020)

classification Residual NN Nucleotide Summary statistics Model of sequence evolution NNmodelfind
(Burgstaller-Muehlbacher et al., 2023)

classification 
and regression Bidirectional LSTM Nucleotide Summary statistics Whether rate heterogeneity should be considered, and if so an estimation of the shape 

parameter
NNalphafind

(Burgstaller-Muehlbacher et al., 2023)

Linear regression
Ensemble

MLP

regression CNN Nucleotide One-hot The proportion of each possible topology for four- or five-taxon trees ERICA
(Zhang et al., 2023)

classification Extra-Trees classifier Nucleotide Summary statistics Classification of a genomic region as introgressed or not FILET
(Schrider et al., 2018)

classification CNN (U-Net) biallelic SNP matrix Integer Classification of alleles as introgressed or not IntroUNET
(Ray et al., 2023)

classification CNN biallelic SNP matrix Counts of minor alleles 
per haplotype per window Classification of regions experiencing adaptive introgression Genomatnn

(Gower et al., 2021)

classification CNN Nucleotide Summary statistics Best scenario of hybridization and admixture HyDe-CNN
(Blishak et al., 2021)

classification MLP Nucleotide Summary statistics Best scenario of hybridization and admixture Burbrink & Gehara, 2018

classification Various machine 
learning algorithms Gene trees in coalescent units Summary statistics Distinguishing the speciation history from the introgression history Hibbins & Hahn, 2022

MLP Summary statistics

CNN Vectorized representation

MLP Summary statistics

CNN Vectorized representation
Phylogeny with or without binary 

traits on tips

Lambert et al., 2023

Lajaaiti et al., 2023

Random forest 

Various neural 
networks

Haag et al., 2022

ml4ils
(Rosenzweig et al., 2022)

PhyloDeep
(Voznica et al., 2022)

Nucleotide The amount of biological discordance in a set of gene trees

Nucleotide, amino acid, or 
morphological data Summary statistics The degree of difficulty of a phylogenetic dataset

Branch lengths

Phyloformer
(Nesterenko et al., 2022)

Bhattacharjee & Bayzid, 2020

Jiang et al., 2023

phyloGAN
(Smith & Hahn, 2023)

Summary statistics

Suvorov & Schrider, 2022
Branch length 

inference

regression Nucleotide

Tree topology

An imputed distance matrix

regression

regression Distances between the query and all backbone sequences

Transformer Amino acid One-hot Pairwise evolutionary distances

CNN Reference tree and sequences 
from reference and query species One-hot

Introgression 
detection

Phylogeny

Summary statistics

Distance matrix with missing 
entries None

GAN Nucleotide Integer

Substitution 
model 

selection

Diversification 
rate inference

regression

regression

Quartet topology

regression

One  of three possible phylodynamic models or estimates of phylodynamic model 
parameters

Summary statistics, 
Vectorized 

representations, Graphs

Improving 
steps in 
topology 
inference

generative

regression

Topology 
inference

regression

regression

classification 
and regression

Estimates of diversification model parameters

Discordance 
detection
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