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Abstract

Hundreds or thousands of loci are now routinely used in modern phylogenomic studies.
Concatenation approaches to tree inference assume that there is a single topology for the
entire dataset, but different loci may have different evolutionary histories due to incomplete
lineage sorting, introgression, and/or horizontal gene transfer; even single loci may not be
treelike due to recombination. To overcome this shortcoming, we introduce an
implementation of a multi-tree mixture model that we call MAST. This model extends a prior
implementation by Boussau et al. (2009) by allowing users to estimate the weight of each of
a set of pre-specified bifurcating trees in a single alignment. The MAST model allows each
tree to have its own weight, topology, branch lengths, substitution model, nucleotide or
amino acid frequencies, and model of rate heterogeneity across sites. We implemented the
MAST model in a maximum-likelihood framework in the popular phylogenetic software, 1Q-
TREE. Simulations show that we can accurately recover the true model parameters, including
branch lengths and tree weights for a given set of tree topologies, under a wide range of
biologically realistic scenarios. We also show that we can use standard statistical inference
approaches to reject a single-tree model when data are simulated under multiple trees (and
vice versa). We applied the MAST model to multiple primate datasets and found that it can
recover the signal of incomplete lineage sorting in the Great Apes, as well as the asymmetry
in minor trees caused by introgression among several macaque species. When applied to a
dataset of four Platyrrhine species for which standard concatenated maximum likelihood and
gene tree approaches disagree, we observe that MAST gives the highest weight (i.e. the
largest proportion of sites) to the tree also supported by gene tree approaches. These results
suggest that the MAST model is able to analyse a concatenated alignment using maximum
likelihood, while avoiding some of the biases that come with assuming there is only a single

tree. We discuss how the MAST model can be extended in the future.

Keywords: Multitree model; mixture model; phylogenetics; incomplete lineage sorting;

introgression
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PHYLOGENETIC INFERENCE WITH MAST

Introduction

Molecular phylogenetics aims to infer phylogenetic trees, often from aligned DNA or
amino acid (AA) sequencing data. Many popular phylogenetic tools are designed to infer a
single tree from a multiple sequence alignment, using one of a number of approaches such
as maximum likelihood (e.g. RAXML (Stamatakis 2014), IQ-TREE (Kalyaanamoorthy et al.
2017), PhyML (Guindon et al. 2010)), Bayesian inference (e.g. MrBayes (Ronquist and
Huelsenbeck 2003), BEAST (Bouckaert et al. 2019)), maximum parsimony (e.g. MPBoot
(Hoang et al. 2018), matOptimize (Ye et al. 2022), TNT (Goloboff and Catalano 2016)), or
distance methods (e.g. BioNJ (Gascuel 1997), FastME (Lefort et al. 2015), QuickTree (Howe et
al. 2002), RapidNJ (Simonsen and Pedersen 2011)). The assumption that the data can be
represented as a single tree is appropriate when analysing a single non-recombining locus.
However, there are many situations where this “treelikeness” assumption is violated. For
example, an alignment of a single locus may contain one or more recombination events in its
history, such that different regions of the alignment follow different trees. More generally, it
is well known that different genomic loci may have evolved under different trees due to
biological processes including incomplete lineage sorting (ILS), hybridisation/introgression,
and horizontal gene transfer (Maddison 1997; Nichols 2001). Since modern phylogenomic
datasets now routinely contain hundreds or thousands of loci, a great deal of work has
focused on developing methods and software that relax the treelikeness assumption

(Edwards 2009).

Most existing approaches that account for complex histories in large datasets focus on
inferring either species trees or species networks, either from a single concatenated
alignment or from many individual locus alignments or individual locus trees. Many of the
most popular approaches for inferring species trees are based on the multi-species coalescent
model (MSC) or are consistent with the MSC, and can infer a species tree while accounting
for ILS among loci (e.g. SNAPP (Bryant et al. 2012), ASTRAL-Ill (Zhang et al. 2018b), MP-EST
(Liu et al. 2010), SVD-Quartets (Chifman and Kubatko 2015), *BEAST (Heled and Drummond
2010), *BEAST2 (Ogilvie et al. 2017)). More recent work has extended the MSC to account for
a broader range of processes that can cause reticulations in the underlying species tree. These
methods use models referred to as the multi-species network coalescent (or MSNC), and
typically infer a species network that represents both the vertical inheritance and horizontal

exchange of genetic material among evolving lineages (e.g. PhyloNet (Wen et al. 2018),
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PhyloNetworks (Solis-Lemus et al. 2017), SpeciesNetwork (Zhang et al. 2018a), and BPP (Flouri
et al. 2018)). Other methods, like Relate (Speidel et al. 2019) and tsinfer (Kelleher et al. 2019),
infer multiple tree topologies (as an approximation of an ancestral recombination graph)

along genomes, although these methods are designed for within-species analyses.

In this study, we present a different solution to the problem of accounting for multiple
histories in a single sequence alignment: the mixtures across sites and trees (MAST) model.
The MAST model is an example of a multitree mixture model (Boussau et al. 2009; Allman et
al. 2012), because it uses mixtures of bifurcating trees to represent the multiple histories
present in a dataset. In phylogenetic mixture models, a number of sub-models (known as
classes) are estimated from the data and the likelihood of each site in the alignment is
calculated as the weighted sum of the likelihood for that site under each sub-model (Figure
1). Mixture models have been widely used in phylogenetic inference, including in rate
heterogeneity across site models (Yang 1994), (Kalyaanamoorthy et al. 2017), profile mixture
models (e.g. the CAT model (Lartillot and Philippe 2004)), mixtures of substitution rate
matrices (e.g. the LG4AM and LG4X models (Le et al. 2012)), and mixtures of branch lengths
(e.g. the GHOST model (Crotty et al. 2019)).

Multitree mixture models are best seen as a generalisation of a standard concatenated
phylogenetic analysis. In a standard concatenated phylogenetic analysis, we assume that the
history of the entire alignment is represented by a single bifurcating phylogenetic tree (i.e.
we make the treelikeness assumption). Multitree mixture models relax this assumption and
represent the history of the alignment with a mixture of any number of tree topologies. The
MAST model is similar to a previous implementation of a multitree mixture model, PhyML-
multi (Boussau et al. 2009). Crucially, though, it estimates the weights of the input trees from
the data, while PhyML-multi assumes that all trees have equal weights. In addition, MAST
implements the full range of models available in IQ-TREE2, and gives users flexible options for
how to associate different aspects of the evolutionary models with the different trees. Given
an alignment and a collection of tree topologies that contain the same tip labels as that
alignment, the MAST model estimates the likelihood of each site under each tree, the
maximume-likelihood weights of each of the input trees, the branch lengths of the trees, and
the other free parameters of the substitution model. In this way, it has many of the
advantages of concatenation approaches, but can accommodate underlying discordance in

the alignment (Bryant and Hahn 2020).
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The multitree mixture model implemented in MAST differs from species tree and species
network models in a number of ways. As opposed to many MSC and MSNC approaches, the
MAST model does not explicitly model biological processes such as ILS, introgression, or
horizontal gene transfer. Instead, the MAST model is process-agnostic and simply seeks to
calculate the relative weights of tree topologies from the input data. This is a limitation in the
sense that the output of the MAST model does not contain direct estimates of many
evolutionary parameters of interest, such as the number of hybridisation events, their
location on the species tree, or ancestral population sizes. Similarly, just as with standard
single-tree concatenation approaches, the MAST model cannot represent distributions of
branch lengths on a single tree topology, as are expected under the coalescent. On the other
hand, that MAST is process-agnostic may be seen as a strength because the MAST model can
represent a wide range biological processes (e.g. differences in tree topologies caused by the
coalescent or by introgression) or technical errors (such as the accidental inclusion of
paralogs) that can cause the treelikeness assumption to be violated. Moreover, the MAST
model differs from previous approaches because it calculates the likelihood of every site
under every tree in the mixture, while estimating the weights of the input trees from the data.
Although these weights are not equivalent to gene-tree frequencies, they may in practice be
quite similar in value. Similarly to some implicit network models, MAST assumes that sites are
independent of one another. In other words, the order of the sites in the alignment will not
affect the parameter estimates from the MAST model. This means that MAST is agnostic with
respect to the underlying rate at which tree topologies change along an alignment. As with
other aspects of MAST, this makes it a relatively general model, but at the cost of ignoring the
potentially useful information contained in many alignments that arises from the fact that
neighbouring sites often share the same tree topology. Our simulations demonstrate that the
MAST model accurately recovers tree weights even when neighbouring sites are highly

correlated in their association with tree topologies (see below).

In this paper, we first describe the mathematical basis of the MAST model and its
implementation in IQ-TREE. This implementation allows us to estimate tree weights, model
parameters, and branch lengths for a given set of input tree topologies. We then perform
extensive simulations to evaluate the accuracy and the limitations of the MAST model. Finally,

we demonstrate the use of the MAST model on four empirical datasets of primates to show
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that it recapitulates results from well-studied clades. We also highlight the advantages of
MAST over standard phylogenetic analysis methods when applied to these datasets.
Likelihood values along the sites
Likelihoods:
s /\/ \ ,\/ vj ——lt\/IAST with potht ]
. r\\\/ /\/\’\ //\ﬁ | A /\fvf» | rees asan‘inpus

| /AW Single-tree model
4 \/ \v/ \ V \/ fortree 1 (L)

Single-tree model (L)
20 for tree 2

Log

" Lyusr=w; L+ w, L,

w;: weight of tree 1

0 10 20 30 40 50 60 70 80 w,: welght of tree 2
Sites
Tree 1 Tree 2
S1 S3
S3 S2
S7 S5
S8 S9
sS4 sS4
S2 $10
s9 S8
$10 S6
S5 S1
S6 S7

Figure 1: An example illustrating the MAST model. Two regions (of length 45 bp and 35 bp) were simulated
under two different topologies, each with ten taxa. The curves at the top show the site likelihoods (on a log
scale) computed under tree 1 (L,), tree 2 (L,), and the MAST model (L 457)- Laysast is calculated as the weighted
sum of L; and L,, where the weight parameters w, and w, will be estimated by the MAST model. This toy
example shows that the Ly ,¢r curve matches the L, curve for region 1 and the L, curve for region 2 with high
site likelihoods, demonstrating the ability of the MAST model to predict the true underlying evolution of this
data. Note that due to the log scale of the y-axis, the log value of Lyasr is much closer to the log value of the

higher likelihood value between L; and L.

Material and Methods

The MAST model

In a standard concatenated maximum likelihood (ML) analysis (such as that performed by 1Q-
TREE (Nguyen et al. 2015) or RAXML (Stamatakis 2014)), it is assumed that every site in the
concatenated alignment comes from a single phylogenetic tree, which consists of a topology
and branch lengths. In this framework, ML approaches seek to find the model of sequence
evolution, tree topology, and branch lengths that maximize the likelihood of the observed
alignment. The MAST model generalizes this framework by assuming that each site in the
alignment comes from a mixture of m trees. Each tree has its own weight, topology and

branch lengths, and the trees may have independent or shared substitution models (e.g. the
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general time reversible (GTR) model (Tavaré 1986)), a set of nucleotide or amino-acid
frequencies, and a rate heterogeneity across sites (RHAS) model (e.g. the +G or +1+G models).
In what follows we first describe the case in which each tree has an independent substitution

model, set of nucleotide or amino acid frequencies, and RHAS model.

Model description

The MAST model consists of m classes where each class j comprises a bifurcating tree
topology T;. For the j-th class, 4; is defined as the set of branch lengths on T}, R; as the

relative substitution rate parameters, F; as the set of nucleotide or amino-acid

J
frequencies, H; as the rate heterogeneity model, and w; as the class weight (w; > 0,
Y7L, tiw; = 1). Given a multiple sequence alignment, 4, we define L;; as the likelihood
of the data observed at i-th site in A under the j-th class of the MAST model. L;; can be
computed using Felsenstein’s pruning algorithm (Felsenstein 1981). The likelihood of the

i-th site, L;, is the weighted sum of the L;; over the m classes:

L; —Z;:: Lyj(T;, 4, Ry, Hy, Fy) (1)

The full log-likelihood [ over all N alignment sites, which are assumed to be independent and

identically distributed (iid), is:

:Zz:zsz@g@i):Z;::zzog Z;:::: Li; (T, A, Ry, H;, F)

This formula is very similar to the formulation of the GHOST model (Crotty et al. 2019) and
the PhyML-multi (Boussau et al. 2009). The GHOST model allows for mixtures of branch
lengths on a single topology and differs only insofar as the final sum here is across the m tree
topologies and their associated branch lengths, versus the m sets of branch lengths on a single
topology in the GHOST model. The PhyML-multi model assumes the same probability across
all the trees, whereas the MAST model generalizes this and allows different probabilities by

introducing the tree weight (w;) parameters.
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In the implementation of the MAST model we describe here we assume that we know the
topologies of all of the m trees ahead of time, for example, the set of gene tree topologies
observed among the genomes, or the set of possible trees that should appear under the MSC
model. We then estimate the relative weights (i.e. proportions) of each topology, optimize
the branch lengths of each topology, the parameters of the evolutionary model, and the
nucleotide or amino-acid frequencies for each tree. We consider extensions of the model

when the tree topologies are not given in the Discussion.

Linked and unlinked MAST submodels

In standard phylogenetic analyses we estimate a single tree with an associated set of branch
lengths, along with the parameters of the substitution model, the base or amino acid
frequencies, and the rate heterogeneity across sites (RHAS) model. In the most general MAST
model introduced above (submodel 1 in Figure 2), the tree, the branch lengths of that tree,
the substitution model, the base or amino acid frequencies, and the RHAS model can all vary
in each class, and the weight of that class pertains to the full set of free parameters associated
with that class. We say that all parameters are unlinked across classes in this model. We also
allow for five more-restrictive models in which the parameters of the substitution models,
the vectors of base or amino acid frequencies, or the RHAS model can be linked across all m
classes of trees. The most restricted model (submodel 6 in Figure 2) links the parameters of
all three of these components of the model across all m classes of trees. In this model, the
estimated weights therefore pertain only to the trees and their branch lengths in each of the
m classes, because these are the only parameters allowed to differ among classes. This
framework allows for the comparison of models with likelihood ratio tests or other

information criteria (Burnham and Anderson 2002).

Model parameter estimation for fixed topologies

Given a set of fixed topologies, Ty, -:+, T,y,, the challenge is to optimize all of the parameters
without getting stuck in local optima. We employ both the expectation-maximization (EM)
algorithm (Dempster et al. 1977) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm (Fletcher 2013) to estimate the MAST model parameters. Taking advantage of the
existing parameter optimization algorithms implemented in IQ-TREE, our workflow (Figure 3)
operates as follows. To begin, for class j, the substitution model R; and the nucleotide or

amino-acid frequencies F; are initialized as a Jukes-Cantor (JC) model (i.e. R\] = 1 and uniform
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frequencies F;), and the branch lengths A; are initialized as the maximum parsimony (Fitch
1971) branch lengths of the tree T;. To obtain some sensible initial values of the tree weights,
we first compute the parsimony scores for each tree topology along all the sites. For each of
the sites with different parsimony scores between the tree topologies, we then check which
tree topology has the minimum parsimony score and assign the site to that tree. The tree
weights are then initialized according to the proportion of these sites assigned to each of the
trees. If all sites have the same parsimony scores across all the trees, then the tree weights

are initialized to be equal.

Having established the starting values for all the parameters in the model, we then optimize
them. The optimization of each class of model parameters is done sequentially. Figure 3
summarizes the workflow of the optimization. Our optimization workflow includes an outer
loop, a middle loop, and an inner loop of iterations. The inner loop optimizes the substitution
model, nucleotide frequencies, and branch length of the trees; the middle loop optimizes the
rate heterogeneity model; the outer loop optimizes the tree weights. This optimisation
continues to iterate until the resulting log-likelihood value converges, where convergence is
defined as the increment of the log-likelihood value in the current iteration falling below some
threshold € (which we set to 0.0001). To optimize the unlinked parameters of each tree in the
mixture model, we use an EM algorithm similar to that used in the GHOST model (Crotty et

al. 2019).

In detail, our calculations are as follows. Define p; ; as the posterior probability of site D;

evolving under a tree T;. The value of p; ; is computed by the following equation:

D = wiLy(T;, 4, Ry, Hy, Fy)
T
Ty UiwLy (T, A, Ry, Hj, )

In every iteration, by fixing the posterior probabilities p; ;, we optimize the tree weights, the
branch lengths, the unlinked substitution rate models, and the unlinked rate heterogeneity

models of all trees one-by-one to maximize the expected likelihood value. The tree weights
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264  are then updated by averaging the probabilities over all the N sites. That is, the new weight

265 of class j is the mean posterior probability of each site belonging to class j:

(2)

MAST submodel 1
Substitution rate: unlinked
DNAJ/AA frequencies: unlinked
RHAS: unlinked
TMIX{GTR+FO+G,GTR+FO+G}+T

|
v !

MAST submodel 2 MAST submodel 3
Substitution rate: unlinked Substitution rate: unlinked
DNA/AA frequencies: unlinked DNA/AA frequencies: linked

RHAS: linked RHAS: unlinked
TMIX{GTR+FO,GTR+FO}+G+T TMIX{GTR+F+G,GTR+F+G}+T
A4 \i
MAST submodel 4 MAST submodel 5
Substitution rate: unlinked Substitution rate: linked
DNA/AA frequencies: linked DNA/AA frequencies: linked
RHAS: linked RHAS: unlinked
TMIX{GTR+FGTR+F}+G+T GTR+F+TMIX{G,G}+T

!

MAST submodel 6
Substitution rate: linked
DNAJ/AA frequencies: linked
RHAS: linked
GTR+F+G+T

266

267 Figure 2: A hierarchy of six MAST submodels currently implemented in IQ-TREE. The term “unlinked” means the
268 parameters can differ across mixture classes, while “linked” means the parameters are restricted to be equal
269 across all classes. The last line in each box shows the name of the model that can be used directly as input in 1Q-
270 TREE via -m option, assuming two classes with a GTR substitution model and Gamma RHAS model for each class.
271 The arrows indicate the nestedness between the submodels; for example, submodel 4 is nested within both
272 submodels 2 and 3, while submodel 6 is nested within both submodels 4 and 5. Note that two submodels are
273 missing (i.e. substitution rate: linked; DNA/AA frequencies: unlinked; RHAS: linked/unlinked) due to a non-trivial

274  implementation.
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g

Initialize parameters J
Yes
Outer loop
No. converge?
’ Optimize tree weight (EM) ]
A
Middle loop
Inner loop Yes
A/
) Compute posterior probabilities | N Converge?
along sites
Optimize the substitution model
and frequencies (EM or BFGS)
Optimize branch lengths of all trees Optimize the rate heterogeneity
(EM or BFGS) model (EM or BFGS)
_Nane I

Figure 3: Optimization flow chart for the MAST model in IQ-TREE. The optimization workflow includes an outer
loop, a middle loop, and an inner loop of iterations. The inner loop optimizes the substitution model, nucleotide
frequencies, and branch length of the trees; the middle loop optimizes the rate heterogeneity model; the outer
loop optimizes the tree weights. The EM algorithm is used to optimize the individual unlinked parameters of
each tree and the BFGS algorithm is used to optimize the linked parameters. The iterations continue until the

likelihood value converges.

For the linked models (submodels 2-6 in Figure 2) the EM algorithm cannot be applied to the
optimisation of the linked parameters shared between the classes. Thus, we optimize the
parameters of the linked substitution rate model R, the linked nucleotide or amino acid
frequencies F, and the linked rate heterogeneity model H using the BFGS algorithm in 1Q-
TREE.

Simulations

Having implemented the MAST model in IQ-TREE, we next used simulated data to test the

performance of the MAST model under a wide range of scenarios. The first and second
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simulation experiments test the accuracy of the unlinked and linked MAST models when the
true model is specified. We also compared the performance between the MAST model and
the PhyML-multi model when all trees have unlinked parameters. The third simulation
experiment simulates data with varying levels of introgression to compare the performance
of standard (i.e. single-tree) concatenation methods to the performance of the MAST model.
The fourth and fifth simulation experiments examine the performance of the MAST model
when an incorrect model is specified, by applying an unlinked and linked MAST model with
different numbers of trees to an alignment simulated under a single tree. The sixth simulation
experiment evaluates the performance of the MAST model when all possible tree topologies

are provided for the input alignment.

Simulations 1 & 2: Parameter estimation under the true model for unlinked and

linked MAST model (submodel 1 & submodel 6)

These simulations are designed to ask whether our implementation of the MAST model in 1Q-
TREE is capable of estimating accurate tree weights, branch lengths, and other model
parameters when the model used for inference matches the model used for simulation. We
simulated alignments under the completely unlinked MAST model (submodel 1 in Figure 2;
simulation 1) and the completely linked MAST model (submodel 6 in Figure 2; simulation 2),
and provided IQ-TREE with the set of true tree topologies from the mixture, as well as the
true model of molecular evolution (e.g. GTR+G), and the correct MAST model (i.e. submodel
1 or 6). We then measured the accuracy of our implementation by recording the estimated
tree weights, branch lengths, substitution model parameters, and nucleotide frequencies,

and comparing them to the values used to simulate the data.

We simulated alignments from mixtures of m of trees with different numbers (t) of taxa,
where m € {1,2,3,5,10} and t € {6,7,10,20}. We performed 100 replicate simulations for
every combination of m and t, for a total of 2000 simulated datasets per experiment.

Different GTR model R, gamma rate H, and set of nucleotide frequencies F were simulated
over the trees in the first simulation experiment, while the same R, H, and F were shared
among the trees in the second simulation experiment. The alignments were then simulated

according to the tree, the GTR model, and the gamma rate using AliSim (Ly-Trong et al. 2022).
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Each simulated dataset contained 100k bases, regardless of the number of trees m, with
different proportions of the lengths of each of the m alignments. For clarity, details of how

the model parameters were chosen are described in the supplementary material.

To assess the accuracy of the parameter estimates, we calculated the root-mean-squared
error (RMSE) of each estimated parameter when compared to its value in the simulation. For
each dataset, we compared the statistical fit of the MAST model to that of a standard single-
tree model by comparing the BIC value (BIC) of the MAST model to the BIC value(BICO0) of a

standard single-tree model.

We did additional simulations to compare the performance of MAST to that of PhyML-multi,
and to assess the accuracy of MAST on smaller alignments. To do this we repeated Simulation
1 with alignments of of 5K, 10K, and 50K bases, and analyzed them with both PhyML-multi
and MAST, both with unlinked parameters (i.e. each tree has its own GTR and +G models), as
above. We evaluated both the multitree mixture and the HMM models of PhyML-multi. To
assess the accuracy of the PhyML-multi HMM models (which do not compute tree weights),
we calculated the root-mean-squared error between the proportion of sites assigned to each

topology and the actual proportion of sites simulated from each topology.

Simulation 3: Introgression

To examine the performance of the MAST model in a biologically motivated setting, we
simulated alignments on 4-taxon trees with different levels of introgression and then used
both a single-tree model and the linked MAST model (i.e. submodel 6) to analyse them. Each
dataset was simulated from a rooted 4-taxon tree shown in Supplementary Figure 8A. Using
this tree, we simulated 1500 gene trees with introgression rate r from lineage 2 to lineage 4
(Supplementary Figure 8A) wusing the program ms (Hudson 2002), where r €
{0.0,0.1,0.2,...,0.9,1.0} . When the introgression rate is zero, the largest fraction of the
gene trees will match the species tree Tz and the frequency of the two minor trees, Tg; and
Te3, are expected to be equal. As the introgression rate increases, the frequency of the tree
matching the introgression history, Te>, will increase, and the frequency of the other two trees
will decrease. The MAST model should reflect these patterns in the tree weights calculated
from a concatenated alignment of all 1500 genes, without the need to know the boundaries

between the individual loci. The benefit of this approach when applied to an empirical dataset
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is that it overcomes concerns about ‘concatalesence’, in which unaccounted-for
recombination within loci can bias estimates of gene tree frequency calculated by building
trees for each locus (Gatesy and Springer 2014). Since ms uses a coalescent model, we
rescaled the branch lengths from coalescent units to units appropriate for simulating
alignments (i.e. substitutions per site) by multiplying all branch lengths by 0.002, selected to
result in branch lengths similar to those recovered from our analyses of empirical dataset 4
(see below). For each simulated gene tree, we used AliSim (Ly-Trong et al. 2022) to simulate
a 1000bp alignment using the GTR+G model with parameters equal to those reported by IQ-
Tree for our analysis of empirical dataset 4 (see below). Concatenating all the single-locus
alignments resulted in an alignment of 1,500,000 bp. We performed 100 replicate simulations
at every r, for a total of 1100 simulated datasets. We then applied the linked MAST model
(submodel 6 in Figure 2) to these data, with the input trees comprised of all three possible

unrooted trees of the four taxa in Supplementary Figure 8B.

Simulation 4 & 5: Parameter estimation under misspecified models (submodel 1

& submodel 6)

We next sought to examine the performance of the MAST model when the underlying data
were simulated under a single tree T, but the data were analysed under a MAST model with
m > 1i.e.amisspecified model with more than one tree. To do this, we simulated data under
a single tree topology, and then applied MAST submodel 1 (simulation 4) and MAST submodel
6 (simulation 5) where the m trees included the true tree T and also m — 1 additional tree
topologies that differed from T. This simulation is designed to examine the case where a
researcher includes the primary tree in a MAST model (e.g. a tree derived from a single-tree
concatenated ML analysis, or an MSC analysis) but additionally includes some hypothesized

trees in the model that have no support in the underlying data.

In simulation 4, we simulated alignments of 5K, 10K, and 50K bases, on a single tree with
different numbers (t) of taxa, where t € {6,7,10,20}. We performed 100 replicate simulations
at every length and every t, resulting 300 simulated datasets for each t. To simulate each of
the additional m — 1 tree topologies in each MAST model, we sequentially performed k
random subtree pruning and regrafting (SPR) moves on the true tree T. The MAST submodel
1 was then applied by inputting the actual tree topology as well as the other m — 1 different

tree topologies that all are k-SPR moves from that tree, where m € {2,3,5,10} and k €
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{1,2,3}. Note that there are at most two SPR moves between any two 6-tip trees. Analysing
each of the 300 simulated datasets for 6-tip trees under 8 combinations of m and k, and each
of a total of 900 simulated datasets for 7/10/20-tip trees under 12 combinations of m and k,

gives a total of 13200 analyses.

To understand the performance of the MAST model for submodel 6 under similar simulation
conditions (simulation 5), we simulated data with the same settings as above, except that we

used alignments of 100K bases.

To evaluate the performance, among the 100 replicates, we recorded how many times the
true topology had the maximum tree weight. We also compared the BIC value (BIC) reported
by the MAST model with the BIC value (BIC0) under the true model, i.e. when the dataset

was analysed under the single true tree T.

Simulation 6: Parameter estimation when all tree topologies are provided

We next evaluated the performance of the MAST model when all possible tree topologies are
provided by the user, but the data were simulated on a smaller number of trees. To do this,
we simulated data sets under two random equally weighted 5-tip trees with MAST submodel
6. We then applied the same MAST submodel, but with all 15 potential topologies of five taxa,
to the data sets. This simulation is designed to examine the case where a researcher includes
all possible hypothesized trees in the model, but that many of them in fact have no support
in the underlying data. Each simulated dataset comprised 100k base pairs, and 100 replicate
simulations were performed for each simulation setting. In order to further understand how
BIC value of a MAST model depends on the input trees, after the above simulation we first fit
a MAST submodel 6 with the two true trees, and we then fit a series of MAST submodel 6
with additional trees added sequentially based on the descending order of tree weights from

the previous analysis involving all 15 trees. We recorded the BIC value of every model.

Applications to empirical data

In addition to testing the MAST model on simulated data, we also applied it to four empirical
datasets (Table 1). All of these datasets are subsets of a single dataset comprising 1730 single-
gene alignments from 26 primates (Vanderpool et al. 2020). The first two empirical datasets

we used are simple four-taxon datasets, in which it is trivial to supply the MAST model with
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all three possible unrooted trees, and for which the expected tree weights have been
estimated in previous research. In the other two empirical experiments, a standard single-
tree model was first used to infer a topology for every gene in the dataset. Then, the set (or
subset) of most commonly inferred gene trees were used as the set of input topologies for
the MAST model when analysing a concatenated alignment of all the single-gene alignments.
In order to find out whether the MAST model has a better fit to the data compared with the
standard single-tree model, we analysed multiple different submodels of MAST (Figure 2). We
compared the lowest BIC values from these models to the BIC value calculated using the

standard single-tree model on the same alignments.

The first dataset (“A”) includes the well-studied four-taxon grouping of human, chimpanzee,
gorilla, and orangutan. Previous studies have shown that all three possible unrooted gene
trees of four taxa (Figure 6; orangutan is considered an outgroup to the other three species)
are recovered from these data. These studies have shown that the accepted species tree,
uniting humans and chimps, is the most frequent gene tree, with the two minor trees
occurring in very similar frequencies, consistent with the action of only ILS during the
divergence of these species (Ebersberger et al. 2007); however, different studies have
reported different frequencies for the three possible gene trees. For example, an early study
that analysed 11945 gene trees (Ebersberger et al. 2007) and a more recent study that
analysed 1730 gene trees (Vanderpool et al. 2020) found that 77% and 62% of gene trees
respectively grouped humans and chimps, 12% and 20% respectively grouped chimps and
gorillas, and 11% and 18% respectively grouped humans and gorillas. The discrepancies in
these numbers reflect both the different data types and data quality available to each study,
as well as differences in the methods used to reconstruct gene trees. However, both studies
made the single-tree assumption for each individual gene locus; recombination within each
locus violates this assumption. The MAST model avoids this assumption by using mixtures of
trees. Although the tree weights reported by MAST pertain to the equations given above, and
are not designed to replace estimates of gene tree frequencies, in practice we expect both
values to be similar on large empirical datasets, because both values will usually be heavily
influenced by the proportion of sites in the genome that are associated with each of the trees
of interest. Since the MAST model will be unaffected by concatalescence, we expect that
estimates of tree weights from the MAST model to be more accurate than estimates of gene
tree frequencies from previous studies where concatalescence has affected gene-tree

frequency estimates. Regardless, we still expect the MAST model to report the highest weight
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for the tree grouping humans and chimps, and lower but approximately equal weights for the

two minor trees.

The second empirical dataset (“B”) includes three species from the genus Macaca (M.
fascicularis, M. mulatta, M. nemestrina) and the mandrill (Colobus angolensis palliatus), a
clade in which a previous analysis found substantial evidence for introgression between M.
nemestrina and M. fascicularis (Vanderpool et al. 2020). Thus, for this dataset we expect the
MAST model to recover the highest weight for the accepted species tree uniting M.
fascicularis and M. mulatta (T, in Figure 7), the second highest weight for the minor tree
affected most by introgression (uniting M. nemestrina and M. fascicularis), and the lowest

weight for the minor tree uniting M. mulatta and M. nemestrina.

Empirical # of

Species Total length
datasets genes
A Homo sapiens, Pan troglodytes, Gorilla gorilla, 1,595 1,618,506

Pongo abelii

B Macaca fascicularis, Macaca mulatta, Macaca 1,599 1,629,163

nemestrina, Colobus angolensis palliatus

C Homo sapiens, Pan troglodytes, Gorilla gorilla, 1,556 1,576,852
Macaca fascicularis, Macaca mulatta, Macaca

nemestrina

D Callithrix jacchus, Aotus nancymaae, Saimiri 1,557 1,610,755
boliviensis, Cebus capucinus imitator, Macaca

mulatta

Table 1: The four empirical datasets analysed here

The third empirical dataset (“C”) contains the six species (human, chimp, gorilla, and the three
Macaca species) that represent the ingroups from the first two datasets. Since we have a
priori information which suggests that all three possible rooted trees are possible for each of
these ingroups, we applied a MAST model with 9 trees (Supplementary Figure 9), where all

three resolutions of each ingroup clade are paired with all three resolutions of the other
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ingroup clade. In principle, one should be able to draw similar conclusions from these 6-taxon
datasets as one could from the two independent analyses of the four-taxon datasets by

summing the relevant tree weights (see below).

The fourth empirical dataset (“D”) focuses on the relationships among four Platyrrhine (“New
World Monkey”) species: Callithrix jacchus, Aotus nancymaae, Saimiri boliviensis, and Cebus
capucinus imitator, including Maccaca mulatta as an outgroup. There is disagreement about
the species tree among the four focal taxa. Gene-tree-based analyses (Vanderpool et al. 2020)
support a caterpillar tree in which Aotus is the sister group to a clade uniting Saimiri and Cebus
(T, in Supplementary Figure 10). However, concatenated ML analysis fails to recover this
tree, instead returning a symmetrical tree likely caused by a known inconsistency in ML
methods when the underlying gene trees are highly discordant (Kubatko and Degnan 2007;
Roch and Steel 2015; Mendes and Hahn 2018). The MAST model should in principle avoid
statistical inconsistencies associated with the single-tree assumption because it explicitly
accounts for the existence of multiple histories in an alignment. Thus, we sought to test the
performance of the MAST model in this well-studied empirical test case. To do this, we
applied a MAST model that included the three ingroup topologies that were most commonly
found from the gene trees in a previous study (Supplementary Figure 10; (Vanderpool et al.

2020).

We analysed each empirical dataset using the same approach. First, we filtered the original
1730 locus dataset to retain only those loci that were present in all of the selected species,
which resulted in each dataset containing approximately 1600 loci and around 1.6 million
base pairs (Table 1). We analysed each dataset using standard single-tree concatenated ML
analyses (using default settings in IQ-TREE2), as well as the six multitree mixture models
described by the six submodels of the MAST model in Figure 2, using the trees topologies
described above as the input topologies for the MAST model. Finally, to facilitate comparisons
with other quantities of interest, we calculated the following quantities for each of the input
topologies: (1) the number of single-locus trees that matching each topology, where each
single locus tree was estimated with default parameters in IQ-TREE2; and (2) the total number
of base pairs assigned to each topology (summing across single-locus trees), (3) the total
number of variable sites assigned to each topology (summing across single-locus trees), and
(4) the total number of parsimony informative sites assigned to each topology (summing

across single-locus trees).
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Results

Simulations 1-3: The MAST model performs well when the model is correctly

specified, with or without introgression.

Our extensive simulations demonstrate that the unlinked (Supplementary Figure 1,
Supplementary Figure 2) and linked (Supplementary Figure 3) MAST models perform well
when the model used for analysis matches that used to simulate the data set for the data sets
with lengths 5K, 10K, 50K, (for the unlinked MAST model) and length 100K (for both the
unlinked and the linked MAST models). The error associated with all unlinked and linked
models increases as the number of trees in the mixture increases, as the number of tips in
the tree decreases, and as the sequence length decreases. This is expected, because in our
simulations we held the distribution of branch lengths constant. Thus, the amount of
information available to estimate each parameter decreases (and thus the expected error
increases) as the number of trees increases, as the number of tips in each tree decreases, and
as the sequence length decreases. The key parameters of interest for the MAST models are
the tree weights (top panel, Supplementary Figure 1 and Supplementary Figure 3;
Supplementary Figure 2A, B, C). In the best-case scenario (comprised of 2 trees, each of which
contains 20 taxa, and an alignment of 100K bases) the RMSE of the tree weights was very low,
at around 0.001 for both the unlinked and linked models, while in the worst-case scenario
(comprised of 10 trees, each of which contains 6 taxa, and alignments of 5K bases (for
unlinked model) and 100K bases (for linked model) sites) the error was much higher, at
around 0.05 for both the unlinked and linked models, although this is still acceptably low in

absolute terms.
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Performance of different methods on 5K-length data sets
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Figure 4: This figure illustrates the accuracy of tree weight estimates for the MAST model when the proportion
of sites between the trees for the PhyML-multi software when the true topologies are provided, and the
software was applied to 5K-length data sets simulated under the MAST model with unlinked parameters. Each
tree has its own set of branch lengths, substitution matrices, nucleotide frequencies, and gamma parameters.
The data sets were simulated with varying numbers of topologies (2, 3, 5, and 10) and numbers of sequences (6,
7, 10, and 20) in the alignhments. Among the input trees, the first tree differed from the other trees by 1, 2, or 3
SPR moves. The root-mean-squared error (RMSE) distributions for these estimations are shown for (A) our MAST
model, (B) PhyML-multi’s mixture model, (C) PhyML-multi’s HMM model with the Viterbi algorithm, and (D)
PhyML-multi’'s HMM model with the Forward-backward algorithm. Note that PhyML-multi encountered errors
when processing the 10K and 50K-length simulated data sets. On average, the RMSE reported by PhyML-multi,
whether through the mixture or HMM model, exceed 0.1. In contrast, the RMSE for our MAST model remain
below 0.1.

The simulation results (Figure 4) comparing the performance between the MAST model and
the PhyML-multi model illustrate that the MAST model performs better than the PhyML-multi
model when the unlinked model used for analysis matches that used to simulate the data
sets. On average, PhyML-multi reports RMSE exceeding 0.1, regardless of whether it uses the
mixture model, HMM with the Viterbi algorithm, or HMM with the Forward-backward
algorithm. In contrast, on average, our MAST model consistently reports RMSE well below

0.1. We were unable to compute model parameters with PhyML-multi on alignments longer
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than 5K bases, because it reported undefined negative values (i.e. -nan) for the log-likelihoods

of the models on alignments of 10K bases or longer.

The MAST model fit the data much better than the mis-specified single-tree model for both
the unlinked and linked models (bottom panel, Supplementary Figure 1 and Supplementary
Figure 3; Supplementary Figure 2D, E, F); the improvement in the fit of the true model
increases (i.e. the difference in BIC becomes more negative) as the number of trees, the
number of tips in each tree, and sequence length increases. This is expected because a single-

tree model becomes an increasingly poor fit to data simulated under more trees.

We also simulated scenarios with introgression, such that the minor trees are not expected
to be equal in frequency. In these simulations Tg; is the species tree (Supplementary Figure 8)
and increasing introgression makes topology T increasingly frequent. When the
introgression rate was between 0 and 0.6, Tg; is the optimal tree in the single-tree model
(Figure 5B) and the tree with the highest weight in the MAST model (Figure 5C). When the
introgression rate is above 0.6, in most datasets the single-tree model and the MAST model
reported Tg; as the optimal tree and the topology with the highest tree weight, respectively.
Importantly, estimated weights from the MAST model closely match the proportion of sites
simulated under each tree for different introgression rates (compare Figure 5A to Figure 5C).
All these results are as expected from the simulations that were carried out (i.e. the topology
matching the introgressed history does in fact become the most common). The MAST model
is a much better fit when the tree topologies Te1, Te2 are more equal in frequency, though it
is a better fit across all of parameter space (because there is always ILS, even when there is

no introgression, thus multiple trees are always a better fit to the data; Figure 5D).
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Figure 5: This figure compares the performance of the MAST model with the standard single-tree model using
datasets simulated across introgression rates r € {0.0,0.1,...,1.0}. Specifically, it displays: (A) The actual
proportion of sites simulated under each tree for varying introgression rates. Mean values are represented by
coloured lines, while the grey regions indicate the standard deviation across the 100 datasets for each

introgression rate; (B) Results from fitting the concatenated alignment to a single-tree model. At high
introgression rates, the most probable tree topology shifts to Te2; (C) Tree weights estimated by the linked MAST

model; (D) BIC - BICO: the difference in BIC values between the linked MAST model (BIC) and the single-tree
model (BICO). A more negative difference between the BIC values of the MAST and single-tree models indicates

a stronger preference for the MAST model over the standard single-tree model.

Simulation 4-6: The MAST model is robust to the inclusion of trees with no

support in the underlying data
To test the robustness of the MAST model to the inclusion of incorrect additional topologies,
we simulated data under a single topology but fit the data under a MAST submodel 1

(simulation 4) and MAST submodel 6 (simulation 5) with up to 10 topologies. The results show
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that with both MAST submodel 1 (Supplementary Figure 4A, B, C) and MAST submodel 6
(Supplementary Figure 5A), the true tree (which was always one of the trees included in the
MAST model) had the highest weight among all of the trees included in the MAST model in
the majority of simulations regardless of the simulation conditions when the sequences are

long.

These simulations reveal some of the fundamental limitations of the MAST model to
distinguish among very similar trees. When incorrect trees included in the MAST model were
sufficiently different from the true tree (i.e. when the SPR distance of each incorrect tree in
the MAST model was 2 or 3 SPR moves from the true tree), the percentage of simulations for
which the true tree had the highest weight remained relatively high (i.e. over 80%) regardless
of the other simulation conditions. However, when the incorrect trees included in the MAST
model were close to the true tree (i.e. when they differed from the true tree by a single SPR
move), in the worst case, the percentage of simulations for which the true tree had the
highest weight dropped to, for submodel 1, 31% for 5K sequence length; 36% for 10K; and
51% for 50K, and, for submodel 6, 67% for 100K (Supplementary Figure 4A, B, C;
Supplementary Figure 5A). This general trend is expected, because more similar trees will
share more branches in common, making it more difficult for any model to distinguish
between them. These results quantify some of the analytical limits of multitree mixture
models as currently implemented. On the other hand, importantly, the inclusion of incorrect
trees in the MAST model always led to large increases in the BIC score, such that researchers
using this method to select the best model would reject the additional trees, and instead
prefer the results from a single-tree model (Supplementary Figure 4D, E, F; Supplementary

Figure 5B).

To evaluate the performance of the MAST submodel 6 when all the possible trees are
included, we applied it with all 15 potential topologies to 100K-bp data sets simulated using
two equally weighted 5-tip trees. On average, the MAST model reported that the weights of
the true trees were 21.3% and 22.8%, while the weights of the other trees were at most 16.8
(Supplementary Figure 6). More precisely, in 46%, 61%, and 73% of the simulations the two
true trees were among the top 2, 3, and 4 trees with the highest tree weights. Sequentially
adding trees to the MAST model shows that there is a big improvement (i.e. decrease) in the
BIC value from the single-tree model to the MAST model with two true trees (Supplementary

Figure 7). After that, sequentially adding incorrect trees to the MAST model caused BIC values
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to worsen (i.e. increase; Supplementary Figure 7). In 98% of the simulations, the MAST model

with the two true trees was the optimal model according to the BIC value.

Empirical dataset A: Incomplete lineage sorting in the Great Apes

Figure 6 shows the three possible tree topologies T4 , T42 , T43 for empirical dataset A, which
is made up of four Great Apes (Table 1). We applied multiple methods to these alignments in
order to estimate the frequency of the three tree topologies. Single-tree analyses applied to
each gene separately reported 19.8%, 20.1%, and 60.1% of the genes with topologies T,; ,
T4, , Tys , respectively (Figure 6; Supplementary Table 1). All MAST submodels reported
similar tree weights of 17.9%, 17.4%, and 64.7% (Table 2). All methods find that the topology
uniting human and chimpanzee has the highest weight, with the two minor topologies having

approximately equal weights; these results are as expected from all previous analyses.

The proportions of different topologies estimated by MAST are closer to the proportions of
individual nucleotide sites from the genes supporting the various topologies than the
percentage of gene trees (Supplementary Table 1). This may be because the weights of the
MAST model more closely approximate the proportion of the sites in the alignment (instead
of the percentage of loci) supporting different topologies. The BIC score from MAST submodel
2 was the best (Table 2), indicating that the MAST model with unlinked substitution model,
unlinked frequencies and linked RHAS was the best model among different MAST submodels
for this dataset. Regardless, the BIC values of all MAST submodels were much lower than the
BIC value reported by the single-tree model (Table 2), showing that a multitree-mixture model
had a much better fit to the data, and demonstrating the superiority of a multitree mixture
model over a single-tree model when incomplete lineage sorting causes gene tree

discordance.
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g Gorilla gorilla Pan troglodytes
Pongo abelii

Pongo abelii Pongo abelii

TAl TAZ TAS

Best-fit MAST model weights: 17.9% 17.4% 64.7%
Gene tree frequencies: 19.8% 20.1% 60.1%
Parsimony-informative sites: 17.7% 13.9% 68.4%

Figure 6: The three topologies for empirical dataset A. T,5 is the commonly accepted species tree.

Macaca mulatta Macaca fascicularis Macaca nemestrina

<|7 Macaca fascicularis ‘7 Macaca mulatta Macaca fascicularis
— Macaca nemestrina

Macaca nemestrina Macaca mulatta

Colobus angolensis palliatus - Colobus angolensis palliatus

Colobus s palliatus
T, Tg, Tp3
Best-fit MAST model weights: 17.3% 14.2% 68.5%
Gene tree frequencies: 31.2% 18.6% 50.2%
Parsimony-informative sites: 17.6% 14.5% 67.9%

Figure 7: The three topologies for empirical dataset B. Ty4 is the commonly accepted species tree.

Empirical dataset B: Introgression in macaques

Figure 7 shows the three possible tree topologies Ty, , Ty, , Tz; for empirical dataset B, which
is made up of multiple macaque species. Analyses of the individual gene trees using single-
tree models for each locus revealed a large asymmetry in minor topologies (31.2%, 18.6%,
and 50.2% for Tz, , Ty, , Ty respectively; Supplementary Table 2). However, both the
proportions of parsimony-informative sites (17.6%, 14.5%, and 67.9% for Ty, , Tp, , Tgs
respectively; Supplementary Table 2) and the weights from the different MAST submodels (all
around 17.3%, 14.2%, 68.6% for Ty, , Ty, , Tz respectively; Figure 7; Table 3) showed much
more similar proportions and weights for the minor trees. Although the minor trees are still
substantially different in frequency using the MAST analysis—consistent with introgression in
this clade—the difference between them is much lower. Consistent with empirical dataset A,
this result indicates that the gene tree frequencies are different from the frequencies

reported by the MAST analysis, as the gene tree frequencies represent the proportions of
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genes supporting various topologies while the MAST tree weights are more closely related to

the proportions of sites from the genes supporting different topologies.

Model Sub. matrix Fregs. RHAS Taz Taz Tas BIC

single-tree 100.00% 4,978,549.51

MAST 1 unlinked unlinked unlinked 17.86%  17.40% 64.74% 4,975,971.28

MAST 2 unlinked unlinked linked 17.85%  17.44% 64.70% 4,975,941.59
MAST 3 unlinked linked unlinked 17.84%  17.48% 64.68% 4,978,121.95
MAST 4 unlinked linked linked 17.84%  17.48% 64.68% 4,978,097.70
MAST 5 linked linked unlinked 17.84%  17.48% 64.68% 4,977,961.91
MAST 6 linked linked linked 17.84%  17.48% 64.68% 4,977,938.91

Table 2: Results of the empirical dataset A when applying IQ-Tree with a standard single-tree model and different
MAST submodels with GTR+G substitution model. There are six submodels of MAST, representing different
combinations of linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd column), and
rate heterogeneity across sites (4th column). The 5th-7th columns are the weights of the trees Ty, , Ty, , Tys-
The 8th column lists the BIC values of different models. The bolded figure is the best BIC value which is from the

MAST submodel 2.

Model Sub. matrix Fregs. RHAS Ts1 Ts2 Ts3 BIC

single-tree 100.00% 4,906,941.36

MAST 1 unlinked unlinked unlinked 17.29% 14.15% 68.55% 4,905,832.06

MAST 2 unlinked unlinked linked 17.29% 14.19% 68.52% 4,905,808.79
MAST 3 unlinked linked unlinked 17.27% 14.24% 68.49% 4,906,632.17
MAST 4 unlinked linked linked 17.27% 14.25% 68.48% 4,906,605.01
MAST 5 linked linked unlinked 17.27% 14.24% 68.50% 4,906,651.67
MAST 6 linked linked linked 17.27% 14.23% 68.50% 4,906,633.71

Table 3: Results of the empirical dataset B when applying IQ-TREE with a standard single-tree model and
different MAST submodels with GTR+G substitution model. There are six submodels of MAST, representing
different combinations of linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd
column), and rate heterogeneity across sites (4th column). The 5th-7th columns are the weights of the trees Tg,
, Tz, , Tg3. The 8th column lists the BIC values of different models. The bolded figure is the best BIC value, which

is MAST submodel 2.
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Model T Te2 Tes Tes Tes Tcs Tcr Tes Teo BIC

single-
100.0% | 5,187,194.8
tree

MAST1]| 0.4% 7.0% 8.4% 7.7% 2.9% 183% 13.0% 8.7% 33.6% | 5,183,982.5

MAST 2| 0.4% 10.4% 8.2% 2.1% 2.5% 14.0% 13.1% 8.4% 41.1% | 5,183,988.4

MAST3 | 0.2% 8.0% 5.2% 1.1% 0.2% 17.4% 15.2% 2.4% 50.4% | 5,186,041.4

MAST4 | 0.2% 0.2% 3.9% 0.6% 0.8% 293% 12.7% 19.8%  32.5% | 5,185,924.7

MAST5 | 0.0% 0.8% 9.8% 1.9% 0.4% 18.2% 17.1% 11.3% 40.4% | 5,186,243.3

MAST6 | 0.0% 0.7% 11.1% 1.9% 1.8% 20.7% 19.3% 8.4% 36.0% | 5,186,194.1

Table 4: Results of the empirical dataset C when applying IQ-Tree with a standard single-tree model and different
MAST submodels with GTR+G substitution model. Six submodels of MAST are for different combinations of
linked or unlinked substitution matrix, nucleotide frequencies, and rate heterogeneity across sites. The 2nd -
10th columns are the estimated tree weights between the topologies Tci, Tez, ..., and Teo for different MAST

submodels. The bolded figure is the best BIC value among different submodels.

Sub.
Model . Freg. RHAS To: To2 Tos BIC
matrix

single-tree - - - 100.0% 6,185,094.0
MAST 1 unlinked unlinked unlinked 40.3% 23.0% 36.8% 6,177,609.0
MAST 2 unlinked unlinked linked 42.4% 28.1% 29.6% 6,177,535.7
MAST 3 unlinked linked unlinked 3.5% 4.7% 91.8% 6,182,942.1
MAST 4 unlinked linked linked 2.1% 81.3% 16.7% 6,182,954.3
MAST 5 linked linked unlinked 42.4% 32.0% 25.6% 6,184,689.7
MAST 6 linked linked linked 42.4% 32.0% 25.5% 6,184,618.7

Table 5: Results of the empirical data D when applying 1Q-Tree with a standard single-tree model and different
MAST submodels with GTR+G substitution model. Six submodels of MAST are for different combinations of
linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd column), and rate
heterogeneity across sites (4th column). The 5th, 6th, and 7th columns are the estimated tree weights between
the topologies Tps, Tpz, and Tps for different MAST submodels, respectively. The bolded figure is the best BIC

value among different submodels.
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Empirical dataset C: Great Apes + Macaques

Supplementary Figure 9 shows nine tree topologies for empirical dataset C. This dataset
combines the ingroup taxa from empirical datasets A and B, allowing us to test the accuracy
of MAST when there are more possible topologies: the nine topologies represent every
combination of the three topologies present in each of empirical datasets A and B. The
frequencies of the nine tree topologies were similar across gene trees and sites in standard
analysis (Supplementary Table 3) as well as largely similar to the results across MAST
submodels (Table 4). MAST submodels 1 and 2 are the two best-fit models to the dataset
according to the BIC values (Table 4)), and both give tree weights that are relatively close to
the corresponding tree weights for the respective analyses in empirical datasets A and B
(Supplementary Tables 4 and 5). However, the results from the simpler submodel 2 (in which
RHAS parameters are linked across classes) are closer to the expected values than those from

submodel 1, which is likely due to the challenges of optimising highly parameterised models.

Empirical dataset D: Overcoming known biases in concatenated maximum

likelihood

As mentioned, maximum likelihood has a known bias toward symmetrical trees (Kubatko and
Degnan 2007) when there is a large amount of underlying discordance and the true species
tree is asymmetrical (i.e. Tpz or Tp2 in Supplementary Figure 10). Indeed, when analyzed under
ML using a single-tree model, data from four Platyrrhine monkeys support a symmetrical tree
(Table 5). In contrast, counts of genes trees and parsimony-informative sites support the
asymmetrical tree Tp; as the species tree (Supplementary Table 6). Similarly, analyses using
the MAST submodels also tended to return Tp; as the topology with the highest weight (Table
5). Among all the models, the MAST submodel 2 had the best BIC value, with reported tree
weights 42.4%, 28.1%, 29.6% for the topologies Tp:, Tp2, Tpz. The tree weights are similar to
the proportions of parsimony-informative sites from the genes that were inferred to support
each of these topologies (i.e. 36.7%, 32.2%, 31.1%; Supplementary Table 6). It is notable that
two MAST models estimated different trees with the highest weights (submodels 3 and 4;
Table 5), though submodel 2 has a much lower BIC value than either of these. Overall, these
results suggest that the MAST model is able to analyse a concatenated alignment using

maximum likelihood, but without the biases that come with the single-tree assumption.

Discussion
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We have introduced the mixtures across sites and trees (MAST) model, which assumes that
sites in a concatenated alighnment may have evolved from a mixture of trees. This flexible
assumption allows the method to be applied to the alignments that include multiple tree
topologies, which is presumably true of almost any large dataset from a recombining genome.
The implementation of the method allows different combinations of linked and unlinked
parameters when estimating the substitution matrix, nucleotide or amino acid frequencies,
and the rate heterogeneity across sites (RHAS) across different trees. This flexibility allows
researchers to have many of the advantages of concatenated analyses—e.g. a large amount
of data and accurate estimate of complex substitution processes—while still incorporating
gene tree heterogeneity, but without the need to make assumptions about the existence and
location of putatively non-recombining loci. As such, the MAST model opens up the
opportunity to study topological discordance in deep time, past the point where information
from small, non-recombining gene tree alignments can be informative about

relationships(Bryant and Hahn 2020).

Our simulations show that parameter estimates using the MAST model are reliable under a
wide range of scenarios. In general, the ability of the MAST model to accurately estimate
parameters depends on the balance between the the amount of information in the data (for
example, the length, depth, and informativeness of the alignment), the number of
parameters being estimated (e.g. the number of trees used in the model, and represented in
the underlying alignment), and scale of the differences between the underlying tree
topologies. Unsurprisingly, the MAST model performs best with long, informative alignments
of many taxa, when the number of true trees is small, and when the differences between the
underlying tree topologies is large. Nevertheless, our simulations show that the MAST model
usually estimates tree weights with acceptably low error rates, even when the simulation
conditions are more challenging, and the model is misspecified. Indeed, we show that by
using standard approaches like the BIC, it is usually possible to identify the true trees that
represent the data, even when these are not known in advance. Of course, these results do
not prove the general identifiability of the model. The identifiability of parameters in complex
models, like mixture models, has been addressed previously (Allman et al. 2012; Rhodes and
Sullivant 2012). Rhodes and Sullivant (2012) gave an upper bound on the number of classes
that ensures the generic identifiability of trees in models with a multi-tree mixture. Their
method was based on the mixtures from different trees, provided that all the topologies share

a certain type of common substructure in which a tripartition A|B| C exists such that the splits
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A|BUC and AU C | B are compatible with all trees. Parameters in the multi-tree mixture
model are generically identifiable provided m < k /! where m is the number of classes, k is
the number of states (i.e. 4 for nucleotides; 20 for amino acids), and the number of taxa in
the partition A and in the partition B are both greater than or equal to j. However, establishing
the identifiability of model parameters when there is no commonality between the trees

remains an open problem (Rhodes and Sullivant 2012).

In order to use the MAST model to perform an analysis, the user must input a set of pre-
specified tree topologies. A rooted three-taxon tree has only three possible topologies, but
the number of topologies grows super-exponentially with the number of tips (Table 3.1 in
(Felsenstein 2003)). This means that it will usually not be feasible to specify all possible
topologies that exist in a moderate-sized dataset; for example, in empirical dataset D we only
studied 3 of 15 possible topologies. This limits the model's applicability. However, there are

instances where researchers may want to focus on a narrower range of topologies of particular

significance. For instance, even in a tree with 100 species, it may be the relationships among
a smaller number of clades that are relevant: if ILS only occurs on one branch of the tree, then
there are stillonly-three relevant alternative topologies, no matter the number of total tips.
In general, we recommend that users specify known alternative hypotheses—or carry out an
exploratory analysis of individual gene trees—in order to choose a manageable set of

topologies as input to the MAST model.

There are multiple known biases when carrying out concatenated analyses under the
“treelikeness” assumption. As mentioned in the Introduction, single-tree concatenated
maximum likelihood is statistically inconsistent in the presence of large amounts of
discordance: it will return the incorrect tree with increasing probability as more data are
added (Kubatko and Degnan 2007). Our analyses of Platyrrhine monkeys suggest that the
MAST model can solve this problem, giving the highest weight to the topology favored by
other (statistically consistent) methods. In addition to inferring the wrong tree topology, the
branch lengths inferred from concatenated analyses are biased in the presence of
discordance (Mendes and Hahn 2016; Ogilvie et al. 2017). Such biases can lead to
misestimation of divergence times when using the entire concatenated alignment. The MAST
model allows researchers to estimate the branch lengths of individual topologies—we
therefore recommend estimating divergence times using branch lengths obtained from the

topology matching the species tree. While these times still represent genic divergence (and
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not species divergence; (Edwards and Beerli 2000)), they will be free of the bias associated

with single-tree concatenation.

The output of our method is a set of weights associated with each input tree topology.
Although the MAST model is not based on a particular biological model of discordance (e.g.
the MSC or MSNC), we expect that the estimated weights should correspond to biologically
relevant features of the data. Both our analyses of simulated and empirical data revealed that
MAST gives the highest weight among all input trees to the tree that occurs most frequently
in the gene trees. This is expected, since the MAST weight will be most heavily influenced by
the proportion of sites that are associated with each input tree. We note, however, that the
highest-weight tree from MAST may not be the species tree (just as the most frequent gene
tree may not correspond to the species tree (Degnan and Rosenberg 2006)). Moreover, the
reported weights in the MAST model are highly correlated with the proportion of
phylogenetically informative sites which support each tree. This correlation is expected
because the likelihood of each site is calculated as the weighted sum of the likelihood of the
site over all the trees (Equation 1) and the overall likelihood value is the product of the
likelihoods over all the sites. This result, together with the accurate estimation of minor tree
weights, means that we can use these estimates to infer introgression from MAST output.
Common tests for introgression are based on the expectation that the two minor trees are
equal in frequency (e.g. the “ABBA-BABA” test; (Green et al. 2010)). One post hoc approach
to inferences of introgression using MAST would be to test for a significant difference in the
weights supporting each of two minority trees. Alternatively, it should be possible to compare
the likelihoods of models that either link or unlink the weights of the minority trees. Greater
support for the unlinked model would indicate that the two trees are not equal in frequency,
and would support an inference of introgression. Such an approach would be of great benefit
to testing forintrogression deeper in time, where individual phylogenetically informative sites
and individual gene trees may not be accurate enough to make strongly supported inferences

about introgression (Vanderpool et al. 2020).

The MAST model is a flexible phylogenetic approach that models situations in which the sites
of an alignment have evolved under multiple bifurcating tree topologies. Each tree has its
own topology, a separate set of branch lengths, a substitution model, a set of nucleotide or
amino-acid frequencies, and a rate heterogeneity model. However, there are still some

limitations to the current implementation. In addition to the future directions mentioned
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above, we would like to extend the MAST model to: (1) Perform a tree topology search for an
input number of trees, thus relaxing the requirement that the user must pre-specify
topologies; (2) Be able to compute the optimal number of trees needed to represent the input
dataset, relaxing the requirement that the user specify the number of trees ahead of time;
and (3) Find the best set of substitution models and RHAS models for each tree separately.
These directions are challenging but will be useful in analysing genome-scale datasets at any

evolutionary timescale.
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