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Abstract 19 

Hundreds or thousands of loci are now routinely used in modern phylogenomic studies. 20 

Concatenation approaches to tree inference assume that there is a single topology for the 21 

entire dataset, but different loci may have different evolutionary histories due to incomplete 22 

lineage sorting, introgression, and/or horizontal gene transfer; even single loci may not be 23 

treelike due to recombination. To overcome this shortcoming, we introduce an 24 

implementation of a multi-tree mixture model that we call MAST. This model extends a prior 25 

implementation by Boussau et al. (2009) by allowing users to estimate the weight of each of 26 

a set of pre-specified bifurcating trees in a single alignment. The MAST model allows each 27 

tree to have its own weight, topology, branch lengths, substitution model, nucleotide or 28 

amino acid frequencies, and model of rate heterogeneity across sites. We implemented the 29 

MAST model in a maximum-likelihood framework in the popular phylogenetic software, IQ-30 

TREE. Simulations show that we can accurately recover the true model parameters, including 31 

branch lengths and tree weights for a given set of tree topologies, under a wide range of 32 

biologically realistic scenarios. We also show that we can use standard statistical inference 33 

approaches to reject a single-tree model when data are simulated under multiple trees (and 34 

vice versa). We applied the MAST model to multiple primate datasets and found that it can 35 

recover the signal of incomplete lineage sorting in the Great Apes, as well as the asymmetry 36 

in minor trees caused by introgression among several macaque species. When applied to a 37 

dataset of four Platyrrhine species for which standard concatenated maximum likelihood and 38 

gene tree approaches disagree, we observe that MAST gives the highest weight (i.e. the 39 

largest proportion of sites) to the tree also supported by gene tree approaches. These results 40 

suggest that the MAST model is able to analyse a concatenated alignment using maximum 41 

likelihood, while avoiding some of the biases that come with assuming there is only a single 42 

tree. We discuss how the MAST model can be extended in the future. 43 

 44 
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Introduction 49 

Molecular phylogenetics aims to infer phylogenetic trees, often from aligned DNA or 50 

amino acid (AA) sequencing data. Many popular phylogenetic tools are designed to infer a 51 

single tree from a multiple sequence alignment, using one of a number of approaches such 52 

as maximum likelihood (e.g. RAxML (Stamatakis 2014), IQ-TREE (Kalyaanamoorthy et al. 53 

2017), PhyML (Guindon et al. 2010)), Bayesian inference (e.g. MrBayes (Ronquist and 54 

Huelsenbeck 2003), BEAST (Bouckaert et al. 2019)), maximum parsimony (e.g. MPBoot 55 

(Hoang et al. 2018), matOptimize (Ye et al. 2022), TNT (Goloboff and Catalano 2016)), or 56 

distance methods (e.g. BioNJ (Gascuel 1997), FastME (Lefort et al. 2015), QuickTree (Howe et 57 

al. 2002), RapidNJ (Simonsen and Pedersen 2011)). The assumption that the data can be 58 

represented as a single tree is appropriate when analysing a single non-recombining locus. 59 

However, there are many situations where this “treelikeness” assumption is violated. For 60 

example, an alignment of a single locus may contain one or more recombination events in its 61 

history, such that different regions of the alignment follow different trees. More generally, it 62 

is well known that different genomic loci may have evolved under different trees due to 63 

biological processes including incomplete lineage sorting (ILS), hybridisation/introgression, 64 

and horizontal gene transfer (Maddison 1997; Nichols 2001). Since modern phylogenomic 65 

datasets now routinely contain hundreds or thousands of loci, a great deal of work has 66 

focused on developing methods and software that relax the treelikeness assumption 67 

(Edwards 2009).  68 

 69 

Most existing approaches that account for complex histories in large datasets focus on 70 

inferring either species trees or species networks, either from a single concatenated 71 

alignment or from many individual locus alignments or individual locus trees. Many of the 72 

most popular approaches for inferring species trees are based on the multi-species coalescent 73 

model (MSC) or are consistent with the MSC, and can infer a species tree while accounting 74 

for ILS among loci (e.g. SNAPP (Bryant et al. 2012), ASTRAL-III (Zhang et al. 2018b), MP-EST 75 

(Liu et al. 2010), SVD-Quartets (Chifman and Kubatko 2015), *BEAST (Heled and Drummond 76 

2010), *BEAST2 (Ogilvie et al. 2017)). More recent work has extended the MSC to account for 77 

a broader range of processes that can cause reticulations in the underlying species tree. These 78 

methods use models referred to as the multi-species network coalescent (or MSNC), and 79 

typically infer a species network that represents both the vertical inheritance and horizontal 80 

exchange of genetic material among evolving lineages (e.g. PhyloNet (Wen et al. 2018), 81 
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PhyloNetworks (Solís-Lemus et al. 2017), SpeciesNetwork (Zhang et al. 2018a), and BPP (Flouri 82 

et al. 2018)). Other methods, like Relate (Speidel et al. 2019) and tsinfer (Kelleher et al. 2019), 83 

infer multiple tree topologies (as an approximation of an ancestral recombination graph) 84 

along genomes, although these methods are designed for within-species analyses. 85 

 86 

In this study, we present a different solution to the problem of accounting for multiple 87 

histories in a single sequence alignment: the mixtures across sites and trees (MAST) model. 88 

The MAST model is an example of a multitree mixture model (Boussau et al. 2009; Allman et 89 

al. 2012), because it uses mixtures of bifurcating trees to represent the multiple histories 90 

present in a dataset. In phylogenetic mixture models, a number of sub-models (known as 91 

classes) are estimated from the data and the likelihood of each site in the alignment is 92 

calculated as the weighted sum of the likelihood for that site under each sub-model (Figure 93 

1). Mixture models have been widely used in phylogenetic inference, including in rate 94 

heterogeneity across site models (Yang 1994), (Kalyaanamoorthy et al. 2017), profile mixture 95 

models (e.g. the CAT model (Lartillot and Philippe 2004)), mixtures of substitution rate 96 

matrices (e.g. the LG4M and LG4X models  (Le et al. 2012)), and mixtures of branch lengths 97 

(e.g. the GHOST model (Crotty et al. 2019)).  98 

 99 

Multitree mixture models are best seen as a generalisation of a standard concatenated 100 

phylogenetic analysis. In a standard concatenated phylogenetic analysis, we assume that the 101 

history of the entire alignment is represented by a single bifurcating phylogenetic tree (i.e. 102 

we make the treelikeness assumption). Multitree mixture models relax this assumption and 103 

represent the history of the alignment with a mixture of any number of tree topologies. The 104 

MAST model is similar to a previous implementation of a multitree mixture model, PhyML-105 

multi (Boussau et al. 2009). Crucially, though, it estimates the weights of the input trees from 106 

the data, while PhyML-multi assumes that all trees have equal weights. In addition, MAST 107 

implements the full range of models available in IQ-TREE2, and gives users flexible options for 108 

how to associate different aspects of the evolutionary models with the different trees.  Given 109 

an alignment and a collection of tree topologies that contain the same tip labels as that 110 

alignment, the MAST model estimates the likelihood of each site under each tree, the 111 

maximum-likelihood weights of each of the input trees, the branch lengths of the trees, and 112 

the other free parameters of the substitution model. In this way, it has many of the 113 

advantages of concatenation approaches, but can accommodate underlying discordance in 114 

the alignment (Bryant and Hahn 2020).  115 
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 116 

The multitree mixture model implemented in MAST differs from species tree and species 117 

network models in a number of ways. As opposed to many MSC and MSNC approaches, the 118 

MAST model does not explicitly model biological processes such as ILS, introgression, or 119 

horizontal gene transfer. Instead, the MAST model is process-agnostic and simply seeks to 120 

calculate the relative weights of tree topologies from the input data. This is a limitation in the 121 

sense that the output of the MAST model does not contain direct estimates of many 122 

evolutionary parameters of interest, such as the number of hybridisation events, their 123 

location on the species tree, or ancestral population sizes. Similarly, just as with standard 124 

single-tree concatenation approaches, the MAST model cannot represent distributions of 125 

branch lengths on a single tree topology, as are expected under the coalescent. On the other 126 

hand, that MAST is process-agnostic may be seen as a strength because the MAST model can 127 

represent a wide range biological processes (e.g. differences in tree topologies caused by the 128 

coalescent or by introgression) or technical errors (such as the accidental inclusion of 129 

paralogs) that can cause the treelikeness assumption to be violated. Moreover, the MAST 130 

model differs from previous approaches because it calculates the likelihood of every site 131 

under every tree in the mixture, while estimating the weights of the input trees from the data. 132 

Although these weights are not equivalent to gene-tree frequencies, they may in practice be 133 

quite similar in value. Similarly to some implicit network models, MAST assumes that sites are 134 

independent of one another. In other words, the order of the sites in the alignment will not 135 

affect the parameter estimates from the MAST model. This means that MAST is agnostic with 136 

respect to the underlying rate at which tree topologies change along an alignment. As with 137 

other aspects of MAST, this makes it a relatively general model, but at the cost of ignoring the 138 

potentially useful information contained in many alignments that arises from the fact that 139 

neighbouring sites often share the same tree topology. Our simulations demonstrate that the 140 

MAST model accurately recovers tree weights even when neighbouring sites are highly 141 

correlated in their association with tree topologies (see below).  142 

 143 

In this paper, we first describe the mathematical basis of the MAST model and its 144 

implementation in IQ-TREE. This implementation allows us to estimate tree weights, model 145 

parameters, and branch lengths for a given set of input tree topologies. We then perform 146 

extensive simulations to evaluate the accuracy and the limitations of the MAST model. Finally, 147 

we demonstrate the use of the MAST model on four empirical datasets of primates to show 148 
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that it recapitulates results from well-studied clades. We also highlight the advantages of 149 

MAST over standard phylogenetic analysis methods when applied to these datasets. 150 

 151 
Figure 1:  An example illustrating the MAST model. Two regions (of length 45 bp and 35 bp) were simulated 152 
under two different topologies, each with ten taxa. The curves at the top show the site likelihoods (on a log 153 
scale) computed under tree 1 (𝐿!), tree 2 (𝐿"), and the MAST model (𝐿#$%&). 𝐿#$%& is calculated as the weighted 154 
sum of 𝐿! and 𝐿", where the weight parameters 𝑤! and 𝑤" will be estimated by the MAST model. This toy 155 
example shows that the 𝐿#$%& curve matches the 𝐿! curve for region 1 and the 𝐿" curve for region 2 with high 156 
site likelihoods, demonstrating the ability of the MAST model to predict the true underlying evolution of this 157 
data. Note that due to the log scale of the y-axis, the log value of LMAST is much closer to the log value of the 158 
higher likelihood value between L1 and L2. 159 
 160 

 161 

Material and Methods 162 

The MAST model 163 

In a standard concatenated maximum likelihood (ML) analysis (such as that performed by IQ-164 

TREE (Nguyen et al. 2015) or RAxML (Stamatakis 2014)), it is assumed that every site in the 165 

concatenated alignment comes from a single phylogenetic tree, which consists of a topology 166 

and branch lengths. In this framework, ML approaches seek to find the model of sequence 167 

evolution, tree topology, and branch lengths that maximize the likelihood of the observed 168 

alignment. The MAST model generalizes this framework by assuming that each site in the 169 

alignment comes from a mixture of 𝑚 trees. Each tree has its own weight, topology and 170 

branch lengths, and the trees may have independent or shared substitution models (e.g. the 171 
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general time reversible (GTR) model (Tavaré 1986)), a set of nucleotide or amino-acid 172 

frequencies, and a rate heterogeneity across sites (RHAS) model (e.g. the +G or +I+G models). 173 

In what follows we first describe the case in which each tree has an independent substitution 174 

model, set of nucleotide or amino acid frequencies, and RHAS model. 175 

 176 

Model description 177 

The MAST model consists of 𝑚 classes where each class j comprises a bifurcating tree 178 

topology 𝑇!. For the 𝑗-th class, 𝜆! 	 is	defined	as	the	set	of	branch	lengths	on	𝑇! ,	𝑅! 	as	the	179 

relative	 substitution	 rate	 parameters,	 𝐹! 	 as	 the	 set	 of	 nucleotide	 or	 amino-acid	180 

frequencies,	 𝐻! 	as	 the	 rate	 heterogeneity	 model,	 and	 𝑤! 	 as	 the	 class	 weight	 (𝑤! > 0, 181 

∑ ⬚"
!#$ 𝑤! = 1).	Given	a	multiple	sequence	alignment,	𝐴,	we	define	𝐿%! 	as	the	likelihood	182 

of	the	data	observed	at	𝑖-th	site	in	𝐴	under	the	𝑗-th	class	of	the	MAST	model.	𝐿%! 	can	be	183 

computed	using	Felsenstein’s	pruning	algorithm	(Felsenstein	1981). The likelihood of the 184 

𝑖-th site, 𝐿% , is the weighted sum of the 𝐿%! 	over the 𝑚 classes: 185 

𝐿% =X⬚
"

!#$

𝑤!𝐿%!Y𝑇! , 𝜆! , 𝑅! , 𝐻! , 𝐹!Z (1) 

 186 

The full log-likelihood 𝑙 over all 𝑁 alignment sites, which are assumed to be independent and 187 

identically distributed (iid), is: 188 

 189 

𝑙 = X⬚
&

%#$

𝑙𝑜𝑔(𝐿%) =X⬚
&

%#$

𝑙𝑜𝑔 _X⬚
"

!#$

𝑤!𝐿%!Y𝑇! , 𝜆! , 𝑅! , 𝐻! , 𝐹!Z`	190 

 191 

This formula is very similar to the formulation of the GHOST model (Crotty et al. 2019) and 192 

the PhyML-multi (Boussau et al. 2009). The GHOST model allows for mixtures of branch 193 

lengths on a single topology and differs only insofar as the final sum here is across the 𝑚 tree 194 

topologies and their associated branch lengths, versus the 𝑚 sets of branch lengths on a single 195 

topology in the GHOST model. The PhyML-multi model assumes the same probability across 196 

all the trees, whereas the MAST model generalizes this and allows different probabilities by 197 

introducing the tree weight (𝑤!) parameters. 198 

  199 
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In the implementation of the MAST model we describe here we assume that we know the 200 

topologies of all of the 𝑚 trees ahead of time, for example, the set of gene tree topologies 201 

observed among the genomes, or the set of possible trees that should appear under the MSC 202 

model. We then estimate the relative weights (i.e. proportions) of each topology, optimize 203 

the branch lengths of each topology, the parameters of the evolutionary model, and the 204 

nucleotide or amino-acid frequencies for each tree. We consider extensions of the model 205 

when the tree topologies are not given in the Discussion. 206 

 207 

Linked and unlinked MAST submodels 208 

In standard phylogenetic analyses we estimate a single tree with an associated set of branch 209 

lengths, along with the parameters of the substitution model, the base or amino acid 210 

frequencies, and the rate heterogeneity across sites (RHAS) model. In the most general MAST 211 

model introduced above (submodel 1 in Figure 2), the tree, the branch lengths of that tree, 212 

the substitution model, the base or amino acid frequencies, and the RHAS model can all vary 213 

in each class, and the weight of that class pertains to the full set of free parameters associated 214 

with that class. We say that all parameters are unlinked across classes in this model. We also 215 

allow for five more-restrictive models in which the parameters of the substitution models, 216 

the vectors of base or amino acid frequencies, or the RHAS model can be linked across all 𝑚	217 

classes of trees. The most restricted model (submodel 6 in Figure 2) links the parameters of 218 

all three of these components of the model across all 𝑚	classes of trees. In this model, the 219 

estimated weights therefore pertain only to the trees and their branch lengths in each of the 220 

𝑚	 classes, because these are the only parameters allowed to differ among classes. This 221 

framework allows for the comparison of models with likelihood ratio tests or other 222 

information criteria (Burnham and Anderson 2002).  223 

 224 

Model parameter estimation for fixed topologies 225 

Given a set of fixed topologies, 𝑇$, ⋯ , 𝑇", the challenge is to optimize all of the parameters 226 

without getting stuck in local optima. We employ both the expectation-maximization (EM) 227 

algorithm (Dempster et al. 1977) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 228 

algorithm (Fletcher 2013) to estimate the MAST model parameters. Taking advantage of the 229 

existing parameter optimization algorithms implemented in IQ-TREE, our workflow (Figure 3) 230 

operates as follows. To begin, for class 𝑗, the substitution model 𝑅! 	and the nucleotide or 231 

amino-acid frequencies 𝐹!  are initialized as a Jukes-Cantor (JC) model (i.e. 𝑅'b = 1 and uniform 232 
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frequencies 𝐹!), and the branch lengths 𝜆!  are initialized as the maximum parsimony (Fitch 233 

1971) branch lengths of the tree 𝑇!. To obtain some sensible initial values of the tree weights, 234 

we first compute the parsimony scores for each tree topology along all the sites. For each of 235 

the sites with different parsimony scores between the tree topologies, we then check which 236 

tree topology has the minimum parsimony score and assign the site to that tree. The tree 237 

weights are then initialized according to the proportion of these sites assigned to each of the 238 

trees. If all sites have the same parsimony scores across all the trees, then the tree weights 239 

are initialized to be equal. 240 

 241 

Having established the starting values for all the parameters in the model, we then optimize 242 

them. The optimization of each class of model parameters is done sequentially.  Figure 3 243 

summarizes the workflow of the optimization. Our optimization workflow includes an outer 244 

loop, a middle loop, and an inner loop of iterations. The inner loop optimizes the substitution 245 

model, nucleotide frequencies, and branch length of the trees; the middle loop optimizes the 246 

rate heterogeneity model; the outer loop optimizes the tree weights. This optimisation 247 

continues to iterate until the resulting log-likelihood value converges, where convergence is 248 

defined as the increment of the log-likelihood value in the current iteration falling below some 249 

threshold 𝜖 (which we set to 0.0001). To optimize the unlinked parameters of each tree in the 250 

mixture model, we use an EM algorithm similar to that used in the GHOST model (Crotty et 251 

al. 2019). 252 

 253 

In detail, our calculations are as follows. Define 𝑝%,!  as the posterior probability of site 𝐷%  254 

evolving under a tree 𝑇!. The value of 𝑝%,!  is computed by the following equation: 255 

𝑝%,! =
𝑤!𝐿%!Y𝑇! , 𝜆! , 𝑅! , 𝐻! , 𝐹!Z

∑ ⬚"
!#$ 𝑤!𝐿%!Y𝑇! , 𝜆! , 𝑅! , 𝐻! , 𝐹!Z

	256 

 257 

The expectation of the log-likelihood value (𝑙!) of tree j over all the sites: 258 

𝐸g𝑙!h = X⬚
&

%#$

𝑝%,!𝑙𝑜𝑔	 i𝐿%!Y𝑇! , 𝜆! , 𝑅! , 𝐻! , 𝐹!Zj	 259 

 260 

In every iteration, by fixing the posterior probabilities 𝑝%,!, we optimize the tree weights, the 261 

branch lengths, the unlinked substitution rate models, and the unlinked rate heterogeneity 262 

models of all trees one-by-one to maximize the expected likelihood value. The tree weights 263 
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are then updated by averaging the probabilities over all the 𝑁 sites. That is, the new weight 264 

of class 𝑗 is the mean posterior probability of each site belonging to class 𝑗: 265 

𝑤! =
1
𝑁X⬚

&

%#$

𝑝%!  (2) 

 266 
Figure 2: A hierarchy of six MAST submodels currently implemented in IQ-TREE. The term “unlinked” means the 267 
parameters can differ across mixture classes, while “linked” means the parameters are restricted to be equal 268 
across all classes. The last line in each box shows the name of the model that can be used directly as input in IQ-269 
TREE via -m option, assuming two classes with a GTR substitution model and Gamma RHAS model for each class. 270 
The arrows indicate the nestedness between the submodels; for example, submodel 4 is nested within both 271 
submodels 2 and 3, while submodel 6 is nested within both submodels 4 and 5. Note that two submodels are 272 
missing (i.e. substitution rate: linked; DNA/AA frequencies: unlinked; RHAS: linked/unlinked) due to a non-trivial 273 
implementation. 274 
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 275 
Figure 3: Optimization flow chart for the MAST model in IQ-TREE. The optimization workflow includes an outer 276 
loop, a middle loop, and an inner loop of iterations. The inner loop optimizes the substitution model, nucleotide 277 
frequencies, and branch length of the trees; the middle loop optimizes the rate heterogeneity model; the outer 278 
loop optimizes the tree weights. The EM algorithm is used to optimize the individual unlinked parameters of 279 
each tree and the BFGS algorithm is used to optimize the linked parameters. The iterations continue until the 280 
likelihood value converges. 281 

 282 

For the linked models (submodels 2-6 in Figure 2) the EM algorithm cannot be applied to the 283 

optimisation of the linked parameters shared between the classes. Thus, we optimize the 284 

parameters of the linked substitution rate model R, the linked nucleotide or amino acid 285 

frequencies F, and the linked rate heterogeneity model H using the BFGS algorithm in IQ-286 

TREE.  287 

 288 

Simulations 289 

Having implemented the MAST model in IQ-TREE, we next used simulated data to test the 290 

performance of the MAST model under a wide range of scenarios. The first and second 291 
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simulation experiments test the accuracy of the unlinked and linked MAST models when the 292 

true model is specified. We also compared the performance between the MAST model and 293 

the PhyML-multi model when all trees have unlinked parameters. The third simulation 294 

experiment simulates data with varying levels of introgression to compare the performance 295 

of standard (i.e. single-tree) concatenation methods to the performance of the MAST model. 296 

The fourth and fifth simulation experiments examine the performance of the MAST model 297 

when an incorrect model is specified, by applying an unlinked and linked MAST model with 298 

different numbers of trees to an alignment simulated under a single tree. The sixth simulation 299 

experiment evaluates the performance of the MAST model when all possible tree topologies 300 

are provided for the input alignment. 301 

 302 

Simulations 1 & 2: Parameter estimation under the true model for unlinked and 303 

linked MAST model (submodel 1 & submodel 6) 304 

These simulations are designed to ask whether our implementation of the MAST model in IQ-305 

TREE is capable of estimating accurate tree weights, branch lengths, and other model 306 

parameters when the model used for inference matches the model used for simulation. We 307 

simulated alignments under the completely unlinked MAST model (submodel 1 in Figure 2; 308 

simulation 1) and the completely linked MAST model (submodel 6 in Figure 2; simulation 2), 309 

and provided IQ-TREE with the set of true tree topologies from the mixture, as well as the 310 

true model of molecular evolution (e.g. GTR+G), and the correct MAST model (i.e. submodel 311 

1 or 6). We then measured the accuracy of our implementation by recording the estimated 312 

tree weights, branch lengths, substitution model parameters, and nucleotide frequencies, 313 

and comparing them to the values used to simulate the data.  314 

 315 

We simulated alignments from mixtures of m of trees with different numbers (t) of taxa, 316 

where 𝑚 ∈ {1,2,3,5,10} and 𝑡 ∈ {6,7,10,20}. We performed 100 replicate simulations for 317 

every combination of m and t, for a total of 2000 simulated datasets per experiment.  318 

Different GTR model R, gamma rate H, and set of nucleotide frequencies F were simulated 319 

over the trees in the first simulation experiment, while the same R, H, and F were shared 320 

among the trees in the second simulation experiment. The alignments were then simulated 321 

according to the tree, the GTR model, and the gamma rate using AliSim (Ly-Trong et al. 2022).  322 

 323 
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Each simulated dataset contained 100k bases, regardless of the number of trees m, with 324 

different proportions of the lengths of each of the m alignments. For clarity, details of how 325 

the model parameters were chosen are described in the supplementary material. 326 

 327 

To assess the accuracy of the parameter estimates, we calculated the root-mean-squared 328 

error (RMSE) of each estimated parameter when compared to its value in the simulation. For 329 

each dataset, we compared the statistical fit of the MAST model to that of a standard single-330 

tree model by comparing the BIC value (𝐵𝐼𝐶) of the MAST model to the BIC value(𝐵𝐼𝐶0) of a 331 

standard single-tree model. 332 

 333 

We did additional simulations to compare the performance of MAST to that of PhyML-multi, 334 

and to assess the accuracy of MAST on smaller alignments. To do this we repeated Simulation 335 

1 with alignments of of 5K, 10K, and 50K bases, and analyzed them with both PhyML-multi 336 

and MAST, both with unlinked parameters (i.e. each tree has its own GTR and +G models), as 337 

above. We evaluated both the multitree mixture and the HMM models of PhyML-multi. To 338 

assess the accuracy of the PhyML-multi HMM models (which do not compute tree weights), 339 

we calculated the root-mean-squared error between the proportion of sites assigned to each 340 

topology and the actual proportion of sites simulated from each topology. 341 

 342 

Simulation 3: Introgression  343 

To examine the performance of the MAST model in a biologically motivated setting, we 344 

simulated alignments on 4-taxon trees with different levels of introgression and then used 345 

both a single-tree model and the linked MAST model (i.e. submodel 6) to analyse them. Each 346 

dataset was simulated from a rooted 4-taxon tree shown in Supplementary Figure 8A. Using 347 

this tree, we simulated 1500 gene trees with introgression rate r from lineage 2  to lineage 4 348 

(Supplementary Figure 8A) using the program ms (Hudson 2002), where 𝑟 ∈349 

{0.0, 0.1, 0.2, . . . , 0.9, 1.0}	. When the introgression rate is zero, the largest fraction of the 350 

gene trees will match the species tree TE1 and the frequency of the two minor trees, TE2 and 351 

TE3, are expected to be equal. As the introgression rate increases, the frequency of the tree 352 

matching the introgression history, TE2, will increase, and the frequency of the other two trees 353 

will decrease. The MAST model should reflect these patterns in the tree weights calculated 354 

from a concatenated alignment of all 1500 genes, without the need to know the boundaries 355 

between the individual loci. The benefit of this approach when applied to an empirical dataset 356 
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is that it overcomes concerns about ‘concatalesence’, in which unaccounted-for 357 

recombination within loci can bias estimates of gene tree frequency calculated by building 358 

trees for each locus (Gatesy and Springer 2014). Since ms uses a coalescent model, we 359 

rescaled the branch lengths from coalescent units to units appropriate for simulating 360 

alignments (i.e. substitutions per site) by multiplying all branch lengths by 0.002, selected to 361 

result in branch lengths similar to those recovered from our analyses of empirical dataset 4 362 

(see below). For each simulated gene tree, we used AliSim (Ly-Trong et al. 2022) to simulate 363 

a 1000bp alignment using the GTR+G model with parameters equal to those reported by IQ-364 

Tree for our analysis of empirical dataset 4 (see below). Concatenating all the single-locus 365 

alignments resulted in an alignment of 1,500,000 bp. We performed 100 replicate simulations 366 

at every r, for a total of 1100 simulated datasets. We then applied the linked MAST model 367 

(submodel 6 in Figure 2) to these data, with the input trees comprised of all three possible 368 

unrooted trees of the four taxa in Supplementary Figure 8B. 369 

 370 

Simulation 4 & 5: Parameter estimation under misspecified models (submodel 1 371 

& submodel 6) 372 

We next sought to examine the performance of the MAST model when the underlying data 373 

were simulated under a single tree 𝑇, but the data were analysed under a MAST model with 374 

𝑚 > 1 i.e. a misspecified model with more than one tree. To do this, we simulated data under 375 

a single tree topology, and then applied MAST submodel 1 (simulation 4) and MAST submodel 376 

6 (simulation 5) where the 𝑚 trees included the true tree 𝑇 and also 𝑚 − 1 additional tree 377 

topologies that differed from 𝑇. This simulation is designed to examine the case where a 378 

researcher includes the primary tree in a MAST model (e.g. a tree derived from a single-tree 379 

concatenated ML analysis, or an MSC analysis) but additionally includes some hypothesized 380 

trees in the model that have no support in the underlying data.  381 

 382 

In simulation 4, we simulated alignments of 5K, 10K, and 50K bases, on a single tree with 383 

different numbers (t) of taxa, where 𝑡 ∈ {6,7,10,20}. We performed 100 replicate simulations 384 

at every length and every t, resulting 300 simulated datasets for each t. To simulate each of 385 

the additional 𝑚 − 1 tree topologies in each MAST model, we sequentially performed 𝑘 386 

random subtree pruning and regrafting (SPR) moves on the true tree 𝑇. The MAST submodel 387 

1 was then applied by inputting the actual tree topology as well as the other 𝑚 − 1 different 388 

tree topologies that all are 𝑘-SPR moves from that tree, where 𝑚 ∈ {2,3,5,10}	and 𝑘 ∈389 
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{1,2,3}. Note that there are at most two SPR moves between any two 6-tip trees. Analysing 390 

each of the 300 simulated datasets for 6-tip trees under 8 combinations of m and k, and each 391 

of a total of 900 simulated datasets for 7/10/20-tip trees under 12 combinations of m and k, 392 

gives a total of 13200 analyses.  393 

 394 

To understand the performance of the MAST model for submodel 6 under similar simulation 395 

conditions (simulation 5), we simulated data with the same settings as above, except that we 396 

used  alignments of 100K bases. 397 

 398 

To evaluate the performance, among the 100 replicates, we recorded how many times the 399 

true topology had the maximum tree weight. We also compared the BIC value (𝐵𝐼𝐶) reported 400 

by the MAST model with the BIC value (𝐵𝐼𝐶0) under the true model, i.e. when the dataset 401 

was analysed under the single true tree 𝑇.  402 

 403 

Simulation 6: Parameter estimation when all tree topologies are provided 404 

We next evaluated the performance of the MAST model when all possible tree topologies are 405 

provided by the user, but the data were simulated on a smaller number of trees. To do this, 406 

we simulated data sets under two random equally weighted 5-tip trees with MAST submodel 407 

6. We then applied the same MAST submodel, but with all 15 potential topologies of five taxa, 408 

to the data sets. This simulation is designed to examine the case where a researcher includes 409 

all possible hypothesized trees in the model, but that many of them in fact have no support 410 

in the underlying data. Each simulated dataset comprised 100k base pairs, and 100 replicate 411 

simulations were performed for each simulation setting. In order to further understand how 412 

BIC value of a MAST model depends on the input trees, after the above simulation we first fit 413 

a MAST submodel 6 with the two true trees, and we then fit a series of MAST submodel 6 414 

with  additional trees added sequentially based on the descending order of tree weights from 415 

the previous analysis involving all 15 trees. We recorded the BIC value of every model. 416 

 417 

Applications to empirical data 418 

In addition to testing the MAST model on simulated data, we also applied it to four empirical 419 

datasets (Table 1). All of these datasets are subsets of a single dataset  comprising 1730 single-420 

gene alignments from 26 primates (Vanderpool et al. 2020). The first two empirical datasets 421 

we used are simple four-taxon datasets, in which it is trivial to supply the MAST model with 422 
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all three possible unrooted trees, and for which the expected tree weights have been 423 

estimated in previous research. In the other two empirical experiments, a standard single-424 

tree model was first used to infer a topology for every gene in the dataset. Then, the set (or 425 

subset) of most commonly inferred gene trees were used as the set of input topologies for 426 

the MAST model when analysing a concatenated alignment of all the single-gene alignments. 427 

In order to find out whether the MAST model has a better fit to the data compared with the 428 

standard single-tree model, we analysed multiple different submodels of MAST (Figure 2). We 429 

compared the lowest BIC values from these models to the BIC value calculated using the 430 

standard single-tree model on the same alignments. 431 

 432 

The first dataset (“A”) includes the well-studied four-taxon grouping of human, chimpanzee, 433 

gorilla, and orangutan. Previous studies have shown that all three possible unrooted gene 434 

trees of four taxa (Figure 6; orangutan is considered an outgroup to the other three species) 435 

are recovered from these data. These studies have shown that the accepted species tree, 436 

uniting humans and chimps, is the most frequent gene tree, with the two minor trees 437 

occurring in very similar frequencies, consistent with the action of only ILS during the 438 

divergence of these species (Ebersberger et al. 2007); however, different studies have 439 

reported different frequencies for the three possible gene trees. For example, an early study 440 

that analysed 11945 gene trees (Ebersberger et al. 2007) and a more recent study that 441 

analysed 1730 gene trees (Vanderpool et al. 2020) found that 77% and 62% of gene trees 442 

respectively grouped humans and chimps, 12% and 20% respectively grouped chimps and 443 

gorillas, and 11% and 18% respectively grouped humans and gorillas. The discrepancies in 444 

these numbers reflect both the different data types and data quality available to each study, 445 

as well as differences in the methods used to reconstruct gene trees. However, both studies 446 

made the single-tree assumption for each individual gene locus; recombination within each 447 

locus violates this assumption. The MAST model avoids this assumption by using mixtures of 448 

trees. Although the tree weights reported by MAST pertain to the equations given above, and 449 

are not designed to replace estimates of gene tree frequencies, in practice we expect both 450 

values to be similar on large empirical datasets, because both values will usually be heavily 451 

influenced by the proportion of sites in the genome that are associated with each of the trees 452 

of interest. Since the MAST model will be unaffected by concatalescence, we expect that 453 

estimates of tree weights from the MAST model to be more accurate than estimates of gene 454 

tree frequencies from previous studies where concatalescence has affected gene-tree 455 

frequency estimates. Regardless, we still expect the MAST model to report the highest weight 456 
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for the tree grouping humans and chimps, and lower but approximately equal weights for the 457 

two minor trees. 458 

 459 

The second empirical dataset (“B”) includes three species from the genus Macaca (M. 460 

fascicularis, M. mulatta, M. nemestrina) and the mandrill (Colobus angolensis palliatus), a 461 

clade in which a previous analysis found substantial evidence for introgression between M. 462 

nemestrina and M. fascicularis (Vanderpool et al. 2020). Thus, for this dataset we expect the 463 

MAST model to recover the highest weight for the accepted species tree uniting M. 464 

fascicularis and M. mulatta (𝑇'( in Figure 7), the second highest weight for the minor tree 465 

affected most by introgression (uniting M. nemestrina and M. fascicularis), and the lowest 466 

weight for the minor tree uniting M. mulatta and M. nemestrina.  467 

 468 

Empirical 

datasets 
Species 

# of 

genes 
Total length 

A Homo sapiens, Pan troglodytes, Gorilla gorilla, 

Pongo abelii 

1,595 1,618,506 

B Macaca fascicularis, Macaca mulatta, Macaca 

nemestrina, Colobus angolensis palliatus 

1,599 1,629,163 

C Homo sapiens, Pan troglodytes, Gorilla gorilla, 

Macaca fascicularis, Macaca mulatta, Macaca 

nemestrina 

1,556 1,576,852 

D Callithrix jacchus, Aotus nancymaae, Saimiri 

boliviensis, Cebus capucinus imitator, Macaca 

mulatta 

1,557 1,610,755 

Table 1: The four empirical datasets analysed here 469 

 470 

The third empirical dataset (“C”) contains the six species (human, chimp, gorilla, and the three 471 

Macaca species) that represent the ingroups from the first two datasets. Since we have a 472 

priori information which suggests that all three possible rooted trees are possible for each of 473 

these ingroups, we applied a MAST model with 9 trees (Supplementary Figure 9), where all 474 

three resolutions of each ingroup clade are paired with all three resolutions of the other 475 
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ingroup clade. In principle, one should be able to draw similar conclusions from these 6-taxon 476 

datasets as one could from the two independent analyses of the four-taxon datasets by 477 

summing the relevant tree weights (see below).  478 

 479 

The fourth empirical dataset  (“D”) focuses on the relationships among four Platyrrhine (“New 480 

World Monkey”) species: Callithrix jacchus, Aotus nancymaae, Saimiri boliviensis, and Cebus 481 

capucinus imitator, including Maccaca mulatta as an outgroup. There is disagreement about 482 

the species tree among the four focal taxa. Gene-tree-based analyses (Vanderpool et al. 2020) 483 

support a caterpillar tree in which Aotus is the sister group to a clade uniting Saimiri and Cebus 484 

(𝑇)! in Supplementary Figure 10). However, concatenated ML analysis fails to recover this 485 

tree, instead returning a symmetrical tree likely caused by a known inconsistency in ML 486 

methods when the underlying gene trees are highly discordant (Kubatko and Degnan 2007; 487 

Roch and Steel 2015; Mendes and Hahn 2018). The MAST model should in principle avoid 488 

statistical inconsistencies associated with the single-tree assumption because it explicitly 489 

accounts for the existence of multiple histories in an alignment. Thus, we sought to test the 490 

performance of the MAST model in this well-studied empirical test case. To do this, we 491 

applied a MAST model that included the three ingroup topologies that were most commonly 492 

found from the gene trees in a previous study (Supplementary Figure 10; (Vanderpool et al. 493 

2020).  494 

 495 

We analysed each empirical dataset using the same approach. First, we filtered the original 496 

1730 locus dataset to retain only those loci that were present in all of the selected species, 497 

which resulted in each dataset containing approximately 1600 loci and around 1.6 million 498 

base pairs (Table 1). We analysed each dataset using standard single-tree concatenated ML 499 

analyses (using default settings in IQ-TREE2), as well as the six multitree mixture models 500 

described by the six submodels of the MAST model in Figure 2, using the trees topologies 501 

described above as the input topologies for the MAST model. Finally, to facilitate comparisons 502 

with other quantities of interest, we calculated the following quantities for each of the input 503 

topologies: (1) the number of single-locus trees that matching each topology, where each 504 

single locus tree was estimated with default parameters in IQ-TREE2; and (2) the total number 505 

of base pairs assigned to each topology (summing across single-locus trees), (3) the total 506 

number of variable sites assigned to each topology (summing across single-locus trees), and 507 

(4) the total number of parsimony informative sites assigned to each topology (summing 508 

across single-locus trees).  509 
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 510 

Results 511 

Simulations 1-3: The MAST model performs well when the model is correctly 512 

specified, with or without introgression. 513 

 514 

Our extensive simulations demonstrate that the unlinked (Supplementary Figure 1, 515 

Supplementary Figure 2) and linked (Supplementary Figure 3) MAST models perform well 516 

when the model used for analysis matches that used to simulate the data set for the data sets 517 

with lengths 5K, 10K, 50K, (for the unlinked MAST model) and length 100K (for both the 518 

unlinked and the linked MAST models). The error associated with all unlinked and linked 519 

models increases as the number of trees in the mixture increases, as the number of tips in 520 

the tree decreases, and as the sequence length decreases. This is expected, because in our 521 

simulations we held the distribution of branch lengths constant. Thus, the amount of 522 

information available to estimate each parameter decreases (and thus the expected error 523 

increases) as the number of trees increases, as the number of tips in each tree decreases, and 524 

as the sequence length decreases. The key parameters of interest for the MAST models are 525 

the tree weights (top panel, Supplementary Figure 1 and Supplementary Figure 3; 526 

Supplementary Figure 2A, B, C). In the best-case scenario (comprised of 2 trees, each of which 527 

contains 20 taxa, and an alignment of 100K bases) the RMSE of the tree weights was very low, 528 

at around 0.001 for both the unlinked and linked models, while in the worst-case scenario 529 

(comprised of 10 trees, each of which contains 6 taxa, and alignments of 5K bases (for 530 

unlinked model) and 100K bases (for linked model) sites) the error was much higher, at 531 

around 0.05 for both the unlinked and linked models, although this is still acceptably low in 532 

absolute terms.  533 

 534 

 535 
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 536 
Figure 4: This figure illustrates the accuracy of tree weight estimates for the MAST model when the proportion 537 
of sites between the trees for the PhyML-multi software when the true topologies are provided, and the 538 
software was applied to 5K-length data sets simulated under the MAST model with unlinked parameters. Each 539 
tree has its own set of branch lengths, substitution matrices, nucleotide frequencies, and gamma parameters. 540 
The data sets were simulated with varying numbers of topologies (2, 3, 5, and 10) and numbers of sequences (6, 541 
7, 10, and 20) in the alignments. Among the input trees, the first tree differed from the other trees by 1, 2, or 3 542 
SPR moves. The root-mean-squared error (RMSE) distributions for these estimations are shown for (A) our MAST 543 
model, (B) PhyML-multi’s mixture model, (C) PhyML-multi’s HMM model with the Viterbi algorithm, and (D) 544 
PhyML-multi’s HMM model with the Forward-backward algorithm. Note that PhyML-multi encountered errors 545 
when processing the 10K and 50K-length simulated data sets. On average,  the RMSE reported by PhyML-multi, 546 
whether through the mixture or HMM model, exceed 0.1. In contrast, the RMSE for our MAST model remain 547 
below 0.1. 548 
 549 
 550 

The simulation results (Figure 4) comparing the performance between the MAST model and 551 

the PhyML-multi model illustrate that the MAST model performs better than the PhyML-multi 552 

model when the unlinked model used for analysis matches that used to simulate the data 553 

sets. On average, PhyML-multi reports RMSE exceeding 0.1, regardless of whether it uses the 554 

mixture model, HMM with the Viterbi algorithm, or HMM with the Forward-backward 555 

algorithm. In contrast, on average, our MAST model consistently reports RMSE well below 556 

0.1. We were unable to compute model parameters with PhyML-multi on alignments longer 557 
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than 5K bases, because it reported undefined negative values (i.e. -nan) for the log-likelihoods 558 

of the models on alignments of 10K bases or longer. 559 

 560 

The MAST model fit the data much better than the mis-specified single-tree model for both 561 

the unlinked and linked models (bottom panel, Supplementary Figure 1 and Supplementary 562 

Figure 3; Supplementary Figure 2D, E, F); the improvement in the fit of the true model 563 

increases (i.e. the difference in BIC becomes more negative) as the number of trees, the 564 

number of tips in each tree, and sequence length increases. This is expected because a single-565 

tree model becomes an increasingly poor fit to data simulated under more trees.  566 

 567 

We also simulated scenarios with introgression, such that the minor trees are not expected 568 

to be equal in frequency. In these simulations TE1 is the species tree (Supplementary Figure 8) 569 

and increasing introgression makes topology TE2 increasingly frequent. When the 570 

introgression rate was between 0 and 0.6, TE1 is the optimal tree in the single-tree model 571 

(Figure 5B) and the tree with the highest weight in the MAST model (Figure 5C). When the 572 

introgression rate is above 0.6, in most datasets the single-tree model and the MAST model 573 

reported TE2 as the optimal tree and the topology with the highest tree weight, respectively. 574 

Importantly, estimated weights from the MAST model closely match the proportion of sites 575 

simulated under each tree for different introgression rates (compare Figure 5A to Figure 5C). 576 

All these results are as expected from the simulations that were carried out (i.e. the topology 577 

matching the introgressed history does in fact become the most common). The MAST model 578 

is a much better fit when the tree topologies TE1, TE2 are more equal in frequency, though it 579 

is a better fit across all of parameter space (because there is always ILS, even when there is 580 

no introgression, thus multiple trees are always a better fit to the data; Figure 5D). 581 

 582 
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 583 
Figure 5: This figure compares the performance of the MAST model with the standard single-tree model using 584 
datasets simulated across introgression rates 𝑟	 ∈ {0.0,0.1, . . . ,1.0}. Specifically, it displays: (A) The actual 585 
proportion of sites simulated under each tree for varying introgression rates. Mean values are represented by 586 
coloured lines, while the grey regions indicate the standard deviation across the 100 datasets for each 587 
introgression rate; (B) Results from fitting the concatenated alignment to a single-tree model. At high 588 

introgression rates, the most probable tree topology shifts to TE2; (C) Tree weights estimated by the linked MAST 589 

model; (D) BIC - BIC0: the difference in BIC values between the linked MAST model (BIC) and the single-tree 590 
model (BIC0). A more negative difference between the BIC values of the MAST and single-tree models indicates 591 
a stronger preference for the MAST model over the standard single-tree model. 592 
 593 

Simulation 4-6: The MAST model is robust to the inclusion of trees with no 594 

support in the underlying data 595 

To test the robustness of the MAST model to the inclusion of incorrect additional topologies, 596 

we simulated data under a single topology but fit the data under a MAST submodel 1 597 

(simulation 4) and MAST submodel 6 (simulation 5) with up to 10 topologies. The results show 598 
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that with both MAST submodel 1 (Supplementary Figure 4A, B, C) and MAST submodel 6 599 

(Supplementary Figure 5A), the true tree (which was always one of the trees included in the 600 

MAST model) had the highest weight among all of the trees included in the MAST model in 601 

the majority of simulations regardless of the simulation conditions when the sequences are 602 

long. 603 

 604 

These simulations reveal some of the fundamental limitations of the MAST model to 605 

distinguish among very similar trees. When incorrect trees included in the MAST model were 606 

sufficiently different from the true tree (i.e. when the SPR distance of each incorrect tree in 607 

the MAST model was 2 or 3 SPR moves from the true tree), the percentage of simulations for 608 

which the true tree had the highest weight remained relatively high (i.e. over 80%) regardless 609 

of the other simulation conditions. However, when the incorrect trees included in the MAST 610 

model were close to the true tree (i.e. when they differed from the true tree by a single SPR 611 

move), in the worst case, the percentage of simulations for which the true tree had the 612 

highest weight dropped to, for submodel 1, 31% for 5K sequence length; 36% for 10K; and 613 

51% for 50K, and, for submodel 6, 67% for 100K (Supplementary Figure 4A, B, C; 614 

Supplementary Figure 5A). This general trend is expected, because more similar trees will 615 

share more branches in common, making it more difficult for any model to distinguish 616 

between them. These results quantify some of the analytical limits of multitree mixture 617 

models as currently implemented. On the other hand, importantly, the inclusion of incorrect 618 

trees in the MAST model always led to large increases in the BIC score, such that researchers 619 

using this method to select the best model would reject the additional trees, and instead 620 

prefer the results from a single-tree model (Supplementary Figure 4D, E, F; Supplementary 621 

Figure 5B). 622 

 623 

To evaluate the performance of the MAST submodel 6 when all the possible trees are 624 

included, we applied it with all 15 potential topologies to 100K-bp data sets simulated using 625 

two equally weighted 5-tip trees. On average, the MAST model reported that the weights of 626 

the true trees were 21.3% and 22.8%, while the weights of the other trees were at most 16.8 627 

(Supplementary Figure 6). More precisely, in 46%, 61%, and 73% of the simulations the two 628 

true trees were among the top 2, 3, and 4 trees with the highest tree weights. Sequentially 629 

adding trees to the MAST model shows that there is a big improvement (i.e. decrease) in the 630 

BIC value from the single-tree model to the MAST model with two true trees (Supplementary 631 

Figure 7). After that, sequentially adding incorrect trees to the MAST model caused BIC values 632 
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to worsen (i.e. increase; Supplementary Figure 7). In 98% of the simulations, the MAST model 633 

with the two true trees was the optimal model according to the BIC value. 634 

 635 

Empirical dataset A: Incomplete lineage sorting in the Great Apes 636 

 637 

Figure 6 shows the three possible tree topologies 𝑇)$ , 𝑇)* , 𝑇)+ for empirical dataset A, which 638 

is made up of four Great Apes (Table 1). We applied multiple methods to these alignments in 639 

order to estimate the frequency of the three tree topologies. Single-tree analyses applied to 640 

each gene separately reported 19.8%, 20.1%, and 60.1% of the genes with topologies 𝑇)$ , 641 

𝑇)* , 𝑇)+ , respectively (Figure 6; Supplementary Table 1). All MAST submodels reported 642 

similar tree weights of 17.9%, 17.4%, and 64.7% (Table 2). All methods find that the topology 643 

uniting human and chimpanzee has the highest weight, with the two minor topologies having 644 

approximately equal weights; these results are as expected from all previous analyses. 645 

 646 

The proportions of different topologies estimated by MAST are closer to the proportions of 647 

individual nucleotide sites from the genes supporting the various topologies than the 648 

percentage of gene trees (Supplementary Table 1). This may be because the weights of the 649 

MAST model more closely approximate the proportion of the sites in the alignment (instead 650 

of the percentage of loci) supporting different topologies. The BIC score from MAST submodel 651 

2 was the best (Table 2), indicating that the MAST model with unlinked substitution model, 652 

unlinked frequencies and linked RHAS was the best model among different MAST submodels 653 

for this dataset. Regardless, the BIC values of all MAST submodels were much lower than the 654 

BIC value reported by the single-tree model (Table 2), showing that a multitree-mixture model 655 

had a much better fit to the data, and demonstrating the superiority of a multitree mixture 656 

model over a single-tree model when incomplete lineage sorting causes gene tree 657 

discordance. 658 
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 659 
Figure 6: The three topologies for empirical dataset A. 𝑇$( is the commonly accepted species tree. 660 

 661 
Figure 7: The three topologies for empirical dataset B. 𝑇'( is the commonly accepted species tree. 662 

 663 

Empirical dataset B: Introgression in macaques 664 

Figure 7 shows the three possible tree topologies 𝑇'! , 𝑇'" , 𝑇'( for empirical dataset B, which 665 

is made up of multiple macaque species. Analyses of the individual gene trees using single-666 

tree models for each locus revealed a large asymmetry in minor topologies (31.2%, 18.6%, 667 

and 50.2% for 𝑇'! , 𝑇'" , 𝑇'( respectively; Supplementary Table 2). However, both the 668 

proportions of parsimony-informative sites (17.6%, 14.5%, and 67.9% for 𝑇'! , 𝑇'" , 𝑇'( 669 

respectively; Supplementary Table 2) and the weights from the different MAST submodels (all 670 

around 17.3%, 14.2%, 68.6% for 𝑇'! , 𝑇'" , 𝑇'( respectively; Figure 7; Table 3) showed much 671 

more similar proportions and weights for the minor trees. Although the minor trees are still 672 

substantially different in frequency using the MAST analysis—consistent with introgression in 673 

this clade—the difference between them is much lower. Consistent with empirical dataset A, 674 

this result indicates that the gene tree frequencies are different from the frequencies 675 

reported by the MAST analysis, as the gene tree frequencies represent the proportions of 676 
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genes supporting various topologies while the MAST tree weights are more closely related to 677 

the proportions of sites from the genes supporting different topologies. 678 

 679 

Model  Sub. matrix Freqs. RHAS TA1 TA2 TA3 BIC 

single-tree      100.00% 4,978,549.51 

MAST 1 unlinked unlinked unlinked 17.86% 17.40% 64.74% 4,975,971.28 

MAST 2 unlinked unlinked linked 17.85% 17.44% 64.70% 4,975,941.59 

MAST 3 unlinked linked unlinked 17.84% 17.48% 64.68% 4,978,121.95 

MAST 4 unlinked linked linked 17.84% 17.48% 64.68% 4,978,097.70 

MAST 5 linked linked unlinked 17.84% 17.48% 64.68% 4,977,961.91 

MAST 6 linked linked linked 17.84% 17.48% 64.68% 4,977,938.91 

Table 2: Results of the empirical dataset A when applying IQ-Tree with a standard single-tree model and different 680 
MAST submodels with GTR+G substitution model. There are six submodels of MAST, representing different 681 
combinations of linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd column), and 682 
rate heterogeneity across sites (4th column). The 5th-7th columns are the weights of the trees 𝑇$! , 𝑇$" , 𝑇$(. 683 
The 8th column lists the BIC values of different models. The bolded figure is the best BIC value which is from the 684 
MAST submodel 2. 685 
 686 

Model  Sub. matrix Freqs. RHAS TB1 TB2 TB3 BIC 

single-tree      100.00%   4,906,941.36 

MAST 1 unlinked unlinked unlinked 17.29% 14.15% 68.55%   4,905,832.06 

MAST 2 unlinked unlinked linked 17.29% 14.19% 68.52%   4,905,808.79 

MAST 3 unlinked linked unlinked 17.27% 14.24% 68.49%   4,906,632.17 

MAST 4 unlinked linked linked 17.27% 14.25% 68.48%   4,906,605.01 

MAST 5 linked linked unlinked 17.27% 14.24% 68.50%  4,906,651.67 

MAST 6 linked linked linked 17.27% 14.23% 68.50%  4,906,633.71 

Table 3: Results of the empirical dataset B when applying IQ-TREE with a standard single-tree model and 687 
different MAST submodels with GTR+G substitution model. There are six submodels of MAST, representing 688 
different combinations of linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd 689 
column), and rate heterogeneity across sites (4th column). The 5th-7th columns are the weights of the trees 𝑇'! 690 
, 𝑇'" , 𝑇'(. The 8th column lists the BIC values of different models. The bolded figure is the best BIC value, which 691 
is MAST submodel 2. 692 



PHYLOGENETIC INFERENCE WITH MAST 
 

 693 

Model TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 BIC 

single- 

tree 
        100.0% 5,187,194.8 

MAST 1 0.4% 7.0% 8.4% 7.7% 2.9% 18.3% 13.0% 8.7% 33.6% 5,183,982.5 

MAST 2 0.4% 10.4% 8.2% 2.1% 2.5% 14.0% 13.1% 8.4% 41.1% 5,183,988.4 

MAST 3 0.2% 8.0% 5.2% 1.1% 0.2% 17.4% 15.2% 2.4% 50.4% 5,186,041.4 

MAST 4 0.2% 0.2% 3.9% 0.6% 0.8% 29.3% 12.7% 19.8% 32.5% 5,185,924.7 

MAST 5 0.0% 0.8% 9.8% 1.9% 0.4% 18.2% 17.1% 11.3% 40.4% 5,186,243.3 

MAST 6 0.0% 0.7% 11.1% 1.9% 1.8% 20.7% 19.3% 8.4% 36.0% 5,186,194.1 

Table 4: Results of the empirical dataset C when applying IQ-Tree with a standard single-tree model and different 694 
MAST submodels with GTR+G substitution model. Six submodels of MAST are for different combinations of 695 
linked or unlinked substitution matrix, nucleotide frequencies, and rate heterogeneity across sites. The 2nd - 696 
10th columns are the estimated tree weights between the topologies TC1, TC2, …, and TC9  for different MAST 697 
submodels. The bolded figure is the best BIC value among different submodels. 698 
 699 

Model  
Sub. 

matrix 
Freq. RHAS TD1 TD2 TD3 BIC 

single-tree - - -   100.0%   6,185,094.0 

MAST 1 unlinked unlinked unlinked 40.3% 23.0% 36.8%   6,177,609.0 

MAST 2 unlinked unlinked linked 42.4% 28.1% 29.6%   6,177,535.7 

MAST 3 unlinked linked unlinked 3.5% 4.7% 91.8%   6,182,942.1 

MAST 4 unlinked linked linked 2.1% 81.3% 16.7%   6,182,954.3 

MAST 5 linked linked unlinked 42.4% 32.0% 25.6%   6,184,689.7 

MAST 6 linked linked linked 42.4% 32.0% 25.5%   6,184,618.7 

Table 5: Results of the empirical data D when applying IQ-Tree with a standard single-tree model and different 700 
MAST submodels with GTR+G substitution model. Six submodels of MAST are for different combinations of 701 
linked or unlinked substitution matrix (2nd column), nucleotide frequencies (3rd column), and rate 702 
heterogeneity across sites (4th column). The 5th, 6th, and 7th columns are the estimated tree weights between 703 
the topologies TD1, TD2, and TD3  for different MAST submodels, respectively. The bolded figure is the best BIC 704 
value among different submodels. 705 
 706 
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Empirical dataset C: Great Apes + Macaques 707 

Supplementary Figure 9 shows nine tree topologies for empirical dataset C. This dataset 708 

combines the ingroup taxa from empirical datasets A and B, allowing us to test the accuracy 709 

of MAST when there are more possible topologies: the nine topologies represent every 710 

combination of the three topologies present in each of empirical datasets A and B. The 711 

frequencies of the nine tree topologies were similar across gene trees and sites in standard 712 

analysis (Supplementary Table 3) as well as largely similar to the results across MAST 713 

submodels (Table 4). MAST submodels 1 and 2 are the two best-fit models to the dataset 714 

according to the BIC values (Table 4)), and both give tree weights that are relatively close to 715 

the corresponding tree weights for the respective analyses in empirical datasets A and B 716 

(Supplementary Tables 4 and 5). However, the results from the simpler submodel 2 (in which 717 

RHAS parameters are linked across classes) are closer to the expected values than those from 718 

submodel 1, which is likely due to the challenges of optimising highly parameterised models. 719 
 720 

Empirical dataset D: Overcoming known biases in concatenated maximum 721 

likelihood 722 

As mentioned, maximum likelihood has a known bias toward symmetrical trees (Kubatko and 723 

Degnan 2007) when there is a large amount of underlying discordance and the true species 724 

tree is asymmetrical (i.e. TD1 or TD2 in Supplementary Figure 10). Indeed, when analyzed under 725 

ML using a single-tree model, data from four Platyrrhine monkeys support a symmetrical tree 726 

(Table 5). In contrast, counts of genes trees and parsimony-informative sites support the 727 

asymmetrical tree TD1 as the species tree (Supplementary Table 6). Similarly, analyses using 728 

the MAST submodels also tended to return TD1 as the topology with the highest weight (Table 729 

5). Among all the models, the MAST submodel 2 had the best BIC value, with reported tree 730 

weights 42.4%, 28.1%, 29.6% for the topologies TD1 , TD2 , TD3 . The tree weights are similar to 731 

the proportions of parsimony-informative sites from the genes that were inferred to support 732 

each of these topologies (i.e. 36.7%, 32.2%, 31.1%; Supplementary Table 6). It is notable that 733 

two MAST models estimated different trees with the highest weights (submodels 3 and 4; 734 

Table 5), though submodel 2 has a much lower BIC value than either of these. Overall, these 735 

results suggest that the MAST model is able to analyse a concatenated alignment using 736 

maximum likelihood, but without the biases that come with the single-tree assumption. 737 

 738 

Discussion 739 
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We have introduced the mixtures across sites and trees (MAST) model, which assumes that 740 

sites in a concatenated alignment may have evolved from a mixture of trees. This flexible 741 

assumption allows the method to be applied to the alignments that include multiple tree 742 

topologies, which is presumably true of almost any large dataset from a recombining genome. 743 

The implementation of the method allows different combinations of linked and unlinked 744 

parameters when estimating the substitution matrix, nucleotide or amino acid frequencies, 745 

and the rate heterogeneity across sites (RHAS) across different trees. This flexibility allows 746 

researchers to have many of the advantages of concatenated analyses—e.g. a large amount 747 

of data and accurate estimate of complex substitution processes—while still incorporating 748 

gene tree heterogeneity, but without the need to make assumptions about the existence and 749 

location of putatively non-recombining loci. As such, the MAST model opens up the 750 

opportunity to study topological discordance in deep time, past the point where information 751 

from small, non-recombining gene tree alignments can be informative about 752 

relationships(Bryant and Hahn 2020). 753 

 754 

Our simulations show that parameter estimates using the MAST model are reliable under a 755 

wide range of scenarios. In general, the ability of the MAST model to accurately estimate 756 

parameters depends on the balance between the the amount of information in the data (for 757 

example, the length, depth, and informativeness of the alignment), the number of 758 

parameters being estimated (e.g. the number of trees used in the model, and represented in 759 

the underlying alignment), and scale of the differences between the underlying tree 760 

topologies. Unsurprisingly, the MAST model performs best with long, informative alignments 761 

of many taxa, when the number of true trees is small, and when the differences between the 762 

underlying tree topologies is large. Nevertheless, our simulations show that the MAST model 763 

usually estimates tree weights with acceptably low error rates, even when the simulation 764 

conditions are more challenging, and the model is misspecified. Indeed, we show that by 765 

using standard approaches like the BIC, it is usually possible to identify the true trees that 766 

represent the data, even when these are not known in advance. Of course, these results do 767 

not prove the general identifiability of the model. The identifiability of parameters in complex 768 

models, like mixture models, has been addressed previously (Allman et al. 2012; Rhodes and 769 

Sullivant 2012). Rhodes and Sullivant (2012) gave an upper bound on the number of classes 770 

that ensures the generic identifiability of trees in models with a multi-tree mixture. Their 771 

method was based on the mixtures from different trees, provided that all the topologies share 772 

a certain type of common substructure in which a tripartition A|B|C exists such that the splits 773 
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𝐴	|	𝐵 ∪ 𝐶 and 𝐴 ∪ 𝐶	|	𝐵 are compatible with all trees. Parameters in the multi-tree mixture 774 

model are generically identifiable provided 𝑚 < 	𝑘	!,$ where m is the number of classes, k is 775 

the number of states (i.e. 4 for nucleotides; 20 for amino acids), and the number of taxa in 776 

the partition A and in the partition B are both greater than or equal to j. However, establishing 777 

the identifiability of model parameters when there is no commonality between the trees 778 

remains an open problem (Rhodes and Sullivant 2012). 779 

 780 

In order to use the MAST model to perform an analysis, the user must input a set of pre-781 

specified tree topologies. A rooted three-taxon tree has only three possible topologies, but 782 

the number of topologies grows super-exponentially with the number of tips (Table 3.1 in 783 

(Felsenstein 2003)). This means that it will usually not be feasible to specify all possible 784 

topologies that exist in a moderate-sized dataset; for example, in empirical dataset D we only 785 

studied 3 of 15 possible topologies. This limits the model's applicability. However, there are 786 

instances where researchers may want to focus on a narrower range of topologies of particular 787 

significance. For instance, even in a tree with 100 species, it may be the relationships among 788 

a smaller number of clades that are relevant: if ILS only occurs on one branch of the tree, then 789 

there are still only three relevant alternative topologies, no matter the number of total tips. 790 

In general, we recommend that users specify known alternative hypotheses—or carry out an 791 

exploratory analysis of individual gene trees—in order to choose a manageable set of 792 

topologies as input to the MAST model. 793 

 794 

There are multiple known biases when carrying out concatenated analyses under the 795 

“treelikeness” assumption. As mentioned in the Introduction, single-tree concatenated 796 

maximum likelihood is statistically inconsistent in the presence of large amounts of 797 

discordance: it will return the incorrect tree with increasing probability as more data are 798 

added (Kubatko and Degnan 2007). Our analyses of Platyrrhine monkeys suggest that the 799 

MAST model can solve this problem, giving the highest weight to the topology favored by 800 

other (statistically consistent) methods. In addition to inferring the wrong tree topology, the 801 

branch lengths inferred from concatenated analyses are biased in the presence of 802 

discordance (Mendes and Hahn 2016; Ogilvie et al. 2017). Such biases can lead to 803 

misestimation of divergence times when using the entire concatenated alignment. The MAST 804 

model allows researchers to estimate the branch lengths of individual topologies—we 805 

therefore recommend estimating divergence times using branch lengths obtained from the 806 

topology matching the species tree. While these times still represent genic divergence (and 807 
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not species divergence; (Edwards and Beerli 2000)), they will be free of the bias associated 808 

with single-tree concatenation. 809 

 810 

The output of our method is a set of weights associated with each input tree topology.  811 

Although the MAST model is not based on a particular biological model of discordance (e.g. 812 

the MSC or MSNC), we expect that the estimated weights should correspond to biologically 813 

relevant features of the data. Both our analyses of simulated and empirical data revealed that 814 

MAST gives the highest weight among all input trees to the tree that occurs most frequently 815 

in the gene trees. This is expected, since the MAST weight will be most heavily influenced by 816 

the proportion of sites that are associated with each input tree. We note, however, that the 817 

highest-weight tree from MAST may not be the species tree (just as the most frequent gene 818 

tree may not correspond to the species tree (Degnan and Rosenberg 2006)). Moreover, the 819 

reported weights in the MAST model are highly correlated with the proportion of 820 

phylogenetically informative sites which support each tree. This correlation is expected 821 

because the likelihood of each site is calculated as the weighted sum of the likelihood of the 822 

site over all the trees (Equation 1) and the overall likelihood value is the product of the 823 

likelihoods over all the sites. This result, together with the accurate estimation of minor tree 824 

weights, means that we can use these estimates to infer introgression from MAST output. 825 

Common tests for introgression are based on the expectation that the two minor trees are 826 

equal in frequency (e.g. the “ABBA-BABA” test; (Green et al. 2010)). One post hoc approach 827 

to inferences of introgression using MAST would be to test for a significant difference in the 828 

weights supporting each of two minority trees. Alternatively, it should be possible to compare 829 

the likelihoods of models that either link or unlink the weights of the minority trees. Greater 830 

support for the unlinked model would indicate that the two trees are not equal in frequency, 831 

and would support an inference of introgression. Such an approach would be of great benefit 832 

to testing for introgression deeper in time, where individual phylogenetically informative sites 833 

and individual gene trees may not be accurate enough to make strongly supported inferences 834 

about introgression (Vanderpool et al. 2020). 835 

 836 

The MAST model is a flexible phylogenetic approach that models situations in which the sites 837 

of an alignment have evolved under multiple bifurcating tree topologies. Each tree has its 838 

own topology, a separate set of branch lengths, a substitution model, a set of nucleotide or 839 

amino-acid frequencies, and a rate heterogeneity model. However, there are still some 840 

limitations to the current implementation. In addition to the future directions mentioned 841 
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above, we would like to extend the MAST model to: (1) Perform a tree topology search for an 842 

input number of trees, thus relaxing the requirement that the user must pre-specify 843 

topologies; (2) Be able to compute the optimal number of trees needed to represent the input 844 

dataset, relaxing the requirement that the user specify the number of trees ahead of time; 845 

and (3) Find the best set of substitution models and RHAS models for each tree separately. 846 

These directions are challenging but will be useful in analysing genome-scale datasets at any 847 

evolutionary timescale. 848 
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