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ABSTRACT

Morse complexes and Morse-Smale complexes are topological de-
scriptors popular in topology-based visualization. Comparing these
complexes plays an important role in their applications in feature
correspondences, feature tracking, symmetry detection, and uncer-
tainty visualization. Leveraging recent advances in optimal transport,
we apply a class of optimal transport distances to the comparative
analysis of Morse complexes. Contrasting with existing comparative
measures, such distances are easy and efficient to compute, and
naturally provide structural matching between Morse complexes.
We perform an experimental study involving scientific simulation
datasets and discuss the effectiveness of these distances as compar-
ative measures for Morse complexes. We also provide an initial
guideline for choosing the optimal transport distances under various
data assumptions.

Keywords: Morse Complexes, topological data analysis, optimal
transport, topology in visualization

Index Terms: Human-centered computing—Visualization——

1 INTRODUCTION

Morse complexes and Morse-Smale complexes are gradient-based
topological descriptors of scalar fields. They have numerous applica-
tions in scientific visualization, such as feature correspondences [12],
feature tracking [15, 16, 23, 26–29], symmetry detection [31], struc-
tural change detection [23], and uncertainty visualization [2]. Only a
few comparative measures have been developed for these complexes
and their variants [12, 23, 29].

On the other hand, recent years have seen the successful applica-
tion of optimal transport to graph analysis. Namely, the Wasserstein
distance [35], Gromov-Wasserstein distance [20, 22], and their vari-
ants [5, 33] have been used extensively for graph matching and
comparison.

Leveraging recent advances in optimal transport (OT), we apply,
for the first time, a class of OT-type distances to the comparative
analysis of Morse complexes. Contrasting with existing comparative
measures, such distances are easy and efficient to compute, and
provide explicit structural matching between Morse complexes. Our
main contribution is to provide experimental studies to evaluate the
effectiveness of OT-type distances in terms of feature correspon-
dences and classification, and to provide an initial guideline for
choosing the OT-type distances under various data assumptions.

2 RELATED WORK

Optimal transport for graph matching and comparison. Mémoli
first introduced Gromov-Wasserstein (GW) distances [20, 22] for
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the comparison of metric measure spaces. Theoretical works that
expanded the scope of the GW framework (e.g., [6]) and new ap-
proaches in optimization [24] have made GW distances a popular
tool for studying unregistered graphs. We briefly survey some of the
related work here.

Applications of GW distances for graph analysis in a machine
learning setting were explored by Xu et al. [38–40], with a focus on
scalability and novel uses of the probabilistic nature of the metric. A
Riemannian structure on the space of graphs endowed with the GW
distance was established in [8], with a view toward statistical analysis
of graphs. Connections between GW distances and spectral graph
theory were provided in [9], inspired by earlier work of Mémoli in
the setting of Riemannian manifolds [21]. Several variants of GW
distances have been proposed [7, 30, 36], frequently motivated by
applications in graph analysis, such as the fused GW [33, 34] and
the partial GW distances [5]; these are discussed in detail below (see
Sec. 3). Finally, the GW framework has been successfully applied
to compare certain topological descriptors. In particular, it has been
used as a tool for summarizing merge tree ensembles [17], feature
tracking [19], and comparing merge trees and Reeb graphs endowed
with additional topological attributes [10, 11].

Comparative measures for Morse and Morse-Smale complexes
have previously focused on comparing the graphs derived from
the complexes; see [41] for a survey. Feng et al. [12] studied fea-
ture graphs, which are 1D skeletons of simplified Morse-Smale
complexes, to represent non-rigidly deformed surfaces. They used
a minimum-cost matching algorithm to compare feature graphs.
Thomas and Natarajan [31] used augmented extremum graphs to
detect symmetry in scalar fields. They used the geodesic distances
between extrema and earth mover’s distance between histograms
of seed regions. Narayanan et al. [23] defined a distance between
extremum graphs by forming a complete graph between all pairs of
extrema and computing the maximum distortion of the node sets and
the edge sets. To the best of our knowledge, this paper presents the
first time OT-type distances are used as comparative measures for
Morse complexes.

3 BACKGROUND

We review Morse complexes and their 1D skeletons, referred to as
Morse graphs. We also introduce notions of optimal transport (OT)
type distances that are applicable in our comparative analysis.

Morse complexes and Morse graphs. We focus on 2D Morse
complexes in this paper. Let f : M→R be a Morse function defined
on a 2D manifold with boundary M ⊂ R

2, with gradient denoted
∇ f . A point x ∈M is a critical point if ∇ f = 0; otherwise, it is a
regular point. There are three types of critical points: local maxima,
local minima, and saddles. The integral line of a regular point is the
maximal path through the point whose tangent vectors align with
the gradient. The descending manifold surrounding a critical point
contains the point itself and all regular points whose integral lines
end at the critical point. Critical points (local minima and saddles)
are the 0-cells, integral lines connecting these critical points are the
1-cells, and the rest of the domain makes up the 2-cells of a complex
called the Morse complex of f . Its 1D skeleton consisting of 0- and
1-cells is referred to as the Morse graph.
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For example, the 3D graph of a 2D function f is shown in Fig. 2
(bottom left), where its domain is segmented into nine descend-
ing manifolds (surrounding nine local maxima). Its corresponding
Morse graph is embedded in the graph of f in cyan; it is also shown
in 2D from a top-down viewpoint (top left).

Measure networks. In our context, a Morse graph is modeled as
a measure network [6]. That is, it is represented as a triple G =
(V, p,W ), where V is a finite set of nodes sampled from the Morse
graph, p : V → [0,1] is a probability density on V (i.e., p(x) ≥ 0
for all x and ∑x∈V p(x) = 1), and W : V ×V → R is a network
function that captures the relations between pairs of nodes; the
particular choice of node density and network function used to
represent a Morse graph is explained in Sec. 4. Given a function
F : V → A, for some metric space (A,dA), we may also consider a
Morse graph as an A-attributed measure network, consisting of the
data G = (V, p,W,F). In this paper, we take our attribute space to

be R2 endowed with a Euclidean distance, and the attribute function
F assigns a node its location in the domain M.

Given a pair of Morse graphs G1 = (V1, p1,W1,F1) and G2 =
(V2, p2,W2,F2), such that the codomain of F1 and F2 is a common
metric space (A,dA), we introduce some notation for the sake of
simplicity. Let n1 = |V1| and n2 = |V2| and enumerate the node
sets as {xi}

n1

i=1 and {y j}
n2

j=1, respectively. We write W1(i,k) :=

W1(xi,xk), p1(i) := p1(xi), and ai := F1(xi). It is convenient to
consider W1 as a matrix in R

n1×n1 and p1 as a vector in R
n1 . We use

similar notation for G2, except we write b j := F2(y j).
We review a number of OT-type distances. They have the common

feature of being defined in terms of measure couplings. A coupling
C between probability measures p1 and p2 is a non-negative real-
valued matrix representing a joint probability measure on V1 ×V2

whose row and column marginals agree with p1 and p2, respectively.
The set of all couplings between p1 and p2 is denoted as

C = C (p1, p2) := {C ∈ R
n1×n2
+ |C1n2

= p1,C
T 1n1

= p2}, (1)

where 1n = [1,1, ...,1]T ∈ R
n.

The OT-type distances under consideration are described below.
Each OT-type distance is defined by an optimization problem over
C . Intuitively, we think of an element of C as a probabilistic “soft"
registration of the vertices of the Morse graphs. The optimization
problems favor registrations which preserve intrinsic (node rela-
tions) and/or extrinsic (attribute) features as much as possible. Each
distance depends on a parameter q ∈ [1,∞); the definitions can be
extended to q = ∞, but we will generally fix q = 2 in experiments.

Wasserstein distance [35]. The q-Wasserstein distance between G1

and G2 is defined by

dW
q (G1,G2)

q = min
C∈C

∑
i, j

dA(ai,b j)
qCi, j. (2)

This distance compares nodes based on attributes, but is agnostic to
the network structure encoded by the W -functions.

Gromov-Wasserstein distance [20]. The q-Gromov-Wasserstein
distance (GW) is defined as

dGW
q (G1,G2)

q = min
C∈C

∑
i, j,k,l

|W1(i,k)−W2( j, l)|qCi, jCk,l (3)

This distance compares the network structures of the Morse graphs
encoded by the W -functions, but has no dependency on attributes.

Fused Gromov-Wasserstein distance [34]. With a trade-off param-
eter α ∈ [0,1], the q-Fused Gromov-Wasserstein distance (FGW)
between attributed Morse graphs G1 and G2 is defined as

dFGW
q,α (G1,G2)

q = min
C∈C

∑
i, j,k,l

[(1−α)dA(ai,b j)
q

+α|W1(i,k)−W2( j, l))|q]Ci, jCk,l . (4)

We have dFGW
q,0 = dW

q and dFGW
q,1 = dGW

q , whereas α ∈ (0,1) yields

a distance which depends on both network and attribute structures.
See the supplementary materials for a simple example illustrating
the differences between these distances.

The distances defined above can be sensitive to outliers, since they
are forced to match the full masses of p1 and p2. These construc-
tions can be made more robust by using relaxed couplings. That is,
given m ∈ [0,1], we may consider measures on V1 ×V2 with relaxed
coupling constraints and a total mass given by m; that is, we define

C m = Cm(p1, p2)

:= {C ∈ R
n1×n2
+ |C1n2

≤ p1,C
T 1n1

≤ p2,1
T
n1

C1n2
= m}. (5)

Each of the OT-type distances dW
q , dGW

q and dFGW
q,α has an associated

“partial” version, which depends on an additional mass parameter
m. These are obtained by replacing optimization over C in the
above definitions with optimization over Cm. Intuitively, elements
of Cm still represent soft registrations between nodes, but with extra
flexibility due to their ability to ignore some proportion of mass.
Respectively, the partial versions of the OT-type distances are de-

noted to as d
pW
q,m for partial Wasserstein distance (pW) [5], d

pGW
q,m

for partial Gromov-Wasserstein distance (pGW) [5] and d
pFGW
q,α,m for

partial Fused Gromov-Wasserstein distance (pFGW) [19]. See the
supplementary materials for formal definitions of the partial OT-type
distances and a discussion of metric properties of all distances.

4 METHOD

To compare Morse graphs using the OT-type distances discussed in
Sec. 3, we first model them as measure networks G = (V, p,W ). To
emphasize well-connected nodes essential to the Morse graphs, we
chose a p measure based on the degrees of the nodes following [40],

in which p(v) =
deg(v)

∑i degvi
; this heuristic choice gives extra importance

to more highly connected nodes when searching for an optimal
registration. To capture the intrinsic pairwise relations between
nodes in the Morse graph, we define W (v,w) to be the shortest
geodesic path length between v and w in V , following [19]. Finally,
to model a Morse graph as an A-attributed measure network, the
attribute function assigns a node v its location (vx,vy) in the domain.

To examine the structural alignment between Morse graphs, we
apply a color transfer based on the coupling matrix between a source
(reference) and a target Morse graph. We first assign a color to
each node in the source using a gradient colormap based on node
position. For each of the distances described above, we compute a
minimizing coupling C. To each node y j in the target, we assign the
color corresponding to the node argmaxxi

C(i, j) in the source. We
then evaluate the quality of the alignment via visual inspection.

Implementation. We compute the Morse graphs using TTK
(1.1.0) [32] and ParaView (5.10.1) [1]. The computation of the
six OT-type distances is extended from [19], which is available on
GitHub [18]. Our implementation for the FGW (thus Wasserstein
and GW) distances follows [33, 34] and Python Optimal Transport
(POT) [13], which uses conditional gradient method for optimiza-
tion. For partial OT-type distances, we add dummy nodes to carry
over the probability mass to be ignored, following [5].

5 RESULTS

We study various OT-type distances using synthetic and real-world
datasets. The first instance of each dataset is used as the source and
shown in Fig. 1 (1st and 2nd rows); see supplementary materials for
details on the datasets, parameter tuning, and runtime analysis.

5.1 An Overview With A Synthetic Dataset

We first use the synthetic Sinusoidal dataset to compare the behav-
iors of six OT-type distances introduced in Sec. 3, where the target
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Figure 1: Structure alignments between the source and the target across all OT-type distances (from left to right) for the Wind, HeatedCylinder,
NavierStokes, and RedSea datasets, respectively. W: Wasserstein distance.

field is generated from the source field with added noise. We use
a color transfer to highlight the structural alignment between the
source and the target Morse graphs across all distances. As shown

TargetSource W GW FGW

pW pGW pFGW

Figure 2: Sinusoidal dataset: structural alignments between the
source and the target across all OT-type distances.

in Fig. 2 (top right), both the Wasserstein (W) and the FGW distance
show reasonable structural alignments, even with the added noise
in the target domain. However, using the GW distance, we observe
that the bottom left of the source is aligned with the top right of the
target. This is due to the fact that the GW distance focuses on the
intrinsic relations among nodes in the Morse graph and is unaware
of the symmetry within the dataset. Therefore, the GW distance may
result in flipped or rotated alignments.

On the other hand, the partial OT-type distances aim to be more
robust by relaxing the couplings and thereby ignoring certain noisy
features. As shown in Fig. 2 (bottom right), certain nodes in the tar-
get are hollow, which are ignored by partial OT during optimization.
In particular, using the pFGW distance, a number of 1-cells in the
target (indicated by orange arrows) that deviate from the source are
ignored in the alignment, indicating its robustness against noise.

Both pW and pGW distances are able to ignore subsets of the
noisy features. The result from pW is slightly worse than that of
pFGW. For example, in the relaxed coupling of pW, a node (indi-
cated by the orange arrow) becomes isolated because its neighboring
nodes are ignored. This is because the pW distance does not con-
sider the intrinsic relations between nodes in the Morse graph. The
pGW distance, on the other hand, results in an upside-down flipped
alignment. Overall, for the Sinusoidal dataset, the pFGW distance
performs the best for feature correspondences, followed by the pW
distance.

5.2 Real-World Datasets: Feature Correspondences

We now examine the OT-type distances using real-world datasets
in Fig. 1. For a time-varying dataset, we use an earlier time step as
the source and a later time step as the target, that is, time steps 1 and
10 for Wind [37], 800 and 879 for HeatedCylinder [25], and 60 and
63 for NavierStokes [4] datasets, respectively. For the ensemble
dataset RedSea [14], we compare ensemble members 1 and 4.

Wind dataset. For full OT-type distances, the Wasserstein and the
FGW distances align the global features reasonably well, resulting in



a smooth color transfer between the source and the target. The GW
distance produces a top-down flipped alignment due to symmetry.
Four noticeable structural differences exist between the source and
target (indicated by orange arrows). Among the partial OT-type
distances, pFGW distance performs the most robustly as it ignores
these four differences by treating them as noisy features. The pW
distance ignores all four features but also ignores two more nodes on
the top boundary. Again, pGW suffers from symmetry in the data.
In summary, partial OT is useful when we are interested in capturing
global similarities while ignoring local differences.

Heated Cylinder dataset. The differences between the source and
the target are minor. Both Wasserstein and FGW distances produce
reasonable alignments, whereas the GW distance produces some
noticeable misalignments in the center of the domain (indicated by
an orange arrow). Using partial OT, the pFGW distance performs
the best by ignoring the additional 1-cell in the target during align-
ment (indicated by orange arrows). In comparison, the pW and
pGW distances perform less robustly than the pFGW distance. For
instance, some 1-cells are incorrectly ignored, also possibly due to
inconsistent sampling density between the source and the target.

Navier Stokes dataset. Comparing the source and the target, we
notice one additional loop on the top right corner of the target.
Both Wasserstein and FGW distances match such an additional
loop in the target to a bottom-right loop in the source (indicated by
orange arrows). This is undesirable but understandable, as these
two distances are forced to match the full masses on the nodes
between the source and the target. With partial OT, the pW and
pFGW distances could ignore the additional loop in the coupling
matrices. The pGW distance also ignores a part of the loop.

Red Sea dataset. The RedSea dataset is an ensemble dataset. As
a result, the target has a very different structure from the source.
Nevertheless, we aim to align these two Morse graphs as much as
possible. Results using the Wasserstein and the FGW distances are
similar. While it is trickier to tune the parameter for partial OT (in
comparison with time-varying datasets), we observe that pW and
pFGW distances ignore 1-cells at the center of the target to form
bigger holes to better align with the source (that contains bigger
holes and fewer loops).

5.3 Classification: Wasserstein vs. GW Distances

We observe that the Wasserstein distance typically produces bet-
ter alignments than the GW distance for the evolving scalar field
datasets in Sec. 5.2. We now discuss potential scenarios when the
GW distance outperforms the Wasserstein distance.

We introduce two synthetic datasets for classification tasks. For
the RotatingGaussian dataset, we generate a mixture of two Gaus-
sian functions with equal bandwidth and rotate the mixture at 100
evenly sampled angles (referred to as the Rotating Binary Gaus-
sians); similarly, we generate 100 rotations of a mixture of three
Gaussian functions (referred to as the Rotating Trinary Gaussians).
For the RandomGaussian dataset, we generate 100 instances of
randomly generated mixtures of two and three Gaussian functions
with random centers and varying bandwidths, referred to as Random
Binary Gaussians and Random Trinary Gaussians, respectively. We
introduce random noises to increase the complexity of each dataset.

We apply multi-dimensional scaling (MDS) [3] to visualize
the GW, FGW, and Wasserstein distances for each dataset, as
shown Fig. 3. Blue points represent data instances from Binary
Gaussians while orange points are from Trinary Gaussians. For
the RotatingGaussian dataset, all three distances produce visible
clusters and clearly separate the two classes. The periodic behaviors
of the dataset are clearly visible as loops from the MDS projection
using the Wasserstein distance as it is sensitive to geometry. For
the RandomGaussian dataset, we still observe some clustering ef-
fects using GW and FGW distances, but without clear separations
between the classes.

Figure 3: MDS projections for the RotatingGaussian (top) and
RandomGaussian (bottom) datasets.

We then apply a k-Nearest Neighbors (kNN) classifier to explore
the classification accuracies using these distances. For each dataset,
we use an 80-20 split of training and testing data. We apply cross-
validation to set k = 3. We report the test accuracy and the F1-score
for each class for all three distances, as shown in Tab. 1. We observe
better classification results using a GW distance in comparison
with the Wasserstein distance. The property that GW distances
are insensitive to the geometric locations and solely measure the
difference between intrinsic graph structures becomes an advantage
in this specific task.

Dataset Distance Accuracy
F1-score

Binary Gaussians
F1-score

Trinary Gaussians

RotatingGaussian
Wasserstein 1.00 1.00 1.00

GW 1.00 1.00 1.00
FGW 1.00 1.00 1.00

RandomGaussian
Wasserstein 0.70 0.76 0.60

GW 0.85 0.86 0.83
FGW 0.70 0.77 0.57

Table 1: Test accuracy and F1-score for kNN classifiers (k = 3) using
the Wasserstein, GW, and FGW distances.

6 GUIDELINES AND FUTURE WORK

The Wasserstein distance optimizes the coupling by minimizing the
Euclidean distances between matched points, whereas the GW dis-
tance solely preserves the intrinsic node relations. Combining these
two components, the FGW distance preserves both Euclidean prox-
imity and intrinsic similarity during alignment. Both the Wasserstein
and FGW distances perform reasonably well in aligning the global
structures between the source and the target. In comparison, the
GW distance is less robust due to a lack of geometric information
to “anchor” the aligned regions. If full structural alignment is re-
quired, then the FGW distance is typically the top choice for feature
correspondence and comparison tasks, followed by the Wasserstein
distance. If intrinsic graph structures are more important than extrin-
sic geometry, such as for certain classification tasks, then the GW
distance outperforms the distances with a Wasserstein component.

On the other hand, distances based on partial OT are generally
more robust to noise and outliers than their full OT counterparts. If
partial structural alignment is allowed, the pFGW distance typically
performs the best for feature correspondences, followed by the pW
distance. Aside from being flexible, partial OT also helps highlight
the structural differences between the source and the target.

Using time-varying datasets, these OT-type distances can be used
in feature tracking. In particular, partial OT may be used to detect
structural changes over time. Our comparative analysis could be
easily extended to study Morse-Smale complexes and their variants
such as the extremal graphs. This is left for future work.
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