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ABSTRACT

Mixtures of nanoparticles (NPs) with hybridizing grafted DNA or DNA-like strands have been of
particular interest because of the tunable selectivity provided to the interactions between the NP
components. A richer self-assembly behavior would be accessible if these NP-NP interactions
could be designed to give nonadditive mixing (in analogy to the case of molecular components).
Nonadditive mixing occurs when the mixed state volume is smaller (negative) or larger (positive)
than the sum of the individual components' volumes. However, instances of non-additivity in
colloidal/NP mixtures are rare and systematic studies of such mixtures are non-existent. This work
focuses on patchy NPs whose patches (coarsely representing grafted hybridizing DNA strands)

not only encode selectivity across components but also impart a tunable nonadditivity by varying



their extent of protrusion. To guide the exploration of the relationship between phase behavior and
nonadditivity for different patches' designs, the NP-NP potential of mean force (PMF) and a
nonadditive parameter were first calculated. For one-patch NPs, different lamellar morphologies
were predominantly observed. In contrast, for mixtures of two-patch NPs and (fully grafted)
spherical particles, a rich phase behavior was found depending on patch-patch angle and degree of
non-additivity, resulting in such phases as the gyroid, cylinder, honeycomb, and two-layered
crystal. Our results also show that both a minimum positive nonadditivity and multivalent
interactions are necessary for the formation of ordered network mesophases in the class of models

studied.

I INTRODUCTION

Colloidal particle shapes and particle-particle interactions can be designed to produce numerous
self-assembled ordered phases. ! For example, interparticle interactions have been deployed that
mimic those of block copolymers, i.e., particles with connected but chemically incompatible
domains, as these would offer structural versatility and a broad range of base-chemistries and
feature scales.'®!! In a recent study, a single component system of “two-block” Janus particles
with staggered rectangular patches was found to nucleate into the single gyroid phase in a Monte
Carlo simulation study.'? Another physical method to generate diverse phase behavior in colloidal
particles is to graft nanoparticles (NPs) with complementary DNA strands to enact preferential
attractions between select mixture components.'*!” Recent experiments and simulations have
demonstrated that mixtures of DNA-modified NPs and much smaller NPs (which represent mobile

“electron equivalents”) can assemble into hexagonal, cylinder, and triple double-gyroid phases.'®



A model proposed by Kumar-Molinero which implicitly encoded for positive nonadditivity in the
inter-particle potential of colloidal particles led to the formation of a wide variety of novel
mesophases, including some typically associated with block copolymers (like the lamellar, gyroid,
and hexagonal).!*° The Kumar-Molinero (KM) model uses a mixing rule where the characteristic
length “c” of the contact distance between two particles A and B differs from the arithmetic
average of the characteristic contact lengths for A pairs and B pairs, i.e., o4 =
((044 + 0)/2 + A) with A # 0; for spherical sites, this corresponds to a departure of the so-
called Lorentz’s additivity rule. The KM is peculiar in that it combines a positive non-additivity
(A > 0) with a preferential cross-species interaction energy parameter (£45/€44 > 1), leading to a
stronger attraction and longer distance of approach for unlike particles. This combination can favor
the formation of ordered phases because the clustering of unlike pairs caused by their stronger
contact energy generates a larger excluded volume than that for the clustering of like pairs,
resulting in microphase segregation. This may explain why previous additive models have

21-25 \while models with non-additive

predicted a limited number of crystals and quasicrystals,
potentials have led to the formation of microphase segregated phases like those associated with
block copolymers. The effect of nonadditive mixing is also significant for molecular components,
often leading to nontrivial phase behavior, such as azeotropy and eutecticity. Other examples of
idealized non-additivity models that have been studied in the literature include the Widom-
Rowlinson, ¢ the Asakura-Oosawa,?’ and the nonadditive Holland models.?

In many of the previously mentioned nonadditive models, nonadditivity is artificially imposed
in the mixing rule for the like and unlike interaction pairs, with no explicitly modeled NP

functionalization or packing interaction that would physically generate the nonadditive behavior.

However, there are physical examples where nonadditivity is realized, such as when using NPs



with suitably designed grafted patches, which present an anisotropy caused by the patches residing
in either only one or multiple regions of the NP surfaces that influence how NPs interact and self-
assembly. Janus particles having single patches, for instance, have previously been shown to
assemble into micelles, tubes, and lamellae.”*? The influence of the number of patches per

particle has also been studied,'**

with a primary interest in tetrahedrally arranged four-patch
particles, since they can form the diamond crystalline phase, a sought-after structure for potential
applications in photonic devices.*>>*® Regarding the influence of nonadditivity on the assembly of
these patchy particles, our group has recently shown that tetrahedrally grafted raised patches can
kinetically enhance the formation of the diamond phase through increased positive nonadditivity.*’

Since the anisotropy of the NP patches could lead to an experimental realization of effective
two-body potentials that approach the KM model, we chose two-component systems of spherical
NP cores with nonadditive grafted patches as a platform to explore the correlation between patch
design and phase behavior. These patches, which mimic preferential inter-species attractions (such
as those generated by sequence-complementary grafted DNA or DNA-like strands of varying
lengths), enable us to physically enact and control positive non-additivity through the decoration
of NP surfaces with raised patches of differing heights and strengths of preferential attraction. Our
model incorporates a highly coarse-grained representation of DNA hybridization and has tunable
nonadditivity, allowing us to examine the influence on self-assembly of local nonadditivity (by
varying patch height and softness of core-core interactions), multivalency (by varying the number
of patches per NP), geometric frustration (by varying the angle between the patches), and mixture
symmetry (by using patchy NPs for both or just one of the components). We used molecular
dynamic simulations to investigate how such different system designs impacted the propensity to

form different micro-segregated mesophases.



The rest of the paper is organized as follows: Section II describes the Kumar Molinero Model,
the interparticle potential models, simulation methods, and order parameters employed in this
study; Sec. IIl contains the main results and associated analysis, and Sec. IV provides the

concluding remarks and outlook for future work.

11. METHODS
A. Overview of the Kumar-Molinero Model

We explored the idea of using the potential of mean force (PMF) between two particles, either
of the same type (A-A or B-B) or different types (A-B), as a guide to predict local positive
nonadditivity in the many-particle system simulations. As for post-processing, we calculated the
micro or local nonadditivity by using the diameters of the particles for like (o44) and unlike (g,5)
pairs.

In (b)

Figure 1(a), we compare the PMF between two Kumar Molinero (KM) particles to the radial
distribution function of the mesophase formed (at a temperature of 300 K, pressure of 0 atm, and
74% of component A). These PMF calculations were performed using Monte Carlo simulations
that place one of the particles at random positions and orientations within a given distance from a
fixed particle following the protocol from Ref. *® The KM model uses a simplified Stillinger-

1> to model the intermolecular interactions between both like and unlike

Weber type of potentia
nanoparticles. The functional form of the potential is given in the Supplementary Information. To
obtain the hexagonal cylinder phase and lamellar phases, we followed the simulation protocol
detailed in the original article.!” We see that the positive local nonadditivity associated with the

Lorentz's rule shown in the PFM is realized in the contact distances between unlike and like

particles (with g45/044 = 1.15). Figure 1 (b) shows the radial distribution function (RDF)



between the particles in the cylinder phase and the RDF between the individual components (A
and B) before mixing happens (pre-mix). The RDF shows that upon mixing, neighboring like-type
particles are pushed closer together from their pre-mix positions; this behavior arises from the
stronger attraction between A-B particle pairs and the softness of the A-A and B-B interactions.
Indeed, the energetic penalty of moving like particles closer together is small due to the softness
of their potential and is compensated by the more favorable A-B contact energy; despite the longer
A-B contacts, the more abundant A-A and B-B contacts lead to a smaller system volume upon
assembly as seen in Figure 2. This volume decrease allows the efficient packing needed to enact
as many A-B contacts as possible. This analysis also illustrates the limitations of the effective two-
body NP-NP PMF in correlating with the phase assembly behavior that results from many-body
interactions which are captured, albeit bluntly, by the excess volume of mixing Av.

Despite the similarities in the types of phases that the KM model and typical diblock copolymers
(BCPs) form, key differences exist in the mechanism of mesophase formation. The BCPs assemble
into mesophases largely because the effective repulsion between the A and B blocks drives
microphase segregation, with macrophase segregation precluded by the intrachain bonding of the
A and B blocks; the system rearranges to decrease AB contacts and minimize interfacial area. In
such systems, the main driving force to mesophase formation is hence energetic, with density
changes being typically negligible, and entropic changes associated with polymer conformations
having a secondary effect. In contrast, in the KM model, A-B contacts are energetically favorable
but being more distant, they would tend to increase the system's volume and increase the free
energy. Thus, the system rearranges to try to decrease its volume and consequently enhance

packing entropy by favoring AA and BB contacts despite the associated energetic penalty and loss



of mixing entropy. This competition between energetics with mixing and packing entropy in the

KM model results in microphase segregation and network phases akin to those formed by BCPs.

Table 1 sums up the comparison between the two systems. Based on this analysis, we defined
three essential features that would allow us to map the KM model to the DNA functionalized NP
model: A-B contact (energetic) selectivity, local nonadditivity, and core softness. While the
directionality of the NP-NP interactions is absent in the spherically uniform KM model potentials,
we incorporate it in our model as NP grafted patches to physically realize the local nonadditive

attraction between unlike particles.
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Figure 1: Sample KM model results. (a) Potential of mean force (PMF) in reduced units for values
of the attraction ratio EA;B = 1.7 and contact distance ratio ZA;B = 1.15 (b) Radial distribution
AA AA

function between particles of types A-B, A-A, and B-B in the hexagonal cylinder phase, and

between particles before mixing. Phase formed at xa = 0.74, EA;B = 1.7, and ZA;B = 1.15.
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Figure 2: Volume difference between the mesophase and the pre-mix state of the individual

components’ phases normalized by the volume of the pre-mix state (Av) for the KM model
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mesophase formed using = 1.15 and different attraction parameter ratios at pressure = 0. More
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details about Av calculation are given in the supplementary material.

Table 1: Comparison between driving forces for mesophase formation in diblock copolymers

(BCP) and the KM model (A refers to changes upon mesophase formation).

Property BCP KM model
AU Effective repulsion between A B contacts energetically
copolymer block chains A B favorable
A(PV) Negligible variations in volume Significant decrease in volume
o Large loss in mixing entropy must
Small loss in mixing entropy and
. ‘ ‘ be countered by an increase in
TAS chain conformational entropic penalty '
‘ ‘ packing entropy (AA and BB
to fit into domain geometry ‘ .
interactions)
< 0 by maximizing favorable A-B
< 0 by minimizing unfavorable A-
AG ) ) AU and volume contraction (APV)
B AU and conformational frustration
while minimizing AS loses




B. Mixtures of Grafted Nanoparticle Model

Based on the Lorentz's mixing rule, we first designed a coarse-grained nonadditive model for
grafted NPs with one patch (1P). This model, summarized in Figure 3 (a), was intended to single
out the effect of the local nonadditivity on phase behavior. The A-B selectivity (mimicking the
effect of hybridization between grafted chains) is enacted by the attraction between
complementary rigid central patches (CP). Each patch here is made of 19 identical Lennard-Jones
central patch beads in a closed-packed hexagonal arrangement (see Fig. 3(a)), where op= 0.2 and
epag/kT being one of the parameters varied to map phase behavior. We also explored a model
with flanking patches to enforce the directionality of the interactions whose PMFs are provided in
the supplementary material. The unlike patches and core-patch interactions are purely repulsive
(enacted through the Lennard Jones potential with a cutoff radius shifted to 2°c). We kept the
parameters for these interactions constant: oc_pgicn = 0.6, Opgrcn = 0.2, Ocap = 1,€caa =
EcBR = €c—patch = €pa—pa = €pp—pp = 1. The like cores can be made to be purely repulsive or
interact through the LJ potential and we explored both scenarios in our simulations. The degree of
overlap between the like cores (044 = 0cpg) can also be tuned to increase the local nonadditivity.
A soft core would approximate a case where the core is loosely grafted with flexible chains, while
the patches are densely grafted with longer, stiffer chains. The NPs are modeled as rigid bodies
with all intramolecular interactions excluded. We note that the geometry and level of patch coarse-
graining (as representing multi-chain grafting implicitly) adopted here would be most relevant to
NP cores which are of intermediate size (say 40nm < g¢44 < 100nm) being significantly larger
than the graft lengths,*® and for relatively dense grafting densities that would allow smearing out

the interactions of multiple individual grafts into effective soft beads.



Figure 4(a) shows the calculated the PMF (which captures the orientationally averaged NP-NP
free energy at different distances) between two patchy NPs in vacuum. These PMF calculations
followed the same protocol as that described in reference to Figure 1. Due to the stronger energetic
complementary patch-patch interaction, the PMFs show a preferential contact at a longer distance
between the unlike NP particles (o4 = 0cap + 2H) than the gy, of like particles which is equal
to acaa- To tune these relative contact distances, we change either a.44 or the height of the patch
beads, where height (H) measures the extent of patch protrusion outside the core’s surface; H
ranged from zero (flat patch) to 0.2 (op = H). A similar design was used before in exploring the
relationship between nonadditivity and height of the patch for mixtures of four-patch particles.”’
The height of the patch is also directly associated with the preferential contact, i.e., NPs with more
protruding patches (representing longer grafted chains) would have a larger 045 and r45. The patch
coverage angle is fixed at ® = 32° for the one patch model, so that as the patch height increases by
moving the patch beads away from the core center, so do the bead-bead distance and patch

diameter (i.e., of the circumference that inscribes all the beads in one patch).

10



(©)

Figure 3: Coarse-grained NP model having a raised patch of small beads (representing

complementary DNA grafts). The A-B selectivity (hybridization) is modeled using attractive,
complementary patches. (a) One-patch model. (b) Two-patch model with the angle between
patches (¢) highlighted. (c) Patch coverage angle (0®), patch bead diameter (op) and height (H).
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Figure 4: PMF (free energy) between two NPs in vacuum as a function of their center-to-center

distance r; for: (a) One-patch NP, and (b) Two-patch NPs with different angles ¢ between the
patches as marked in the legend. In (a) the vertical lines mark the minimum PMF value. The PMF
values are divided by the total number of beads and curves were calculated using H = 0.075,
o = 1.15,and ocyay = 1, with €py5/kT = 1.2 for the one-patch particles and €p5/kT = 3 for

the remaining PMFs.

To probe the multivalence effect, we first explored NPs with two-patches (2P). Each patch now
is made of 7 identical Lennard-Jones beads and the coverage angle is fixed at ® = 30°, as shown

in Figure 3 (b-c). The interactions among cores and central patches are equal to those described in

12



the previous paragraph. We also explored multiple angles (¢) between the patches, with some
representative angles used in the PMF calculations of Figure 4 (b). We see that systems with higher
¢ values behave similarly to the one patch case because of the large distance between the patches,
while systems with angles close to 90° have two wells that arise from the two favorable contact
distances as illustrated in Fig. 4(b). The PMF for like particles was largely unaffected by the angles

between the patches because their interaction potential is dominated by core-core contacts.

C. Binary Mixture of Patchy and (Non-patchy) Spherical Nanoparticles

NP patchiness creates anisotropic NP-NP interactions that may limit access to some of the
mesophase morphologies which are accessible to the fully isotropic KM potential. To minimize
this effect, we studied mixtures of densely grafted patchy NPs with longer stiffer chains
(component A) and (non-patchy) loosely grafted NPs (component B) that are modeled as spheres,
as depicted in Figure 5 (a). In this system, the patches will have attractive interactions with the
implicit grafts all around the spherical particle B. Here, the patches are made of 7 identical
Lennard-Jones central patch beads in a closed-packed hexagonal arrangement, and we define
045 = 0cap + H. All the other like interactions and modeling assumptions are the same as those
for the mixture of patchy NPs described in the previous subsection. We also tuned the degree of
overlap between the like cores and the spherical particles (0-44 = 0cpg) to increase the local
nonadditivity. We explored both, mixtures of one-patch NPs and the two-patch NPs as component
A with spherical particles as component B. The PMFs for the mixtures with two-patch NPs are
shown in Figure 5(b) for selected angles between the patches (¢). (The PMFs for the mixtures with
one-patch NPs and additional PMF curves for different ¢ are available in the supplementary
material). The effective AA and BB interactions (also shown in Fig. 5) are almost identical despite

the presence of patches in the A particles. This happens because like-patches interactions are
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repulsive and core-core contacts are most prevalent making the preferential distance of contact for
like particles to be the same. A second potential well for angles in the region 80°< ¢ <120° occurs

because this angular geometry allows the simultaneous interactions of two patches with the

spherical particle.
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Figure 5: (a) [llustration of the implied grafted-chain — patch coarse-graining for particles A and
B. (b) PMF between two NPs in vacuum as a function of their distance 7;; for two-patch NPs (2P)
with different angles between the patches (¢). The A-A PMF curves were similar for different
values of ¢; the curve shown here corresponds to ¢ = 90°. The PMF values are divided by the total

number of beads and curves were calculated using H = 0.08, 6cu4 = oss = 0.8 and ep5/kT = 3.
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D. Simulation Details

After selecting the characteristics of our modes guided by the (two-NP) PMF results, we carried
out Molecular dynamic simulations of many-NP systems to characterize their phase assembly
behavior. The systems were simulated in the isothermal-isobaric (NPT) ensemble with rigid body
dynamics and no intramolecular interactions using the LAMMPS software.** The systems sizes
ranged from N = 1500 to 12000 with different compositions. The initial random configurations
were cooled at a rate of 2x 107 kT/step and constant pressure (P*= Po3 /& =0.5) from a disordered
state (7%= kT /e =4) until we observed the formation of an ordered structure, which typically
occurred for 0.5 < 7*< 1.0. The cooling runs consisted of 3x10 steps with a timestep of At =
0.001. Thereafter, we equilibrated the system at the phase formation temperature for 1x107 steps.
In some cases, we carried additional cycles of heating-cooling NPT runs to try to anneal out

morphological defects.

E. Order Parameters

The phases were classified using structure factor calculations to identify the characteristic
diffraction peaks of different ordered morphologies. These calculations were done using the center
of mass of each NP. We also calculated the relative angle (£) between neighboring spherical
particles and the patches of the two-patch NPs. These 6 angles are formed between the vectors

connecting the center of mass of spherical particle i with patch 1 (r;;,), and patch 2 (17, ) of particle

J-
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III. RESULTS & DISCUSSION
A. Mixtures of Patchy Nanoparticles
Local nonadditivity is necessary but not sufficient to form network phases.

We first carried out simulations for one-patch NP with flanking patches and repulsive like-cores
with g.-44 = 1 to evaluate the role of the Lorentz's nonadditivity in the self-assembly of the grated
NPs. At the equimolar composition, we found that the system forms a thick lamellar phase or a
thick layered crystal for a range of patch heights. For flat or "retracted" (non-raised) patches, the
system forms thick layers of NPs for high values of the energetic attraction parameter. The latter
is accompanied by the crystallization of the particles and, consequently, a decrease in the mobility
of the particles. More details about the model with the flanking patches, snapshots of the phases
formed, and a schematic phase diagram are provided in Figures S4 and S5 of the Supplementary
Material. The thick lamellar transformed into macrophase-segregated domains when decreasing
the attraction (gp45/kT) between the unlike patches but crystallized when increasing it. We also
calculated the distance between particles of the same type at the first peak of the radial distribution
functions and observed that they stay at the distance corresponding to the well of the Lennard-
Jones potential (2!%c) due to the harsh (#'2) repulsion between cores. This characteristic of the
system results in a negative local additive parameter for 45 < 2'/°a,, and positive local additive
for 0,5 > 2Y/%0,,. Changing the mixture composition did not lead to other phases besides the
lamellar phase; in particular, no trace of an ordered network phase, like the gyroid, was ever

observed.

Softer core-core interactions and weaker directionality enable the formation of cylinders.

The appearance of cylinders-like structures in the one-patch model was associated with

increasing the nonadditivity by decreasing 44 to 0.8 for x4 = 0.66 and the removal of flanked

16



patches. Softening the core allowed for not only an increase in the local nonadditivity but also for
more flexibility in the possible arrangements around the patches. As a comparison, we also
explored the effect of increasing the patch-patch contact directionality and the fraction of the
components with the model using flanked patches and observed that this generated a more
restrictive one-on-one binding that favored lamellar phases (see Supplementary material). In
Figure 6(a) we compare the number of unlike neighbors at the preferential distance of contact for
our one-patch model without flanking-bead patches with different extents of nonadditivity (o4 =
1 and 0.8) and find that softening the cores leads to an increase in the number of neighbors. Note
that the minority-component cylinders tend to form two aggregated rows of the minority B
particles and have imperfect orientational alignment with observable disclinations. Long
disordered tubular structures were also previously found for particles with strong one-patch
interaction.’® This anisotropy of the patch NPs favors aggregation between the cores to enable
unlike patches to face each other. Our exploration of mixtures of the two-patch NPs (not reported)

did not result in phases different from the lamellar phase or disorder cylinders.
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Figure 6: (a) Radial distribution function (g(r)) and coordination number for unlike components

(N(r)) for one-patch NPs with €p5/kT = 3 and x, = 0.66. Snapshots of the phases formed using
(b) 0caa = 1(c) ocan = 0.8.

B. Binary Mixtures of Patchy and (Non-patchy) Spherical Nanoparticles

The mixtures we explored of one-patch NPs with spherical particles also led to lamellar phases
regardless of the mole fraction of patchy particles or o-44. On the other hand, mixtures containing
two-patch NPs exhibited a diverse range of mesophases, depending on the angle between the

patches (¢) and the two-patch NP mole fraction (x,); only the results for this system are presented
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in this section. A summary of the phases formed is compiled in Figure 7, including a peculiar
crystalline phase that comprises a two-layer motif, which we denote as the LXY crystal (to be later
described in more detail). As was shown in the previous section, layered crystal or lamellar
structures are not directly associated with a positive nonadditivity but the presence of patches
affects the phase behavior since equimolar mixtures of size-additive spherical particles with
preferential attraction tend to assemble into the CsCl lattice instead.?? The remaining phases
observed are associated with a minimum level of non-additivity, and the connection between
nonadditivity ratios and specific phases will be explored in the following sections. The parameters

used to obtain the phases in Figure 7 are compiled in the Supplementary material.

For two-patch NPs as the majority component, gyroidal structures are favored by patch-
patch angles near 90°

The primary distinction between a one-patch NP system and a two-patch NP system is that the
latter possesses multivalence, which confers the ability to form curved A-B interfaces between
particle domains, resulting in a diverse range of phases. Specifically, when the angles between the
NP patches fall within the range of 81°< ¢ < 109°, the single gyroid phase is observed. To
determine this range, we analyzed the structure factor S(k) of the minority component (B) in the
formed structures. Figure 8 shows that the characteristic peaks of the gyroid structure factor are

lost when ¢ values fall outside the aforementioned range.
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Figure 7: (a) Summary of the main ordered phases formed as a function of the angle ¢ between

the two patches of type-A patchy NP (as per Fig. 3(b)), and its molar fraction. (b) Representative

snapshots of the different phases. Patchy and spherical NPs are shown in red and cyan,
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respectively. In the single gyroid snapshot, the two components are shown separately with the B-

type spherical NPs forming the single gyroid network.

¢="170 ¢=90 ¢=109 $=118
(@)
e 1 7
1 L 6. — 10’
] Iy Iy —— o
e I ooy
| e 118° | | 51 109
s S } — s
= 1@ 1 1 —_
= $ it 5
! o : ! 31
) % !
P ° i : 27
- oL e : 1]
100 !
100 ; ‘.'. —° .'L..'”'; 0 . ‘ ,
06 08 10 12 14 16 1.8 20 22 0.9 1.0 1.1 1.2
q/q, I'ag
(b) (c)

Figure 8: (a) Snapshots of the structure formed by the minority component B in mixtures with
type-A two-patch NPs having different angles ¢ between patches. (b) Structure factor of
component B for the structures in (a). (c¢) First-solvation shell of radial distribution function
between A-B NPs for different patch angle ¢ (marked in the legend) in A-type NP. Simulation

results correspond to x4= 0.66, o45 = 1.08,0-44 = 0gg = 0.7, and €p5/kT = 3.

The angular range that favors the gyroidal structure also corresponds to the region in Figure 7
where the potential of mean force (PMF) exhibits two wells. This region is located near ¢ = 90°,

where the spherical particle can interact with either one patch or with both patches of the same NP
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simultaneously, forming an angle (#) of approximately 56° between the centers of the spherical
particle and the two patches. The presence of these two distinct preferential distances between a
spherical NP and the patchy NPs is also evident in the radial distribution function, as depicted in
Figure 8 (c), where two peaks are observed at close distances.

For more acute ¢ angles, a smaller € is more favorable to reduce the repulsive energy associated
with any overlap between the patches and the spherical particle. Consequently, in the radial
distribution function, the first peak of the distribution for ¢ = 70° appears at a higher value of r4p
compared to that for ¢ = 90°, reflecting the different well positions in the PMFs. On the other hand,
obtuse ¢ angles prevent the simultaneous close contact of a single spherical NP with both patches
of the same patchy NP, leading to a single peak in the first solvation shell between A and B
particles. To further validate these observations, we present the probability distribution of & angles
at the first peak of the radial distribution in Figure 9 (a). A @ color-coded snapshot of the gyroid
structure in Figure 9 (b) also shows that most of the particles with ¢ = 90° have 8 > 40° and that
there is no significant preference for particles with 8 < 40° to be in the node or the strut of the
network. The more homogeneous distribution of angles at ¢ = 90° can be attributed to the strong
energetic incentive for particles to be in the second (farther) well position of the corresponding

PMF curve, a preference that facilitates the formation of a regular network.
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Figure 9: (a) Probability distribution of angle 6 between the center of spherical particle B and the

patches of particle A at the first peak of the radial distribution from Figure (c). (b) Snapshot of the
gyroid structure formed by type-B spherical NPs for ¢ = 90°. B Particles with 8> 40’/ 0 < 40" are

colored in cyan / grey.

When species B is still the minority component but ¢ > 155°, a cylindrical phase forms where
the spherical NPs form single-line columns in the characteristic hexagonal lattice, surrounded by
6 patchy NPs (see Fig. 10a). For 115° > ¢> 150° the system seems to get trapped in disordered
network morphology. The transition between hexagonally packed cylinders and a gyroid phase,
mediated by disordered network states, can be understood by the fact that for sufficiently large ¢,
a curvature is induced around the domains of the spherical component B, resulting in tubular
structures. Whether such tubes are able to align in a hexagonal pattern or become struts that fuse
into nodes in a regular manner, as in the gyroid phase, or in a disordered fashion, is governed by

the angle ¢ and the geometric constraints it enacts for A-B contacts.
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Figure 10: Snapshots and unit cell closeup of (a) the Cylinder phase for x,= 0.66, and (b) the LXY
phase for x4= 0.33. In (a) and (b) snapshots show the two particle types together (atop) and
separately (bottom) with patchy particles (A) colored red and spherical particles (B) cyan. (c)
Structure factor of the minority component in the LXY (top) and cylinder (bottom) phases.
Simulation results correspond to o4 = 1.08 and 044 = ogg = 0.8 for both systems, with

epag/kT = 3 for the cylinder phase, and €p45/kT = 5 for the LXY phase.

For two-patch NPs as the minority component, a honeycomb phase and a two-layered crystal
occur.

When we reverse the relative population of components by making the patchy particles with
150°< ¢ < 56° the minority component, the gyroid phase is no longer observed; instead, a
honeycomb phase is formed. Unlike the gyroid phase, the honeycomb structure can be formed
over a wider range of ¢ values. However, acute ¢ angles are associated with a loss of order in both
the A and B domains, as observed in the radial distribution function of the honeycomb phase shown
in Figure 11.

For ¢ > 160-, the mixture assembles into a two-layered crystal (LXY) phase. This phase, whose

specific features have not been reported before (to the best of our knowledge), consists of a
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crystalline flat layer of species A (patchy NPs) and a zigzagging layer of species B, with regular
interstitial gaps, as depicted in Figure 10 (b). In essence, the distance between the patches prevents
the simultaneous contact of a patchy NP to the same spherical particle so that favorable energetic
contacts are maximized by the local packing/bonding geometry embodied by the LXY phase. In
Fig. 10 we contrast the LXY phase structure with the cylindrical phase described earlier which
occurs when the A-B composition is reversed (i.e., for patchy NPs as the majority component);
while a significant similarity is revealed when seen as “inverse” structures, the key differences are
the gaps in the A layers which mediate the appearance of distinct zig-zagging B layers in the LXY
structure. Their differences can be quantitatively highlighted by the structure factors of the
minority component as shown in Figure 10 (c).

The formation of the LXY phase is preceded by the formation of the lamellar phase as the system
is cooled from the isotropic phase. The LXY phase is stabilized for with high energetic attraction
strengths between the patches and the spherical NPs (€p45/kT > 2.4), while the lamellar phases is

associated with weaker strengths (ep5/kT< 2.4).
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patchy particles (A) colored red and spherical particles (B) cyan. (b) Radial distribution function
between particles of types A-B, A-A, B-B for different patch-patch angles (¢). Simulation results

COI‘reSpond to x4= 033, Opp = 108, Ocaa = O = 07, and gPAB/kT = 3.

Positive Local Nonadditivity and Phase Formation

With the exception of the lamellar and layered crystal phases, all other phases required positive

local nonadditivity values (ZA;B > 1), as predicted by our analysis of the Kumar Molinero model.
BB

To tune the local nonadditivity, we primarily modified the height of the patch (H) and,
consequently, a4 In order to achieve an even higher level of nonadditivity, we also increased the
degree of overlap between the like cores (o-44 = 0pp), effectively making the like cores softer
and shortening their average contact distance. Figure 12 illustrates the relationship between the
values of local nonadditivity parameters and the phases observed at temperatures below the order-
disorder transition temperature, 7* < 1 (a Table summarizing all the key simulation parameters is
provided in the supplementary material). Notably, the gyroid phase required the highest value of
nonadditivity. To attain this level, we needed to soften the core by using a minimum of oz = 0.8.
For this value of a5, decreasing the height of the patch, and consequently, the local nonadditivity,
lowered the intensity of the structure factor peaks until the gyroid phase became a disordered
network for gy5 = 1.08. Structure plots and snapshots of the structures for this case are available
in the supplementary material. Formation of the honeycomb phase necessitated ozp < 0.9.

Additionally, Figure 12 (c) shows how the particle distances and the assembled phase change with
the level of nonadditivity in cases where either a lamellar or a single gyroid phase may form. As
discussed in our analysis of the Kumar Molinero model (Table 1), nonadditivity contributes to the

microphase segregation associated with mesophase formation by simultaneously maximizing
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favorable A-B contacts and minimizing losses in PAV and AS through increased AA and BB
contacts. Contrary to the gyroid phase, the cylinder phase did not require that oz < 1 to form,
being able to self-assemble for ogg = 1 and a minimum height of the patch of g5 = 1.10. We
also note in Figure 12 (b) that the formation of the LXY was favored for higher values ag,5, since
the flat patch case, o453 = 1, required smaller values of ozp as can be seen in Table S1 of the

supplementary material.
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Figure 12: Diagram outlining areas where different phases formed prevalently as a function of the
degree of local nonadditivity (c,5/ 0gg) and the fraction of patchy particles (x4) for: (a) ¢ = 90°
and gpap/kT = 3.6, and (b) ¢ = 180", and epsp/kT = 5. Points mark the specific simulation
conditions. Points denoted as “amorphous” correspond to states where no clear phase or regular
network formed despite some microphase segregation and those denoted as FCC indicate a
substitutional disorder FCC phase. (c) Radial distribution function between particles of types A-
B, A-A, B-B for the gyroid phase at g4 = 1.075, ggg = 0.7 (top) and for the lamellar phase at

o4 = 1.2, ogg = 1 (bottom).

IV.  CONCLUSIONS

In summary, our study focused on investigating the phase behavior of binary A+B mixtures
consisting of spherical NPs decorated with round patches, as well as mixtures of patchy NPs with
(non-patchy) spherical NPs. These NPs were designed to have preferential attractions between
different species, coarsely simulating the hybridization effect between grafted DNA or DNA-like
strands. By raising the patches, a second length scale is introduced to the inter-NP interactions
which elicits a local nonadditive behavior that was surmised to potentially lead to the assembly of
more complex ordered phases. By adjusting the energetic and geometric parameters of the patches,
as well as the softness of core-core interactions, we were able to indeed observe the formation of
a variety of mesophases.

Our exploration of the parameter space involved calculating the pair potential of mean force to
identify parameters and interaction models that would induce local nonadditivity. We attempted
to match the key features of our models with those of the Kumar Molinero (KM) potential model,
which exhibits implicit nonadditivity and is known to form mesophases typically associated with

block copolymers. Analysis of the KM model revealed that the combination of positive
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nonadditivity (relative to the Lorentz mixing rule), the preferential attraction between unlike
particles, and the softness of the core-core interactions resulted in a net contraction of the volume
in the resulting mesophases (relative to the pre-mixed state of the pure components). Based on this
analysis, we investigated the interplay among these factors in our patchy NP model and their
correlation with the self-assembly behavior.

In mixtures of one-patch NPs, we probed the effect of local nonadditivity and one-on-one
"monovalent" binding between patches. Although we observed various lamellar phases, we did
not detect the formation of other mesophases regardless of mixture composition. This preference
for lamellar phases suggests that the unidirectional, hard-core interactions strongly favor flat A-B
interfaces, leading to lamellar-like morphologies rather than phases with curved A-B interfaces.
However, when we softened the interactions, and consequently increased the extent of local
nonadditivity, we were able to form cylinder-like phases. This allowed for associations between
more than two misaligned patches, resulting in weak "multivalent binding" and curved A-B
interfaces. The amount of multivalent binding was quantified by the number of A molecules
surrounding one B molecule and vice versa. These cylinder-like phases exhibited some defects
and lacked the perfect hexagonal packing symmetry observed in cylinders formed by BCPs and
the KM model.

Overall, our results for the raised one-patch model, which provides a physically feasible means
of achieving NP nonadditivity, indicate that the directionality and anisotropy introduced by the
patches may hinder the formation of network phases. In contrast, the fully isotropic nature of the
KM interparticle interactions suggests that some degree of promiscuity or isotropy in the inter-
species interactions might be necessary to form the multivalent binding motifs commonly observed

in network phases.
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To leverage directional interactions and increase the binding valency of NPs, we investigated
the use of two-patch particles (A) with different angles between the patches mixed in with spherical
particles (B). This mixture exhibited a diverse phase behavior that depended on the angle ¢
between the patches, the fraction of patchy NPs, and the degree of nonadditivity. The phases
formed included the gyroid, honeycomb, cylinder, and a two-layered crystal. We demonstrated
that a patchy NP with ¢ closer to 90° interacted with spherical particles in such a way that the NP
centers and the patch centers did not align but formed an angle that favored the formation of the
single gyroid phase. The preference for this angled contact between these A-B particles was related
to the shorter range of one of the two potential wells observed in their potential of mean force
(PMF). For mixtures with more obtuse patch-patch angles (¢ >160°), the cylinder phase became
favorable as the double well disappeared from the PMF. The formation of non-lamellar or layered
phases thus required positive local nonadditivity, with the single gyroid phase requiring the highest
extent of nonadditivity.

The strategy of mixing a suitably patchy NPs with spherical NPs can be seen as a promising
platform to realize ordered network morphologies out of the spherical NPs. It can be argued that
in such systems the patchy NPs acts as a guide (or a structure-directing agent) for the formation of
a regular network of spherical soft particles. In this context, once the patchy particles have been
created and the suitable ligands identified, spherical particles of varied core chemistries could be
equally assembled. These results suggest that these mesophases can be designed to have diverse
mechanical, optical, and photonic properties.

The current model can be modified to explore different variants, such as NPs with alternative
patch geometries (e.g., rectangular packing instead of hexagonal) and different patch widths. Also

importantly, our study was restricted to cases where the A and B components have cores of the
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same diameter; core size disparities could open the door to more complex mesophases.
Furthermore, increasing the level of detail by explicitly modeling DNA strands in our patches
could provide insights into additional factors such as chain rigidity and length, which may
influence phase behavior. This will be particularly important when considering “small” NPs (say
with diameters < 30 nm) where the effects of the degrees of freedom of the patch constituents
become more prominent. These questions are the object of our ongoing investigations. While many
new and more refined variants of our models can be explored, our findings already highlight the
importance of targeting nonadditivity when designing and producing NPs capable of mesophase

formation.

Supporting Information

See the supplementary material for additional details provided pertaining to:

(S1) Kumar-Molinero model, (S2) Normalized volume difference, (S3) PMFs for binary mixture
of patchy and spherical nanoparticles model, (S4, S5) one patch particles with flanking beads, (S6)
parameters used in the simulations of binary mixtures of patchy and spherical nanoparticles, (S7)
model details: Base coordinates of patchy particles, (S7) effect of nonadditivity on the structure

factor of network phases. (Supporting Information for Publication.docx)
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