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ABSTRACT 

Mixtures of nanoparticles (NPs) with hybridizing grafted DNA or DNA-like strands have been of 

particular interest because of the tunable selectivity provided to the interactions between the NP 

components. A richer self-assembly behavior would be accessible if these NP-NP interactions 

could be designed to give nonadditive mixing (in analogy to the case of molecular components). 

Nonadditive mixing occurs when the mixed state volume is smaller (negative) or larger (positive) 

than the sum of the individual components' volumes. However, instances of non-additivity in 

colloidal/NP mixtures are rare and systematic studies of such mixtures are non-existent. This work 

focuses on patchy NPs whose patches (coarsely representing grafted hybridizing DNA strands) 

not only encode selectivity across components but also impart a tunable nonadditivity by varying 
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their extent of protrusion. To guide the exploration of the relationship between phase behavior and 

nonadditivity for different patches' designs, the NP-NP potential of mean force (PMF) and a 

nonadditive parameter were first calculated. For one-patch NPs, different lamellar morphologies 

were predominantly observed. In contrast, for mixtures of two-patch NPs and (fully grafted) 

spherical particles, a rich phase behavior was found depending on patch-patch angle and degree of 

non-additivity, resulting in such phases as the gyroid, cylinder, honeycomb, and two-layered 

crystal. Our results also show that both a minimum positive nonadditivity and multivalent 

interactions are necessary for the formation of ordered network mesophases in the class of models 

studied.  

 

I. INTRODUCTION 

 

Colloidal particle shapes and particle-particle interactions can be designed to produce numerous 

self-assembled ordered phases. 1–9 For example, interparticle interactions have been deployed that 

mimic those of block copolymers, i.e., particles with connected but chemically incompatible 

domains, as these would offer structural versatility and a broad range of base-chemistries and 

feature scales.10,11 In a recent study, a single component system of “two-block” Janus particles 

with staggered rectangular patches was found to nucleate into the single gyroid phase in a Monte 

Carlo simulation study.12 Another physical method to generate diverse phase behavior in colloidal 

particles is to graft nanoparticles (NPs) with complementary DNA strands to enact preferential 

attractions between select mixture components.13–17 Recent experiments and simulations have 

demonstrated that mixtures of DNA-modified NPs and much smaller NPs (which represent mobile 

“electron equivalents”) can assemble into hexagonal, cylinder, and triple double-gyroid phases.18 
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A model proposed by Kumar-Molinero which implicitly encoded for positive nonadditivity in the 

inter-particle potential of colloidal particles led to the formation of a wide variety of novel 

mesophases, including some typically associated with block copolymers (like the lamellar, gyroid, 

and hexagonal).19,20 The Kumar-Molinero (KM) model uses a mixing rule where the characteristic 

length “σ” of the contact distance between two particles A and B differs from the arithmetic 

average of the characteristic contact lengths for A pairs and B pairs, i.e., 𝜎𝐴𝐵  =

 ((𝜎𝐴𝐴 + 𝜎𝐵𝐵) 2⁄  + Δ) with   0; for spherical sites, this corresponds to a departure of the so-

called Lorentz’s additivity rule. The KM is peculiar in that it combines a positive non-additivity 

(Δ > 0) with a preferential cross-species interaction energy parameter (𝜀𝐴𝐵 𝜀𝐴𝐴 > 1⁄ ), leading to a 

stronger attraction and longer distance of approach for unlike particles. This combination can favor 

the formation of ordered phases because the clustering of unlike pairs caused by their stronger 

contact energy generates a larger excluded volume than that for the clustering of like pairs, 

resulting in microphase segregation. This may explain why previous additive models have 

predicted a limited number of crystals and quasicrystals,21–25 while models with non-additive 

potentials have led to the formation of microphase segregated phases like those associated with 

block copolymers. The effect of nonadditive mixing is also significant for molecular components, 

often leading to nontrivial phase behavior, such as azeotropy and eutecticity. Other examples of 

idealized non-additivity models that have been studied in the literature include the Widom-

Rowlinson, 26 the Asakura-Oosawa,27 and the nonadditive Holland models.28  

In many of the previously mentioned nonadditive models, nonadditivity is artificially imposed 

in the mixing rule for the like and unlike interaction pairs, with no explicitly modeled NP 

functionalization or packing interaction that would physically generate the nonadditive behavior. 

However, there are physical examples where nonadditivity is realized, such as when using NPs 



4 

 

with suitably designed grafted patches, which present an anisotropy caused by the patches residing 

in either only one or multiple regions of the NP surfaces that influence how NPs interact and self-

assembly. Janus particles having single patches, for instance, have previously been shown to 

assemble into micelles, tubes, and lamellae.29–32 The influence of the number of patches per 

particle has also been studied,1,33,34 with a primary interest in tetrahedrally arranged four-patch 

particles, since they can form the diamond crystalline phase, a sought-after structure for potential 

applications in photonic devices.35,36 Regarding the influence of nonadditivity on the assembly of 

these patchy particles, our group has recently shown that tetrahedrally grafted raised patches can 

kinetically enhance the formation of the diamond phase through increased positive nonadditivity.37 

Since the anisotropy of the NP patches could lead to an experimental realization of effective 

two-body potentials that approach the KM model, we chose two-component systems of spherical 

NP cores with nonadditive grafted patches as a platform to explore the correlation between patch 

design and phase behavior. These patches, which mimic preferential inter-species attractions (such 

as those generated by sequence-complementary grafted DNA or DNA-like strands of varying 

lengths), enable us to physically enact and control positive non-additivity through the decoration 

of NP surfaces with raised patches of differing heights and strengths of preferential attraction. Our 

model incorporates a highly coarse-grained representation of DNA hybridization and has tunable 

nonadditivity, allowing us to examine the influence on self-assembly of local nonadditivity (by 

varying patch height and softness of core-core interactions), multivalency (by varying the number 

of patches per NP), geometric frustration (by varying the angle between the patches), and mixture 

symmetry (by using patchy NPs for both or just one of the components). We used molecular 

dynamic simulations to investigate how such different system designs impacted the propensity to 

form different micro-segregated mesophases. 
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The rest of the paper is organized as follows: Section II describes the Kumar Molinero Model, 

the interparticle potential models, simulation methods, and order parameters employed in this 

study; Sec. III contains the main results and associated analysis, and Sec. IV provides the 

concluding remarks and outlook for future work. 

II. METHODS 

A. Overview of the Kumar-Molinero Model 

We explored the idea of using the potential of mean force (PMF) between two particles, either 

of the same type (A-A or B-B) or different types (A-B), as a guide to predict local positive 

nonadditivity in the many-particle system simulations. As for post-processing, we calculated the 

micro or local nonadditivity by using the diameters of the particles for like (𝜎𝐴𝐴) and unlike (𝜎𝐴𝐵) 

pairs.  

In                                                                      (b) 

Figure 1(a), we compare the PMF between two Kumar Molinero (KM) particles to the radial 

distribution function of the mesophase formed (at a temperature of 300 K, pressure of 0 atm, and 

74% of component A). These PMF calculations were performed using Monte Carlo simulations 

that place one of the particles at random positions and orientations within a given distance from a 

fixed particle following the protocol from Ref. 38 The KM model uses a simplified Stillinger-

Weber type of potential39 to model the intermolecular interactions between both like and unlike 

nanoparticles. The functional form of the potential is given in the Supplementary Information. To 

obtain the hexagonal cylinder phase and lamellar phases, we followed the simulation protocol 

detailed in the original article.19 We see that the positive local nonadditivity associated with the 

Lorentz's rule shown in the PFM is realized in the contact distances between unlike and like 

particles (with 𝜎𝐴𝐵 𝜎𝐴𝐴⁄ = 1.15). Figure 1 (b) shows the radial distribution function (RDF) 
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between the particles in the cylinder phase and the RDF between the individual components (A 

and B) before mixing happens (pre-mix). The RDF shows that upon mixing, neighboring like-type 

particles are pushed closer together from their pre-mix positions; this behavior arises from the 

stronger attraction between A-B particle pairs and the softness of the A-A and B-B interactions. 

Indeed, the energetic penalty of moving like particles closer together is small due to the softness 

of their potential and is compensated by the more favorable A-B contact energy; despite the longer 

A-B contacts, the more abundant A-A and B-B contacts lead to a smaller system volume upon 

assembly as seen in Figure 2. This volume decrease allows the efficient packing needed to enact 

as many A-B contacts as possible. This analysis also illustrates the limitations of the effective two-

body NP-NP PMF in correlating with the phase assembly behavior that results from many-body 

interactions which are captured, albeit bluntly, by the excess volume of mixing v.  

Despite the similarities in the types of phases that the KM model and typical diblock copolymers 

(BCPs) form, key differences exist in the mechanism of mesophase formation. The BCPs assemble 

into mesophases largely because the effective repulsion between the A and B blocks drives 

microphase segregation, with macrophase segregation precluded by the intrachain bonding of the 

A and B blocks; the system rearranges to decrease AB contacts and minimize interfacial area. In 

such systems, the main driving force to mesophase formation is hence energetic, with density 

changes being typically negligible, and entropic changes associated with polymer conformations 

having a secondary effect. In contrast, in the KM model, A-B contacts are energetically favorable 

but being more distant, they would tend to increase the system's volume and increase the free 

energy. Thus, the system rearranges to try to decrease its volume and consequently enhance 

packing entropy by favoring AA and BB contacts despite the associated energetic penalty and loss 
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of mixing entropy. This competition between energetics with mixing and packing entropy in the 

KM model results in microphase segregation and network phases akin to those formed by BCPs.  

 

Table 1 sums up the comparison between the two systems. Based on this analysis, we defined 

three essential features that would allow us to map the KM model to the DNA functionalized NP 

model: A-B contact (energetic) selectivity, local nonadditivity, and core softness. While the 

directionality of the NP-NP interactions is absent in the spherically uniform KM model potentials, 

we incorporate it in our model as NP grafted patches to physically realize the local nonadditive 

attraction between unlike particles.   

 

 

  
(a)                                                                      (b) 

Figure 1: Sample KM model results. (a) Potential of mean force (PMF) in reduced units for values 

of the attraction ratio 
𝜀𝐴𝐵

𝜀𝐴𝐴
=  1.7 and contact distance ratio 

𝜎𝐴𝐵

𝜎𝐴𝐴
=  1.15 (b) Radial distribution 

function between particles of types A-B, A-A, and B-B in the hexagonal cylinder phase, and 

between particles before mixing. Phase formed at xA = 0.74, 
𝜀𝐴𝐵

𝜀𝐴𝐴
=  1.7, and 

𝜎𝐴𝐵

𝜎𝐴𝐴
=  1.15. 
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Figure 2: Volume difference between the mesophase and the pre-mix state of the individual 

components’ phases normalized by the volume of the pre-mix state (Δv) for the KM model 

mesophase formed using 
𝜎𝐴𝐵

𝜎𝐴𝐴
=  1.15 and different attraction parameter ratios at pressure = 0. More 

details about Δv calculation are given in the supplementary material.  

 

Table 1: Comparison between driving forces for mesophase formation in diblock copolymers 

(BCP) and the KM model ( refers to changes upon mesophase formation). 

Property BCP KM model 

ΔU 
Effective repulsion between 

copolymer block chains A B 

A B contacts energetically 

favorable 

Δ(PV) Negligible variations in volume Significant decrease in volume 

TΔS 

Small loss in mixing entropy and 

chain conformational entropic penalty 

to fit into domain geometry 

Large loss in mixing entropy must 

be countered by an increase in 

packing entropy (AA and BB 

interactions) 

ΔG 
< 0 by minimizing unfavorable A-

B ΔU and conformational frustration 

< 0 by maximizing favorable A-B 

ΔU and volume contraction (PV) 

while minimizing ΔS loses 
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B. Mixtures of Grafted Nanoparticle Model 

Based on the Lorentz's mixing rule, we first designed a coarse-grained nonadditive model for 

grafted NPs with one patch (1P). This model, summarized in Figure 3 (a), was intended to single 

out the effect of the local nonadditivity on phase behavior. The A-B selectivity (mimicking the 

effect of hybridization between grafted chains) is enacted by the attraction between 

complementary rigid central patches (CP). Each patch here is made of 19 identical Lennard-Jones 

central patch beads in a closed-packed hexagonal arrangement (see Fig. 3(a)), where 𝜎𝑃= 0.2 and 

𝜀𝑃𝐴𝐵 𝑘𝑇⁄  being one of the parameters varied to map phase behavior. We also explored a model 

with flanking patches to enforce the directionality of the interactions whose PMFs are provided in 

the supplementary material. The unlike patches and core-patch interactions are purely repulsive 

(enacted through the Lennard Jones potential with a cutoff radius shifted to 21/6σ). We kept the 

parameters for these interactions constant: 𝜎𝐶−𝑃𝑎𝑡𝑐ℎ = 0.6, 𝜎𝑃𝑎𝑡𝑐ℎ = 0.2, 𝜎𝐶𝐴𝐵 = 1, 𝜀𝐶𝐴𝐴 =

𝜀𝐶𝐵𝐵 = 𝜀𝐶−𝑃𝑎𝑡𝑐ℎ = 𝜀𝑃𝐴−𝑃𝐴 = 𝜀𝑃𝐵−𝑃𝐵 = 1. The like cores can be made to be purely repulsive or 

interact through the LJ potential and we explored both scenarios in our simulations. The degree of 

overlap between the like cores (𝜎𝐶𝐴𝐴 = 𝜎𝐶𝐵𝐵) can also be tuned to increase the local nonadditivity. 

A soft core would approximate a case where the core is loosely grafted with flexible chains, while 

the patches are densely grafted with longer, stiffer chains. The NPs are modeled as rigid bodies 

with all intramolecular interactions excluded. We note that the geometry and level of patch coarse-

graining (as representing multi-chain grafting implicitly) adopted here would be most relevant to 

NP cores which are of intermediate size (say 40nm < 𝜎𝐶𝐴𝐴 < 100nm) being significantly larger 

than the graft lengths,39 and for relatively dense grafting densities that would allow smearing out 

the interactions of multiple individual grafts into effective soft beads.  
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Figure 4(a) shows the calculated the PMF (which captures the orientationally averaged NP-NP 

free energy at different distances) between two patchy NPs in vacuum. These PMF calculations 

followed the same protocol as that described in reference to Figure 1. Due to the stronger energetic 

complementary patch-patch interaction, the PMFs show a preferential contact at a longer distance 

between the unlike NP particles (𝜎𝐴𝐵 = 𝜎𝐶𝐴𝐵 + 2𝐻) than the 𝜎𝐴𝐴 of like particles which is equal 

to 𝜎𝐶𝐴𝐴. To tune these relative contact distances, we change either 𝜎𝐶𝐴𝐴 or the height of the patch 

beads, where height (H) measures the extent of patch protrusion outside the core’s surface; H 

ranged from zero (flat patch) to 0.2 (𝜎𝑃 = 𝐻). A similar design was used before in exploring the 

relationship between nonadditivity and height of the patch for mixtures of four-patch particles.37 

The height of the patch is also directly associated with the preferential contact, i.e., NPs with more 

protruding patches (representing longer grafted chains) would have a larger 𝜎𝐴𝐵 and 𝑟𝐴𝐵. The patch 

coverage angle is fixed at Θ = 32° for the one patch model, so that as the patch height increases by 

moving the patch beads away from the core center, so do the bead-bead distance and patch 

diameter (i.e., of the circumference that inscribes all the beads in one patch).  
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(a) 

 

 
(b) 

 

 
 

(c) 

Figure 3: Coarse-grained NP model having a raised patch of small beads (representing 

complementary DNA grafts). The A-B selectivity (hybridization) is modeled using attractive, 

complementary patches. (a) One-patch model. (b) Two-patch model with the angle between 

patches (ϕ) highlighted. (c) Patch coverage angle (Θ), patch bead diameter (𝜎𝑃) and height (H). 

 

 

 

 

 

 



12 

 

 
(a) 

 
(b) 

 

Figure 4: PMF (free energy) between two NPs in vacuum as a function of their center-to-center 

distance rij for: (a) One-patch NP, and (b) Two-patch NPs with different angles  between the 

patches as marked in the legend. In (a) the vertical lines mark the minimum PMF value. The PMF 

values are divided by the total number of beads and curves were calculated using 𝐻 = 0.075,

𝜎𝐴𝐵 = 1.15, 𝑎𝑛𝑑 𝜎𝐶𝐴𝐴 = 1, with 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 1.2 for the one-patch particles and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 3 for 

the remaining PMFs. 

 

To probe the multivalence effect, we first explored NPs with two-patches (2P). Each patch now 

is made of 7 identical Lennard-Jones beads and the coverage angle is fixed at  = 30°, as shown 

in Figure 3 (b-c). The interactions among cores and central patches are equal to those described in 
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the previous paragraph. We also explored multiple angles (ϕ) between the patches, with some 

representative angles used in the PMF calculations of Figure 4 (b). We see that systems with higher 

ϕ values behave similarly to the one patch case because of the large distance between the patches, 

while systems with angles close to 90° have two wells that arise from the two favorable contact 

distances as illustrated in Fig. 4(b). The PMF for like particles was largely unaffected by the angles 

between the patches because their interaction potential is dominated by core-core contacts.  

C. Binary Mixture of Patchy and (Non-patchy) Spherical Nanoparticles 

NP patchiness creates anisotropic NP-NP interactions that may limit access to some of the 

mesophase morphologies which are accessible to the fully isotropic KM potential. To minimize 

this effect, we studied mixtures of densely grafted patchy NPs with longer stiffer chains 

(component A) and (non-patchy) loosely grafted NPs (component B) that are modeled as spheres, 

as depicted in Figure 5 (a). In this system, the patches will have attractive interactions with the 

implicit grafts all around the spherical particle B. Here, the patches are made of 7 identical 

Lennard-Jones central patch beads in a closed-packed hexagonal arrangement, and we define 

𝜎𝐴𝐵 = 𝜎𝐶𝐴𝐵 + 𝐻. All the other like interactions and modeling assumptions are the same as those 

for the mixture of patchy NPs described in the previous subsection. We also tuned the degree of 

overlap between the like cores and the spherical particles (𝜎𝐶𝐴𝐴 = 𝜎𝐶𝐵𝐵) to increase the local 

nonadditivity. We explored both, mixtures of one-patch NPs and the two-patch NPs as component 

A with spherical particles as component B. The PMFs for the mixtures with two-patch NPs are 

shown in Figure 5(b) for selected angles between the patches (ϕ). (The PMFs for the mixtures with 

one-patch NPs and additional PMF curves for different ϕ are available in the supplementary 

material). The effective AA and BB interactions (also shown in Fig. 5) are almost identical despite 

the presence of patches in the A particles. This happens because like-patches interactions are 
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repulsive and core-core contacts are most prevalent making the preferential distance of contact for 

like particles to be the same. A second potential well for angles in the region 80◦< ϕ <120◦ occurs 

because this angular geometry allows the simultaneous interactions of two patches with the 

spherical particle.  

 

 
(a) 

  
(b) 

 

Figure 5: (a) Illustration of the implied grafted-chain → patch coarse-graining for particles A and 

B. (b) PMF between two NPs in vacuum as a function of their distance rij for two-patch NPs (2P) 

with different angles between the patches (ϕ). The A-A PMF curves were similar for different 

values of ϕ; the curve shown here corresponds to ϕ = 90◦. The PMF values are divided by the total 

number of beads and curves were calculated using H = 0.08, CAA = BB = 0.8 and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 3. 
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D. Simulation Details  

After selecting the characteristics of our modes guided by the (two-NP) PMF results, we carried 

out Molecular dynamic simulations of many-NP systems to characterize their phase assembly 

behavior. The systems were simulated in the isothermal-isobaric (NPT) ensemble with rigid body 

dynamics and no intramolecular interactions using the LAMMPS software.40 The systems sizes 

ranged from N = 1500 to 12000 with different compositions. The initial random configurations 

were cooled at a rate of 210-7 kT/step and constant pressure (P*= 𝑃𝜎3 𝜀⁄  = 0.5) from a disordered 

state (T*= 𝑘𝑇 𝜀⁄  =4) until we observed the formation of an ordered structure, which typically 

occurred for 0.5 ≤ T*≤  1.0. The cooling runs consisted of 3107 steps with a timestep of Δt = 

0.001. Thereafter, we equilibrated the system at the phase formation temperature for 1107 steps. 

In some cases, we carried additional cycles of heating-cooling NPT runs to try to anneal out 

morphological defects. 

E. Order Parameters  

The phases were classified using structure factor calculations to identify the characteristic 

diffraction peaks of different ordered morphologies. These calculations were done using the center 

of mass of each NP. We also calculated the relative angle (θ) between neighboring spherical 

particles and the patches of the two-patch NPs. These θ angles are formed between the vectors 

connecting the center of mass of spherical particle i with patch 1 (𝑟𝑖𝑗1
), and patch 2 (𝑟𝑖𝑗2

) of particle 

j.  
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III. RESULTS & DISCUSSION  

A. Mixtures of Patchy Nanoparticles 

Local nonadditivity is necessary but not sufficient to form network phases. 

We first carried out simulations for one-patch NP with flanking patches and repulsive like-cores 

with 𝜎𝐶𝐴𝐴 = 1 to evaluate the role of the Lorentz's nonadditivity in the self-assembly of the grated 

NPs. At the equimolar composition, we found that the system forms a thick lamellar phase or a 

thick layered crystal for a range of patch heights. For flat or "retracted" (non-raised) patches, the 

system forms thick layers of NPs for high values of the energetic attraction parameter. The latter 

is accompanied by the crystallization of the particles and, consequently, a decrease in the mobility 

of the particles. More details about the model with the flanking patches, snapshots of the phases 

formed, and a schematic phase diagram are provided in Figures S4 and S5 of the Supplementary 

Material. The thick lamellar transformed into macrophase-segregated domains when decreasing 

the attraction (𝜀𝑃𝐴𝐵 𝑘𝑇⁄ ) between the unlike patches but crystallized when increasing it. We also 

calculated the distance between particles of the same type at the first peak of the radial distribution 

functions and observed that they stay at the distance corresponding to the well of the Lennard-

Jones potential (21/6σ) due to the harsh (r−12) repulsion between cores. This characteristic of the 

system results in a negative local additive parameter for 𝜎𝐴𝐵 < 21/6𝜎𝐴𝐴 and positive local additive 

for 𝜎𝐴𝐵 > 21/6𝜎𝐴𝐴. Changing the mixture composition did not lead to other phases besides the 

lamellar phase; in particular, no trace of an ordered network phase, like the gyroid, was ever 

observed.  

Softer core-core interactions and weaker directionality enable the formation of cylinders. 

The appearance of cylinders-like structures in the one-patch model was associated with 

increasing the nonadditivity by decreasing 𝜎𝐶𝐴𝐴 to 0.8 for 𝑥𝐴 = 0.66 and the removal of flanked 
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patches. Softening the core allowed for not only an increase in the local nonadditivity but also for 

more flexibility in the possible arrangements around the patches. As a comparison, we also 

explored the effect of increasing the patch-patch contact directionality and the fraction of the 

components with the model using flanked patches and observed that this generated a more 

restrictive one-on-one binding that favored lamellar phases (see Supplementary material). In 

Figure 6(a) we compare the number of unlike neighbors at the preferential distance of contact for 

our one-patch model without flanking-bead patches with different extents of nonadditivity (𝜎𝐶𝐴𝐴 =

1 and 0.8) and find that softening the cores leads to an increase in the number of neighbors. Note 

that the minority-component cylinders tend to form two aggregated rows of the minority B 

particles and have imperfect orientational alignment with observable disclinations. Long 

disordered tubular structures were also previously found for particles with strong one-patch 

interaction.30 This anisotropy of the patch NPs favors aggregation between the cores to enable 

unlike patches to face each other. Our exploration of mixtures of the two-patch NPs (not reported) 

did not result in phases different from the lamellar phase or disorder cylinders.  
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                                             (a) 

 
𝜎𝐴𝐵/𝜎𝐶𝐴𝐴 = 1.15 

(b) 

 
          𝜎𝐴𝐵/𝜎𝐶𝐴𝐴 = 1.43 

(c) 
 

Figure 6: (a) Radial distribution function (g(r)) and coordination number for unlike components 

(N(r)) for one-patch NPs with 𝜀𝑃𝐴𝐵/𝑘𝑇 = 3 and 𝑥𝐴 = 0.66. Snapshots of the phases formed using 

(b) 𝜎𝐶𝐴𝐴 = 1 (c) 𝜎𝐶𝐴𝐴 = 0.8. 

 

B. Binary Mixtures of Patchy and (Non-patchy) Spherical Nanoparticles 

The mixtures we explored of one-patch NPs with spherical particles also led to lamellar phases 

regardless of the mole fraction of patchy particles or 𝜎𝐶𝐴𝐴. On the other hand, mixtures containing 

two-patch NPs exhibited a diverse range of mesophases, depending on the angle between the 

patches (ϕ) and the two-patch NP mole fraction (𝑥𝐴); only the results for this system are presented 
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in this section. A summary of the phases formed is compiled in Figure 7, including a peculiar 

crystalline phase that comprises a two-layer motif, which we denote as the LXY crystal (to be later 

described in more detail). As was shown in the previous section, layered crystal or lamellar 

structures are not directly associated with a positive nonadditivity but the presence of patches 

affects the phase behavior since equimolar mixtures of size-additive spherical particles with 

preferential attraction tend to assemble into the CsCl lattice instead.22 The remaining phases 

observed are associated with a minimum level of non-additivity, and the connection between 

nonadditivity ratios and specific phases will be explored in the following sections. The parameters 

used to obtain the phases in Figure 7 are compiled in the Supplementary material. 

For two-patch NPs as the majority component, gyroidal structures are favored by patch-

patch angles near 90°   

The primary distinction between a one-patch NP system and a two-patch NP system is that the 

latter possesses multivalence, which confers the ability to form curved A-B interfaces between 

particle domains, resulting in a diverse range of phases. Specifically, when the angles between the 

NP patches fall within the range of 81°≤ ϕ < 109°, the single gyroid phase is observed. To 

determine this range, we analyzed the structure factor S(k) of the minority component (B) in the 

formed structures. Figure 8 shows that the characteristic peaks of the gyroid structure factor are 

lost when ϕ values fall outside the aforementioned range. 
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(a) 

 
Honeycomb  

           LXY 

 
Lamellar 

 
LX 

  
Single Gyroid 

 
Cylinder 

(b) 

 

Figure 7: (a) Summary of the main ordered phases formed as a function of the angle  between 

the two patches of type-A patchy NP (as per Fig. 3(b)), and its molar fraction. (b) Representative 

snapshots of the different phases. Patchy and spherical NPs are shown in red and cyan, 
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respectively. In the single gyroid snapshot, the two components are shown separately with the B-

type spherical NPs forming the single gyroid network. 

 

 

 
 

 
 

 
 

 

 = 70°  = 90°  = 109°  = 118° 

(a) 

 
(b)                                                                 (c) 

 

 

Figure 8: (a) Snapshots of the structure formed by the minority component B in mixtures with 

type-A two-patch NPs having different angles  between patches. (b) Structure factor of 

component B for the structures in (a). (c) First-solvation shell of radial distribution function 

between A-B NPs for different patch angle ϕ (marked in the legend) in A-type NP. Simulation 

results correspond to xA= 0.66, 𝜎𝐴𝐵 = 1.08, 𝜎𝐶𝐴𝐴 = 𝜎𝐵𝐵 = 0.7, and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 3. 

 

The angular range that favors the gyroidal structure also corresponds to the region in Figure 7 

where the potential of mean force (PMF) exhibits two wells. This region is located near ϕ = 90°, 

where the spherical particle can interact with either one patch or with both patches of the same NP 
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simultaneously, forming an angle (θ) of approximately 56° between the centers of the spherical 

particle and the two patches. The presence of these two distinct preferential distances between a 

spherical NP and the patchy NPs is also evident in the radial distribution function, as depicted in 

Figure 8 (c), where two peaks are observed at close distances. 

For more acute ϕ angles, a smaller θ is more favorable to reduce the repulsive energy associated 

with any overlap between the patches and the spherical particle. Consequently, in the radial 

distribution function, the first peak of the distribution for ϕ = 70° appears at a higher value of 𝑟𝐴𝐵 

compared to that for ϕ = 90°, reflecting the different well positions in the PMFs. On the other hand, 

obtuse ϕ angles prevent the simultaneous close contact of a single spherical NP with both patches 

of the same patchy NP, leading to a single peak in the first solvation shell between A and B 

particles. To further validate these observations, we present the probability distribution of θ angles 

at the first peak of the radial distribution in Figure 9 (a). A θ color-coded snapshot of the gyroid 

structure in Figure 9 (b) also shows that most of the particles with ϕ = 90° have θ > 40° and that 

there is no significant preference for particles with θ < 40° to be in the node or the strut of the 

network. The more homogeneous distribution of angles at ϕ = 90° can be attributed to the strong 

energetic incentive for particles to be in the second (farther) well position of the corresponding 

PMF curve, a preference that facilitates the formation of a regular network. 
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(a) 

 
 
 

 

 

(b) 

Figure 9: (a) Probability distribution of angle θ between the center of spherical particle B and the 

patches of particle A at the first peak of the radial distribution from Figure  (c). (b) Snapshot of the 

gyroid structure formed by type-B spherical NPs for ϕ = 90°. B Particles with θ > 40°/ θ < 40° are 

colored in cyan / grey. 

 

 When species B is still the minority component but   155°, a cylindrical phase forms where 

the spherical NPs form single-line columns in the characteristic hexagonal lattice, surrounded by 

6 patchy NPs (see Fig. 10a). For 115° >  > 150° the system seems to get trapped in disordered 

network morphology. The transition between hexagonally packed cylinders and a gyroid phase, 

mediated by disordered network states, can be understood by the fact that for sufficiently large , 

a curvature is induced around the domains of the spherical component B, resulting in tubular 

structures. Whether such tubes are able to align in a hexagonal pattern or become struts that fuse 

into nodes in a regular manner, as in the gyroid phase, or in a disordered fashion, is governed by 

the angle  and the geometric constraints it enacts for A-B contacts.  
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(c) 

Figure 10: Snapshots and unit cell closeup of (a) the Cylinder phase for xA= 0.66, and (b) the LXY 

phase for xA= 0.33. In (a) and (b) snapshots show the two particle types together (atop) and 

separately (bottom) with patchy particles (A) colored red and spherical particles (B) cyan. (c) 

Structure factor of the minority component in the LXY (top) and cylinder (bottom) phases. 

Simulation results correspond to 𝜎𝐴𝐵 = 1.08 𝑎𝑛𝑑 𝜎𝐶𝐴𝐴 = 𝜎𝐵𝐵 = 0.8 for both systems, with 

𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 3 for the cylinder phase, and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 5 for the LXY phase.  

 

For two-patch NPs as the minority component, a honeycomb phase and a two-layered crystal 

occur.  

When we reverse the relative population of components by making the patchy particles with 

150°≤ ϕ ≤ 56° the minority component, the gyroid phase is no longer observed; instead, a 

honeycomb phase is formed. Unlike the gyroid phase, the honeycomb structure can be formed 

over a wider range of ϕ values. However, acute ϕ angles are associated with a loss of order in both 

the A and B domains, as observed in the radial distribution function of the honeycomb phase shown 

in Figure 11. 

For ϕ ≥ 160⸰, the mixture assembles into a two-layered crystal (LXY) phase. This phase, whose 

specific features have not been reported before (to the best of our knowledge), consists of a 
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crystalline flat layer of species A (patchy NPs) and a zigzagging layer of species B, with regular 

interstitial gaps, as depicted in Figure 10 (b). In essence, the distance between the patches prevents 

the simultaneous contact of a patchy NP to the same spherical particle so that favorable energetic 

contacts are maximized by the local packing/bonding geometry embodied by the LXY phase. In 

Fig. 10 we contrast the LXY phase structure with the cylindrical phase described earlier which 

occurs when the A-B composition is reversed (i.e., for patchy NPs as the majority component); 

while a significant similarity is revealed when seen as “inverse” structures, the key differences are 

the gaps in the A layers which mediate the appearance of distinct zig-zagging B layers in the LXY 

structure. Their differences can be quantitatively highlighted by the structure factors of the 

minority component as shown in Figure 10 (c). 

The formation of the LXY phase is preceded by the formation of the lamellar phase as the system 

is cooled from the isotropic phase. The LXY phase is stabilized for with high energetic attraction 

strengths between the patches and the spherical NPs (𝜀𝑃𝐴𝐵 𝑘𝑇⁄  > 2.4), while the lamellar phases is 

associated with weaker strengths (𝜀𝑃𝐴𝐵 𝑘𝑇⁄ < 2.4).  
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ϕ = 56° 

 

 

 
 

ϕ = 90° 

(a) 

 
(b) 

Figure 11: Snapshots of the honeycomb phase formed for different patch-patch angles ϕ. 

Snapshots show the two particle types together (1st row) and separately (2nd and 3rd row) with 



28 

 

patchy particles (A) colored red and spherical particles (B) cyan. (b) Radial distribution function 

between particles of types A-B, A-A, B-B for different patch-patch angles (ϕ). Simulation results 

correspond to xA = 0.33, 𝜎𝐴𝐵 = 1.08, 𝜎𝐶𝐴𝐴 = 𝜎𝐵𝐵 = 0.7, and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 3.  

 

Positive Local Nonadditivity and Phase Formation 

With the exception of the lamellar and layered crystal phases, all other phases required positive 

local nonadditivity values (
𝜎𝐴𝐵

𝜎𝐵𝐵
> 1), as predicted by our analysis of the Kumar Molinero model. 

To tune the local nonadditivity, we primarily modified the height of the patch (H) and, 

consequently, 𝜎𝐴𝐵 In order to achieve an even higher level of nonadditivity, we also increased the 

degree of overlap between the like cores (𝜎𝐶𝐴𝐴 = 𝜎𝐵𝐵), effectively making the like cores softer 

and shortening their average contact distance. Figure 12 illustrates the relationship between the 

values of local nonadditivity parameters and the phases observed at temperatures below the order-

disorder transition temperature, T* < 1 (a Table summarizing all the key simulation parameters is 

provided in the supplementary material). Notably, the gyroid phase required the highest value of 

nonadditivity. To attain this level, we needed to soften the core by using a minimum of 𝜎𝐵𝐵 = 0.8. 

For this value of 𝜎𝐵𝐵, decreasing the height of the patch, and consequently, the local nonadditivity, 

lowered the intensity of the structure factor peaks until the gyroid phase became a disordered 

network for 𝜎𝐴𝐵 = 1.08. Structure plots and snapshots of the structures for this case are available 

in the supplementary material. Formation of the honeycomb phase necessitated 𝜎𝐵𝐵  0.9.  

Additionally, Figure 12 (c) shows how the particle distances and the assembled phase change with 

the level of nonadditivity in cases where either a lamellar or a single gyroid phase may form. As 

discussed in our analysis of the Kumar Molinero model (Table 1), nonadditivity contributes to the 

microphase segregation associated with mesophase formation by simultaneously maximizing 
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favorable A-B contacts and minimizing losses in PΔV and ΔS through increased AA and BB 

contacts. Contrary to the gyroid phase, the cylinder phase did not require that 𝜎𝐵𝐵 < 1 to form, 

being able to self-assemble for 𝜎𝐵𝐵 = 1 and a minimum height of the patch of 𝜎𝐴𝐵 = 1.10. We 

also note in Figure 12 (b) that the formation of the LXY was favored for higher values 𝜎𝐴𝐵, since 

the flat patch case, 𝜎𝐴𝐵 = 1, required smaller values of 𝜎𝐵𝐵 as can be seen in Table S1 of the 

supplementary material. 
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Figure 12: Diagram outlining areas where different phases formed prevalently as a function of the 

degree of local nonadditivity (𝜎𝐴𝐵/ 𝜎𝐵𝐵) and the fraction of patchy particles (xA) for: (a) ϕ = 90° 

and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 3.6, and (b) ϕ = 180°, and 𝜀𝑃𝐴𝐵 𝑘𝑇⁄ = 5. Points mark the specific simulation 

conditions. Points denoted as “amorphous” correspond to states where no clear phase or regular 

network formed despite some microphase segregation and those denoted as FCC indicate a 

substitutional disorder FCC phase. (c) Radial distribution function between particles of types A-

B, A-A, B-B for the gyroid phase at 𝜎𝐴𝐵 = 1.075, 𝜎𝐵𝐵 = 0.7 (top) and for the lamellar phase at 

𝜎𝐴𝐵 = 1.2, 𝜎𝐵𝐵 = 1 (bottom). 

 

IV. CONCLUSIONS 

In summary, our study focused on investigating the phase behavior of binary A+B mixtures 

consisting of spherical NPs decorated with round patches, as well as mixtures of patchy NPs with 

(non-patchy) spherical NPs. These NPs were designed to have preferential attractions between 

different species, coarsely simulating the hybridization effect between grafted DNA or DNA-like 

strands. By raising the patches, a second length scale is introduced to the inter-NP interactions 

which elicits a local nonadditive behavior that was surmised to potentially lead to the assembly of 

more complex ordered phases. By adjusting the energetic and geometric parameters of the patches, 

as well as the softness of core-core interactions, we were able to indeed observe the formation of 

a variety of mesophases. 

Our exploration of the parameter space involved calculating the pair potential of mean force to 

identify parameters and interaction models that would induce local nonadditivity. We attempted 

to match the key features of our models with those of the Kumar Molinero (KM) potential model, 

which exhibits implicit nonadditivity and is known to form mesophases typically associated with 

block copolymers. Analysis of the KM model revealed that the combination of positive 
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nonadditivity (relative to the Lorentz mixing rule), the preferential attraction between unlike 

particles, and the softness of the core-core interactions resulted in a net contraction of the volume 

in the resulting mesophases (relative to the pre-mixed state of the pure components). Based on this 

analysis, we investigated the interplay among these factors in our patchy NP model and their 

correlation with the self-assembly behavior. 

In mixtures of one-patch NPs, we probed the effect of local nonadditivity and one-on-one 

"monovalent" binding between patches. Although we observed various lamellar phases, we did 

not detect the formation of other mesophases regardless of mixture composition. This preference 

for lamellar phases suggests that the unidirectional, hard-core interactions strongly favor flat A-B 

interfaces, leading to lamellar-like morphologies rather than phases with curved A-B interfaces. 

However, when we softened the interactions, and consequently increased the extent of local 

nonadditivity, we were able to form cylinder-like phases. This allowed for associations between 

more than two misaligned patches, resulting in weak "multivalent binding" and curved A-B 

interfaces. The amount of multivalent binding was quantified by the number of A molecules 

surrounding one B molecule and vice versa. These cylinder-like phases exhibited some defects 

and lacked the perfect hexagonal packing symmetry observed in cylinders formed by BCPs and 

the KM model. 

Overall, our results for the raised one-patch model, which provides a physically feasible means 

of achieving NP nonadditivity, indicate that the directionality and anisotropy introduced by the 

patches may hinder the formation of network phases. In contrast, the fully isotropic nature of the 

KM interparticle interactions suggests that some degree of promiscuity or isotropy in the inter-

species interactions might be necessary to form the multivalent binding motifs commonly observed 

in network phases. 
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To leverage directional interactions and increase the binding valency of NPs, we investigated 

the use of two-patch particles (A) with different angles between the patches mixed in with spherical 

particles (B). This mixture exhibited a diverse phase behavior that depended on the angle ϕ 

between the patches, the fraction of patchy NPs, and the degree of nonadditivity. The phases 

formed included the gyroid, honeycomb, cylinder, and a two-layered crystal. We demonstrated 

that a patchy NP with ϕ closer to 90° interacted with spherical particles in such a way that the NP 

centers and the patch centers did not align but formed an angle that favored the formation of the 

single gyroid phase. The preference for this angled contact between these A-B particles was related 

to the shorter range of one of the two potential wells observed in their potential of mean force 

(PMF). For mixtures with more obtuse patch-patch angles (ϕ ≥160°), the cylinder phase became 

favorable as the double well disappeared from the PMF. The formation of non-lamellar or layered 

phases thus required positive local nonadditivity, with the single gyroid phase requiring the highest 

extent of nonadditivity. 

The strategy of mixing a suitably patchy NPs with spherical NPs can be seen as a promising 

platform to realize ordered network morphologies out of the spherical NPs. It can be argued that 

in such systems the patchy NPs acts as a guide (or a structure-directing agent) for the formation of 

a regular network of spherical soft particles. In this context, once the patchy particles have been 

created and the suitable ligands identified, spherical particles of varied core chemistries could be 

equally assembled. These results suggest that these mesophases can be designed to have diverse 

mechanical, optical, and photonic properties.  

The current model can be modified to explore different variants, such as NPs with alternative 

patch geometries (e.g., rectangular packing instead of hexagonal) and different patch widths. Also 

importantly, our study was restricted to cases where the A and B components have cores of the 
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same diameter; core size disparities could open the door to more complex mesophases. 

Furthermore, increasing the level of detail by explicitly modeling DNA strands in our patches 

could provide insights into additional factors such as chain rigidity and length, which may 

influence phase behavior. This will be particularly important when considering “small” NPs (say 

with diameters < 30 nm) where the effects of the degrees of freedom of the patch constituents 

become more prominent. These questions are the object of our ongoing investigations. While many 

new and more refined variants of our models can be explored, our findings already highlight the 

importance of targeting nonadditivity when designing and producing NPs capable of mesophase 

formation. 
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