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AbstractÐ Highly-dynamic (HD) map is an indispensable
building block in the future of autonomous driving, allowing
for fine-grained environmental awareness, precise localization,
and route planning. However, since HD maps include rich,
multidimensional information, the volume of HD map data is
substantial and cannot be transmitted frequently by several
vehicles over vehicular networks in real-time. Therefore, in this
paper, we propose a data source selection scheme for effective HD
map transmissions in vehicular named data networking (NDN)
scenarios. To achieve our goal, we created a vehicular NDN envi-
ronment for data collection, processing, and transmission using
the CARLA simulator and robot operating system 2 (ROS2).
Next, due to our vehicular NDN’s dynamic and complex nature,
we formulate the data source selection problem as a Markov
decision process (MDP) and solve it using a reinforcement learn-
ing approach. For simplicity, we termed our proposed scheme
data source optimization with reinforcement learning (DSORL),
which selects suitable vehicles for HD map data transmission to
MEC servers. The experiment results indicate that our suggested
method outperformed existing baseline schemes, such as RLSS,
Pro-RTT, and HDM-RTT, across all performance criteria in the
evaluation. For instance, the system throughput increases by
65% − 72.68% compared to other baseline systems. Similarly,
the proposed approach can minimize packet loss rate, data size,
and transmission time by up to 60.6%, 77.5%, and 54.1%,
respectively.

Index TermsÐ Highly-dynamic (HD) map, map data trans-
mission, named data networking, reinforcement learning, and
vehicular networks.
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I. INTRODUCTION

A. Background and Motivation

W
ITH the fast development of mobile communications,

vehicular sensing technologies, and autonomous driv-

ing, the internet of autonomous vehicles (AVs) has become a

prevalent topic [1]. Recent autonomous vehicles can deter-

mine their accurate locations and construct collision-free

routes using Highly-dynamic (HD) maps. HD maps offer

more dependable sensing capability and assistance for the

decision-making layer of autonomous driving, where latency

is critical. HD maps are conceptual maps with three layers:

1) the road model layer, 2) the lane model layer, and 3) the

localization model layer [2]. The road model is utilized for

navigation planning, while the lane model is used for route

planning based on current road and traffic circumstances.

The localization model is used to find the car on the map,

and the lane model can only help with vehicle perception if

the vehicle is properly found on the map. The HD map is

necessary for autonomous driving, but its amount of data is

enormous compared to a typical electronic map. As a result,

generating, transmitting, and storing the full HD map data

onboard in real-time with minimal latency and high reliability

is impracticable in vehicular networks.

Named data networking (NDN) is a prospective future

networking architecture in which each piece of content is con-

sidered to be an entity in the network, which can overcome the

shortcomings of the current host-based network architecture

(i.e., TCP/IP) in the existing vehicular networks [3], [4]. NDN

offers significant promise for the automotive network, such as

facilitating vehicle mobility, data sharing, data naming, and

a naming-based route forwarding approach [5], [6]. However,

several technological obstacles exist to creating an efficient HD

map update via construction and distribution strategy in the

vehicle NDN scenario. First, existing approaches choose data

sources via a communication model (vehicle-to-infrastructure

(V2I) or vehicle-to-vehicle (V2V)) [7], [8], where throughput

can be drastically decreased as the number of vehicles grows.

Second, existing approaches choose data sources based on

the round-trip time (RTT) between the data source and the

vehicle. In this circumstance, vehicle status changes in real-

time, particularly in complicated moving settings. As a result,

the RTT measure cannot ensure the optimal selection outcome

since other forms of the vehicle information (e.g., data size,
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speed, and direction) are not taken into account. Finally,

because of vehicle mobility, frequent data source handovers

will result in frequent RTT modifications, and wasteful data

transfers [9].

Vehicular wireless communication, processing, and caching

capabilities have recently advanced significantly [10], [11].

As a result, HD map update work may be divided into

multiple subtasks and processed via vehicular distributed com-

puting [12]. First, idle computer resources in automobiles are

completely exploited, which may boost resource utilization

and cloud server performance. Second, in vehicular NDN,

utilizing vehicles as data collectors and processors may mini-

mize the transfer of substantial raw environmental data while

improving overall system latency [13]. Extensive studies have

been conducted on distributed computing for vehicular net-

works [14]. For example, [14], [15] collaborated to optimize

input data movement and job allocation in wired data cen-

ters (DCs) to concurrently decrease inter-DC traffic, enhance

throughput, and minimize delays. Furthermore, in wireless

sensor networks, reducers and route selection are optimized

in tandem to lower transmission costs [16]. However, since

the input data for the HD Map update is gathered in real-

time, the data localization difficulties in [15] are not practical

when crowd-sensing is used.

Crowdsourced data has recently received a lot of attention

for HD map updates, as shown in [17] and [18]. Crowdsourced

data is road observation data acquired by low-cost crowdsourc-

ing devices, which commonly contain a low-cost camera and a

global navigation satellite system (GNSS) sensor [19]. Crowd-

sourcing devices are mounted on cars that traverse the same

routes regularly, making a vast quantity of environmental data

freely accessible. The main disadvantage of crowdsourcing

data is its considerable uncertainty, particularly in complicated

moving circumstances [5]. Furthermore, as the vehicle popula-

tion increases, the throughput of crowdsourced data drastically

decreases due to excessive updates [7]. From [20], due to the

imbalance in the dataset, [21] proposed an HD-Map-guided

rapidly-exploring random tree (HDM-RRT) by combining an

HD map and a sampling-based approach to quickly obtain

high-quality and feasible map updates in complex campus

scenarios. However, the authors failed to explore optimal

data source selection schemes in their proposed scheme.

As a result, [22] suggested a reinforcement learning-based

data source selection method (RLSS) for selecting HD map

data sources in vehicular NDN. However, the authors only

addressed data source selection for the HD map distribution

process and not the HD map construction process. Therefore,

deciding on a suitable vehicle to transmit the necessary data

for HD map construction in vehicular NDN environments is

an open and relevant problem.

B. Contributions

In this paper, we present a smart data source selection

scheme for HD map data transmission in vehicular NDN,

called data source optimization with reinforcement learn-

ing (DSORL). The scheme leverages reinforcement learning

(RL) to decide which vehicles should transmit data to the

multi-access edge computing server. We formulate the selec-

tion problem as a Markov decision process and solve it

with deep reinforcement learning (DRL), specifically, the

deep deterministic policy gradient (DDPG) algorithm. The

DSORL framework consists of four key components: state

space, action, policy, and reward to develop a selection policy.

To capture the dynamics of vehicular scenarios, we use factors

such as round-trip time, vehicle speed, driving direction,

and information entropy to represent the state of a data

source. Our reward function evaluates the performance of

the selected data source based on transmission throughput,

data size, and duration. The reward function evaluates the

transmission performance based on throughput, data size,

and duration time. To run DSORL, we simulate a vehicular

NDN environment with the CARLA simulator and robotic

operating system 2 (ROS2), then employ a crowd-sensing

paradigm to continuously collect environmental data using AV

sensors in our environment. We perform extensive simulations

to validate the performance gains achieved by the DSORL

scheme. In particular, the system throughput can increase by

65%− 72.68% compared with other baseline schemes. Also,

the proposed scheme can reduce packet loss rate, transmission

data size, and transmission time by up to 60.6%, 77.5%, and

54.1%, respectively.

The major contributions of this work are summarized as

follows.

• Our research is one of the first to investigate the use of

a reinforcement learning-based strategy to HD map data

source selection in vehicle NDN scenarios. We propose

the DSORL framework for selecting the appropriate data

source for transmission to MEC servers.

• We formulate the data source selection problem as a

Markov decision process and use a DRL-based approach

to solve it, specifically the DDPG algorithm. To optimize

the selection’s performance, we design a reward function

that takes into account various measurements of data

sources under vehicular NDN conditions.

• We perform extensive simulations to validate the perfor-

mance gains achieved by the DSORL scheme. In particu-

lar, the system throughput can increase by 65%−72.68%

compared with other baseline schemes. Also, the pro-

posed scheme can reduce packet loss rate, transmission

data size, and transmission time by up to 60.6%, 77.5%,

and 54.1%, respectively.

The following is an overview of the paper’s structure.

The system model is described in Section II. Section III

presents DRL-based smart data source selection technique.

Section IV discusses the simulation results and analysis.

Finally, Section V concludes our discussion.

II. SYSTEM MODEL

In this section, we introduce the system model, which com-

prises the system overview, network model, and utility model.

The system overview shown in Section II-A presents a gen-

eral summary of our vehicular NDN. Sections II-B and II-C

present the network and utility models, which characterize our

work’s modeling preliminaries and objectives. Table I lists the
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Fig. 1. Vehicular network architecture for our system model.

primary mathematical notations used in the system model in

this paper.

A. System Overview

We consider a hierarchical architecture comprising vehicles,

roadside units (RSUs), and MEC servers for our HD map

update model [23]. In our CARLA environment, we simu-

late multiple vehicles equipped with sensors, communication,

computing, and caching resources. Next, we set RSUs along

the road equipped with sensors such as high-definition cameras

to record environmental data. To ensure adequate computing

resources for HD map construction, each RSU has a MEC

server co-located with it. The vehicles take images of their

surroundings at the start of each update period for the HD map

construction process. Furthermore, the RSUs in each target cell

collect vehicle information such as location, speed, sensing

range, wireless transmission capability, computing capability,

and optimized image data size. Using our DRL-based data

source selection algorithm, the MEC server selects a vehicle

from the RSU’s list to engage in data transfer for HD map

construction in each target cell. Next, the RSU broadcasts

the MEC server’s decision to the selected vehicle for image

data transmission, and all surrounding vehicles enter an update

mode. Vehicles with limited computational capability for the

map data optimization stage rely heavily on the computation

of the surrounding vehicles and only have an update mode tog-

gled on at any target cell. Fig. 2 shows the vehicular network

architecture with our proposed DSORL scheme. Additionally,

we rely on the RSU to perform the image data collection if

no high computational capacity vehicles are available. Also,

vehicles leaving the target cell should transmit intermediate

map data to the current RSUs via wireless links, which forward

the map data to other RSUs via wired fronthaul connections

for easy access.

B. Network Model

We consider a population of V vehicles, U RSUs, and M

MEC servers, such that V = {1, 2, . . . , V }, U = {1, 2, . . . , U },

M = {1, 2, . . . , M} denote a set of vehicles, RSUs, and MEC

servers, respectively. Let N represent the total number of target

TABLE I

LIST OF MAJOR SYMBOLS AND THEIR DEFINITIONS

cells C for our environment, such that N = {1, 2, . . . , N }.

We characterize any given target cell n, n ∈ N with a

sensing range Sn that is smaller than the overall cell range

S̄. We assume that the traffic density for n is σn (in vehi-

cles/meter) [24] and the quantity of raw environmental data

(in bits) is Q, as such, there will be σn S̄ vehicles in n with

Qn environmental data at given time t . Let vn, v ∈ V and

un, u ∈ U represent vehicle v and RSU u belonging to target

cell n, such that vn comprises a constant velocity av during one

update period T , a sensing range Sv , and a computing power

Fv (CPU cycles/bits). We distinguish un by its sensing range

Su and computing power Fu . The MEC server m ∈ M has

computing power Fm for the HD map construction process.

Furthermore, we compute the driving direction of vn with

respect to the x-axis and with n starting from zero. We use

Lvn to represent the initial x-axis coordinate of vn and Lu
vn

is

the x-coordinate of RSU u to which vn belongs.

In our environment, we examine each vehicle’s perceivable

region to determine its location data. For example, vn has a

perceivable area of [max{0, Lvn − Sn}, Sn + Lvn ] in n. For

one update period, the real localization information of each

vehicle in n with cached data is [0, Sn + Lvn ], and the data

of all other vehicles in C is [0, S̄]. Suppose that the target

cell can be subdivided into K sub-regions of equal length

S̄/K and containing the same quantity of environmental data

as Q/K . We propose a set of binary sensing variables Ŝ to

indicate whether vehicles or RSUs can detect kth sub-regions

in real time or store the kth environmental data. Ŝ = 1 suppose

vn can detect kth region in real time or has kth stored the

environmental data, otherwise Ŝ = 0. As a result, we can

express the sensing variable Ŝk for the kth sub-region as

Ŝk =

{

1, Sn + Lvn ≥ k · S̄/K ,

0, otherwise.
(1)

Following that, we provide a set of binary optimization

variables X = {xv,k, xu,k}, where xv,k and xv,k determine the

vehicles and RSUs nearest to sub-region k for data collection.

When the vn is within k, xv,k = 1, otherwise xv,k = 0. Also,
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we define the term v̄n =
∑V

v=0(xv,k · Ŝv,k), which comprises

the constraint v̄n ≥ 1, indicating that the kth sub-region

contains at least one vehicle capable of data collection and Ŝv,k

is the sensing variable for the kth sub-region to which vehicle

v belongs. Likewise, when there are no vehicles capable of

data collection (v̄n = 0) in k, the RSU collect and process the

environmental data Qu,k . The environmental data Qk gathered

in k is expressed as

Qk =











Qv,k = xv,k · Ŝv,k ·
Q

K
, if v̄n ≥ 1,

Qu,k = xu,k · Ŝu,k ·
Q

K
, if v̄n = 0,

(2)

where Qv,k and Qu,k denote the data from on vn and un ,

respectively. Ŝv,k and Ŝu,k represent the sensing variable for

vehicle v and RSU u. The time taken by vehicles and RSUs

to process map data (e.g., run object detection algorithm on

the image data [25]) is defined as

tk =











tv,k =
Qv,k · FQv,k

Fv

, if v̄n ≥ 1,

tu,k =
Qu,k · FQu,k

Fu

, if v̄n = 0,

(3)

where FQv,k
and FQu,k

denote the required computing intensity

of Qv,k and Qu,k , respectively.

Due to vehicle mobility, the new coordinate L̂vn of vn after

data collection is provided as

L̂vn = Lvn + av · tQv,k
, (4)

where tQv,k
represents the time taken to collect image data by

vn in k. If vn leaves the target cell, we send its intermediate

results to the closest RSU. Consequently, the corresponding

transmission data 5Qv,k
doubles for every increase in the

number of relay hops. Also, the data 5Qv,k
stays unmodified

at the RSU and is transmitted to the MEC server for HD map

construction. However, if the RSU collects the data, we denote

its transmission data as 5Qu,k
. The corresponding transmission

data 5Qk
can be expressed as

5Qk
=























5Qv,k
= Qv,k ·

(

|
L̂vn

Ŝ
| + 1

)

, if v̄n ≥ 1,

5Qu,k
= Qu,k ·

(

|
L̂un

Ŝ
| + 1

)

, if v̄n = 0,

(5)

where |
L̂vn

Ŝ
| represents the number of relay hops.

For the purpose of simplicity, the relocated distance dvn

of vn is ignored throughout the wireless transmission of

intermediate results. However, dvn can be expressed as

dvn =

√

|L̂
un
vn − L̂vn |

2 + (Dv,u + Hun )
2, (6)

where L̂
un
vn = |L̂vn /Ŝ| · Ŝ+ Ŝ/2 denotes the current coordinate

of vn in RSU un , Dv,u represents the horizontal distance

between vn and RSU un , and Hun is the height of RSU un .

Moreover, we express the wireless transmission rate of vn

to RSU un as

Run
vn
= bvn · log

(

1+
Pvn · |hvn |

2 · (dvn )
−ϱvn

Nvn

)

, (7)

where bvn , Pvn , hvn , ϱvn , and Nvn represent vn’s allocated

bandwidth, transmission power, complex channel fading coef-

ficient, path-loss exponent, and noise power, respectively.

Subsequently, we can compute the total transmission time tvn

of vn as

tun
vn
= Qv,k · (

1

R
un
vn

+
|L̂vn /Ŝ|

Run

), (8)

where Run is the wired fronthaul link between RSUs for inter-

mediate results sharing. Likewise, the wireless transmission

rate of the RSU un to MEC server m can be expressed as

Rm
un
= bun · log

(

1+
Pun · |hun |

2 · (dun )
−ϱun

Nun

)

, (9)

where bun , Pun , hun , ϱun , and Nun represent un’s allocated

bandwidth, transmission power, complex channel fading coef-

ficient, path-loss exponent, and noise power, respectively. The

total transmission time tun of RSU un as

tm
un
= Qu,k · (

1

Ru
vn

+
|L̂vn /Ŝ|

Run

). (10)

Additionally, in one update period T , the round trip time (RTT)

tRT T taken by either vn or un can be expressed as

tRT T =

{

tQv,k
+ tv,k + tun

vn
+ tm

un
, if v̄n ≥ 1,

tQu,k
+ tu,k + tm

un
, if v̄n = 0,

(11)

where tQv,k
and tQu,k

denote the time taken to collect data on

vn and un , respectively.

Finally, to determine which car to use for any data trans-

mission, we introduce our vehicle selection function W that

depends on the round trip time tRT T , vehicle’s distance dvn

from the RSU, velocity av , information entropy H(Qv,k), and

transmission data 5Qv,k
.1 We express W as

W
(

tRT T , dvn , av, H(Qv,k), 5Qv,k

)

=

λ1tRT T + λ2dvn + λ3av + λ4 H(Qv,k)+ λ55Qv,k
, (12)

where H(Qv,k) = E[− log P(Qv,k)] is the information

entropy (e.g., amount of detected objects) of any transmission

data, λ1, λ2, λ3, λ4, and λ5 are scoring values in [0, 1] to

determine the importance of each parameter. For example,

we set a higher value to dvn for vehicle vn closer to RSU

un , and vice versa. However, it is challenging to determine

these scoring values in real-time. As a result, we introduce

our smart data source selection process in Section III.

C. Utility Model

Due to bandwidth limitations, it is necessary to explore

methods for reducing transmission data volume and the num-

ber of transmissions between vehicles and RSUs. Therefore,

the goal of this research is to minimize the total amount of

transmission data and data transmissions under the HD Map

1We provide detailed description of each parameters in Section III-A.
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update period T constraints, which can be provided by

min
xv,k ,xu,k ,Qk

W
(

tRT T , dvn , av, H(Qv,k), 5Qv,k

)

(13a)

s.t. tRT T ≤ T, (13b)

V
∑

v=0

(xv,k · Ŝv,k) ≥ 1, (13c)

FQv,k
≤ Fv, FQu,k

≤ Fu, (13d)

H(Qv,k) ≥ 1, (13e)

dvn ≤ dun , (13f)

5Qv,k
≤ Run

vn
, 5Qu,k

≤ Rm
un

, (13g)

where the objective function seeks to minimize the total

amount of data transmissions concerning map data size and

data source selection subjected to the constraints2 of the HD

map update period T . Constraint (13b) stipulates that the entire

HD map period T shall not be exceeded by the round-trip

time tRT T . Next, a sub-region k will always have at least one

entity that is able to collecting and processing HD map data

according to constraint (13c). The third constraint in (13d)

ensures that the amount of resources needed for data collection

and processing does not exceed the capabilities of the vehicle

or RSU. Constraint (13e) requires at least one detected object

in the image data. Finally, constraints (13f) and (13g) require

that the separation distance between the vehicle and the

RSUs is not greater than that of the RSUs and that the data

transmission rate from the vehicle and RSUs not be greater

than the assigned transmission rate, respectively.

III. DEEP REINFORCEMENT LEARNING-BASED DATA

SOURCE SELECTION ALGORITHM

The HD map data source selection scheme’s main objective

is to minimize the latency of HD map updates over the

entire time-slotted system, which may be expressed as (13).

The original optimization problem is extremely complicated

due to the various entities involved (e.g., RSUs, vehicles,

and MEC servers) and the volume of data in the long-term

optimization objective [26]. As a result, using typical optimiza-

tion approaches to tackle the problem directly is challenging.

Therefore, we formulate the HD map data source selection

as a Markov decision process (MDP) and provide a solution

using appropriate reinforcement learning methods.

A. Markov Decision Process Formulation

We model the HD map data source selection issue as

a MDP with states, actions, and rewards. MDPs simulate

decision-making in discrete, stochastic, and sequential envi-

ronments. The model focuses on an agent (e.g., a decision

maker) living in an environment that changes state at ran-

dom in response to the agent’s action choices. The agent’s

immediate reward is affected by the state of the environment,

as are the probabilities of future state changes. The agent’s

goal is to choose activities that maximize a long-term measure

of total reward. Our MDP formulation can be perceived as a

2It is important to note that we need to normalize these constraints just in
case the value difference is too large, as shown in [22].

stochastic process comprising {st , at , p(st+1|st , at ), rt , st+1},

where at a time t , st ,∀ st ∈ St represents the state space,

at ,∀ at ∈ At is the action space, rt is the reward, st+1

is the next state, and p(st+1|st , at ) represents the transition

probability, respectively [27]. The return Rt is defined as the

total of discount rewards from the present state to the end

state, which can be expressed as Rt =
∑

t γt r(st , at ), where

γ ∈ (0, 1) denotes the discount factor. Based on the following

definitions, we proceed to model the HD map data source

selection problem using RL.

The MDP state constantly changes at any given time interval

due to the various entities (e.g., vehicles, RSUs, MEC servers),

entities’ characteristics (e.g., mobility), and data transmissions.

Therefore, we employ an RL approach to solve the MDP

problem with high precision to capture such high dynamics.

To decrease the complexity of our work, we examine only

vehicle data selection and assume the RSU and MEC server

locations stay constant. The RL approach consists of the

following components.

State (st ): At each decision time t , the environment’s state

st comprises the set st =
{

t, 5Q, A(t), D(t), H
}

defined in a

particular target cell. The various state entities are explained

as follows.

• t =
{

t1
RT T , . . . , tvRT T , t V

RT T

}

represents the total time

required by vehicles to collect and transmit data to the

MEC server. The lower the tRT T , the better the network’s

performance, which improves system latency. The agent

uses this parameter to find a suitable candidate for data

transmission.

• 5Q =
{

5Q1,k
, . . . ,5Qv,k

, 5QV,k

}

is the transmission

data from the vehicles. The agent observes the data sizes

and decides the most cost-efficient vehicle suitable for

data transmission.

• A(t) =
{

a1n , . . . , av, aV

}

when the data source is a

vehicle, A(t) is the set of driving speeds of the data

sources at time t . For a vehicle vn , av > 0 shows the same

traveling direction between the requested vehicle and the

RSU. Suppose the data source is an RSU, av = 0. At time

t , av < 0 denotes the opposite traveling direction between

the requested vehicle and the RSU. A lower speed of vn

indicates that the data source is more stable than when it

is faster.

• D(t) =
{

d1n , . . . , dvn , dVn

}

comprises the distances of

vehicles from the RSU, which can be computed from (6).

For any vn , dvn > 0 indicates that the vehicle is in

front of the RSU, and vice versa. The agent compares

the distances against other vehicles to select a suitable

vehicle for the data transmission process, and the shorter

the distance, the more reliable the data source.

• H =
{

H(Q1,k), H(Q2,k), . . . , H(QV,k)
}

is the infor-

mation entropy contained in any vehicle data, which

helps the agent decide the significance of various vehicle

data. The more items recognized in an image, the more

information it has, making it extremely helpful.

Action (at ): We define our action as learning the correspond-

ing importance parameter λ of the state values in a particular

target cell, termed action parameters. Although there are just
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Fig. 2. DSORL framework with RL-based system and the Markov decision
process.

two types of data sources (RSUs and vehicles), vehicle mobil-

ity may produce dynamic changes when employed as a data

source, which signifies that the action space varies depending

on the vehicle scenario. However, evaluating vehicle coverage

and RSU in the connection duration time limits the amount

of data sources. For simplicity, we do not consider when the

vehicle leaves the particular target cell. However, we provide

each vehicle the option to determine its action space by using

previous action values stored on the RSU in a target cell or by

using its inherent actions. We begin by calculating the optimal

values for each state s∗t =
{

tmin, 5min
Q , Amin, Dmin, Hmax

}

based on the preceding state definition. The rank of the chosen

data source with action at may then be determined as follows:

Gvn ,t =

λ1

tvRT T

tmin
RT T

+ λ2
dvn

dmin
vn

+ λ3
av

amin
v

+ λ4
H(Qv,k)

Hmax (Qv,k)
+ λ5

5Qv,k

5min
Qv,k

,

(14)

where Max{Gvn ,t } denotes that the highest rank of data

source vn is chosen when the learned action parameters

{λ1, λ2, λ3, λ4, λ5} are applied to the state st values. For

example, consider the round-trip time tRT T of vehicles in (14),

our RL agent seeks to select the vehicle with the shortest tRT T .

As a result, we designed its action to penalize any vehicle with

a high tRT T by choosing a smaller action parameter while

boosting others with a higher action parameter to enhance the

chances of getting selected. Furthermore, we mention that the

motivation for considering the highest rank of the data source

using Max{Gvn ,t } is to encourage the selection of vehicles

closer to the optimal value s∗t . Therefore, by punishing other

vehicles with less optimal values using our action parameters,

we can ensure that the highest-ranked data source will be

the optimal or near-optimal data source. Also, by altering

the action parameters to impact the choice of data sources,

we intend to allow RL-based learning of the consequences of a

broader range of states. The value ranges of action parameters

in this work are {λ1, λ2, λ3, λ4, λ5} = {0, 0.2, 0.6, 0.8, 1}

and {0, 0.25, 0.5, 0.75}. Finally, when the agent takes action

at under state st , the chosen data source is the highest

ranked Gvn ,t .

Reward (rt ): We return the corresponding reward once

each action is completed to guarantee that the RL model

can learn from previous experience, which characterizes the

overall benefit of an agent adhering to a policy. To comprehend

our agent’s reward, consider the following design principle:

1) increase throughput to the greatest extent practicable.

Throughput is the most essential metric of map data trans-

mission, which signifies that the vehicle can send and acquire

map data rapidly and effectively, 2) improve transmission time

via de-congestion. The goal is to prevent the added expense

of frequent vehicle requests and data source handovers, which

keeps the connection steady and increases throughput, and

3) reduce transmission delays through efficient data source

selection. HD map updates have higher requirements for

transmission latency in the autonomous driving scenario. Due

to the reduced latency, the data source may provide map data

quickly, decreasing the data package wait time. At time t , the

agent observes state st and then takes action at , following

policy π to obtain a reward rt , which can be expressed as

rt = δ1T (Run
vn

)− δ2C(5Q)− δ3�(tRT T ), (15)

where T (R
un
vn ) is the average transmission throughput, which

is the quantity of data successfully transferred from vehicles to

the RSU in a given period and is commonly measured in bits

per second (bps). The average number of selected transmission

data is denoted by C(5Q), and the smaller the C(5Q), the

higher the reward. The average RTT time for all packets during

transmission is �(tRT T ). We employ the impacting factors

δ1, δ2, and δ3 to weigh these metrics, which gives a reasonable

reward rt , and the ranges of these parameters are 1 ≤ δ1 ≤ 2,

0 ≤ δ2 ≤ 2, and 0 ≤ δ3 ≤ 0.5.

B. Value Function and Policy

The RL algorithm evaluates an agent’s performance in

a given state using state-value functions (or action value

functions). We adopt the Bellman expectation equation to

characterize the value function as a discounted expected

return [27], which can be expressed as

We model an MDP to find an optimal policy π∗ that

minimizes the cumulative HD map update’s latency in a given

time-slot T . The agent’s action a accompanies probability

distribution P and parameter θ at state s to evaluate stochastic

policy function πθ at a given time step t , which can be denoted

as

V(st ) = rt (st , at )+ γ
∑

st

P(st+1|st , at )V(st+1). (16)
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Based on the Bellman’s optimal equation, we can compute

the the total maximum discounted reward V∗(st ) iteratively

as V∗(st ) = max
at

V(st ) [27] and the state-value function’s

convergence yield the optimal policy π∗ calculated as π∗ =

arg max
at

V(st ).

Usually, we require prior environment information when

employing a model-based reinforcement learning (RL)

algorithm. In this work, the reward and transition probabilities

are unknown to our environment. As a result, we implement

a model-free RL algorithm. Q-learning algorithm is a well-

known model-free RL [27]. In a discrete state space MDP, the

agent iteratively learns Q-values stored in the lookup table.

The Q-value Q(st , at ) update is shown as [28]

Qt = r(st , at )+ γ max
a

Q(st+1, a), (17)

Q(st , at )← Q(st , at )+ α(Qt −Q(st , at )). (18)

where α ∈ [0, 1] is the learning rate. The error between

target value Qt and predicted value Q(st , at ) is expressed as

a time-difference error (TD-error). It is important to note that

we can obtain the optimal Q-values policy upon convergence

C. Deep Reinforcement Learning Based Smart Data Source

Selection Process

Model-free reinforcement learning algorithms can be cat-

egorized into value-based and policy-based techniques based

on policy updates. By learning a value function, value-based

approaches enable agents to choose the best policy (e.g.,

Q learning). Also, because the agent has a wide variety of

action parameters to select from, the action space in our

work is continuous. A naive method is to discretize the action

space using a value-based procedure in the continuous domain,

which results in the curse of dimensionality and the loss of

critical information about the structure of the action domain.

The policy-based approaches use parameterized policies to

learn stochastic policies for high-dimensional and continuous

action space problems.

1) Policy Based Method: At state st , action at follows

the probability distribution with parameter θ , and we can

express the stochastic policy function πθ at time step t for

the parameterized policy as

π(at |st , θ) = P
{

At = a|St = s, θ t = θ
}

. (19)

The objective function J(π) is expressed as

J(π) = Es∼ρπ ,a∼πθ [
∑

t

r(st , at )], (20)

which denotes the expected return, and ρθ represents the policy

π ’s discounted state distribution’s probability. The Policy

gradient approach [29] determines the optimal parameter π∗

using the steepest descent and performs parameter updates as

follows:

θt+1 = θt + α∇θt J(πt ). (21)

When the action is a high-dimensional vector, the stochastic

policy gradient (SPG) requires a significant amount of com-

puting to execute action sampling for the stochastic policy.

The deterministic policy gradient (DPG) [30], on the other

hand, explicitly provides deterministic behavior policies while

avoiding frequent action sampling. The DPG objective func-

tion’s gradient is specified as

∇θJ(ϑθ ) = Es∼ρϑ [∇θϑθ (s)∇aQϑ (s, a)|a=ϑθ (s)]. (22)

DPG-based approaches, on the other hand, generate deter-

ministic strategies without investigating the environment,

which results in an off-policy balance in state-action exploita-

tion and exploration. The behavior policy adopts a stochastic

policy to ensure sufficient action exploration. Conversely,

the target policy is deterministic, which capitalizes on the

full benefit of an efficient deterministic policy. Hence, the

DPG method’s learning structure follows the actor-critic (AC)

approach, as explained in the subsequent paragraph.

2) Actor-Critic Approach: The actor-critic approach inte-

grates the advantages of policy-based and value-based

approaches. In particular, the actor creates action given a

state via a policy function. The critic generates the action

value function and utilizes TD-error (loss function) to analyze

the action’s performance. The actor then employs the DPG

technique to update the policy parameter with the critic’s

output. Next, the critic applies the gradient descent approach

to update the action value function [31].

The function approximators given as θQ and θϑ are applied

as the action-value and policy function. The value function

update is expressed as

ϕt = rt + γQ(st+1, ϑ(st+1|θ
ϑ ))−Q(st , at |θ

Q), (23)

where the future θQ can be calculated using the expression

θ
Q
(t+1)
= θQ(t)+ αcϕt∇θQQ(st , at |θ

Q). (24)

Using the DPG approach, the actor updates the policy param-

eters θϑ :

θϑ
(t+1) = θϑ (t)+ αa∇θϑ ϑ(st |θ

ϑ )∇aQ(st , at |θ
Q)|a=ϑ(st ).

(25)

3) DSORL: A Deep Deterministic Policy Gradient-Based

Data Source Selection Algorithm: Deep deterministic policy

gradient (DDPG) is a DRL technique that combines the

advantages of Q-learning and policy gradient approaches [32].

DDPG is a good choice for our environment with a continuous

action space. It can efficiently solve sequence decision-making

problems due to its ability to directly output actions, con-

vergence stability, lower sensitivity to hyperparameters, and

reduced computational complexity. A typical DDPG comprises

two models: actor and critic, which form its actor-critic

technique. The actor consists of a policy network that uses

states as inputs to produce discrete or continuous actions

instead of a probability distribution over actions. The critic

forms a Q-value network that utilizes the state and action as

input to produce the Q-value for criticizing the performance

of an action with the help of TD-error (loss function). The

actor updates the policy parameter with the critic’s out-

put via a deterministic policy gradient (DPG) method [31].

DPG immediately creates a deterministic behavior policy and

skips numerous action sampling. The critic applies a gradient

descent method to update the action-value functions.
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Algorithm 1 DSORL: DDPG-based algorithm for smart

data source selection process

input: actor ϑ(st |θ
ϑ ), critic Q(st , at |θ

Q), learning rates:

αa, αc, discount parameter γ , smooth update τ ,

and buffer D;

1 Initialize θϑ , θQ, θϑ ′ ← θϑ , and θQ
′
← θQ;

2 void execute_DSORL(states):

3 for epoch n = 0; n ≤ N ; n ++ do

4 Initialize a random process M;

5 Initialize initial state s0;

6 for period t = 0; t ≤ T ; t ++ do

7 Select an action at = ϑ(st |θ
ϑ )+Mt ;

8 Execute at , st+1, and rt ;

9 Store (st , at , rt , st+1)→ D;

10 Sample a random d from D;

11 Initialize TD-error: ϑat =

rt + γQ(st+1, ϑ(st+1|θ
ϑ ))−Q(st , at |θ

Q);

12 Update critic:

θ
Q
t+1 = θ

Q
t + αc

1
d
ϑat∇θQQ(st , at |θ

Q;

13 Compute policy gradient:

14 J =
1
d

∑T
t ∇aQ(st , at |θ

Q)|a=ϑ(st )∇θϑ ϑ(st |θ
ϑ );

15 Update actor: θϑ
t+1 = θϑat + αa∇θϑJ ;

16 Update target network:

17 θϑ ′ ← τθϑ + (1− τ)θϑ ′

18 θQ
′
← τθQ + (1− τ)θQ

′
;

19 end

20 end

21 return

22 Function main():

23 Initialize CARLA_env;

24 Generate traffic flows

/* transmit environmental data */

25 data_sources[] = run carla_ros_bridge();

26 execute_DSORL(data_sources);

27 return

Usually, applying function approximators directly to the

actor-critic method coupled with the deep neural network is

unstable due to consecutive shared parameters [33]. How-

ever, training a DQN network with experience replay breaks

this shared similarity. Therefore, the authors in [34] intro-

duced a DDPG algorithm that combines the advantages of

the actor-critic approaches and DQN with experience replay,

which efficiently runs over the continuous action spaces.

Experience Replay: As a result of the agent and environment

interactions, the data tuples (st , at , rt , st+1) is produced and

stored in replay a buffer B. In addition, the critic and actor

randomly utilize a minibatch b sample (sb, ab, rb, sb+1) from

the buffer for the value function and policy function parameter

updates.

Target Network: In the work [35], the authors proved that

Q-learning is unstable when directly implemented with deep

neural networks due to parameter sharing between the target

network and the predicted network. As a result, we use

Fig. 3. CARLA vehicular NDN environment setup with DSORL process.

replicates of actor ϑ ′(st |θ
ϑ ′) and critic network Q′(s, a|θQ

′
)

to evaluate the target value. Additionally, soft updates to target

network weights are applied to improve the training stability.

Finally, Algorithm 1 presents the DDPG-based algorithm to

our DSORL approach.

IV. EXPERIMENT RESULTS AND ANALYSIS

In this section, we first introduce the system configuration

for our experiments in Section IV-A. Secondly, we present

the performance metrics and experiment benchmarks for the

basis of our experiment in Section IV-B. Finally, we con-

duct comprehensive experiments to evaluate the performance

improvements of the proposed mechanism and validate our

results in Section IV-C.

A. System Configuration

Fig. 3 shows our vehicular NDN environment with our

proposed data source selection scheme. In Fig. 3, we create

multiple vehicles that send data transmission requests to the

MEC server, which comprises the DSORL algorithm. Also,

Fig. 3 shows a sample DSORL code running on the MEC

server to select vehicles suitable for data transmission.

We conduct the research using the Python 3.8 environ-

ment on a Core i7 CPU machine with a 3.9GHz clock

speed and 64GB of RAM. Using the CARLA simulation

environment, we deploy the proposed DSORL algorithm for

HD map updates in vehicular settings. CARLA facilitates

the creation, training, and validation of autonomous driving

systems and provides open digital assets (urban layouts,

buildings, and vehicles), open-source protocols, and tech-

nologies. The simulation platform provides dynamic sensor

packages, ambient conditions, comprehensive control of static
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TABLE II

EXPERIMENT PARAMETER LIST

and dynamic actors, and more. We employ a multilane urban

traffic flow vehicle trajectory, including vehicles, pedestrians,

crossings, cross traffic, traffic laws, and other complexities

that differentiate urban driving from track racing. In addition,

we connected a robot operating system (ROS) with CARLA

(ROSbridge) to simulate computations on multiple vehicles

and RSUs, such as router and RSU connections, HD map

data collection, optimization, and construction. Using ROS,

vehicles in our CARLA environment can also execute com-

plicated algorithms, such as the YOLOX object detection

algorithm [25]. Multiple Nvidea Jetson AGX models with a

high processing capability are utilized on the MEC server for

HD map creation and dissemination. Also, we assume the

P2P link latency between the router, vehicles, RSU, and MEC

server to be 10 milliseconds with a bandwidth of 200 Mb/s.

Then, using ROSbridge, we transmit the vehicle data from

CARLA, including the number of vehicles, driving direction,

speed, and road network. In addition, we implement our

DRL method using the OpenAI Gym [35] tools. To boost

the efficiency of HD map transmission, we employ the IEEE

802.11ac protocol to send the map data. Table II presents the

parameter values in detail.

B. Performance Metrics and Experiment Benchmarks

In this part, we introduce the prerequisites for Section IV-C,

including baseline schemes and performance metrics. The

experiment baseline schemes and performance metrics

describe how the many associated approaches for this topic

were selected and the measurement metrics utilized to get

these findings, respectively.

1) Baseline Schemes (Benchmarks): To show the perfor-

mance of our proposed DSORL scheme, we implement the

three equivalent baseline schemes listed below:

1) RLSS Technique: This approach employs a double deep

Q-network (Double DQN) learning-based architecture

to train a neural network as an agent to decide on

data source selection to improve HD map update action

performance concerning latency, throughput, and packet

loss.

2) HDM-RTT: This technique combines an HD map and a

random tree sampling-based algorithm to quickly obtain

high-quality and feasible map trajectories in complex

campus scenarios.

3) Pro-RTT: In this system, the vehicle employs the

probability-based handover approach to choose a new

data source by monitoring the RTT, which decreases the

frequency of handovers.

2) Metrics of Performance: To evaluate the performance

of our proposed DSORL scheme, we employ the following

performance metrics:

1) Throughput: The amount of successfully received map

data divided by the transmission time is referred to as

throughput. This metric applies to the overall stages

involved in our latency optimization scheme.

2) Transmission Time: This is the time it takes from the

start of a map transmission to the finish, including data

collection, object detection, data transfer, and HD map

update.

3) Packet Loss Rate: This is derived by dividing the number

of lost packets by the total number of packets sent.

4) Handover Times: This metric displays how many times

the RSU exchanges data sources throughout the HD map

transmission procedure. Data transmission efficiency

will be reduced if data sources are switched often.

C. Implementation Discussions

In this section, we present and explain the various results

obtained in our experiment using the previously introduced

baseline schemes and performance metrics.

1) Convergence Analysis: In this experiment, we evaluate

the convergence performance of our proposed DSORL method

for smart data source selection with a greedy approach (GA),

deterministic policy gradient (DPG), and Double DQN, taking

into account normalized reward and variable learning rates,

as seen in Fig. 4. Fig. 4a depicts the performance of DSORL,

Double DQN, DPG, and GA based on normalized reward con-

vergence, and Fig. 4b shows the impact of varied learning rates

on the convergence of the DSORL algorithm. According to

Fig. 4a, all algorithms converge, with the proposed algorithm

achieving the fastest convergence at around 450 epochs and

the highest normalized reward at almost 0.95. The observed

trend can be attributed to DSORL properties that significantly

improve the learning process. For example, DSORL uses deep

neural networks, allowing it to handle high-dimensional obser-

vation spaces compared to the similar architecture in DPG.

Additionally, DSORL outperforms Double DQN due to its

policy-based algorithm, which can handle both continuous and

discrete action spaces and is less sensitive to hyperparameters.

Moreover, DSORL uses a single neural network and is less

prone to convergence issues, while Double DQN requires

two separate networks and can have difficulty converging.

Furthermore, GA chooses actions greedily, which results in

the worst convergence with a normalized reward of around

0.65. GA appears to be appropriate for nonlinear integer

programming (NLIP) problems that cannot capture the high

dynamics of the MEC system.
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Fig. 4. Convergence analysis.

We examine the convergence of the proposed DSORL

algorithm, with the fastest convergence and the largest reward

value, using several learning rates such as α = 0.1, α = 0.01,

α = 0.001, and α = 0.0001. The convergence for each

learning rate is shown in Fig. 4b, with α = 0.001 achieving the

maximum reward. We can conclude that using α = 0.001 as

the learning rate for our suggested method results in improved

convergence. However, this is not true in every circumstance

because the choice of α is dependent on the algorithm and the

environment.

2) Average Throughput Analysis: We first discuss the

impact of the DRL algorithm on data source selection, which

allows the DSORL scheme to adapt to the dynamic and

complex nature of vehicular NDN. The DRL algorithm’s

ability to learn from the system’s current state, considering

factors such as latency, throughput, and packet loss, allows it to

select suitable vehicles for HD map data transmission to MEC

servers, thereby optimizing the performance of the vehicular

NDN environment. The effectiveness of the DSORL method

is demonstrated through a comparison with various baseline

schemes (RLSS, Pro-RTT, and HDM-RTT) in terms of average

throughput performance for a varying number of vehicles,

as shown in Fig. 5a. As seen in Fig. 5a, increasing the number

of vehicles decreases the average throughput of the system.

However, the DSORL scheme significantly outperforms other

baseline systems, owing to reduced latency, packet loss, and

bandwidth utilization resulting from fewer data transmissions.

For example, when the number of vehicles is 10 − 30, the

median average throughput is around 8.2, 15.8, 20.5, and

35 (Mb/s) in the corresponding HDM-RTT, Pro-RTT, RLSS,

and DSORL schemes, respectively.

Similarly, Fig. 5b shows the average throughput with time.

As shown in Fig. 5b, the average throughput decreases with

time. DSORL achieves a higher throughput, while all baseline

schemes maintain a relatively steady state. Considering 100s

to 200s duration, DSORL obtains an average throughput of

56.5 (Mb/s), RLSS, HDM-RTT, and Pro-RTT, and 39, 30,

and 20 (Mb/s), respectively. Our detailed experimental results

demonstrate that the proposed DSORL scheme effectively

optimizes data source selection for HD map data transmission

in vehicular NDN environments. The method’s RL-based MDP

formulation and adaptive capabilities allow it to outperform

existing baseline schemes, making it a promising solution for

real-world vehicular network applications.

3) Packet Loss Analysis: In this section, we highlight the

impact of our DSORL algorithm on minimizing packet loss

Fig. 5. Throughput analysis.

in the data source selection process. The DSORL algorithm’s

ability to learn from the system’s current state, considering

factors such as network congestion and interference between

vehicles, allows it to select suitable vehicles for HD map data

transmission to MEC servers, thereby reducing the packet loss

rate.

To demonstrate the effectiveness of the DSORL method in

minimizing packet loss, we compare it with various baseline

schemes (RLSS, Pro-RTT, and HDM-RTT) in Fig. 6a. Fig. 6b

shows the average packet loss rate for each scheme, revealing

two important observations:

1) the DSORL scheme significantly outperforms other

baseline systems, and

2) when the number of vehicles exceeds 20, the packet

loss rate of RLSS, Pro-RTT, and HDM-RTT schemes

increases substantially compared to the DSORL.

For example, the average packet loss rate for DSORL, RLSS,

Pro-RTT, and HDM-RTT schemes is 4.95%, 8.95%, 12.5%,

and 15.65%, respectively. The superior packet loss rate of

DSORL can be attributed to its ability to reduce network con-

gestion, thereby improving data transfer quality and mitigating

interference between multiple vehicles in the environment. Our

proposed DSORL scheme is highly effective in optimizing

data source selection for HD map data transmission in vehic-

ular NDN environments, particularly regarding packet loss

rate. The RL-based MDP formulation and adaptive capabilities

allow the DSORL method to outperform existing baseline

schemes, making it a promising solution for real-world vehicu-

lar network applications. The superior performance of DSORL

in minimizing packet loss rate highlights its practical implica-

tions and relevance for real-life scenarios, where maintaining

a low packet loss rate is crucial for ensuring reliable commu-

nication and data transfer in vehicular networks.

4) HD Map Data Size Analysis: In this section of the

experiment, we investigate further the impact of HD map

data size on transmission time by comparing the proposed

DSORL method with various baseline techniques (RLSS, Pro-

RTT, and HDM-RTT). We present the transmission time for

each baseline system when the number of vehicles is 20, and

the data size varies, as shown in Fig. 6b. From our analysis,

we make two key observations:

1) the DSORL scheme consistently outperforms the other

baseline systems across different data sizes; and

2) as the data size increases, the transmission time for the

DSORL method grows slower than the other baseline

schemes.
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Fig. 6. Packet loss rate and transmission data size.

The DSORL method’s superior performance can be attributed

to its integrated image data optimization, which reduces the

amount of data transmitted and, consequently, the transmission

time. This approach is particularly crucial in NDN vehicular

scenarios, where data size significantly impacts transmission

time performance. For example, when the data size increases

from 50MB to 200MB, the median transmission time rises by

32, 91, 132, and 145s for the DSORL, RLSS, Pro-RTT, and

HDM-RTT schemes, respectively. Our analysis demonstrates

the practical relevance of the proposed DSORL method in

real vehicular network environments, as it can effectively

reduce transmission time while maintaining high-quality data

transfers. This process is particularly significant for ensuring

the efficiency and reliability of HD map transmissions in

autonomous driving scenarios.

5) Transmission Time and Handover Count Analysis: In the

following result discussion, we examine how well the DSORL

scheme performs compared to different baseline techniques,

focusing on transmission time and handover count of different

vehicle densities. Figs. 7 and 7b depict the handover count and

transmission time of each method in these aspects, respec-

tively. Our analysis leads to three critical observations:

1) the DSORL scheme demonstrates superior performance

compared to the other baseline schemes;

2) as the number of vehicles increases, the transmis-

sion time and handover count in RLSS, Pro-RTT, and

HDM-RTT schemes show a significant rise, whereas the

DSORL method remains relatively stable; and

3) there is a direct correlation between handover count

(number of data source switches) and transmission data

size on transmission time, which further validates the

effectiveness of our proposed DSORL scheme.

The primary reason behind DSORL’s superior performance

lies in its ability to minimize the number of handovers, thereby

increasing connection stability. Our DSORL approach achieves

this reduction, which effectively reduces network congestion

and improves data transmissions. In real-world vehicular net-

work environments, minimizing handovers is essential for

maintaining a stable connection and enabling efficient data

transmission, particularly in dense traffic scenarios.

Furthermore, to provide more context, let us consider an

example with 20 vehicles in the environment. The average

handover count for DSORL, RLSS, Pro-RTT, and HDM-RTT

systems is 4.9, 9.2, 12.7, and 16.5, respectively. The aver-

age transmission time for DSORL, RLSS, Pro-RTT, and

HDM-RTT schemes is 4.27, 8.6, 14.7, and 19.8s, respectively.

Fig. 7. Handover count and transmission time (s).

These results further emphasize the practical relevance of

the DSORL scheme and its potential to optimize HD map

transmissions in autonomous driving scenarios.

6) Communication Cost Analysis: In this section, we ana-

lyze the impact of the number of vehicles and available band-

width on the communication cost of our proposed DSORL

scheme, as illustrated in Fig. 8a. The communication cost is

a crucial factor for evaluating the effectiveness of DSORL in

real-world vehicular network scenarios. From Fig. 8a, we can

derive three significant observations:

1) the communication cost of DSORL increases with the

growth in the number of vehicles,

2) the communication cost escalates as the bandwidth

decreases, and

3) the DSORL scheme can effectively manage the com-

munication cost under various bandwidths, maintaining

acceptable performance even at lower bandwidths.

This analysis demonstrates the practical implications of

the DSORL scheme in real-world vehicular network

environments.

Bandwidth plays a critical role in the map update process,

as limited bandwidth may lead to increased communica-

tion costs, impacting the system’s overall performance. For

instance, when there are 20 vehicles, the communication cost

of DSORL is 2.4, 4.7, 46.9, and 468.8ms at 100, 10, and 1Mb

bandwidths, respectively, when considering different band-

widths. As a result, we employ the IEEE 802.11ac standard,

which offers higher data rates, instead of the IEEE 802.11p

(3 Mbit/s), to ensure that the HD map update process in

DSORL does not adversely affect the system’s performance.

These insights help demonstrate the robustness and adapt-

ability of DSORL in practical vehicular network environ-

ments, emphasizing its potential to manage communication

costs effectively and maintain satisfactory performance under

different conditions.

7) Vehicle Speed Analysis: To further investigate the effec-

tiveness of the DSORL scheme, we analyze the impact of

vehicle driving speed on transmission data size for various

baseline approaches. Fig. 8b shows the relationship between

transmission data size and vehicle speed, ranging from 10 to

60m/s for 30 vehicles. The following key observations can be

made:

1) The DSORL scheme consistently outperforms the other

baseline methods at various speeds, demonstrating its

adaptability and effectiveness in dynamic vehicular net-

work scenarios.
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Fig. 8. Communication cost and speed impact.

2) As vehicle speed increases, the transmission data size

decreases for all schemes. This observation highlights

the importance of considering vehicle speed as a fac-

tor influencing data transmission performance in NDN

vehicular environments.

3) A substantial reduction in transmission data size is

observed for all baseline methods at a speed of 30m/s.

For instance, the transmission data sizes for RLSS, Pro-

RTT, and HDM-RTT methods are 182, 138, and 120MB,

respectively. However, the DSORL scheme maintains a

consistent decrease of 207MB, showcasing its robust-

ness in managing transmission data size under varying

speeds.

4) The reduced transmission time and vehicle handovers in

the DSORL scheme allow for a more efficient and stable

data transmission process, regardless of the vehicle’s

speed. This finding emphasizes the practical relevance

of our proposed method in real-world vehicular network

environments.

By incorporating these additional insights, we can conclude

that our discussion highlights the versatility and effectiveness

of the DSORL scheme in managing the complexities of real

vehicular network scenarios.

V. CONCLUSION

In this study, we designed and implemented a smart data

source selection scheme for HD map updates in vehicular

NDN scenarios. We created a vehicular NDN environment

with the CARLA simulator and ROS2 to collect environmen-

tal data using AV sensors. Next, considering our vehicular

NDN’s dynamic and complex nature, we formulated the

data source selection problem as an MDP and solved it

using a DRL-based approach. For simplicity, we termed our

proposed scheme DSORL, which selects suitable vehicles

for HD map data transmission to MEC servers. DSORL

takes advantage of the NDN architecture to effectively han-

dle large-scale HD map delivery in vehicular scenarios and

selects suitable data sources in real-time to stay current

with dynamic and complicated environments. The experiment

results indicated that our suggested method outperformed

existing baseline schemes across all performance criteria in the

evaluation. For instance, the system throughput increases by

65%− 72.68% compared to other baseline systems. Similarly,

the proposed approach can minimize packet loss rate, data size,

and transmission time by up to 60.6%, 77.5%, and 54.1%,

respectively.
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