
ABSTRACT

Over the past decade as data science has become integral to the research 

workflow, we, like many others, have learned that good data science requires 

high-quality software engineering. Unfortunately, our experience is that 

many data science projects can be limited by the absence of software 

engineering processes. We advocate that data science projects should 

incorporate what we call the 3Rs of software engineering: readability (human 

understandable codes), resilience (fails rarely/gracefully), and reuse (can 

easily be used by others and can be embedded in other software). This article 

discusses engineering practices that promote 3R software in academia. We 

emphasize that best practices in academia may differ from those in industry 

because of substantial differences in project scope (most academic projects 

have a single developer who is the sole user) and the reward systems in place 

in academia. We provide a framework for selecting a level of software 

engineering rigor that aligns well with the project scope, something that may 

change over time. We further discuss how to improve training in software 

engineering skills in an academic environment and how to build 

communities of practice that span across disciplines.

Keywords: software engineering, reproducibility, reuse, data science 

education

Media Summary

Data science is about acquiring, interpreting, and using data — all of which 

rely on software. Industry has skilled professionals who can provide the 

software necessary for high quality data science. But academic data science 

projects are often staffed with researchers with few skills in software 

engineering, especially the ability to produce readable, resilient, and reusable 

software. This is what we call the 3Rs of software engineering.

For the last decade, the eScience Institute at the University of Washington has 

been training data scientists and developing data science technologies. 

Thousands of undergraduate and graduate students, along with numerous 

faculty, have participated in our programs, training, and formal classes. As a 

result, we have developed a considerable understanding about the software 

engineering principles that promote effective data science in academia.

We find that while some academic projects require industrial strength 

software engineering, most projects do not. We recommend adjusting 

software engineering practices to the scope of the project. We classify the 

scope of academic projects as: solo (a single researcher creates and uses the 

project); lab (the developers and users know each other and are in close 

contact); and community (developers have limited knowledge of the users).

The centerpiece of this article is how to adjust software engineering practices 

to the project scope. For example, a solo project should include unit tests, but 

need not invest in packaging for software distribution. A lab project should 

include packaging considerations, but may not need formal design 

documentation. A community project should abide by the same practices as 

those employed by industry software engineers. These recommendations are 

detailed in our discussion, with references to help with applying these 

practices.

The eScience Institute is developing a centralized team of software engineers 

who provide strategic support to research projects. In the future, we will 

report on the effectiveness of our efforts, and the best practices and 

challenges with developing and operating such a team.

1. Good Data Science Requires High-Quality 
Software Engineering

As data science has become ever more integrated within research, our 

reliance on software and its development has grown substantially. The ‘data’ 

part of data science relies heavily on the development of readable, resilient, 

and reusable software to create, analyze, and visualize data (e.g., Jansses, 

2014). The research we undertake and the discoveries we make are becoming 

ever more dependent on robust and reproducible software frameworks and 

development processes. This reliance is, however, not unique to data science. 

In a study of researchers in the United Kingdom (Osimo & Switters, 2019), 

70% of respondents said that their research would be impossible without the 

use of software, and 56% said that they develop their own software. Indeed, 

Hettrick (2014) found that without software, more than 80% of the academic 

respondents would either be unable or would find it extremely difficult to do 

their research.

Despite the rapid evolution in software-driven science, academic institutions 

have not kept pace with the growing need for software engineering skills. In a 

survey of principal investigators at the University of Washington, 30% of 

respondents said they address their software development needs by hiring 

graduate students, often without any formal training in software 

engineering. Hiring students new to the best practices for writing software as 

software engineers does not, in our experience, typically produce robust 

software that can live beyond the lifespan of a typical PhD. Further, software 

developed in this way often cannot be used by a broader community. Training 

in software engineering for non-CS (computer science) majors has begun to 

emerge within some university CS programs, but as we note in later sections, 

these programs are not focused on the needs of non-CS researchers because 

they do not emphasize the practice of software engineering. Addressing this 

challenge has implications for workforce development within the United 

States and the creation of a software engineering talent pool within the 

research community.

At times, our discussion uses technical terms that may be unfamiliar to some 

readers. To make this article accessible to a wider audience, we include a 

glossary of terms in Appendix A. When a glossary term is first introduced, it 

is underlined (e.g., engineering practice).

The lack of software engineering expertise on campuses will likely impact 

research productivity over the coming years. To address this, we believe that 

researchers should have the skills to develop what we refer to as the 3Rs of 

software engineering:

As we discuss in this article, not all academic software needs to be at the high 

end of the 3Rs, but all developers of academic software should have the 

understanding to produce software with the 3Rs.

A theme throughout this article is employing an appropriate level of software 

engineering for the project scope. Milewicz et al. (2019) notes that the vast 

majority of academic software projects have a single developer and a single 

user. Such solo projects are common in student thesis work and for software 

written to analyze data for a publication. A modest number of projects have 

multiple users, typically software written for a research lab such as a data 

reduction pipeline. A small fraction of projects are in widespread use in a 

research community. For these projects, significant software engineering 

rigor is necessary.

Project scope can change, both expanding and contracting. As such, we 

strongly believe that all developers of academic software should know how to 

build 3R software, even though high-end 3R software is unnecessary in most 

academic projects. Unfortunately, 3R skills are difficult to acquire in current 

academic course work outside of CS and related fields (Fox & Patterson, 2012).

In this article, we further address how to bring more software engineering 

skills into academia through improved training programs, and the creation of 

career trajectories for research software engineers (RSEs), professional 

software engineers working in an academic setting. There is a growing 

recognition of the need for RSEs. One indication of this need is the creation of 

the United States Research Software Engineering organization (USRSE, n.d.). 

Feeding the RSE pipeline requires universities to develop courses and 

programs to train students in software engineering practices. Here we 

consider approaches and challenges with developing these courses at the 

University of Washington and elsewhere. Finally, we explore what a future 

software engineering and a software engineering community might look like 

at a research university.

2. A Tale of Two Academic Software Projects

To gain more insight into the nature of and challenges with the development 

of academic software, we discuss the history of two academic software 

projects. These projects are atypical in that their software is in use by a broad 

community, and both evolved over a period of two decades. As noted 

previously, most academic software is developed and used by a single 

researcher. That said, the success of the projects described below is in part 

due to adopting tools and best practices for creating 3R software. Solo projects 

should be aware of how they can evolve their software to potentially address a 

broader community.

2.1. Tellurium

With the advent of inexpensive genomic sequencing and related advances in 

laboratory techniques, biological science and engineering has increasingly 

focused on quantitative techniques. One aspect of this is the development of 

mechanistic models that predict cellular processes, like the concentration of 

glucose and related metabolites. These models are expressed as a network of 

chemical reactions. Each reaction describes the transfer of mass from 

reactants to products and the rate at which this occurs. Evaluating such a 

model requires evaluating a system of nonlinear ordinary differential 

equations. Historically, such models were developed as special purpose 

simulators written in the C or FORTRAN programming languages. This was 

problematic because (a) few modelers could program in C or FORTRAN and 

(b) there was little reuse of common components (e.g., transforming a 

reaction network into a system of differential equations). As time passed, 

there was a recognition that biochemical simulators could be developed more 

rapidly if there were tools that incorporated commonly used capabilities.

The Tellurium project (Choi et al., 2018) is the latest evolution of a long-

standing effort by the Sys-Bio Research Group at the University of 

Washington to develop mechanistic models of biochemical networks. The 

JARNAC project (Sauro et al., 2003) tried to make this modeling accessible to 

bench scientists by allowing users to enter reactions in chemical notation 

instead of having them write computer codes. Unfortunately, the system was 

quite slow. Thus, the project evolved into two parts: the RoadRunner 

execution engine (Somogyi et al., 2015) and the Antimony (Smith et al., 2009) 

reaction specification language. This strategy proved successful. The project 

expanded to support Windows, Mac, and Linux; and it provides clients for 

Python and C.

As the project scope evolved, so did the people within it. In the beginning, this 

was a solo project by Herbert M. Sauro (2018). It was a critical period because 

the future success of the project depended on a single person. Later, another 

person was added to build Antimony. Subsequently, others were included to 

support multiple platforms.

Software engineering practices evolved in parallel with the project scope. 

This was because as more people joined the team, more formality was 

required to maintain code integrity (e.g., manage source code conflicts). A 

central consideration was controlling versions of software contributed to by 

many developers. The ‘branch’ capabilities of git (Loeliger & McCullough, 

2012) proved critical here. Early on, unit tests were not used at all, but the 

project has added extensive unit tests in recent years, and this has improved 

resilience. Since Tellurium is intended for programmatic use, detailed 

documentation is essential. A very recent change is using Read the Docs (n.d.) 

for software documentation along with an automated system for 

documenting Tellurium application programming interfaces.

2.2. Astropy

Astrophysics has a long history of community software development 

extending back to the 1980s. These initiatives have been orchestrated by large 

organizations (e.g., those funded through government support such as IRAF 

[Image Reduction and Analysis Facility]; Tody, 1986, and Starlink; Currie, 

2014) and by smaller groups of users who built domain-specific applications 

(e.g., the analysis package for gamma-ray astronomy, gammapy; Deil et al., 

2017). More recently, a third development strategy has emerged in which 

packages (or frameworks) of larger scope are created through the integration 

of many smaller packages. Astropy (Price-Whelan et al., 2018), created in 

2011, is an example of such a strategy.

Astropy was motivated by the rise of Python as a lingua franca in astronomy. 

A central goal of the Astropy Project was to provide consistency and 

completeness for common calculations and tools used by astronomers. 

Examples of these tools include unit conversions, the manipulation of sky 

coordinates (e.g., transforming from Galactic coordinates to Right Ascension 

and Declination), and software to read and write common astronomical data 

formats.

The packages integrated into Astropy were, in large part, developed by 

researchers well versed in software engineering practices. For example, 

constituent packages made use of version control via GitHub, had unit tests 

for the core libraries and functions, and issued pull requests as a means of 

developing new features. Packages were distributed using common software 

repositories such as PyPI (Python Package Index). Tools for continuous 

integration (e.g., Travis CI and Jenkins) were adopted early in the 

development of Astropy to improve the reliability and robustness of the 

software. This solid engineering foundation greatly facilitated the 

construction of Astropy and its adoption by the community.

Even with this engineering foundation, package integration was nontrivial 

because of the need for common abstractions across packages. An example of 

this is the sub-package astropy.units, which provides a representation of 

physical units used in astrophysics, enables translation between units, and 

has the ability to decompose complex parameters (e.g., the Hubble 

parameter) into their base units (i.e., inverse time). As with many early 

Astropy packages, the units package was developed from an existing 

application that had introduced units to cosmological simulation software 

and was then extended to support the needs of the broader astronomical 

community. The lack of existing standards within astronomy for units led to 

the inclusion of all available standards within the package to make it as 

general as possible. Functionality to translate between conventions enabled 

the units package to provide general support without forcing the community 

to agree on a set of standards. This ‘ease of use’ philosophy underlined many 

of the Astropy design choices.

Building the community of Astropy users, maintainers, and developers 

required convincing astronomers with little or no formal training in software 

engineering to adopt these standard tools and procedures if they wanted to 

contribute to the code base. With little financial resources, the training and 

education of the user community was supported by the Astropy developers 

themselves. The availability of GitHub, on which Astropy was built, provided 

the tools and infrastructure on which to develop community-agreed 

engineering practices for version control, issue tracking, and 

communication. The availability of Infrastructure tools and repositories such 

as GitHub are key to the sustainability of software projects in astronomy and 

enable common approaches to be adopted within a community.

3. 3R Software Engineering Practices

The foregoing academic software projects, while different in size and scope, 

show how good software engineering practices can increase the adoption and 

trust of software packages beyond the developers who wrote them. Based on 

this and our experiences in software development, we have developed a set of 

recommendations for software engineering practices that aid in the 

development of 3R software. We do this with great humility since software 

engineering is a field with a long history and a vast literature (see Boehm, 

1976; Glass et al., 2002). A good starting point for this literature is on artifact 

sharing (Timperley et al., 2020). By engineering practice, we mean a 

collection of related activities used in building, evolving, and managing 

software systems. Examples of engineering activities include coding, quality 

assurance, and distributing software. We use the term artifact to refer to 

work products of software engineering, especially code, documentation, and 

data. We note in passing that data science produces other artifacts, such as 

predictive models and analysis pipelines. These artifacts are beyond the scope 

of this article.

Our recommendations come in part from the experience of members of the 

eScience Institute at the University of Washington and discussions. eScience 

has more than 20 technical staff, almost all of whom have a PhD in a primary 

discipline such as Computer Science, Physics, Human Centered Design, 

Statistics, and Chemistry. Technical staff are engaged in many educational 

programs. Some teach formal courses in their departments. Others 

orchestrate and/or instruct Software Carpentries. eScience oversees the 

development of data science curricula and courses at the graduate and 

undergraduate level. We also have an extensive outreach program for on-

campus researchers, our Winter Incubator in which domain researchers 

dedicate 16 hours per week for a quarter to work with a member of eScience 

technical staff. In the summer we run a program for matriculating 

undergraduates and graduate students from across the county (and even 

globally) to undertake data science projects for social good (DSSG). Beyond 

this, we offer approximately 20 hours per week of office hours to researchers 

who seek focused consultations with technical staff. These interactions 

provided us with extensive insights into the challenges encountered in 

academic projects of varying size and duration.

The engineering practices we propose combine the collective insights of 

eScience technical staff with feedback from software engineers in industry 

and at national laboratories as well as researchers who teach software 

engineering in an academic environment. Where possible, we point to 

published recommendations and draw on work from the field of software 

architecture and development practices. The vast majority of this literature 

focuses on team processes for complex projects, with only a modest 

discussion of software development (actually building software) and almost 

nothing on maintaining and extending existing academic software. Formal 

publications in this area include: Beck et al. (1983), Feller et al. (2007), Hooley 

et al. (2021), and Poppendieck & Poppendieck (2003). In addition, detailed 

guidance is available in numerous blog posts (Postan, 2021) and Stack 

Overflow replies (Stack, 2022), but the provenance of this advice is often 

limited.

From our experience, since many academic projects are short-term and of 

small scale, it is appropriate to apply a level of engineering rigor that is 

commensurate with the project scope. An important consideration is, 

however, to highlight the requirements for transitioning a project to a larger 

scope. We provide recommendations of best practices and how these 

practices may evolve as a project moves from a single developer, to use within 

a self-contained team, and then possibly to broad adoption by a research 

community. Since our interest is in data science, we focus on Python and R, 

the most widely used languages in data science.

3.1. Engineering Practices and Their Interactions

A central theme in this article is that engineering practices should be scaled 

to the project scope. That is, in smaller projects, a practice may be greatly 

simplified or absent altogether. However, if a project grows, there must be 

awareness of how to incorporate engineering practices that were not 

considered previously. In the following, we describe how engineering 

practices need to evolve as projects grow. Although we have 

recommendations for what practices to change, there is less agreement from 

the use cases we have studied about what should trigger a change in 

engineering practices or how to build consensus within a developer 

community to adopt these changes. We refer readers to studies on this topic 

related to the adoption of developer tools (Brooke Jordan, 2014) and security 

analysis (Jaspan et al., 2007).

Broadly, there are technical and people management activities (which we use 

synonymously with practices) within software engineering. Technical 

practices produce code, data, and documentation of the software internals. 

Refining this further, the production of code and data includes design, quality 

assurance (e.g., testing), and packaging and deployment. People management 

activities address coordination and communication within the project and 

communication between project developers and users. The people 

management practices have associated artifacts as well, such as project plans 

and prioritized lists of features and fixes.

The nature of engineering practices depends strongly on the scope of the 

project. An example of a project with a small scope is a short-term 

exploratory effort by a single researcher. In contrast, a project with large 

scope often involves multiple teams at different locations. We consider three 

project scopes:

We emphasize that the boundaries between these scopes are fluid. For 

example, a solo project may evolve into a lab project, and the reverse can 

happen as well.

3.2 Details of Engineering Practices

There is a vast literature on software engineering and engineering practices. 

In this section, we describe a subset of these practices that we feel are most 

relevant to data science. These practices relate to: version control, design, 

coding, quality assurance, packaging and deployment, user documentation, 

team management, and user engagement. We organize the discussion by 

project scope (including some references to more in-depth discussions of 

these software engineering practices). For each topic, there are two bullets. 

The first describes what the practice is and why it is important; the second 

bullet outlines some recommended tools and best practices.

We begin with version control (Blokdyk, 2022).

Software design (Keeling, 2017) is at the core of creating resilient (e.g., by 

early consideration of error conditions) and reusable software (e.g., by a 

modular design).

Readability. We mean that software is written to promote understanding 

by others (e.g., good comments and naming conventions). Readability is 

essential to providing scientific results that are reproducible by others. 

Readability is also required to make software extensible and reusable.

Resilient. We mean that a system fails rarely or, in the context of software 

systems, that when it does fail due to adverse inputs or failures in 

components of the system, it does so ‘gracefully’ (e.g., it operates even 

when the system is degraded). Resilience requires testing for common 

error conditions (e.g., good unit tests). Resilience is required to give users 

and developers confidence that they can rely on the software.

Reusable. We mean that others can make use of the code as is, without 

extensive rewriting (e.g., through the use of modular structures). Beyond 

readability and resilience, reuse requires that software be modular and 

distributed in a way that is easy to install and use.

Developing for your own use (solo). Our experience is that the vast 

majority of academic software projects consist of a single developer who is 

the sole user of the software. These projects are often undertaken as part of 

a research exploration. Few academic projects advance beyond this stage.

Developing for your research lab (lab). Many researchers work in teams. 

They often find that the problem solved by their software can be used by 

others in their team. In these projects, developers and users are in frequent 

contact.

Developing for a broad research community (community). There are a 

small number of projects that are used by a broader research community 

and/or of sufficient technical scope that a large team is required.

What: Version control deals with tracking changes to artifacts (e.g., code, 

documents, data) in shared collections of files called repositories. Version 

control is an essential part of making software resilient and reusable.

How: For software, services such as GitHub (Ponuthorai, 2023) (Wikipedia, 

n.d.-e) allow users to have a code repository where changes can be viewed. 

Commonly used features are (a) undoing a change that introduced an error 

and (b) coordinating changes among multiple developers. Another widely 

used feature is a version control ‘branch’ that allows developers to make 

changes in parallel (and also facilities managing experimental data). A solo 

project needs version control to ensure that the code is not lost and to 

revert to previous versions if a bug is introduced. They enable 

experimentation and exploration of new ideas without impacting the 

primary or main branch. A lab project has additional requirements, such as 

resolving ‘change conflicts’ (changes to the same line in a file by different 

developers). In a community project, more formal coordination is done to 

manage releases, develop new packages or features based on the initial code 

base (i.e., forks), integrate codes from other groups, and handle urgent bug 

fixes (‘hot fixes’) that are done between formal releases.

What: There are multiple components to software design of which we 

consider two critical for data science applications. First is the design of the 
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Computer programming or coding (Kerninghan & Pike, 1999) is the process of 

writing detailed instructions so that a computer can perform a desired task.

In industry, quality assurance (Patton, 2005) is a very broad term that 

encompasses the entire engineering process.

Packaging and deployment (e.g., Waldon, 2012) are activities that make 

software available to users, an essential element of making software reusable.

User documentation (Bhatti, 2021) is the written descriptions that accompany 

a software package so that nondevelopers can effectively use the software, a 

key consideration in building reusable software.

We use the term team management (Project Management Institute, 2017) to 

refer to those aspects of project management that address the internals of the 

project.

User engagement (Cagan, 2018) addresses interactions between the software 

developers and users of the software.

Table 1 summarizes the foregoing discussion providing examples of software 

packages that can support the software engineering practices (e.g., linters, 

and unit test frameworks). The rows are software engineering practices, and 

columns are the three project scopes: solo, lab, and community. The rigor of 

engineering practices increases as the scope of the project progresses from 

solo to community.

We use this table to recommend engineering activities for an academic 

environment. Our expectation is that most projects are not adequately 

characterized by a single column, and so we expect that projects may adjust 

their practices by employing recommendations from more than one column. 

We note that the table includes a number of technical terms. Rather than 

defining these inline, we have included a glossary as Appendix A.

Table 1. Software engineering practices and project scopes.

A particular challenge for software engineering for data science is the 

widespread use of computation notebooks in which software is intermixed 

with an analysis narrative that provides the user with a way to better 

understand the results as well as conduct further explorations (e.g., Kery & 

Myers, 2017; Wang et al., 2019). Probably the most widely used computational 

notebook is Jupyter (2015; Randles et al., 2017). Others have noted challenges 

with notebooks as a computational environment (e.g., Chattopadhyay et al., 

2020). Our experience from teaching data science is that the quality of a 

computation notebook is greatly improved by two practices. The first is 

documentation. All codes should have documentation that specifies: (i) what 

the function does, (ii) the types of arguments to the function, and (iii) the 

types of values returned by the function. A second consideration is to make 

sure that there is a test for each function, typically within the same cell as the 

function definition so that the test is run when the function is defined. A final 

consideration is when to move code from a notebook to a Python module (a 

file that has extension ‘.py’).

4. Current Practices for Teaching and Training in 
Software Engineering for Academic Researchers

Key to building a community of researchers capable of contributing to or 

creating their own open-source packages is providing courses and training 

opportunities that teach 3R skills for software engineering best practices. 

Computer science students along with students in related disciplines (e.g., 

electrical engineering) develop these skills as part of their multiyear degree 

programs. However, at present, it is very difficult for students outside these 

disciplines to develop the practical engineering skills required to develop 

open-source packages.

These difficulties arise from two sources. First, non-CS students have limited 

time in their schedules to take classes outside their discipline. Our 

observation is that most non-CS students have time for no more than two 

courses to acquire the requisite knowledge. Second, existing courses are 

typically structured so that practical skills are taught only after teaching 

substantial theory and background. For example, at the University of 

Washington, the sequence for non-CS students is Computer Programming I 

(CSE 142), Computer Programming II (CSE 143), Software Design (CSE 331), 

Data Structures (CSE 332), System and Software Tools (CSE 391), and finally 

Software Engineering (CSE 403). (We note in passing that the University of 

Washington Allen School of Computer Science is making extensive changes to 

this curriculum.)

Other universities have adopted similar approaches. For example, UC 

Berkeley has the sequence CS61A “The Structure and Interpretation of 

Computer Programs”, CS61B “Data Structures: Fundamental Dynamic Data 

Structures”, and CS 169A “Software Engineering.” Although CS61B provides 

some instruction in version control, this is not part of the curriculum per se. 

Indeed, there is no course that provides instruction on engineering practice 

(Armando Fox, Associate Dean, private communication, March 8, 2022). 

Carnegie Mellon University has addressed the need to provide 3R software 

engineering skills by creating an undergraduate minor in CS. But a 

substantial time commitment is required to take the requisite courses. 

Harvard University’s Institute for Applied Computational Science provides a 

master’s degree for students to acquire 3R software engineering skills (IACS, 

n.d.), but this too is a significant investment of time.

Students do have options outside of formal academic courses to develop 3R 

skills. Software Carpentry (Becker & Weaver, 2018) and Data Carpentry are 

successful and scalable ways to introduce introductory-level software 

engineering processes to researchers from a broad set of domains. The areas 

covered in these courses include the UNIX shell environment, version control 

using git, and an introduction to Python and plotting with Python. More 

advanced topics such as automating the building of software and the use of 

databases and SQL are available. Software Carpentry provides much less 

depth on more advanced software engineering practices such as unit testing 

and continuous integration. The limited extent of the Carpentry courses 

(typically a few days) means that it is harder to integrate the processes within 

the everyday work or research by a student (particularly more advanced 

practices). Only through repeated use of these practices do they become 

embedded in the way that we work.

We have two broad thoughts about changes in academic curriculum that are 

required to address the development of 3R skills. First, we believe that the 

focus should be on undergraduate courses. One reason is that it provides a 

scalable mechanism to prepare students for 21st-century careers in academia 

and research. The other reason is that these undergraduate courses can also 

be available to graduate and postgraduate students who need 3R skills in 

software engineering. That is, our focus is on undergraduate courses, but the 

training will be done at all levels in the university.

Our second thought is that the courses for developing 3R skills need to be 

radically redesigned. At present, these course sequences are a lightweight 

version of the material taught to CS undergraduate majors. That is, courses 

early in the sequence focus on theory; only toward the end of the course 

sequence do students acquire 3R skills. We recommend that the material be 

restructured so that 3R skills are taught (and practiced) early on. More 

advanced courses in the sequence should provide greater sophistication in 

areas such as programming (e.g., abstraction techniques) and data structures 

(e.g., complexity analysis). There are a couple of examples of a first course in 

such a sequence. At the University of Washington, CSE 583 “Software 

Development for Data Scientists’’ (Beck, 2018) is a one-quarter course on 

software engineering for non-CS graduate students that covers all of the 

engineering practices described above and includes a capstone project to 

practice these skills. At Carnegie Mellon University, Crafting Software (CMU, 

n.d.) addresses many 3R engineering practices.

consider two critical for data science applications. First is the design of the 

user experience or use cases, often referred to as functional design. This is 

about how a user interacts with the system to accomplish their objectives. 

The second is component design. This specifies how to create and 

interconnect software artifacts that perform the use cases.

How: Appendices B and C contain simplified templates that we developed 

for functional and component design that we use in CSE 583 (University of 

Washington, 2023-b) and DATA 515A (University of Washington, 2023-c) at 

the University of Washington and in CHEME 545 and 546 (University of 

Washington, 2023-a). The functional design specifies a set of use cases that 

are detailed descriptions of user interactions with the software system. 

Appendix B contains a template for functional design. A component design 

can be expressed in many ways, such as: a data flow diagram (Li & Chen, 

2009), UML diagrams that describe objects with properties and behaviors 

(Fowler, 2003), and entity-relationship diagrams (Li & Chen, 2009). 

Appendix C contains a template for component design. In solo projects, 

design may be done informally (e.g., in a notebook). In a lab project, there 

is often some discussion that requires a shared white board and sometimes 

an informal write-up. In community projects, more formality is required, 

such as a standard template for function and component design documents.

What: Coding practices encompass a wide range of decisions, such as: (a) 

the choice of names for variables, functions, and modules; (b) 

documentation practices in modules and functions; (c) the use language 

features (e.g., the choice between a for  statement versus a 

comprehension in Python); and (d) the choice of data structures (e.g., 

when to use a list  vs. an array  vs. a dict ). A further consideration are 

software licenses (Laurent, 2004).

How: Over the last 50 years, programming has evolved into a systematic 

engineering activity with powerful productivity tools. Examples of such 

tools are integrated development environments (IDEs) for Python (e.g., 

PyCharm; Nguyen, 2019) and R (e.g., Allaire, 2011). In recent years there 

has been a trend toward “literate programming” (Knuth, 1992), especially 

‘notebooks’ (e.g., Jupyter) that intermix code with text to provide a 

narrative for an analysis. For a solo project, readability is greatly improved 

by providing notes about decisions made (e.g., a GitHub README file or 

within the notebook) as well as the use of consistent naming conventions to 

facilitate understanding codes written months earlier. In a lab project, 

readability and resilience are enhanced agreement on common data 

structures and coding styles (with tools such as linters to enforce style). A 

community project often takes this a step further by having code reviews in 

which developers explain their motivations for engineering decisions and 

reviewers advise on approaches to improve reuse.

What: Quality assurance is about ensuring resilience, good performance, 

security, and privacy.

How: For academic projects, the focus is mostly about testing for errors at 

various levels. For a solo project, it likely means implementing unit tests 

(codes that check for errors in functions and methods) for key elements of 

the project. Excellent open source packages are available to enable these 

tests (e.g., Python unittest and R testthat). For a lab project, unit tests are 

more extensive, and there is continuous integration (e.g., run all unit tests 

after every commit to the software repository). A community project likely 

includes additional quality tests for each software release to ensure there is 

no ‘regression’ in future releases. (See Nielsen, 2000, for a more detailed 

discussion.)

What: The goal is to make software developed by one user available to other 

users. This often requires that the software developer structure their codes 

into a package that can be shared with other users. Users may have 

different software installed on their computers, even different operating 

systems. So, the package must specify its dependencies, such as a particular 

version of the Python library numpy . This raises a further challenge that 

two packages may have conflicting requirements, such as different versions 

of numpy .

How: Most academic projects use an install model of package deployment 

in which the user’s computer is updated to incorporate the software. PyPI is 

the most common mechanism for distributing Python packages, and CRAN 

is widely used for R packages. Other software repositories include Conda 

and SourceForge. There are also service models for software distribution in 

which the software runs on servers owned by the provider and users are 

not aware of the software updates (e.g., Gmail). Still another approach is 

container-based distribution (e.g., Docker). For a solo project, there may be 

no packaging and deployment since the code runs on a single machine for a 

single user, but to support the reproducibility of the research a well-

defined and reproducible development environment can be critical. For a 

lab project, it is common that all machines in the lab run an almost 

identical software stack (e.g., the same version of Linux and Python 

packages), and often codes are relatively machine independent (e.g., 

Python, R); so, deployment is done via PyPI for Python and CRAN for R 

(with their associated packaging requirements). A recent trend is to use 

virtual machines in the cloud so that even if physical machines have 

different software, the virtual machines are identical. A community project 

often involves multiple languages and hardware platforms, and so 

packaging and distribution is more complex. One such complexity is that 

quality assurance must include testing of packaging and installs.

What: User documentation covers installation, basic usage, and a detailed 

reference manual for advanced users. For example, a screen scraper 

application might specify a command line to install the tool, illustrate its 

usage on a page from The New York Times, and point to detailed 

documentation on options for different kinds of web pages.

How: Solo projects have modest needs here, mostly to ensure that the 

developer can easily recall how to use their software some months after it 

was written (and the methods or research papers underlying its 

development). In a lab project, developers may provide a ‘help’ option for 

command line tools and/or a one-page summary of usage (a ‘manual page,’ 

Linux, 2009.) or a Jupyter Notebook (Ragan-Kelley et al., 2014). In 

community projects, there are more extensive capabilities (e.g., Read the 

Docs; Cotton, 2016) that contain detailed descriptions of the software 

features, examples, and capabilities for searching documentation.

What: Examples of team management include: agreeing on common 

objectives, developing a plan (tasks, people, deadlines), progress 

monitoring, and plan evolution.

How: Agile practices are widely used for managing software projects 

(Martin, 2003), an approach that iteratively delivers prototypes, an 

approach that applies to all project scopes. Little is required for a solo 

project beyond an individual prioritizing their activities. For a lab project, 

lab managers (e.g., principal investigators) may find it useful to have a 

spreadsheet that describes who is working on which feature and the 

expected completion dates. For a community project, there is often 

coordination across physical locations. Managing the dependencies 

between teams may demand the use of project management software 

(Nieto-Rodriguez, 2022) as well as a designated project manager or package 

maintainer who tracks progress of the project plan.

What: Sometimes this is included in project management or product 

management (delivering products customers want). We separate this 

aspect because the role often goes unnoticed as a lab project grows into a 

community project.

How: In a solo or lab project, user engagement typically involves a hallway 

conversation with a peer researcher. However, in a community project, 

communicating with users may require using GitHub issues, a designated 

email account, and even periodic user group meetings.

ENGINEERING 

PRACTICE

Increasing software engineering rigor →

Developing for 

your own use 

(solo)

Developing for 

your research 

group (lab)

Developing for a 

broad research 

community 

(community)

Version control Commit source 

code to a 

repository 

(local or 

remote)

Use meaningful 

commit 

messages to aid 

code 

comprehension 

and debugging

Implement 

backups, in 

particular, for 

local 

repositories.

Isolate features 

being 

developed into 

separate 

commits (e.g., 

use branches 

for individual 

features)

Keep commit 

history concise 

(e.g., use 

squash, merge)

Document the 

development 

workflow (e.g., 

define the 

expected size 

of commits 

etc.).

Create policies 

for fixes, new 

features, and 

spin-off 

projects.

Implement 

review criteria 

for accepting 

commit 

requests.

Create policies 

for version 

control 

mechanisms 

(e.g., creating 

forks, 

branches, pull 

requests).

Software Design Brainstorm 

with colleagues

Review user 

experience via 

lab 

presentations 

of mock ups.

Apply best 

practices for 

software design 

to promote 

extensibility 

and reuse (e.g., 

object 

oriented).

Adopt code 

reviews (e.g., 

multiple 

developers 

check coded 

commits).

Write 

functional 

specifications 

that describe: 

the problem 

addressed, user 

profiles, use 

cases.

Document 

components 

and their 

interactions 

(e.g., class 

diagrams and 

interaction 

diagrams).

Review 

functional and 

component 

specifications.

Coding Ensure the 

repository has 

a README file.

Use a 

consistent 

naming 

convention for 

language 

elements (e.g., 

objects, 

functions, 

classes).

Use common 

data definitions 

(e.g., DNA 

sequence, light 

source).

Adopt a 

software 

license.

Create 

practices for 

coding style.

Use a linter to 

enforce coding 

practices (e.g., 

Pylint, Flake8).

Use build tools 

(e.g., make).

Use published 

standards for 

coding style, 

especially for 

tool support 

(e.g., use PEP 8 

and Pylint).

Define 

templates for 

packages so 

that they have a 

common layout 

(e.g., directory 

structure).

Implement 

code reviews to 

ensure 

standards, style 

consistency, 

adequate tests, 

and use of 

common code.

Create 

documentation 

reviews.

Implement pre-

commit/pull 

request coding 

style checks in 

a linter.

Quality 

Assurance

Write unit tests 

for critical 

components 

(e.g., using the 

pytest 

framework).

Automate local 

test execution 

(e.g., using a 

build-tool 

target)

Develop 

extensive unit 

tests and 

measure test 

coverage (e.g., 

using 

coverage.py).

Develop system 

tests (e.g., end-

to-end tests for 

use cases).

Implement 

continuous 

integration for 

the 

development 

platform.

Implement 

regression tests 

for each 

release.

Where 

appropriate, 

implement 

tests for 

performance, 

security, and so 

on.

Test on all 

supported 

platforms.

Evaluate the 

software 

package by 

users of the 

package.

Packaging & 

Deployment

Deploy 

software 

through git 

clone.

Version 

software via 

commit 

labels/tags.

Deploy to 

established 

package 

managers (e.g., 

pip, conda, 

conda-forge)

Use semantic 

versioning (or 

tagging) 

conventions to 

indicate the 

magnitude of 

change from 

previous 

versions.

Tag and release 

versions of the 

code.

Create release 

documentation.

Implement 

automatic 

documentation 

builds.

Use automatic 

builds for 

container 

deployments.

User 

Documentation

Document or 

comment the 

code.

Document 

complicated 

math in a long 

comment or a 

reference to a 

paper.

Provide Jupyter 

Notebooks to 

demonstrate 

the code.

Implement 

more extensive 

developer 

documentation 

(e.g., Sphinx).

Create user 

documentation 

(e.g., details of 

usage and 

options).

Provide citation 

information for 

the package 

(e.g., a DOI).

Publish 

documentation 

(e.g., Read the 

Docs) that 

includes 

examples.

Create email 

lists for 

developers and 

users.

Create 

tutorials.

Publish on-

boarding 

documentation.

Team 

Management

Ad hoc Create a plan 

for each release 

that specifies 

delivery date, 

features, and 

deliverables for 

each team 

member, or at 

least a 

prioritization 

of changes and 

their estimated 

level of 

difficulty.

Technical 

leads/contribut

ors create 

release plans or 

create project 

plans with task 

assignments.

Implement 

regular “stand 

ups” to share 

progress and 

blockers.

Undertake 

technology 

reviews when 

considering 

new 

dependencies.

Define a 

governance 

structure (clear 

rules for 

decision-

making).

User 

Engagement

Ad hoc Make team 

presentations 

on proposed 

features.

Use issue 

tracking 

software (e.g., 

GitHub Issues).

Provide a 

forum whereby 

users can 

request as well 

as give 

feedback on the 

prioritization 

of features and 

fixes.

Notify users of 

prioritization 

of issues.

Provide users 

with a project 

roadmap, 

training at 

community 

events, major 

release changes 

warnings, and 

deprecation 

warnings.



n.d.) addresses many 3R engineering practices.

We close with more details about the syllabus for CSE 583. The intent of this 

course is to develop 3R skills for students who have little programming 

backgrounds. Key topics are: review of Python programming; version control 

with GitHub; the bash command line; constructing Python modules; unit 

tests (both what to test and how to use the unittest  package); creating PyPI 

packages; continuous integration; and team processes. Team processes 

include code reviews, technology reviews (how to choose a software 

dependency), and project planning. After the topics are addressed 

individually, students gain practice in their use by doing a class project with a 

team of three to four students.

5. The Future of Software Engineering for 
Academic Researchers

One major direction we are pursuing at the University of Washington is to 

develop a community of practice for software engineering, a group of 

experienced software engineers employed by the university who have 

focused engagements with academic software projects. Developing such a 

community of practice provides resources for: (a) the adoption of resilient 

software engineering practices in research and (b) teaching software 

engineering courses on campus. Although funding exists to support software 

engineering positions, resources in any given research group are often in the 

form of fractional FTEs (full-time equivalents). It is often difficult to fill 

fractional FTEs even if we can entice and retain people with the appropriate 

expertise for these positions. This has motivated us to develop a centralized 

pool of research software engineers, or an RSE team. How to implement such 

a model is clearly an open question; it is beyond the scope of this article. That 

said, we highlight a number of existing models and programs in universities.

The eScience Institute at the Universe of Washington is one example of such a 

model where data scientists work both in service of university programs and 

in the development of their own research. Such institutes could leverage the 

size of the university to build software engineering teams as a university-

level program to support researchers. In particular, an institute can make use 

of fractional FTEs of grant support to amortize the cost of skilled software 

engineers who could not be funded by any one group. Such opportunities 

have been realized in the United Kingdom with the development of university 

and national research software engineering programs, and are beginning to 

be recognized by other universities in the United States. Other examples of 

nascent programs include: software groups who embed within a project for 6 

months to 2 years (e.g., Caltech SASE; California Institute of Technology, 

2022), cohorts of master’s students with data science and software 

engineering skills who are matched with research projects for short 

engagements (e.g., NYU DS3; NYU Center for Data Science, n.d.), embedding 

professional software engineers in research labs (as Fox reports for UC 

Berkeley [A. Fox, personal communication, March 8, 2022]), or RSE teams 

such as the Research Software Engineering Group at Princeton or the 

National Center for Supercomputing Applications at the University of Illinois.

As noted previously, a core challenge with much of this vision is hiring and 

retaining skilled software engineers in an academic environment, especially 

people who are excited about working with researchers who may have 

minimal training in software engineering. There are multiple avenues for 

such hires: (a) long-term positions for software engineers already in 

academia; (b) software engineers in industry who are engaged in open source 

communities; (c) industry software engineers returning for graduate studies 

who may find that their software skills provide entry into an exciting 

research project; (d) early-career engineers interested in research and the 

impact of their work; and (e) providing opportunities for late-career software 

engineers looking for a ‘second act.’ A critical aspect to the success of such a 

program is the retention of good talent. Carver et al.’s (2022) survey found an 

overwhelming concern about the lack of career paths for software 

professionals in academia. This will require careful thought about the career 

paths for software engineers within the academic environment, an 

environment that puts a premium on published articles, not software 

projects. Retaining skilled software engineers will require providing 

appealing career paths in academic institutions.

We have a few insights as to how to attract experienced software engineers. 

We have learned much from hiring software engineers for the recently 

created Scientific Software Engineering Center at eScience. The goal of the 

center is to apply industry-grade software engineering practices to the 

development of research software for science. Hence, we mostly targeted 

industry for sourcing software engineering talent.

We have several observations based on our experience over the last 6 months 

of hiring. First, it is easier to recruit senior software engineers who have 

spent a decade or more in industry. They are attracted to the mission, 

engineering autonomy and scope, and potential to have impact on scientific 

breakthroughs after spending years on commercial projects that are mainly 

focused on profit through extremely specific engineering optimizations, 

often as very small cogs in large engineering-product teams. Second, it is 

extremely difficult to reach parity with private industry in terms of 

compensation, which makes it hard to attract junior to mid-level software 

engineers with industry experience as they are less likely to depart from 

lucrative careers in the private sector. Third, there is a lack of formal 

structure for software development in academia. This is both an opportunity 

for engineers to extend their skills in eliciting software requirements and a 

challenge as it slows the pace of engineering output due to the high degree of 

uncertainty when projects are launched. This is sometimes a constraint 

during recruiting as the uncertainty could be seen as a lack of investment in 

supplemental roles such as customer success, product design, 

program/product management, and software ecosystem and servicing—roles 

that allow software engineers to focus on software coding–related tasks in 

which they intend to continue growing their skills.

The biggest advantage of software engineering in academia is the culture of 

openness and the opportunity to change the trajectory of a multiyear 

investment in science by contributing highly sought after engineering 

products to a dedicated community of scientists and researchers. This 

community impact goes beyond the organization or region to benefit society 

at large. We expect this to be a primary factor in retaining software engineers 

in academia, and in establishing the perception of research software 

engineering in academia as a highly fulfilling career path.

6. Conclusions

Our experience at the eScience Institute is that successful data science 

projects create software that is readable by others, resilient to variations in 

usage, and reusable by embedding within other software. We refer to these 

considerations as the 3Rs of software engineering.

This article addresses engineering practices that create 3R software. By 

engineering practice, we mean much more than coding, although coding is an 

important element. Among the engineering practices we discuss are: version 

control, design, quality assurance, packaging, documentation, and project 

management.

There are robust industry practices for creating 3R software. However, many 

of these practices are skills-intensive and time-consuming. Further, although 

application of these practices can result in a high level of 3R capabilities, this 

outcome is poorly matched with the needs of most academic projects. Most 

academic projects are quite small; they consist of a single researcher who is 

the sole user of the software. A modest number of academic software projects 

address multiple users in the same lab. Very few academic projects are 

directed at a large research community. Often the transition from a single-

user application to community-developed software arises organically rather 

than from a decision at the start of a project. These considerations led us to 

restructure software engineering practices into a progression of increasing 

rigor to better match the needs of academic projects with different scopes.

The need for 3R skills for academic software led us to examine teaching and 

training of software engineering. We provide an in-depth analysis of our 

institution, the University of Washington, and we provide some insights into 

the situations at Carnegie Mellon University and the University of California 

at Berkeley. We conclude that undergraduates outside of CS (or related 

departments, such as electrical engineering) face significant challenges with 

acquiring 3R skills because of the limited time available in undergraduate 

majors to take prerequisite courses and the competition to take these courses.

We touch on another path to creating 3R software—building a ‘community of 

practice.’. This is a team of experienced research software engineers (i.e., an 

RSE team) who apply engineering best practices to research projects. This is 

not an alternative to teaching and training, rather it complements those 

efforts. One example of an RSE team is LINCC Frameworks (n.d.) a joint 

project between the University of Washington, Carnegie Mellon University 

and the LSST Corporation to develop scientific software to analyze data from 

the Rubin Observatory Legacy Survey of Space and Time (LSST). A broader 

initiative is the recently announced Virtual Institute for Scientific Software 

(VISS) (Boyle, 2022) that seeks to accelerate scientific discoveries through the 

development of 3R software for a diverse set of academic projects.

A further consideration is cultural. In academia, the criteria for success is the 

publication of the results. In contrast, success in a software engineering 

culture is creating software that is widely used, and has a reputation for good 

quality. These cultural differences can create an ‘impedance mismatch’ that 

may present challenges for an RSE team and promoting 3R software.

If we can address these challenges, we have an opportunity to increase the 

readability, resilience, and reuse of research software in the United States 

and throughout the world. Doing so will accelerate the progress of research. 

It will also aid in workforce development by having more undergraduates 

trained in software development and by providing a community of practice to 

support the careers and advancement of those software developers in 

academia.
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Appendix A. Glossary of Terms

Appendix B: Template Functional Specification

A functional specification describes how developers of the software system 

envision that the user will interact with their software. Over the past 10 

years, we have taught several thousand students how to write these 

specifications. We provide our students with the following outline:

Appendix C: Template Component Specification

A component specification describes the components of the software and how 

they interact to accomplish use cases in the functional specification. By 

component, we generally mean higher level capabilities such as data retrieval, 

significant analysis capabilities, or any novel capability. Over the past 10 

years, we have taught several thousand students how to write these 

specifications. We provide our students with the following outline:
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artifact: a work product of the software engineering process including 

code, documentation, data, design documents, and plan documents.

branch: changes (commits) to code to implement or modify features within 

a software repository, where the changes are kept separate from other 

changes to the repository.

class diagram: a visual description of the relationships between elements 

of a software design.

clone: a copy of a repository.

code review: a process by which software engineers share their work and 

receive feedback on coding style, design, and implementation of the 

software.

coding style: the manner in which codes are written to improve readability 

by others, such as PEP 8 for Python. This includes naming conventions for 

methods and variables.

commit: a change to a repository branch.

component design: the specification of the software elements in a system 

by their inputs, outputs, and behaviors (e.g., how inputs are transformed 

into outputs).

Conda: Package dependency and environment deployment. 

https://docs.conda.io/en/latest/

CRAN: Comprehensive R archive network. https://cran.r-project.org/

dependency: software that is required for installing a package. For 

example, it is common for Data Science packages to have dependencies on 

numpy , pandas , and matplotlib .

deployment: the process of making a software package available to others. 

This can be done by download (e.g., PyPI), containers (e.g., Docker), or 

server-based hosting (e.g., on Amazon Web Services).

engineering practice: a generally accepted method for some aspect of 

building software.

SourceForge: Software repository and distribution. 

https://sourceforge.net/

fork: creation of a new code repository based on an existing code 

repository.

GitHub: an online system for version control and continuous integration. 

http://github.com

GitHub issues: a feature of GitHub that provides for reporting, 

prioritizing, and tracking issues.

linter: a tool that detects errors in code without executing the code (e.g., 

detecting that a variable may be referenced before it is assigned).

merge: combining changes committed to two branches of a code repository.

module: (1) reusable software with a well-defined set of features and ways 

to use it; (2) a Python file (i.e., as the file extension “py”).

notebook (or software notebook): a programming environment in which 

code is mixed with a narrative text to create an easily updatable report.

package: a unit of software distribution and reuse.

pull request: a set of proposed changes to a branch of a software repository.

project management: the process of setting goals, assigning tasks, and 

managing the progress of a project.

PyPI: Python package installer. https://pypi.org/

regression test: tests that detect that a previously implemented feature no 

longer works or works incorrectly.

repository: a collection of files that is managed so as to capture 

incremental changes or ‘commits.’

semantic versioning: a way to specify software versions that indicate the 

magnitude of change from previous versions (GeeksforGeeks, 2022).

software design: the process by which software is created including 

specification of the user interactions (user experience) and the 

specification of software components such as modules and functions.

squash: combine multiple commits (changes) into a single commit.

technology review: a process whereby a software development team 

selects a software package to use in their project.

test coverage: the fraction of statements in a module or collection of 

modules that are executed when all of the unit tests are run.

unit test: code written to detect errors in a software project.

use case: a way in which the user employs the software system to perform a 

task of interest to the user.

user experience: how the user interacts with the software system such as 

by a web browser or a command line.

version control: tools and best practices for tracking changes to code, data, 

and documents.

Background. Describe the problem being addressed and why it is important.

User profile. Detail who will use the system. What do they know about the 

problem domain? What is their computer literacy (e.g., can browse the 

web, can program in Python)?

Data sources. What data you will use and how it is structured?

Use cases. For each use case, describe: (a) the objective of the user 

interaction (e.g., withdraw money from an ATM); and (b) the expected 

interactions between the user and your system.

Software components. High level description of the software components 

such as: data manager, which provides a simplified interface to your data 

and provides application specific features (e.g., querying data subsets); and 

visualization manager, which displays data frames as a plot. Describe at least 

three components specifying: what it does, inputs it requires, and outputs 

it provides.

Interactions to accomplish use cases. Describe how the above software 

components interact to accomplish at least one of your use cases.

Preliminary plan. A list of tasks in priority order.
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