
ABSTRACT

Over the past decade as data science has become integral to the research

workflow, we, like many others, have learned that good data science requires

high-quality software engineering. Unfortunately, our experience is that

many data science projects can be limited by the absence of software

engineering processes. We advocate that data science projects should

incorporate what we call the 3Rs of software engineering: readability (human

understandable codes), resilience (fails rarely/gracefully), and reuse (can

easily be used by others and can be embedded in other software). This article

discusses engineering practices that promote 3R software in academia. We

emphasize that best practices in academia may differ from those in industry

because of substantial differences in project scope (most academic projects

have a single developer who is the sole user) and the reward systems in place

in academia. We provide a framework for selecting a level of software

engineering rigor that aligns well with the project scope, something that may

change over time. We further discuss how to improve training in software

engineering skills in an academic environment and how to build

communities of practice that span across disciplines.

Keywords: software engineering, reproducibility, reuse, data science

education

Media Summary

Data science is about acquiring, interpreting, and using data — all of which

rely on software. Industry has skilled professionals who can provide the

software necessary for high quality data science. But academic data science

projects are often staffed with researchers with few skills in software

engineering, especially the ability to produce readable, resilient, and reusable

software. This is what we call the 3Rs of software engineering.

For the last decade, the eScience Institute at the University of Washington has

been training data scientists and developing data science technologies.

Thousands of undergraduate and graduate students, along with numerous

faculty, have participated in our programs, training, and formal classes. As a

result, we have developed a considerable understanding about the software

engineering principles that promote effective data science in academia.

We find that while some academic projects require industrial strength

software engineering, most projects do not. We recommend adjusting

software engineering practices to the scope of the project. We classify the

scope of academic projects as: solo (a single researcher creates and uses the

project); lab (the developers and users know each other and are in close

contact); and community (developers have limited knowledge of the users).

The centerpiece of this article is how to adjust software engineering practices

to the project scope. For example, a solo project should include unit tests, but

need not invest in packaging for software distribution. A lab project should

include packaging considerations, but may not need formal design

documentation. A community project should abide by the same practices as

those employed by industry software engineers. These recommendations are

detailed in our discussion, with references to help with applying these

practices.

The eScience Institute is developing a centralized team of software engineers

who provide strategic support to research projects. In the future, we will

report on the effectiveness of our efforts, and the best practices and

challenges with developing and operating such a team.

1. Good Data Science Requires High-Quality
Software Engineering

As data science has become ever more integrated within research, our

reliance on software and its development has grown substantially. The ‘data’

part of data science relies heavily on the development of readable, resilient,

and reusable software to create, analyze, and visualize data (e.g., Jansses,

2014). The research we undertake and the discoveries we make are becoming

ever more dependent on robust and reproducible software frameworks and

development processes. This reliance is, however, not unique to data science.

In a study of researchers in the United Kingdom (Osimo & Switters, 2019),

70% of respondents said that their research would be impossible without the

use of software, and 56% said that they develop their own software. Indeed,

Hettrick (2014) found that without software, more than 80% of the academic

respondents would either be unable or would find it extremely difficult to do

their research.

Despite the rapid evolution in software-driven science, academic institutions

have not kept pace with the growing need for software engineering skills. In a

survey of principal investigators at the University of Washington, 30% of

respondents said they address their software development needs by hiring

graduate students, often without any formal training in software

engineering. Hiring students new to the best practices for writing software as

software engineers does not, in our experience, typically produce robust

software that can live beyond the lifespan of a typical PhD. Further, software

developed in this way often cannot be used by a broader community. Training

in software engineering for non-CS (computer science) majors has begun to

emerge within some university CS programs, but as we note in later sections,

these programs are not focused on the needs of non-CS researchers because

they do not emphasize the practice of software engineering. Addressing this

challenge has implications for workforce development within the United

States and the creation of a software engineering talent pool within the

research community.

At times, our discussion uses technical terms that may be unfamiliar to some

readers. To make this article accessible to a wider audience, we include a

glossary of terms in Appendix A. When a glossary term is first introduced, it

is underlined (e.g., engineering practice).

The lack of software engineering expertise on campuses will likely impact

research productivity over the coming years. To address this, we believe that

researchers should have the skills to develop what we refer to as the 3Rs of

software engineering:

As we discuss in this article, not all academic software needs to be at the high

end of the 3Rs, but all developers of academic software should have the

understanding to produce software with the 3Rs.

A theme throughout this article is employing an appropriate level of software

engineering for the project scope. Milewicz et al. (2019) notes that the vast

majority of academic software projects have a single developer and a single

user. Such solo projects are common in student thesis work and for software

written to analyze data for a publication. A modest number of projects have

multiple users, typically software written for a research lab such as a data

reduction pipeline. A small fraction of projects are in widespread use in a

research community. For these projects, significant software engineering

rigor is necessary.

Project scope can change, both expanding and contracting. As such, we

strongly believe that all developers of academic software should know how to

build 3R software, even though high-end 3R software is unnecessary in most

academic projects. Unfortunately, 3R skills are difficult to acquire in current

academic course work outside of CS and related fields (Fox & Patterson, 2012).

In this article, we further address how to bring more software engineering

skills into academia through improved training programs, and the creation of

career trajectories for research software engineers (RSEs), professional

software engineers working in an academic setting. There is a growing

recognition of the need for RSEs. One indication of this need is the creation of

the United States Research Software Engineering organization (USRSE, n.d.).

Feeding the RSE pipeline requires universities to develop courses and

programs to train students in software engineering practices. Here we

consider approaches and challenges with developing these courses at the

University of Washington and elsewhere. Finally, we explore what a future

software engineering and a software engineering community might look like

at a research university.

2. A Tale of Two Academic Software Projects

To gain more insight into the nature of and challenges with the development

of academic software, we discuss the history of two academic software

projects. These projects are atypical in that their software is in use by a broad

community, and both evolved over a period of two decades. As noted

previously, most academic software is developed and used by a single

researcher. That said, the success of the projects described below is in part

due to adopting tools and best practices for creating 3R software. Solo projects

should be aware of how they can evolve their software to potentially address a

broader community.

2.1. Tellurium

With the advent of inexpensive genomic sequencing and related advances in

laboratory techniques, biological science and engineering has increasingly

focused on quantitative techniques. One aspect of this is the development of

mechanistic models that predict cellular processes, like the concentration of

glucose and related metabolites. These models are expressed as a network of

chemical reactions. Each reaction describes the transfer of mass from

reactants to products and the rate at which this occurs. Evaluating such a

model requires evaluating a system of nonlinear ordinary differential

equations. Historically, such models were developed as special purpose

simulators written in the C or FORTRAN programming languages. This was

problematic because (a) few modelers could program in C or FORTRAN and

(b) there was little reuse of common components (e.g., transforming a

reaction network into a system of differential equations). As time passed,

there was a recognition that biochemical simulators could be developed more

rapidly if there were tools that incorporated commonly used capabilities.

The Tellurium project (Choi et al., 2018) is the latest evolution of a long-

standing effort by the Sys-Bio Research Group at the University of

Washington to develop mechanistic models of biochemical networks. The

JARNAC project (Sauro et al., 2003) tried to make this modeling accessible to

bench scientists by allowing users to enter reactions in chemical notation

instead of having them write computer codes. Unfortunately, the system was

quite slow. Thus, the project evolved into two parts: the RoadRunner

execution engine (Somogyi et al., 2015) and the Antimony (Smith et al., 2009)

reaction specification language. This strategy proved successful. The project

expanded to support Windows, Mac, and Linux; and it provides clients for

Python and C.

As the project scope evolved, so did the people within it. In the beginning, this

was a solo project by Herbert M. Sauro (2018). It was a critical period because

the future success of the project depended on a single person. Later, another

person was added to build Antimony. Subsequently, others were included to

support multiple platforms.

Software engineering practices evolved in parallel with the project scope.

This was because as more people joined the team, more formality was

required to maintain code integrity (e.g., manage source code conflicts). A

central consideration was controlling versions of software contributed to by

many developers. The ‘branch’ capabilities of git (Loeliger & McCullough,

2012) proved critical here. Early on, unit tests were not used at all, but the

project has added extensive unit tests in recent years, and this has improved

resilience. Since Tellurium is intended for programmatic use, detailed

documentation is essential. A very recent change is using Read the Docs (n.d.)

for software documentation along with an automated system for

documenting Tellurium application programming interfaces.

2.2. Astropy

Astrophysics has a long history of community software development

extending back to the 1980s. These initiatives have been orchestrated by large

organizations (e.g., those funded through government support such as IRAF

[Image Reduction and Analysis Facility]; Tody, 1986, and Starlink; Currie,

2014) and by smaller groups of users who built domain-specific applications

(e.g., the analysis package for gamma-ray astronomy, gammapy; Deil et al.,

2017). More recently, a third development strategy has emerged in which

packages (or frameworks) of larger scope are created through the integration

of many smaller packages. Astropy (Price-Whelan et al., 2018), created in

2011, is an example of such a strategy.

Astropy was motivated by the rise of Python as a lingua franca in astronomy.

A central goal of the Astropy Project was to provide consistency and

completeness for common calculations and tools used by astronomers.

Examples of these tools include unit conversions, the manipulation of sky

coordinates (e.g., transforming from Galactic coordinates to Right Ascension

and Declination), and software to read and write common astronomical data

formats.

The packages integrated into Astropy were, in large part, developed by

researchers well versed in software engineering practices. For example,

constituent packages made use of version control via GitHub, had unit tests

for the core libraries and functions, and issued pull requests as a means of

developing new features. Packages were distributed using common software

repositories such as PyPI (Python Package Index). Tools for continuous

integration (e.g., Travis CI and Jenkins) were adopted early in the

development of Astropy to improve the reliability and robustness of the

software. This solid engineering foundation greatly facilitated the

construction of Astropy and its adoption by the community.

Even with this engineering foundation, package integration was nontrivial

because of the need for common abstractions across packages. An example of

this is the sub-package astropy.units, which provides a representation of

physical units used in astrophysics, enables translation between units, and

has the ability to decompose complex parameters (e.g., the Hubble

parameter) into their base units (i.e., inverse time). As with many early

Astropy packages, the units package was developed from an existing

application that had introduced units to cosmological simulation software

and was then extended to support the needs of the broader astronomical

community. The lack of existing standards within astronomy for units led to

the inclusion of all available standards within the package to make it as

general as possible. Functionality to translate between conventions enabled

the units package to provide general support without forcing the community

to agree on a set of standards. This ‘ease of use’ philosophy underlined many

of the Astropy design choices.

Building the community of Astropy users, maintainers, and developers

required convincing astronomers with little or no formal training in software

engineering to adopt these standard tools and procedures if they wanted to

contribute to the code base. With little financial resources, the training and

education of the user community was supported by the Astropy developers

themselves. The availability of GitHub, on which Astropy was built, provided

the tools and infrastructure on which to develop community-agreed

engineering practices for version control, issue tracking, and

communication. The availability of Infrastructure tools and repositories such

as GitHub are key to the sustainability of software projects in astronomy and

enable common approaches to be adopted within a community.

3. 3R Software Engineering Practices

The foregoing academic software projects, while different in size and scope,

show how good software engineering practices can increase the adoption and

trust of software packages beyond the developers who wrote them. Based on

this and our experiences in software development, we have developed a set of

recommendations for software engineering practices that aid in the

development of 3R software. We do this with great humility since software

engineering is a field with a long history and a vast literature (see Boehm,

1976; Glass et al., 2002). A good starting point for this literature is on artifact

sharing (Timperley et al., 2020). By engineering practice, we mean a

collection of related activities used in building, evolving, and managing

software systems. Examples of engineering activities include coding, quality

assurance, and distributing software. We use the term artifact to refer to

work products of software engineering, especially code, documentation, and

data. We note in passing that data science produces other artifacts, such as

predictive models and analysis pipelines. These artifacts are beyond the scope

of this article.

Our recommendations come in part from the experience of members of the

eScience Institute at the University of Washington and discussions. eScience

has more than 20 technical staff, almost all of whom have a PhD in a primary

discipline such as Computer Science, Physics, Human Centered Design,

Statistics, and Chemistry. Technical staff are engaged in many educational

programs. Some teach formal courses in their departments. Others

orchestrate and/or instruct Software Carpentries. eScience oversees the

development of data science curricula and courses at the graduate and

undergraduate level. We also have an extensive outreach program for on-

campus researchers, our Winter Incubator in which domain researchers

dedicate 16 hours per week for a quarter to work with a member of eScience

technical staff. In the summer we run a program for matriculating

undergraduates and graduate students from across the county (and even

globally) to undertake data science projects for social good (DSSG). Beyond

this, we offer approximately 20 hours per week of office hours to researchers

who seek focused consultations with technical staff. These interactions

provided us with extensive insights into the challenges encountered in

academic projects of varying size and duration.

The engineering practices we propose combine the collective insights of

eScience technical staff with feedback from software engineers in industry

and at national laboratories as well as researchers who teach software

engineering in an academic environment. Where possible, we point to

published recommendations and draw on work from the field of software

architecture and development practices. The vast majority of this literature

focuses on team processes for complex projects, with only a modest

discussion of software development (actually building software) and almost

nothing on maintaining and extending existing academic software. Formal

publications in this area include: Beck et al. (1983), Feller et al. (2007), Hooley

et al. (2021), and Poppendieck & Poppendieck (2003). In addition, detailed

guidance is available in numerous blog posts (Postan, 2021) and Stack

Overflow replies (Stack, 2022), but the provenance of this advice is often

limited.

From our experience, since many academic projects are short-term and of

small scale, it is appropriate to apply a level of engineering rigor that is

commensurate with the project scope. An important consideration is,

however, to highlight the requirements for transitioning a project to a larger

scope. We provide recommendations of best practices and how these

practices may evolve as a project moves from a single developer, to use within

a self-contained team, and then possibly to broad adoption by a research

community. Since our interest is in data science, we focus on Python and R,

the most widely used languages in data science.

3.1. Engineering Practices and Their Interactions

A central theme in this article is that engineering practices should be scaled

to the project scope. That is, in smaller projects, a practice may be greatly

simplified or absent altogether. However, if a project grows, there must be

awareness of how to incorporate engineering practices that were not

considered previously. In the following, we describe how engineering

practices need to evolve as projects grow. Although we have

recommendations for what practices to change, there is less agreement from

the use cases we have studied about what should trigger a change in

engineering practices or how to build consensus within a developer

community to adopt these changes. We refer readers to studies on this topic

related to the adoption of developer tools (Brooke Jordan, 2014) and security

analysis (Jaspan et al., 2007).

Broadly, there are technical and people management activities (which we use

synonymously with practices) within software engineering. Technical

practices produce code, data, and documentation of the software internals.

Refining this further, the production of code and data includes design, quality

assurance (e.g., testing), and packaging and deployment. People management

activities address coordination and communication within the project and

communication between project developers and users. The people

management practices have associated artifacts as well, such as project plans

and prioritized lists of features and fixes.

The nature of engineering practices depends strongly on the scope of the

project. An example of a project with a small scope is a short-term

exploratory effort by a single researcher. In contrast, a project with large

scope often involves multiple teams at different locations. We consider three

project scopes:

We emphasize that the boundaries between these scopes are fluid. For

example, a solo project may evolve into a lab project, and the reverse can

happen as well.

3.2 Details of Engineering Practices

There is a vast literature on software engineering and engineering practices.

In this section, we describe a subset of these practices that we feel are most

relevant to data science. These practices relate to: version control, design,

coding, quality assurance, packaging and deployment, user documentation,

team management, and user engagement. We organize the discussion by

project scope (including some references to more in-depth discussions of

these software engineering practices). For each topic, there are two bullets.

The first describes what the practice is and why it is important; the second

bullet outlines some recommended tools and best practices.

We begin with version control (Blokdyk, 2022).

Software design (Keeling, 2017) is at the core of creating resilient (e.g., by

early consideration of error conditions) and reusable software (e.g., by a

modular design).

Readability. We mean that software is written to promote understanding

by others (e.g., good comments and naming conventions). Readability is

essential to providing scientific results that are reproducible by others.

Readability is also required to make software extensible and reusable.

Resilient. We mean that a system fails rarely or, in the context of software

systems, that when it does fail due to adverse inputs or failures in

components of the system, it does so ‘gracefully’ (e.g., it operates even

when the system is degraded). Resilience requires testing for common

error conditions (e.g., good unit tests). Resilience is required to give users

and developers confidence that they can rely on the software.

Reusable. We mean that others can make use of the code as is, without

extensive rewriting (e.g., through the use of modular structures). Beyond

readability and resilience, reuse requires that software be modular and

distributed in a way that is easy to install and use.

Developing for your own use (solo). Our experience is that the vast

majority of academic software projects consist of a single developer who is

the sole user of the software. These projects are often undertaken as part of

a research exploration. Few academic projects advance beyond this stage.

Developing for your research lab (lab). Many researchers work in teams.

They often find that the problem solved by their software can be used by

others in their team. In these projects, developers and users are in frequent

contact.

Developing for a broad research community (community). There are a

small number of projects that are used by a broader research community

and/or of sufficient technical scope that a large team is required.

What: Version control deals with tracking changes to artifacts (e.g., code,

documents, data) in shared collections of files called repositories. Version

control is an essential part of making software resilient and reusable.

How: For software, services such as GitHub (Ponuthorai, 2023) (Wikipedia,

n.d.-e) allow users to have a code repository where changes can be viewed.

Commonly used features are (a) undoing a change that introduced an error

and (b) coordinating changes among multiple developers. Another widely

used feature is a version control ‘branch’ that allows developers to make

changes in parallel (and also facilities managing experimental data). A solo

project needs version control to ensure that the code is not lost and to

revert to previous versions if a bug is introduced. They enable

experimentation and exploration of new ideas without impacting the

primary or main branch. A lab project has additional requirements, such as

resolving ‘change conflicts’ (changes to the same line in a file by different

developers). In a community project, more formal coordination is done to

manage releases, develop new packages or features based on the initial code

base (i.e., forks), integrate codes from other groups, and handle urgent bug

fixes (‘hot fixes’) that are done between formal releases.

What: There are multiple components to software design of which we

consider two critical for data science applications. First is the design of the

HOME ISSUES SECTIONS COLUMNS COLLECTIONS PODCAST SUBMIT ABOUT MASTHEAD

Search Dashboard Login or Signup

Issue 5.2, Spring 2023 1 more Published on Apr 27, 2023 DOI 10.1162/99608f92.018bf012

by Andrew Connolly, Joseph Hellerstein, Naomi Alterman, David Beck, Rob Fatland, Ed Lazowska,
Vani Mandava, and Sarah Stone

Published on Apr 27, 2023

CITE

SOCIAL

DOWNLOAD

CONTENTS

last released

1 year ago

Software Engineering Practices in
Academia: Promoting the 3Rs—
Readability, Resilience, and Reuse

SHOW DETAILS

https://datascience.harvard.edu/
https://twitter.com/TheHDSR
mailto:datasciencereview@harvard.edu
https://hdsr.mitpress.mit.edu/
https://hdsr.mitpress.mit.edu/podcast
https://hdsr.mitpress.mit.edu/
https://hdsr.mitpress.mit.edu/search
https://hdsr.mitpress.mit.edu/login?redirect=/pub/f0f7h5cu/release/2
https://hdsr.mitpress.mit.edu/user/andrew-connolly
https://hdsr.mitpress.mit.edu/user/joseph-hellerstein
https://hdsr.mitpress.mit.edu/user/naomi-alterman
https://hdsr.mitpress.mit.edu/user/david-beck-2
https://hdsr.mitpress.mit.edu/user/ed-lazowska
https://hdsr.mitpress.mit.edu/user/vani-mandava
https://hdsr.mitpress.mit.edu/user/sarah-stone

Computer programming or coding (Kerninghan & Pike, 1999) is the process of

writing detailed instructions so that a computer can perform a desired task.

In industry, quality assurance (Patton, 2005) is a very broad term that

encompasses the entire engineering process.

Packaging and deployment (e.g., Waldon, 2012) are activities that make

software available to users, an essential element of making software reusable.

User documentation (Bhatti, 2021) is the written descriptions that accompany

a software package so that nondevelopers can effectively use the software, a

key consideration in building reusable software.

We use the term team management (Project Management Institute, 2017) to

refer to those aspects of project management that address the internals of the

project.

User engagement (Cagan, 2018) addresses interactions between the software

developers and users of the software.

Table 1 summarizes the foregoing discussion providing examples of software

packages that can support the software engineering practices (e.g., linters,

and unit test frameworks). The rows are software engineering practices, and

columns are the three project scopes: solo, lab, and community. The rigor of

engineering practices increases as the scope of the project progresses from

solo to community.

We use this table to recommend engineering activities for an academic

environment. Our expectation is that most projects are not adequately

characterized by a single column, and so we expect that projects may adjust

their practices by employing recommendations from more than one column.

We note that the table includes a number of technical terms. Rather than

defining these inline, we have included a glossary as Appendix A.

Table 1. Software engineering practices and project scopes.

A particular challenge for software engineering for data science is the

widespread use of computation notebooks in which software is intermixed

with an analysis narrative that provides the user with a way to better

understand the results as well as conduct further explorations (e.g., Kery &

Myers, 2017; Wang et al., 2019). Probably the most widely used computational

notebook is Jupyter (2015; Randles et al., 2017). Others have noted challenges

with notebooks as a computational environment (e.g., Chattopadhyay et al.,

2020). Our experience from teaching data science is that the quality of a

computation notebook is greatly improved by two practices. The first is

documentation. All codes should have documentation that specifies: (i) what

the function does, (ii) the types of arguments to the function, and (iii) the

types of values returned by the function. A second consideration is to make

sure that there is a test for each function, typically within the same cell as the

function definition so that the test is run when the function is defined. A final

consideration is when to move code from a notebook to a Python module (a

file that has extension ‘.py’).

4. Current Practices for Teaching and Training in
Software Engineering for Academic Researchers

Key to building a community of researchers capable of contributing to or

creating their own open-source packages is providing courses and training

opportunities that teach 3R skills for software engineering best practices.

Computer science students along with students in related disciplines (e.g.,

electrical engineering) develop these skills as part of their multiyear degree

programs. However, at present, it is very difficult for students outside these

disciplines to develop the practical engineering skills required to develop

open-source packages.

These difficulties arise from two sources. First, non-CS students have limited

time in their schedules to take classes outside their discipline. Our

observation is that most non-CS students have time for no more than two

courses to acquire the requisite knowledge. Second, existing courses are

typically structured so that practical skills are taught only after teaching

substantial theory and background. For example, at the University of

Washington, the sequence for non-CS students is Computer Programming I

(CSE 142), Computer Programming II (CSE 143), Software Design (CSE 331),

Data Structures (CSE 332), System and Software Tools (CSE 391), and finally

Software Engineering (CSE 403). (We note in passing that the University of

Washington Allen School of Computer Science is making extensive changes to

this curriculum.)

Other universities have adopted similar approaches. For example, UC

Berkeley has the sequence CS61A “The Structure and Interpretation of

Computer Programs”, CS61B “Data Structures: Fundamental Dynamic Data

Structures”, and CS 169A “Software Engineering.” Although CS61B provides

some instruction in version control, this is not part of the curriculum per se.

Indeed, there is no course that provides instruction on engineering practice

(Armando Fox, Associate Dean, private communication, March 8, 2022).

Carnegie Mellon University has addressed the need to provide 3R software

engineering skills by creating an undergraduate minor in CS. But a

substantial time commitment is required to take the requisite courses.

Harvard University’s Institute for Applied Computational Science provides a

master’s degree for students to acquire 3R software engineering skills (IACS,

n.d.), but this too is a significant investment of time.

Students do have options outside of formal academic courses to develop 3R

skills. Software Carpentry (Becker & Weaver, 2018) and Data Carpentry are

successful and scalable ways to introduce introductory-level software

engineering processes to researchers from a broad set of domains. The areas

covered in these courses include the UNIX shell environment, version control

using git, and an introduction to Python and plotting with Python. More

advanced topics such as automating the building of software and the use of

databases and SQL are available. Software Carpentry provides much less

depth on more advanced software engineering practices such as unit testing

and continuous integration. The limited extent of the Carpentry courses

(typically a few days) means that it is harder to integrate the processes within

the everyday work or research by a student (particularly more advanced

practices). Only through repeated use of these practices do they become

embedded in the way that we work.

We have two broad thoughts about changes in academic curriculum that are

required to address the development of 3R skills. First, we believe that the

focus should be on undergraduate courses. One reason is that it provides a

scalable mechanism to prepare students for 21st-century careers in academia

and research. The other reason is that these undergraduate courses can also

be available to graduate and postgraduate students who need 3R skills in

software engineering. That is, our focus is on undergraduate courses, but the

training will be done at all levels in the university.

Our second thought is that the courses for developing 3R skills need to be

radically redesigned. At present, these course sequences are a lightweight

version of the material taught to CS undergraduate majors. That is, courses

early in the sequence focus on theory; only toward the end of the course

sequence do students acquire 3R skills. We recommend that the material be

restructured so that 3R skills are taught (and practiced) early on. More

advanced courses in the sequence should provide greater sophistication in

areas such as programming (e.g., abstraction techniques) and data structures

(e.g., complexity analysis). There are a couple of examples of a first course in

such a sequence. At the University of Washington, CSE 583 “Software

Development for Data Scientists’’ (Beck, 2018) is a one-quarter course on

software engineering for non-CS graduate students that covers all of the

engineering practices described above and includes a capstone project to

practice these skills. At Carnegie Mellon University, Crafting Software (CMU,

n.d.) addresses many 3R engineering practices.

consider two critical for data science applications. First is the design of the

user experience or use cases, often referred to as functional design. This is

about how a user interacts with the system to accomplish their objectives.

The second is component design. This specifies how to create and

interconnect software artifacts that perform the use cases.

How: Appendices B and C contain simplified templates that we developed

for functional and component design that we use in CSE 583 (University of

Washington, 2023-b) and DATA 515A (University of Washington, 2023-c) at

the University of Washington and in CHEME 545 and 546 (University of

Washington, 2023-a). The functional design specifies a set of use cases that

are detailed descriptions of user interactions with the software system.

Appendix B contains a template for functional design. A component design

can be expressed in many ways, such as: a data flow diagram (Li & Chen,

2009), UML diagrams that describe objects with properties and behaviors

(Fowler, 2003), and entity-relationship diagrams (Li & Chen, 2009).

Appendix C contains a template for component design. In solo projects,

design may be done informally (e.g., in a notebook). In a lab project, there

is often some discussion that requires a shared white board and sometimes

an informal write-up. In community projects, more formality is required,

such as a standard template for function and component design documents.

What: Coding practices encompass a wide range of decisions, such as: (a)

the choice of names for variables, functions, and modules; (b)

documentation practices in modules and functions; (c) the use language

features (e.g., the choice between a for statement versus a

comprehension in Python); and (d) the choice of data structures (e.g.,

when to use a list vs. an array vs. a dict). A further consideration are

software licenses (Laurent, 2004).

How: Over the last 50 years, programming has evolved into a systematic

engineering activity with powerful productivity tools. Examples of such

tools are integrated development environments (IDEs) for Python (e.g.,

PyCharm; Nguyen, 2019) and R (e.g., Allaire, 2011). In recent years there

has been a trend toward “literate programming” (Knuth, 1992), especially

‘notebooks’ (e.g., Jupyter) that intermix code with text to provide a

narrative for an analysis. For a solo project, readability is greatly improved

by providing notes about decisions made (e.g., a GitHub README file or

within the notebook) as well as the use of consistent naming conventions to

facilitate understanding codes written months earlier. In a lab project,

readability and resilience are enhanced agreement on common data

structures and coding styles (with tools such as linters to enforce style). A

community project often takes this a step further by having code reviews in

which developers explain their motivations for engineering decisions and

reviewers advise on approaches to improve reuse.

What: Quality assurance is about ensuring resilience, good performance,

security, and privacy.

How: For academic projects, the focus is mostly about testing for errors at

various levels. For a solo project, it likely means implementing unit tests

(codes that check for errors in functions and methods) for key elements of

the project. Excellent open source packages are available to enable these

tests (e.g., Python unittest and R testthat). For a lab project, unit tests are

more extensive, and there is continuous integration (e.g., run all unit tests

after every commit to the software repository). A community project likely

includes additional quality tests for each software release to ensure there is

no ‘regression’ in future releases. (See Nielsen, 2000, for a more detailed

discussion.)

What: The goal is to make software developed by one user available to other

users. This often requires that the software developer structure their codes

into a package that can be shared with other users. Users may have

different software installed on their computers, even different operating

systems. So, the package must specify its dependencies, such as a particular

version of the Python library numpy . This raises a further challenge that

two packages may have conflicting requirements, such as different versions

of numpy .

How: Most academic projects use an install model of package deployment

in which the user’s computer is updated to incorporate the software. PyPI is

the most common mechanism for distributing Python packages, and CRAN

is widely used for R packages. Other software repositories include Conda

and SourceForge. There are also service models for software distribution in

which the software runs on servers owned by the provider and users are

not aware of the software updates (e.g., Gmail). Still another approach is

container-based distribution (e.g., Docker). For a solo project, there may be

no packaging and deployment since the code runs on a single machine for a

single user, but to support the reproducibility of the research a well-

defined and reproducible development environment can be critical. For a

lab project, it is common that all machines in the lab run an almost

identical software stack (e.g., the same version of Linux and Python

packages), and often codes are relatively machine independent (e.g.,

Python, R); so, deployment is done via PyPI for Python and CRAN for R

(with their associated packaging requirements). A recent trend is to use

virtual machines in the cloud so that even if physical machines have

different software, the virtual machines are identical. A community project

often involves multiple languages and hardware platforms, and so

packaging and distribution is more complex. One such complexity is that

quality assurance must include testing of packaging and installs.

What: User documentation covers installation, basic usage, and a detailed

reference manual for advanced users. For example, a screen scraper

application might specify a command line to install the tool, illustrate its

usage on a page from The New York Times, and point to detailed

documentation on options for different kinds of web pages.

How: Solo projects have modest needs here, mostly to ensure that the

developer can easily recall how to use their software some months after it

was written (and the methods or research papers underlying its

development). In a lab project, developers may provide a ‘help’ option for

command line tools and/or a one-page summary of usage (a ‘manual page,’

Linux, 2009.) or a Jupyter Notebook (Ragan-Kelley et al., 2014). In

community projects, there are more extensive capabilities (e.g., Read the

Docs; Cotton, 2016) that contain detailed descriptions of the software

features, examples, and capabilities for searching documentation.

What: Examples of team management include: agreeing on common

objectives, developing a plan (tasks, people, deadlines), progress

monitoring, and plan evolution.

How: Agile practices are widely used for managing software projects

(Martin, 2003), an approach that iteratively delivers prototypes, an

approach that applies to all project scopes. Little is required for a solo

project beyond an individual prioritizing their activities. For a lab project,

lab managers (e.g., principal investigators) may find it useful to have a

spreadsheet that describes who is working on which feature and the

expected completion dates. For a community project, there is often

coordination across physical locations. Managing the dependencies

between teams may demand the use of project management software

(Nieto-Rodriguez, 2022) as well as a designated project manager or package

maintainer who tracks progress of the project plan.

What: Sometimes this is included in project management or product

management (delivering products customers want). We separate this

aspect because the role often goes unnoticed as a lab project grows into a

community project.

How: In a solo or lab project, user engagement typically involves a hallway

conversation with a peer researcher. However, in a community project,

communicating with users may require using GitHub issues, a designated

email account, and even periodic user group meetings.

ENGINEERING

PRACTICE

Increasing software engineering rigor →

Developing for

your own use

(solo)

Developing for

your research

group (lab)

Developing for a

broad research

community

(community)

Version control Commit source

code to a

repository

(local or

remote)

Use meaningful

commit

messages to aid

code

comprehension

and debugging

Implement

backups, in

particular, for

local

repositories.

Isolate features

being

developed into

separate

commits (e.g.,

use branches

for individual

features)

Keep commit

history concise

(e.g., use

squash, merge)

Document the

development

workflow (e.g.,

define the

expected size

of commits

etc.).

Create policies

for fixes, new

features, and

spin-off

projects.

Implement

review criteria

for accepting

commit

requests.

Create policies

for version

control

mechanisms

(e.g., creating

forks,

branches, pull

requests).

Software Design Brainstorm

with colleagues

Review user

experience via

lab

presentations

of mock ups.

Apply best

practices for

software design

to promote

extensibility

and reuse (e.g.,

object

oriented).

Adopt code

reviews (e.g.,

multiple

developers

check coded

commits).

Write

functional

specifications

that describe:

the problem

addressed, user

profiles, use

cases.

Document

components

and their

interactions

(e.g., class

diagrams and

interaction

diagrams).

Review

functional and

component

specifications.

Coding Ensure the

repository has

a README file.

Use a

consistent

naming

convention for

language

elements (e.g.,

objects,

functions,

classes).

Use common

data definitions

(e.g., DNA

sequence, light

source).

Adopt a

software

license.

Create

practices for

coding style.

Use a linter to

enforce coding

practices (e.g.,

Pylint, Flake8).

Use build tools

(e.g., make).

Use published

standards for

coding style,

especially for

tool support

(e.g., use PEP 8

and Pylint).

Define

templates for

packages so

that they have a

common layout

(e.g., directory

structure).

Implement

code reviews to

ensure

standards, style

consistency,

adequate tests,

and use of

common code.

Create

documentation

reviews.

Implement pre-

commit/pull

request coding

style checks in

a linter.

Quality

Assurance

Write unit tests

for critical

components

(e.g., using the

pytest

framework).

Automate local

test execution

(e.g., using a

build-tool

target)

Develop

extensive unit

tests and

measure test

coverage (e.g.,

using

coverage.py).

Develop system

tests (e.g., end-

to-end tests for

use cases).

Implement

continuous

integration for

the

development

platform.

Implement

regression tests

for each

release.

Where

appropriate,

implement

tests for

performance,

security, and so

on.

Test on all

supported

platforms.

Evaluate the

software

package by

users of the

package.

Packaging &

Deployment

Deploy

software

through git

clone.

Version

software via

commit

labels/tags.

Deploy to

established

package

managers (e.g.,

pip, conda,

conda-forge)

Use semantic

versioning (or

tagging)

conventions to

indicate the

magnitude of

change from

previous

versions.

Tag and release

versions of the

code.

Create release

documentation.

Implement

automatic

documentation

builds.

Use automatic

builds for

container

deployments.

User

Documentation

Document or

comment the

code.

Document

complicated

math in a long

comment or a

reference to a

paper.

Provide Jupyter

Notebooks to

demonstrate

the code.

Implement

more extensive

developer

documentation

(e.g., Sphinx).

Create user

documentation

(e.g., details of

usage and

options).

Provide citation

information for

the package

(e.g., a DOI).

Publish

documentation

(e.g., Read the

Docs) that

includes

examples.

Create email

lists for

developers and

users.

Create

tutorials.

Publish on-

boarding

documentation.

Team

Management

Ad hoc Create a plan

for each release

that specifies

delivery date,

features, and

deliverables for

each team

member, or at

least a

prioritization

of changes and

their estimated

level of

difficulty.

Technical

leads/contribut

ors create

release plans or

create project

plans with task

assignments.

Implement

regular “stand

ups” to share

progress and

blockers.

Undertake

technology

reviews when

considering

new

dependencies.

Define a

governance

structure (clear

rules for

decision-

making).

User

Engagement

Ad hoc Make team

presentations

on proposed

features.

Use issue

tracking

software (e.g.,

GitHub Issues).

Provide a

forum whereby

users can

request as well

as give

feedback on the

prioritization

of features and

fixes.

Notify users of

prioritization

of issues.

Provide users

with a project

roadmap,

training at

community

events, major

release changes

warnings, and

deprecation

warnings.

n.d.) addresses many 3R engineering practices.

We close with more details about the syllabus for CSE 583. The intent of this

course is to develop 3R skills for students who have little programming

backgrounds. Key topics are: review of Python programming; version control

with GitHub; the bash command line; constructing Python modules; unit

tests (both what to test and how to use the unittest package); creating PyPI

packages; continuous integration; and team processes. Team processes

include code reviews, technology reviews (how to choose a software

dependency), and project planning. After the topics are addressed

individually, students gain practice in their use by doing a class project with a

team of three to four students.

5. The Future of Software Engineering for
Academic Researchers

One major direction we are pursuing at the University of Washington is to

develop a community of practice for software engineering, a group of

experienced software engineers employed by the university who have

focused engagements with academic software projects. Developing such a

community of practice provides resources for: (a) the adoption of resilient

software engineering practices in research and (b) teaching software

engineering courses on campus. Although funding exists to support software

engineering positions, resources in any given research group are often in the

form of fractional FTEs (full-time equivalents). It is often difficult to fill

fractional FTEs even if we can entice and retain people with the appropriate

expertise for these positions. This has motivated us to develop a centralized

pool of research software engineers, or an RSE team. How to implement such

a model is clearly an open question; it is beyond the scope of this article. That

said, we highlight a number of existing models and programs in universities.

The eScience Institute at the Universe of Washington is one example of such a

model where data scientists work both in service of university programs and

in the development of their own research. Such institutes could leverage the

size of the university to build software engineering teams as a university-

level program to support researchers. In particular, an institute can make use

of fractional FTEs of grant support to amortize the cost of skilled software

engineers who could not be funded by any one group. Such opportunities

have been realized in the United Kingdom with the development of university

and national research software engineering programs, and are beginning to

be recognized by other universities in the United States. Other examples of

nascent programs include: software groups who embed within a project for 6

months to 2 years (e.g., Caltech SASE; California Institute of Technology,

2022), cohorts of master’s students with data science and software

engineering skills who are matched with research projects for short

engagements (e.g., NYU DS3; NYU Center for Data Science, n.d.), embedding

professional software engineers in research labs (as Fox reports for UC

Berkeley [A. Fox, personal communication, March 8, 2022]), or RSE teams

such as the Research Software Engineering Group at Princeton or the

National Center for Supercomputing Applications at the University of Illinois.

As noted previously, a core challenge with much of this vision is hiring and

retaining skilled software engineers in an academic environment, especially

people who are excited about working with researchers who may have

minimal training in software engineering. There are multiple avenues for

such hires: (a) long-term positions for software engineers already in

academia; (b) software engineers in industry who are engaged in open source

communities; (c) industry software engineers returning for graduate studies

who may find that their software skills provide entry into an exciting

research project; (d) early-career engineers interested in research and the

impact of their work; and (e) providing opportunities for late-career software

engineers looking for a ‘second act.’ A critical aspect to the success of such a

program is the retention of good talent. Carver et al.’s (2022) survey found an

overwhelming concern about the lack of career paths for software

professionals in academia. This will require careful thought about the career

paths for software engineers within the academic environment, an

environment that puts a premium on published articles, not software

projects. Retaining skilled software engineers will require providing

appealing career paths in academic institutions.

We have a few insights as to how to attract experienced software engineers.

We have learned much from hiring software engineers for the recently

created Scientific Software Engineering Center at eScience. The goal of the

center is to apply industry-grade software engineering practices to the

development of research software for science. Hence, we mostly targeted

industry for sourcing software engineering talent.

We have several observations based on our experience over the last 6 months

of hiring. First, it is easier to recruit senior software engineers who have

spent a decade or more in industry. They are attracted to the mission,

engineering autonomy and scope, and potential to have impact on scientific

breakthroughs after spending years on commercial projects that are mainly

focused on profit through extremely specific engineering optimizations,

often as very small cogs in large engineering-product teams. Second, it is

extremely difficult to reach parity with private industry in terms of

compensation, which makes it hard to attract junior to mid-level software

engineers with industry experience as they are less likely to depart from

lucrative careers in the private sector. Third, there is a lack of formal

structure for software development in academia. This is both an opportunity

for engineers to extend their skills in eliciting software requirements and a

challenge as it slows the pace of engineering output due to the high degree of

uncertainty when projects are launched. This is sometimes a constraint

during recruiting as the uncertainty could be seen as a lack of investment in

supplemental roles such as customer success, product design,

program/product management, and software ecosystem and servicing—roles

that allow software engineers to focus on software coding–related tasks in

which they intend to continue growing their skills.

The biggest advantage of software engineering in academia is the culture of

openness and the opportunity to change the trajectory of a multiyear

investment in science by contributing highly sought after engineering

products to a dedicated community of scientists and researchers. This

community impact goes beyond the organization or region to benefit society

at large. We expect this to be a primary factor in retaining software engineers

in academia, and in establishing the perception of research software

engineering in academia as a highly fulfilling career path.

6. Conclusions

Our experience at the eScience Institute is that successful data science

projects create software that is readable by others, resilient to variations in

usage, and reusable by embedding within other software. We refer to these

considerations as the 3Rs of software engineering.

This article addresses engineering practices that create 3R software. By

engineering practice, we mean much more than coding, although coding is an

important element. Among the engineering practices we discuss are: version

control, design, quality assurance, packaging, documentation, and project

management.

There are robust industry practices for creating 3R software. However, many

of these practices are skills-intensive and time-consuming. Further, although

application of these practices can result in a high level of 3R capabilities, this

outcome is poorly matched with the needs of most academic projects. Most

academic projects are quite small; they consist of a single researcher who is

the sole user of the software. A modest number of academic software projects

address multiple users in the same lab. Very few academic projects are

directed at a large research community. Often the transition from a single-

user application to community-developed software arises organically rather

than from a decision at the start of a project. These considerations led us to

restructure software engineering practices into a progression of increasing

rigor to better match the needs of academic projects with different scopes.

The need for 3R skills for academic software led us to examine teaching and

training of software engineering. We provide an in-depth analysis of our

institution, the University of Washington, and we provide some insights into

the situations at Carnegie Mellon University and the University of California

at Berkeley. We conclude that undergraduates outside of CS (or related

departments, such as electrical engineering) face significant challenges with

acquiring 3R skills because of the limited time available in undergraduate

majors to take prerequisite courses and the competition to take these courses.

We touch on another path to creating 3R software—building a ‘community of

practice.’. This is a team of experienced research software engineers (i.e., an

RSE team) who apply engineering best practices to research projects. This is

not an alternative to teaching and training, rather it complements those

efforts. One example of an RSE team is LINCC Frameworks (n.d.) a joint

project between the University of Washington, Carnegie Mellon University

and the LSST Corporation to develop scientific software to analyze data from

the Rubin Observatory Legacy Survey of Space and Time (LSST). A broader

initiative is the recently announced Virtual Institute for Scientific Software

(VISS) (Boyle, 2022) that seeks to accelerate scientific discoveries through the

development of 3R software for a diverse set of academic projects.

A further consideration is cultural. In academia, the criteria for success is the

publication of the results. In contrast, success in a software engineering

culture is creating software that is widely used, and has a reputation for good

quality. These cultural differences can create an ‘impedance mismatch’ that

may present challenges for an RSE team and promoting 3R software.

If we can address these challenges, we have an opportunity to increase the

readability, resilience, and reuse of research software in the United States

and throughout the world. Doing so will accelerate the progress of research.

It will also aid in workforce development by having more undergraduates

trained in software development and by providing a community of practice to

support the careers and advancement of those software developers in

academia.

Acknowledgments

Andrew J. Connolly and Joseph L. Hellerstein contributed equally to writing

this article. We thank Vaughn Iverson for suggesting the idea of project

scopes. We are indebted to the editor and reviewers for their detailed

comments that greatly improved earlier drafts of this article. We greatly

appreciate the thoughtful and thorough comments from the reviewers that

were essential to creating a much-improved manuscript.

Disclosure Statement

AJC acknowledges support from the Department of Energy through award DE-

SC0011665 and the National Science Foundation through award AST-

2107800. This work was supported by the Washington Research Foundation

and by a Data Science Environments project award from the Gordon and Betty

Moore Foundation (Award #2013-10-29) and the Alfred P. Sloan Foundation

(Award #3835) to the University of Washington eScience Institute. The

University of Washington Scientific Software Engineering Center (SSEC) and

LINCC Frameworks are supported by Schmidt Futures, a philanthropic

initiative founded by Eric and Wendy Schmidt, as part of the Virtual Institute

for Scientific Software (VISS) and the Virtual Institute of Astrophysics (VIA).

References

Allaire, J. J. (2011). RStudio: Integrated development environment for R.

https://www.r-project.org/conferences/useR-2011/abstracts/180111-

allairejj.pdf

Beck, D. A. (2018). Software engineering for data scientists. University of

Washington - Paul G. Allen School of Computer Science & Engineering.

https://courses.cs.washington.edu/courses/cse583/

Beck, L. L., & Perkins, T. E. (1983). A survey of software engineering practice:

Tools, methods, and results. IEEE Transactions on Software Engineering, 5(SE-

9), 541–561.

Becker, E., & Weaver, B. (2018, May 7). Meet the members of the software

carpentry CAC. Software Carpentry. https://software-

carpentry.org/blog/2018/05/swc-cac.html

Bhatti, J. (2021). Docs for developers: An engineer’s field guide to technical writing.

Apress.

Blokdyk, G. (2022). Version control software standard requirements. 5STARCooks.

Boehm, B. W. (1976). Software engineering. IEEE Transactions on Computers,

25(12), 1226–1241.

Boyle, A. (2022, January 22). University of Washington joins $40M campaign to

enlist more software engineers for research. GeekWire.

https://www.geekwire.com/2022/university-of-washington-joins-40m-

campaign-to-enlist-more-software-engineers-for-research/

Cagan, M. (2018). Inspired: How to create tech products customers love. Wiley.

California Institute of Technology. (2022). SASE: The Schmidt Academy for

Software Engineering. https://sase.caltech.edu/

Carnegie Mellon University. (n.d.). Crafting Software. https://cmu-crafting-

software.github.io//assignments/hw1

Carver, J. C., Weber, N., Ram, K., Gesing, S., & Katz, D. S. (2022). A survey of

the state of the practice for research software in the United States. PeerJ

Computer Science, 8, Article e963. https://doi.org/10.7717/peerj-cs.963

Chattopadhyay, S., Prasad, I., Henley, A. Z., Sarma, A., & Barik, T. (2020).

What’s wrong with computational notebooks? Pain points, needs, and design

opportunities. In R. Bernhaupt, F. Mueller, D. Verweij, & J. Andres (Eds.), CHI

'20: Proceedings of the 2020 CHI Conference on Human Factors in Computing

Systems (CHI). ACM.

Choi, K., Medley, J. K., König, M., Stocking, K., Smith, L., Gu, S., & Sauro, H.

M. (2018). Tellurium: An extensible Python-based modeling environment for

systems and synthetic biology. Biosystems, 171, 74–79.

Cotton, B. (2016). Making documentation easy to read with Read the Docs.

opensource.com.

Currie, M. J., Berry, D. S., Jenness, T., Gibb, A. G., Bell, G. S., & Draper, P. W.

(2014). Starlink Software in 2013. Astronomical data analysis software and

systems XXIII. ASP conference series, vol. 485.

https://aspbooks.org/publications/485/391.pdf

Deil, C., Zanin, R., Lefaucheur, J., Boisson, C., Khelifi, B., Terrier, R., Wood M.,

Mohrmann, L., Chakraborty, N., Watson, J., Lopez-Coto, R., Klepser, S.,

Cerruti, M., Lenain, J. P., Acero, F., Djannati-Ataï, A., Pita, S., Bosnjak, Z.,

Trichard, C., Vuillaume, T., ... Arribas, M. (2017) Gammapy - A prototype for

the CTA science tools. 35th International Cosmic Ray Conference (ICRC2017),

vol. 301, 766. https://doi.org/10.22323/1.301.0766

Feller, J., Fitzgerald, B., Hissam, S. A., & huff, K. R. (2007). Adopting open

source software engineering (OSSE) practices by adopting OSSE tools. In

Perspectives on free and open source software (pp. 245–264). MIT Press.

Fowler, M. (2003). UML distilled: A brief guide to the standard object modeling

language. Addison-Wesley.

Fox, A., & Patterson, D. (2012). Crossing the software education chasm.

Communications of the ACM, 55(5), 44–49.

Nieto-Rodriguez, A. (2022). Project Management Handbook: How to Launch,

Lead, and Sponsor Successful Projects. Harvard Business Review.

Glass, R. L., Vessey, I., & Ramesh, V. (2002). Research in software engineering:

An analysis of the literature. Information and Software Technology, 44(8), 491–

506.

Hettrick S. (2014, December 4). It’s impossible to conduct research without

software, say 7 out of10 UK researchers. Software Sustainability Institute.

https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-

research-without-software-say-7-out-10-uk-researchers

GeeksforGeeks. (2022, July 3). Introduction to semantic versioning.

https://www.geeksforgeeks.org/introduction-semantic-versioning/

Hooley, F., Freeman, P. J., & Davies, A. C. (2021). Ten simple rules for teaching

applied programming in an authentic and immersive online environment.

PLoS Computational Biology, 8(17), 1–11.

Institute for Applied Computational Science. (n.d.). Degree programs.

https://iacs.seas.harvard.edu/graduate-programs

Janssens, J. (2014). Data science at the command line: Facing the future with time-

tested tools. O'Reilly Media.

Jaspan, C., Chen, I.-C., & Sharma, A. (2007). Understanding the value of

program analysis tools. In R. P. Gabriel (Ed.), OOPSLA '07: Companion to the

22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and

Applications Companion (pp. 963–970). ACM.

Jordan, T. B., Johnson, B., Witschey, J., & Murphy-Hill, E. (2014). Designing

interventions to persuade software developers to adopt security tools. In R.

Biddle, B. Chu, E. Murphy-Hill, & H. Lipford (Eds.), SIW '14: Proceedings of the

2014 ACM Workshop on Security Information Workers (pp. 35–38). ACM.

Jupyter. (2015, November 30). Project Jupyter. Berkeley Institute for Data

Science. https://bids.berkeley.edu/research/project-jupyter

Keeling, M. (2017). Design it! Pragmatic Bookself.

Kerninghan, B. W., & Pike, R. (1999). The practice of programming. Addison-

Wesley.

Kery, M., & Myers, B. A. (2017). Exploring exploratory programming. In 2017

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

(pp. 25–29). IEEE.

Knuth, D. E. (1992). Literate programming. Stanford University Center for the

Study of Language and Information.

Laurent, A. M. (2004). Understanding open source and free software licensing.

O’Reilly Media.

Li, Q., & Chen, Y. L. (2009). Data flow diagram. In Modeling and analysis of

enterprise and information systems (pp. 85–97). Springer.

LINCC Frameworks. (n.d.) Home page.

https://www.lsstcorporation.org/lincc/frameworks

Linux Man-Pages Project. (2009, March 16). Home page. Kernel.

https://www.kernel.org/doc/man-pages.

Loeliger, J., & McCullough, M. (2012). Version control with git: Powerful tools and

techniques for collaborative software development (2nd ed.). O’Reilly Media.

Martin, R. C. (2003). Agile software development: Principles, patterns, and

practices. Prentice Hall.

Milewicz, R., Pinto, G., & Rodeghero, P. (2019). Characterizing the roles of

contributors in open-source scientific software projects. In M.-A. Storey

(Ed.), MSR '19: Proceedings of the 16th International Conference on Mining

Software Repositories (pp. 421-432). IEEE Press.

https://doi.org/10.1109/MSR.2019.00069

Nielsen, J. (2000, March 18). Why you only need to test with 5 users. NN/g

Nielsen Norman Group. https://www.nngroup.com/articles/why-you-only-

need-to-test-with-5-users/

Nguyen, Q. (2019). Hands-on application development with PyCharm: Accelerate

your Python applications using practical coding techniques in PyCharm. Packt.

NYU Center for Data Science. (2022). Data Science and Software Services.

https://cds.nyu.edu/ds3/

Osimo, D., & Switters, J. (2019). Recognising the importance of software in

research Research Software Engineers (RSEs), a UK example. Publications Office

of the EU.

Patton, R. (2005). Software testing. SAMS Publishing.

Ponuthorai, P., & Loeliger, J. (2023). Version control with git: Powerful tools and

techniques for collaborative software development (3rd ed.). O’Reilly Media.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An

agile toolkit. Addison-Wesley Longman.

Postan, L. (2021, January 11). Best software engineer blogs for 2021. DEV.

https://dev.to/rliraz/best-software-engineer-blogs-for-2020-jhi

Price-Whelan, A. M., Sipőcz, B. M. Günther, H. M. Lim, P. L. Crawford, S.

M. Conseil, S. Shupe, D. L. Craig, M. W. Dencheva, N. Ginsburg,

A. VanderPlas, J. T. Bradley, L. D. Pérez-Suárez, D. de Val-Borro, M. Aldcroft,

T. L. Cruz, K. L. Robitaille, T. P. Tollerud, E. J. Ardelean, C. ... Dietrich, J. P.

(2018). The Astropy Project: Building an open-science project and status of

the v2. 0 core package. The Astronomical Journal, 156(3), Article 123.

https://doi.org/10.3847/1538-3881/aabc4f

Project Management Institute. (2017). A guide to the project management body of

knowledge.

Ragan-Kelley, M., Perez, F., Granger, B., Kluyver, T., Ivanov, P., Frederic, J., &

Bussonnier, M. (2014). The Jupyter/IPython architecture: A unified view of

computational research, from interactive exploration to communication and

publication. AGU Fall Meeting Abstracts, 2014, Article H44D-07.

Randles, B. M., Pasquetto, I. V., Golshan, M. S., & Borgman, C. L. (2017). Using

the Jupyter Notebook as a tool for open science: An empirical study. In 2017

ACM/IEEE Joint Conference on Digital Libraries (JCDL), 1–2. IEEE.

https://doi.org/10.1109/JCDL.2017.7991618

Sauro, H. M. (2018, August 28). Department web page. University of

Washington. https://bioe.uw.edu/portfolio-items/sauro/

Sauro, H. M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., &

Kitano, H. (2003). Next generation simulation tools: The Systems Biology

Workbench and BioSPICE integration. OMICS, 7(4), 355–372.

Schmidt Futures. (n.d.). Our mission. Retrieved April 27, 2023,

fromhttps://www.schmidtfutures.com/

Smith, L.P., Bergmann, F. T., Chandran, D., & Sauro, H. M. (2009). Antimony:

A modular model definition language. Bioinformatics, 25(18), 2452–2454.

Somogyi, E. T., Bouteiller, J. M., Glazier, J. A., König, M., Medley, J. K., Swat, M.

H., & Sauro, H. M. (2015). libRoadRunner: A high performance SBML

simulation and analysis library. Bioinformatics, 31(20), 3315 –3321.

https://doi.org/10.1093/bioinformatics/btv363

Stack overflow. (2022). https://tinyurl.com/4zf737j5

Timperley, C. S., Herckis, L., Le Goues, C., & Hilton, M. (2020). Understanding

and improving artifact sharing in software engineering research. Empirical

Software Engineering, 26, Article 67. https://doi.org/10.1007/s10664-021-09973-

5

Tody, D. (1986, October 12). The IRAF data reduction and analysis system. In D.

L. Crawford (Ed.), Proceedings SPIE 0627, Instrumentation in Astronomy VI (p.

733). SPIE.

University of Washington. (2022-a). CHEME 545-546: Data science methods for

clean energy research and software engineering for molecular data scientists.

Retrieved April 27, 2022, from

https://chem.washington.edu/courses/2021/autumn/chem/541/a

University of Washington. (2022-b). CSE 583: Software development for data

scientists. Retrieved April 27, 2022, from

http://courses.cs.washington.edu/courses/cse583

University of Washington. (2022-c). DATA 515A: Software design for data

science. Retrieved April 27, 2022, from

https://courses.cs.washington.edu/courses/csep515/

Waldon, B. (2012). A beginners guide to software deployment. CreateSpace

Independent Publishing Platform.

Wang, A. Y., Mittal, A., Brooks, C., & Oney, S. (2019). How data scientists use

computational notebooks for real-time collaboration. Proceedings of the ACM

on Human-Computer Interaction, 3(CSCW), Article 39.

Wikipedia. (n.d.-a) Project management software. Retrieved April 27, 2022,

from https://en.wikipedia.org/wiki/Project_management_software

Wikipedia. (n.d.-b) Khan academia. Retrieved April 27, 2022, from

https://en.wikipedia.org/wiki/Khan_Academy

WIkipedia. (n.d.-c) EdX. Retrieved April 27, 2022, from

https://en.wikipedia.org/wiki/EdX.

Wikipedia. (n.d.-d) Coursera. Retrieved April 27, 2022, from

https://en.wikipedia.org/wiki/Coursera.

Wikipedia. (n.d.-e). GitHub. Retrieved April 27, 2022, from

https://en.wikipedia.org/wiki/GitHub

United States Research Software Engineering Organization. (2023). Home

page. Retrieved April 27, 2022, from https://us-rse.org/

Appendices

Appendix A. Glossary of Terms

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.r-2Dproject.org_conferences_useR-2D2011_abstracts_180111-2Dallairejj.pdf&d=DwMFaQ&c=WO-RGvefibhHBZq3fL85hQ&r=Tju__Bsck13ghv9gNTcqeWXD31k_9csNx5xlxEWpvJY&m=LrqObHiHlEIpa0kesxjIcsclGni5hLlA6hMhYTzXEnfXuzgMjsd-VqeaiJBSn0Y8&s=qBXxWGG7lYig7GyBhf3Z4-UwU_d0MnBrTG3syZLk7S4&e=
https://courses.cs.washington.edu/courses/cse583/
https://software-carpentry.org/blog/2018/05/swc-cac.html
https://www/
https://sase.caltech.edu/
https://cmu-crafting-software.github.io//assignments/hw1
https://doi.org/10.7717/peerj-cs.963
https://aspbooks.org/publications/485/391.pdf
https://doi.org/10.22323/1.301.0766
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://www.geeksforgeeks.org/introduction-semantic-versioning/
https://iacs.seas.harvard.edu/graduate-programs
https://bids.berkeley.edu/research/project-jupyter
https://www.lsstcorporation.org/lincc/frameworks
https://www.kernel.org/doc/man-pages
https://doi.org/10.1109/MSR.2019.00069
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://cds.nyu.edu/ds3/
https://dev.to/rliraz/best-software-engineer-blogs-for-2020-jhi
https://doi.org/10.1109/JCDL.2017.7991618
https://bioe.uw.edu/portfolio-items/sauro/
https://www.schmidtfutures.com/
https://doi.org/10.1093/bioinformatics/btv363
https://tinyurl.com/4zf737j5
https://doi.org/10.1007/s10664-021-09973-5
https://chem.washington.edu/courses/2021/autumn/chem/541/a
http://courses.cs.washington.edu/courses/cse583
https://courses.cs.washington.edu/courses/csep515/
https://en.wikipedia.org/wiki/Project_management_software
https://en.wikipedia.org/wiki/Khan_Academy
https://en.wikipedia.org/wiki/EdX
https://en.wikipedia.org/wiki/Coursera
https://en.wikipedia.org/wiki/GitHub
https://us-rse.org/

LICENSE •
Creative Commons Attribution 4.0 International License (CC-
BY 4.0)

COMMENTS • 0

Login to discuss

No comments here

Why not start the discussion?

Harvard Data Science Review

Appendix A. Glossary of Terms

Appendix B: Template Functional Specification

A functional specification describes how developers of the software system

envision that the user will interact with their software. Over the past 10

years, we have taught several thousand students how to write these

specifications. We provide our students with the following outline:

Appendix C: Template Component Specification

A component specification describes the components of the software and how

they interact to accomplish use cases in the functional specification. By

component, we generally mean higher level capabilities such as data retrieval,

significant analysis capabilities, or any novel capability. Over the past 10

years, we have taught several thousand students how to write these

specifications. We provide our students with the following outline:

©2023 Andrew Connolly, Joseph Hellerstein, Naomi Alterman, David Beck,

Rob Fatland, Ed Lazowska, Vani Mandava, and Sarah Stone. This article is

licensed under a Creative Commons Attribution (CC BY 4.0) International

license, except where otherwise indicated with respect to particular material

included in the article.

artifact: a work product of the software engineering process including

code, documentation, data, design documents, and plan documents.

branch: changes (commits) to code to implement or modify features within

a software repository, where the changes are kept separate from other

changes to the repository.

class diagram: a visual description of the relationships between elements

of a software design.

clone: a copy of a repository.

code review: a process by which software engineers share their work and

receive feedback on coding style, design, and implementation of the

software.

coding style: the manner in which codes are written to improve readability

by others, such as PEP 8 for Python. This includes naming conventions for

methods and variables.

commit: a change to a repository branch.

component design: the specification of the software elements in a system

by their inputs, outputs, and behaviors (e.g., how inputs are transformed

into outputs).

Conda: Package dependency and environment deployment.

https://docs.conda.io/en/latest/

CRAN: Comprehensive R archive network. https://cran.r-project.org/

dependency: software that is required for installing a package. For

example, it is common for Data Science packages to have dependencies on

numpy , pandas , and matplotlib .

deployment: the process of making a software package available to others.

This can be done by download (e.g., PyPI), containers (e.g., Docker), or

server-based hosting (e.g., on Amazon Web Services).

engineering practice: a generally accepted method for some aspect of

building software.

SourceForge: Software repository and distribution.

https://sourceforge.net/

fork: creation of a new code repository based on an existing code

repository.

GitHub: an online system for version control and continuous integration.

http://github.com

GitHub issues: a feature of GitHub that provides for reporting,

prioritizing, and tracking issues.

linter: a tool that detects errors in code without executing the code (e.g.,

detecting that a variable may be referenced before it is assigned).

merge: combining changes committed to two branches of a code repository.

module: (1) reusable software with a well-defined set of features and ways

to use it; (2) a Python file (i.e., as the file extension “py”).

notebook (or software notebook): a programming environment in which

code is mixed with a narrative text to create an easily updatable report.

package: a unit of software distribution and reuse.

pull request: a set of proposed changes to a branch of a software repository.

project management: the process of setting goals, assigning tasks, and

managing the progress of a project.

PyPI: Python package installer. https://pypi.org/

regression test: tests that detect that a previously implemented feature no

longer works or works incorrectly.

repository: a collection of files that is managed so as to capture

incremental changes or ‘commits.’

semantic versioning: a way to specify software versions that indicate the

magnitude of change from previous versions (GeeksforGeeks, 2022).

software design: the process by which software is created including

specification of the user interactions (user experience) and the

specification of software components such as modules and functions.

squash: combine multiple commits (changes) into a single commit.

technology review: a process whereby a software development team

selects a software package to use in their project.

test coverage: the fraction of statements in a module or collection of

modules that are executed when all of the unit tests are run.

unit test: code written to detect errors in a software project.

use case: a way in which the user employs the software system to perform a

task of interest to the user.

user experience: how the user interacts with the software system such as

by a web browser or a command line.

version control: tools and best practices for tracking changes to code, data,

and documents.

Background. Describe the problem being addressed and why it is important.

User profile. Detail who will use the system. What do they know about the

problem domain? What is their computer literacy (e.g., can browse the

web, can program in Python)?

Data sources. What data you will use and how it is structured?

Use cases. For each use case, describe: (a) the objective of the user

interaction (e.g., withdraw money from an ATM); and (b) the expected

interactions between the user and your system.

Software components. High level description of the software components

such as: data manager, which provides a simplified interface to your data

and provides application specific features (e.g., querying data subsets); and

visualization manager, which displays data frames as a plot. Describe at least

three components specifying: what it does, inputs it requires, and outputs

it provides.

Interactions to accomplish use cases. Describe how the above software

components interact to accomplish at least one of your use cases.

Preliminary plan. A list of tasks in priority order.

?

RSS · Legal

Published with

https://creativecommons.org/licenses/by/4.0/
https://hdsr.mitpress.mit.edu/login?redirect=/pub/f0f7h5cu/release/2
https://hdsr.mitpress.mit.edu/
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.python.org/dev/peps/pep-0008/
https://docs.conda.io/en/latest/
https://cran.r-project.org/
http://github.com/
https://hdsr.mitpress.mit.edu/rss.xml
https://hdsr.mitpress.mit.edu/legal
https://datascience.harvard.edu/
https://twitter.com/TheHDSR
mailto:datasciencereview@harvard.edu

