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A NEW DIV-DIV-CONFORMING SYMMETRIC TENSOR FINITE
ELEMENT SPACE WITH APPLICATIONS TO THE
BIHARMONIC EQUATION

LONG CHEN AND XUEHAI HUANG

ABSTRACT. A new H/(div div)-conforming finite element is presented, which
avoids the need for supersmoothness by redistributing the degrees of freedom
to edges and faces. This leads to a hybridizable mixed method with super-
convergence for the biharmonic equation. Moreover, new finite element divdiv
complexes are established. Finally, new weak Galerkin and C° discontinuous
Galerkin methods for the biharmonic equation are derived.

1. INTRODUCTION

In recent years, there has been a series of developments in constructing H (div div)-
conforming finite elements [101[14}[15,26H28]. However, all these elements possess
vertex degree of freedom (DoF), which makes them non-hybridizable. In this pa-
per, we present a novel H(divdiv)-conforming finite element that is hybridizable,
enabling its efficient use in the numerical solutions of the biharmonic equation.

Let Q € R% d > 2, be a Lipschitz domain. With the space S of symmetric
tensors, the Sobolev space

H(divdiv,Q;S) := {1 € L*(S) : divdivr € L*(Q)}

with the inner div applied row-wisely to 7 resulting in a column vector for which
the outer div operator is applied. The H(div div)-conforming finite elements con-
structed in [LOL[I41[15/[26H28] include the following DoF's:

(1.1) T(v), veA(T), T€S,
(1.2) (mlmn;,q)r, q€Pr_ra(f), fE€AN(T),r=1,...,d—1,
and 4,5 =1,...,d =71, < j.

Here, A,.(T) denotes the set of r-dimensional faces of the simplex T'. Furthermore,
n; denotes the ith normal vector to the face f, and (-,-); denotes the L?-inner
product over the face f. The new element will be constructed by redistributing the
vertex and normal plane DoFs (L1)-(L.2]).

We provide a brief explanation of the redistribution process by examining DoF's
of vertex vg. Face-normal vectors {np,,i = 1,...,d} form a basis of the ambient
Euclidean space R¢, d > 2, where F; denotes the (d— 1)-dimensional face containing
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vo and opposite to v; for i = 1, ..., d. We may then determine DoF 7(vg) € S
by considering the symmetric matrix (n}i-r(vo)npj)m-:l?“_,d. We redistribute the
diagonal entry nf, 7(vo)np, to face F fori = 1, ..., d, while the off-diagonal entries
ny, T(vo)np, with 1 <i < j < d to the (d—2)-dimensional face e;; = F; N Fj. This
process can be extended to DoFs ([.2)) as well by setting n; = ng,.

In three dimensions, where d = 3, the faces F; correspond to two-dimensional
faces (i.e., “faces”) and the e;; correspond to one-dimensional faces (i.e., “edges”).
We refer to this entire process as the redistribution of vertex DoFs to faces and
edges. See Fig. [1l for an illustration of the redistribution.

2

FI1GURE 1. Redistribution of vertex degrees of freedom to faces and
edges. 7(vp) € S is a symmetric tensor containing 6 components.
Three diagonal entries n}iT(vo)n r, will be distributed to faces F;
for ¢ = 1,2,3 and three off-diagonal entries n}i‘r(vo)npj to the
edges €ij :FzﬂFj with 1 <4 <j <3

Upon redistribution, we use the geometric decomposition of the Lagrange ele-
ment to merge facewise DoF's into normal-normal components as shown below:

(n}‘TnF>Q)F7 q S ]P)k:(F)u F S Ad*l(T%
and merge the off-diagonal DoF's as shown below:
(13) (n;‘lTanaq)& q S ]P)k(e)v ec Ad—Q(T)a

where F} and F are the two faces of the element T that share the edge e.
To ensure the H(divdiv)-conformity, we modify DoF (L3) on nf, 7ng, to an
edge jump term given by

tre(T) = tI‘Z(T) = n}heTthaT + n}%eT’n’FzﬁT’

where np . denotes the normal direction of e on F' induced by the orientation of F,
and np, g7 is the outward normal direction of face F; with respect to 0T. Here T’
represents a simplex and T is the transpose operator.

We provide DoF's in (2.3)) and prove the unisolvence to the shape function space
P(T;S) for k > 3. Afterwards, we define the global space Zziv div—.

sdivdiv=._ £+ ¢ [2(Q;S) :7|p € Pi(T;S) for each T € Ty,

DoFs on tri(7) and tra(7) are single-valued},
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A NEW DIV-DIV-CONFORMING FINITE ELEMENT SPACE 3

where the traces tri(7) = nTrn and tro(7) = n); div T + divp(Tnor) are contin-
uous for 7 € LMV However, the edge jump > Tew, tTe(T)]e may not vanish
which prevents X0V 4V~ being H(div div)-conforming, where w. = {T' € T; : e C
T} is the set of all simplices containing e. To obtain an H (div div)-conforming sub-
space, we further define the subspace ng;’le‘a" as the subspace of Zziv div = satisfying
the constraint:
Eglggy = {r e ngvdiv—, Z tre(7)]e = 0 for all e € &,}.
Tewe

A similar constraint can be found in [18] when considering hybridization of edge
elements. The space E‘gf;’lfviv" is H(div div)-conforming and compared with other
existing elements, the imposed continuity is minimal [23] Proposition 3.6] and no
supersmoothness imposed in lower dimensional subsimplices. In particular, no ver-
tex DoF's are needed.

The requirement k > 3 can be relaxed to k > 2 by enriching the shape function
space

Y+ (T, S) =Py (T, S) (S5) wiBTkal(T),

which is in the spirit of the Raviart-Thomas (RT) element for H(div)-conforming
vector finite element [2,B5]. A Raviart-Thomas type H (div div)-conforming finite
element space Egil’ div for symmetric tensors can be constructed for k > 2.

Motivated by the construction in [22] in 2D, we further construct a lower order
space H(div div)-conforming finite element ¥;++ by enriching P;(T;S) by some
quadratic and cubic polynomials. The 3D version is illustrated in Fig. 2

4 4
3 3
1 1
2 2
(a) The lowest (b) Discontinuous
degree H(divdiv)- P (T) element
conforming element (with 12 DoFs) for
21++ (T, S) (Wlth u

36 DoFs) for o

FIGURE 2. The lowest degree pair X1++(7T;S) — P1(T) in three
dimensions

The symmetric tensor finite element with only normal-normal continuity for
k > 0 is shown in [24,125/[30,133,[34]. For the discretization of the biharmonic
equation in two dimensions, referred to as the Hellan-Herrmann-Johnson (HHJ)
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4 LONG CHEN AND XUEHAI HUANG

mixed method [11[91[191[24,[25/[30], the normal-normal continuous finite element for
symmetric tensors is employed. Notably, there is currently no existing HHJ method
for dimensions greater than two. The normal-normal continuous finite element for
symmetric tensors is also adopted in [33l[34] to discretize the linear elasticity, known
as the tangential-displacement normal-normal-stress (TDNNS) method. We also
refer to [L6] for an H(rotrot)-conforming finite element for symmetric tensors on
the Clough-Tocher split in two dimensions.

The H(div div)-conforming finite element constructed in this paper is applicable

for discretizing the biharmonic equation for all dimensions d > 2 and offers optimal
convergence for symmetric tensors, along with a fourth-order higher superconver-
gence for the post-processed deflection. Through a hybridization technique, the
implementation of the mixed method developed in this paper can be treated as a
generalization of hybridized HHJ methods from 2D to arbitrary dimensions.
The H(div div)-conforming space ng;’lg}i‘," might be somewhat challenging to im-
plement in practical applications. This complexity arises from the stringent con-
tinuity requirements placed on tri(7) and tra(7), as well as the patch constraint
imposed on edge jumps. To mitigate these challenges, we employ a hybridization
technique [1,21] that effectively relaxes these continuity conditions. We utilize the
discontinuous stress space E;l = kal(’ﬁl; S), and broken space

MI;—12,k—1,k,k = Vk:12(7;1) X Vk:11(ﬁh) X kal(]i—h) X kal(éh)a

where V7! denotes the discontinuous polynomial space of degree r with respect to
some finite set, 7 is a triangulation, Fy, is the set of interior (d — 1)-dimensional
faces, and é’h the set of interior (d — 2)-dimensional faces. Spaces on ]O-'h and So’h
can be thought of as Lagrange multipliers for the required continuity. For example,
Vi (Fn) is for try(or) which is one degree lower than that of o as try(o) consists
of first-order derivatives of o.

Define the weak (divdiv),, operator

(divdiv),o = ((divdiv)re, —hp'[tra(a)]|F, ke’ [nTon]|r, b, 2[tre(o)]]e)-
A hybridized mixed finite element method for the biharmonic equation is: find
oy € Z,;l and uy, € 1\04,;12,,671’,“,C s.t.
(1.4a) (o, T) + ((divdiv), T, up)on =0 V1 € E;l,
(1.4Db) ((divdiv)won, v)on = —(f,v0) Yo € My 14

with appropriate modification of (f,vg) for k = 0,1,2. We will establish the fol-
lowing discrete inf-sup condition,

((le diV)wT, U)O,h

_inf
vedity g rest ITllaivaiv, (0]

=a>0, k>0,

0,h

from which the well-posedness of (L.4) follows. When k = 0, (L4) is equivalent
to using the Morley-Wang-Xu element [37] for the biharmonic equation. In other
words, (4] generalise the popular quadratic Morley element to higher order and
to higher dimensions.

Optimal convergence rates will be established for the solution (o, up) to (LL4):

lo = onllo + 1Qurw — unlon + [|Qurw — unllon S B ulkis.
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Post-processing techniques can be used to obtain uj with k£ > 3 satisfying

V5 (u = up)llo S PFH ulira,  lu—ujllo S R™ER2EE ]| .
Hybrldlzatlon (L4) can be also generahzed to the Raviart-Thomas type %,
Mk_lk 1kkfork>2and2 Ml_lllfork—l

We define the weak Hessian operator Vfu as the adjoint of (div div),, with respect
to a mesh-dependent inner product (-, -)o,». Using the operator V2 we can interpret
the hybridization (L.4) as a weak Galerkin method for the biharmonic equation,
which does not require any additional stabilization:

(1.5) (Vaun, Vo) = (f,v) Vo€ Mk_EQ k—1,k k>

with appropriate modification of computlng (f,vo) for low order cases. Restricting
(L5) to different subspaces of M, il 2 k—1.k % Will derive new discrete methods:

e Embedding the H2-non-conforming virtual element on simplices in [11]
into the broken space Mk_ 12 k—1kk WE acquire a stabilization-free non-
conforming virtual element method for the blharmonlc _equation.

e Embedding the continuous Lagrange element Vj, into M, & 12 k—1,k k> We ob-
tain a parameter-free C° discontinuous Galerkin (DG) method for the bi-
harmonic equation, which generalizes the 2D scheme in [29] to arbitrary
dimension d > 2.

In three dimensions, we construct the finite element div div complex, for k > 3,
d d 1 v divdi _
(1.6)  RT S i, S0, ypment vmens, wivdiy Avdv, v (T) = 0,

where RT := {ax + b : a € R,b € R*}, and V|1, is the vectorial Hermite el-

Edlv div

kmew » W€ construct

ement space [17]. Since no supersmooth DoFs for space

H (sym curl; T)-conforming finite element space EZ}:’icurl simpler than those in [13]

15126 27]. Lower order finite element div div complexes for k = 1,2 in three di-
mensions are also constructed. The first half of the complex ([LL6]) can be replaced

by
= 1
(1.7) RT & VkL-i-z dev grad EZ};-H;CM sym curl ,
and the second half by . Z;i‘f div divdly, Vk:11 (Tr) — 0, which leads to several

variants of (LG)); see Section [Hl for details.
With the weak div div,, operator, for kK > 1, we can construct the distributional
finite element divdiv complex

C g devgrad sym curl symcurl 1 divdivy 1
RT = Viio —— X7 X M ok 1kk—>0

The normal-normal continuous finite element ;" can be treated as a subspace of
Z;l and the corresponding distributional divdiv complex becomes, for k > 1,

C g devgrad sym curl sym curl nn divdivy, 1
RT = Vi, —— X0 Py Mk 2k1k_>07

which can be treated as a generalization of 2D distributive divdiv complex involving
HHJ elements developed in [9] to 3D. Again the first half can be replaced by (L1)
for k > 0 and more variants, including & = 0 case, can be found in Section [5.21
The rest of this paper is organized as follows. Hybridizable H(div div)-conforming
finite elements in arbitrary dimension are constructed in Section[2 A mixed finite
element method together with error analysis, post-processing, and duality argument
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6 LONG CHEN AND XUEHAI HUANG

are presented in Section Bl Then in Section[4] the hybridization and its equivalence
to other methods are presented for the mixed finite element method of the bihar-
monic equation. Several new finite element divdiv complexes in three dimensions
are devised in Section [5l

2. H(div div)-CONFORMING FINITE ELEMENTS

In this section, we discuss H(div div)-conforming finite elements. We review
existing finite elements that enforce conformity by ensuring continuity on the nor-
mal plane of lower-dimensional subsimplices, which is known as supersmoothness.
By using a redistribution technique, we obtain a new element without such super-
smoothness. Additionally, we construct a Raviart-Thomas type element using en-
riched polynomial spaces.

2.1. Notation. Let Q C R? (d > 2) be a bounded polytope. Given a bounded
domain D C R? and a non-negative integer k, let H*(D) be the usual Sobolev
space of functions over D, whose norm and semi-norm are denoted by || - ||x,p and
| - |g.p respectively. Define HE(D) as the closure of C§°(D) with respect to the
norm || - ||x.p. Let (-,-)p be the standard inner product on L?(D). If D is , we
abbreviate || - ||g.p, | - [k,0 and (-,)p by || - |k, | - |x and (-, -), respectively. Denote
by hp the diameter of D.

For a d-dimensional simplex T, we let A(T) denote all the subsimplices of T
while Ay(T") denotes the set of subsimplices of dimension ¢, for 0 < ¢ < d.

For f € Ay(T) with 0 < ¢ < d, let ns1, ..., nyq—¢ be linearly independent
unit normal vectors, and tf1, ..., £y, be its orthonormal tangential vectors. We
abbreviate ng; as ny or n when £ = d — 1. We also abbreviate ns; and t;; as
n; and t; respectively if not causing any confusion. For a (d — 1)-dimensional face
F € 0T and a (d — 2)-dimensional face e € OF, np. denotes the normal direction
of e on F induced by the orientation of F. When d = 2, e is a vertex and F is an
edge. Then np. = tp if e is the end point of F for the orientation given by ¢ and
nrp. = —tp otherwise. We use ngr to denote the unit outward normal vector of
OT which is a piecewise constant vector function.

Given a face F € Ay_1(T), and a vector v € R?, define

Hpv:=(np xv)xnp=I—-npnkL)v

as the projection of v onto the face F'. For a scalar function v, define the surface

gradient
ov & ov
Vrev:=lpVov=Vv— —np = —tp,,
FU Vv VT G ; Dtp;
namely the projection of Vv to the face F', which is independent of the choice of
the normal vectors. Denote by divpv := Vg - (Ilpv) the corresponding surface
divergence.

Denote by 7}, a conforming triangulation of Q with each element being a simplex,
where h := maxpe7, hr. Let Fp, fh, &, and &, be the set of all (d—1)-dimensional
faces, interior (d—1)-dimensional faces, (d—2)-dimensional faces and interior (d—2)-
dimensional faces, respectively. Set .7-';? = fh\]:oh and 5;? = Eh\éo'h. For e € &,
denote by w, := {T € T, : e C T} as the set of all simplices containing e. We use
Vi, V37 and (divdiv), to represent the element-wise gradient, Hessian and div div
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A NEW DIV-DIV-CONFORMING FINITE ELEMENT SPACE 7

with respect to T,. Consider two adjacent simplices 77 and 75 sharing an interior
face F'. Define the average and the jump of a function w on F' as

1
{wh =5 ((wlz)lr + (wln)le), [w] = (n)lene - non + (wlz,)[FrE - nor,.
On a face F' lying on the boundary 0, the above terms become
{w} :=wlp, [w]:=w|p.

For a bounded domain D C R? and a non-negative integer k, let Py (D) stand
for the set of all polynomials over D with the total degree no more than k. When
k < 0, set Pr(D) := {0}. Let Qx p be the L?-orthogonal projector onto Py (D),
and Q) its element-wise version with respect to 7p. Let Hy (D) := Py(D)\Pr_1(D)
be the space of homogeneous polynomials of degree k. In the binomial coefficient
notation (}), if n >0,k < 0, we set (}) := 0.

Let V' (Th) == [Irer, Pr(T) for k > 0 and abbreviate as V,~! when the depen-
dence of T, is not emphasized.

Set M := R%*4 Denote by S, K and T the subspace of symmetric matrices,
skew-symmetric matrices and traceless matrices of M, respectively. For a space
B(D) defined on D, let B(D;X) := B(D) ® X be its vector or tensor version for X
being R?, M, S, K and T.

Throughout this paper, we use “< ---” to mean that “< C---”, where letter
C is a generic positive constant independent of h, which may stand for different
values at its different occurrences. The notation A <~ B means B S A < B.

2.2. Trace and continuity. We consider the continuity of a piecewise smooth
tensor function to be in the Sobolev space

H(divdiv, ;S) := {1 € L*(%%;S) : divdivr € L*(Q)},

which plays a central role in our later constructions. We start from the Green’s
identity established in [I4l[15] for the operator divdiv.
The trace tr4V4Y o as a distribution, is defined as the difference

<trdiv div o, trv2 U>8T = (le div o, U)T - (0'7 VQU)T-

. . 2 . .
We decompose trdV4¥ g and trV" v into two face-wise trace operators and one edge

trace operator.

Lemma 2.1 (Lemma 5.2 in [14]). We have for any o € C*(T;S) and v € H?(T)
that

(divdiv e,v)r = (o, V?v)r

(21) = Y [(tri(o) tri(v)r = (tr2(0) tr2(0))r] = Y (tre(o), tre(v))e,

FedT e€Ag_2(T)
where
tri(o) = n)ponar, tr1(v) = O |or,
tra(o) = nlpdive + dive(onar), tra(v) = v |or,
tre() = Y nkL.onr, tre(v) = v |a, (1) -
FEaT,ccOF
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When summing over all elements and assuming the test function v is smooth
enough, e.g. v € C%(f2), we can merge the terms on the interior faces and edges.
For an interior face F' € .73";“ denote by T1,T5 two elements containing F'. Introduce
the jumps

[try(o)]F := nnganaTl |F —n(gTzanaTz |F,

[tra(o)]F = (ngT1 dive +divp(onar,)) |F —I—(n(gT2 dive +divp(onar,)) |7,

tre(@)le= > >  (nf.onor)l.

TEw. FEIT,ecOF

We recall the results from [23] using our notation.

Lemma 2.2 (Proposition 3.6 in [23]). Let o € L?(%;S) and o|r € H?(T;S) for
each T € Ty,. Then o € H(divdiv,;S) if and only if

(1) [tri(o)]p =0 for all F € Fp;
(2) [tra(o)]F =0 for all F € F;
(3) [tre(o)]]e = 0 for all e € .

Enforcing the jump condition [tr.(o)]|e = 0 in H(div div)-conforming finite ele-
ment constructions is a challenging task as the constraint is imposed in the patch
of e. The continuity of o projected onto the normal plane N, of e € &y, is sufficient
but by no means necessary. More specifically, as a (d — 2)-dimensional subsimplex,
the dimension of the normal plane N, is two. To enforce the continuity condition,
we choose two orthonormal directions 71, 729 normal to e for each edge e € &,. 1t is
important to note that N, depends solely on e and not on the elements containing
it. We denote the space of 2 x 2 symmetric matrices on N, by S(N.), and define
Q. (o) = (nJon;); j=1 2 as the projection of o € S onto S(Ne).

Lemma 2.3. Let o € L?(;S) and o|r € H*(T;S) for each T € Tp,. If Qu, (o) is
continuous on e, then [tre(o)]|e =0 for all e € &.

Proof. For each F' containing e € éh, F' is also interior and thus there exist exactly
two elements T7,T» in the edge patch w, s.t. F' € 9T;,i = 1,2. The normal vector
np. is induced by the orientation of F' which is independent of the elements but
ngr is the outward normal direction depending on the element 7" containing F', and
nor, |F= —mnor, |F. Therefore (n}yeanaTl +nkL onar,)|e = 0 and consequently
[tre(o)]|e = 0. O

2.3. H(divdiv)-conforming finite elements. Several H(div div)-conforming fi-
nite elements have been constructed in a series of recent works [10}[14}[15][26H28].
In the following, we recall the version presented in [14] Theorem 5.10] with a slight
change in the notation: 7 in (2.2h) represents the dimension of the subsimplex while
in [14] Theorem 5.10], it is the co-dimension.

Recall that, for a simplex T and an integer k£ > 0, the first kind Nedéléc element
131] is

ND.(T) = P(T; R?) @ Hy.(T; K)x = grad Py 1 (T) @ Py (T; K).

Let RM := NDg(T) be the kernel of the operator def := symgrad. We have
RM C NDy,_3(T) when &k > 3.
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A NEW DIV-DIV-CONFORMING FINITE ELEMENT SPACE 9

For k > 3, the shape function space is X (T;S) := Px(T;S) and degrees of
freedom (DoF's) are given by

(2.2a) T(v), veA(T),

(2.2b) (mltn;,q)f, q€Pr_ra(f),feA(T),r=1,...,d—1,
and 4,7 =1,...,d—1r,1 < j,

(2.2¢) (tra(7), @) r, q € Pr_1(F), F € 0T,

(2.2d) (IIpTn,q)r, q € NDy_o(F),F € IT,

(2.2¢) (1,def q@)r, g € ND,_3(T)\RM,

(2.2f) (r,q@)r, q € ker(-x) NPr_o(T;S),

We can view DoF's in (2.2a)) as a special case of those in (2.2h) if we treat R? as the
normal plane of the vertex v. DoFs (2.2a)-(2.2h) will determine the trace nTrn
and also imply the continuity of 7 on the normal plane of edges. Notice that DoF
(2:2Dh) only exists for subsimplex with dimension 7 < k— 1. DoF (2.2¢) is to impose
the continuity of tra(7) = nk div T + divp(7np), which is modified from the DoF
of nTdivT on F. To have the surjection nl, divPy(T;S) = Py_1(F), the degree
k > 3 is required; see [14] Lemma 5.3]. Moreover, k > 3 is also required so that
NDy_3(T)\RM in DoF ([2.2e) is meaningful. The space NDy_5(T)\RM can be
any subspace X C NDy_3(T) satisfying NDy_3(7T) = RM @ X. Since the kernel
of the operator def is RM, in (2.2e), we can also write NDy_5(7") only.

For k = 0,1, 2, one can check by direct calculation that the number of DoFs is
more than the dimension of the shape function space. See also Remark 2.10

Lemma 2.4 (Theorem 5.10 in [14]). For k > 3, the DoF's [2.2) are unisolvent for
the space Py (T;S).

Remark 2.5. In [14] Theorem 5.10], the requirement k > max{d, 3} is presented.
The condition k > d is to ensure DoF (2.2D) exists on (d — 1)-dimensional faces so
that the inf-sup condition holds. Based on the key decomposition in [14, Fig.
5.1] and the characterization of each component established in Lemma 4.5 for
trdV (P (T;S)) with k& > 1, Lemma 4.11 for E}(S) with k& > 2, Lemma 5.3 for
trdV div F,.(S) with k& > 3, and Lemma 5.4 for F}(S) with k& > 3, the unisolvence
holds with condition k > 3 only.

The finite element space XV 41V is defined as follows
ylvdiv.— 7 € L2(Q;S) :7|r € Py(T;S) for each T € Ty,
DoF's (2.2a), (2:2D), and (2.2¢) are single-valued}.

The single-valued DoFs in (2.2a) and (2.2h) imply the continuity of the Qur, ()
function for all lower-dimensional subsimplices f of T. In particular, the edge jump
vanishes, i.e., [tre(7)]|]c = 0 as proven in Lemma 2.3 The continuity of try(7)
and tra(7) are imposed by DoFs (2.2a)-([2.2c). Therefore, we can conclude that
ydivdiv. o f(div div, €;S) in view of Lemma [2.2]

DoF ([2.2d) for the tangential-normal component 1177 is considered as a local
DoF, i.e., it is not single-valued across simplices. If DoF (22d) is also single-
valued, then the function is also in H(div,;S) and the corresponding element,
which is firstly introduced by Hu, Ma, and Zhang [28], is H (div div;S) N H(div;S)-
conforming.
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10 LONG CHEN AND XUEHAI HUANG

When k£ > max{d,3}, we have the discrete divdiv stability [14] Lemma 5.12].
Namely div div : Sdivdiv V,;lz(ﬁ) is surjective and the following inf-sup condi-
tion holds with a constant « independent of h

inf sup (divdivrn, pn) =a>0, k>max{d,3}.
ph €V, (Th) myexdivaiv [|Thllaiv div[[prllo
Although the element is well-defined for k > 3, the constraint k > d is required for
the inf-sup condition. When k > d, DoF (2.2Dh) includes the moment | pnTTndS
for F' € T, which is required by the fact that the range space div div E%iv 4V should
include all piecewise linear functions.

Implementing the H(divdiv)-conforming element defined by DoF (2.2) can be
challenging due to the high degree k > max{d, 3} and the relatively complex degrees
of freedom. In two dimensions, an H (div div)NH (div)-conforming element has been
successfully implemented and applied to discretize the biharmonic equation using
the basis for Hu-Zhang H(div;S)-element, as described in [28].

We will present a new H (div div)-conforming finite element with minimal smooth-
ness. For k > 3, the shape function space is still P (7T;S) and the following DoF's

@.3) are proposed:

(2.3a) (tre(7),@)e, q € Pi(e),e € Ag—o(T),
(2.3b) (nTtn,q)r, q€Py(F),FeoT,
(2.3¢) (tro(7),Q)r, q €Pr_1(F),F € 0T,
(2.3d) (IIpTn,q)r, q € NDy,_o(F),F € 9T,
(2.3e) (1,defq)r, q € NDy_3(T),

(2.3f) (t,q)7, q € ker(-x) NPr_o(T;S).

Comparing with DoFs (2.2)), the difference is that DoFs (2.2a)-(2.2h) are redis-
tributed to edges and faces to form DoFs (2.3a)-(2.3D).

We now briefly explain the redistribution process. Without loss of generality,
consider vertex vo. Choose {np,,i =1,...,d} as a basis of R?, where F; is the (d —
1)-dimensional face containing vo for i = 1, ..., d. DoF 7(vq) € S is determined by
the symmetric matrix (n}i‘r(vo)npj)m:l’,,_,d. We redistribute the diagonal entry
ng,T(vo)nr, to face Iy, for i = 1, ..., d, and the off-diagonal ng,7(vo)nr;,1 <
i < j <d, to edge e;; = F; N F;. Such redistribution can be generalized to DoF
(22h). For a lower dimensional subsimplex f € A.(T), r =1, ..., d — 1, use
{nr,,f € A(F;),i=1,...,d —r} as the basis of the normal plane Ny of f. We
can redistribute the diagonal n}i Tnp,|s to face F; and off-diagonal n}i-rn Fly to
edge €ij = F,L' N Fj.

After the redistribution, we merge DoFs. A function u € P(T') can be deter-

mined by

(2.4) (u,q)r, ¢ €Pu(T).

Recall that the geometric decomposition of the Lagrange element in [3| (2.6)] is
d

(2.5) Pr(T) = @T:O @fGAT(T) brPr—(rr1)(f),

where by € Pry1(f),bflag = 0, is the P, q-polynomial bubble function on f. Based
on (2.5), DoF (2.4) can be decomposed into

(2.6) (u,Q)5, q€Pr_r_1(f), feA(T),r=0,1,...,d.
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A NEW DIV-DIV-CONFORMING FINITE ELEMENT SPACE 11

Vice versa, DoFs in (2.6]) can be merged into ([2.4]).
After redistribution, we merge DoF's facewisely and edgewisely. For example, on
a face F', we will have DoFs

(2.7) (mhtnp,q)r, q€Pr_ra(f),f€A(F),r=0,1,...,d—1.

By the decomposition of the Lagrange element (2.5), we can merge (2.7) to DoF
([2.3h). Similarly on an edge e shared by F; and F,, we merge DoFs for n}, Tnp,
to

(28) (nnganaq)& q S ]P)k(e)v ec Ad—2(T)'
To switch from DoF (2.8) to edge jump DoF (2.3a), we require Lemma [2.6]

Lemma 2.6. For a (d — 2)-dimensional face e € Ag_o(T), let Fy and Fy be the
two (d— 1)-dimensional faces in Ayg_1(T) sharing e, and ng, = np, g fori=1,2.
Then

{np @np,np, @np,symnp, . Qng,) +symng, . ng,)}
and
{np, @ np,nEp, @np,sym(np @ng,)}
are bases of the symmetric matriz space S(N.) on the normal plane of e.
Proof. Clearly,
S(N.) = span{np, @ np,,np, @ ng,,sym(ng, @ ng,)},

and sym(ng, c @ np, ) + sym(ng, c @ ng,) € S(N).
Now we prove that np, @np,, np,@np, and sym(ng, .Qnp, )+sym(ng, .@ng,)
are linearly independent. Assume constants ci, co and c3 satisfy

anp @np, + conp, @np, + c;;(sym(nphe ®@ng)+symng, @ ’I'LF2)) =0.

Let us show that ¢; = co = ¢3 = 0. Multiplying sym(ng, . ® npg, ) on both sides
of the last equation, we get

1

563(11171 "MFpye +MNF, the) = 0.
Noting that both ng, - np, . and ng, - np, . are positive, we get c3 = 0. And this
implies

cinp, @np, +canp, @np, = 0.
Thus, ¢y = c3 = 0. O

We are in the position to prove the unisolvence. Recall that in the binomial
coefficient notation (Z), ifn >0,k <0, we set (Z) = 0.

Lemma 2.7. For k > 3, the DoFs [2.3) are unisolvent for the space Py (T;S).

Proof. For a d-simplex T, the number of subsimplexes of dimension r is (‘Zﬂ) The
dimension of Py_,_1(f) with dim f = r is (kgi;i”) which also holds for r > k
as dimPy_,_1(f) = 0. The normal plane N of f, will have dimension d — r and

the symmetric tensor on Ny will have dimension (d_gﬂ) which can be split into
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12 LONG CHEN AND XUEHAI HUANG

off-diagonals and diagonal, i.e., (d7£+1) = (dgr) + d — r. The number of DoFs
(2.2a)-(2.2D) is

S
po = hwenS () s (1) ()

r=0 r=

(2.10) = ld(d+1)<k+d 2) + (d+1)<k+d 1),

2 k k
which equals the number of DoFs (2.3a)—(2.3h). Hence the number of DoFs (2.3)
matches the number of DoFs (2.2) which is the dimension of the space Py (T;S)
by Lemma [2.4] In the derivation above, (2.9) corresponds to the redistribution of
DoF's to edges and faces, and ([2.10)) is the merge of DoFs for the Lagrange element
on edges and faces.

Let 7 € P, (T;S) and suppose that all DoF's given by (2.3) vanish. Using Lemma
2.6] we know that the vanishing DoFs (2.3a)-(2.3h) imply that DoF (2.8) also
vanishes. Moreover, the vanishing of (2.8) and (2.3h) implies that DoFs (2.2a)—
(22Dh) are also zero. Therefore, by the unisolvence property stated in Lemma [2.4]
we conclude that Py (T;S) is unisolvent. O

Define the global space
ydivdiv=.— L7 € L2(Q;S) :7|r € Pi(T;S) for each T € Ty,
DoFs (2.3h) and (2.3c) are single-valued}.

By construction, for 7 € XV 4V~ both tr;(7) and tra() will be continuous. But
the edge jumps [tr,(7T)]|. may not vanish which prevents "V 4"V ~ being H(div div)-
conforming in view of Lemma [2.2] The edge jump condition [tr.(7)]|e = 0 is
imposed patch-wisely on w,. Inside each element, tr.(7) may not be zero and for
different elements the edge jumps are in general different. Therefore (2.3a) is not
single-valued when defining Zziv div—

Define the subspace

yydivdiv . {T c Egivdiv— . [tre(T)He =0forallee (cjh}

k,new
That is we add constraints on the DoFs of the element-wise edge traces: trl!(7) +
trl2 () 4+ + tre <! (1)]e =0 to get an H(div div)-conforming subspace.
Let I&vdiv: H2(Q;S) — 22“’ 4V = he the canonical interpolation operator based

on the DoFs (2.3). Namely N(I{ivdivy) = N(7) for all DoFs N in (2.3). To save
notation, we will abbreviate I,‘l“" divr as 7;. Noting that

[tre(TD)]le = Quee([tre()lle) =0 Ve € &, 7 € H* (),

div div

so indeed T € Ekmew .

Lemma 2.8. IV js g Fortin operator in the sense that: for T € H?(%;S),

(2.11) divdiv(rr) = Qg—o(divdiv 7).
Proof. Tt can be proved by using the Green’s identity (2.I) and the definition of
I}(jiv div' O
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Using the Fortin operator, we arrive at the following inf-sup condition.

Lemma 2.9. We have the inf-sup condition

div di
(2.12) inf sup (divdiv s, pn)

\AWVANTRPR) 0, fork > 3.
eVl rpexgivar | Tllaiv aiv[[pallo

Proof. For p, € V,_,, there exists a function T € H2(Q;S) [4.[32] such that

I7ll2 < llpallo,  divdive = py.
Let 7 =77 € T3 By @11),
divdiv 1), = Qg—2(divdivT) = pp.
Apply the scaling argument to get
[Thllaivaiv S [I7ll2 < llpallo-
Finally, we finish the proof of ([2.12).

13

O

Comparing with the existing H (div div)-conforming elements constructed in [10]
141[15126-28], we do not enforce the normal plane continuity on lower dimensional
subsimplexes and thus no requirement k& > d for the inf-sup condition. However,
the condition k > 3 is still needed to ensure RM = ker(def) C NDj_3(T) in DoF

2.3¢). Remark 2101 shows P (T';S), k& < 2, is not feasible.

Remark 2.10. For a linear polynomial v € P1(T), by identity (2.1) and the fact

V2v = 0, we have for 7 € P;(T;S) that
(2.13)

(divdiv T, v)r = Z [(tra(T),v)p — (NTTN, Opv) F] — Z Z (N T, V)e.

FeoT FedT ecOF

When k < 2, for 7 € Pi(T;S), divdivr € Py(T). We can choose a non-zero

function v € Py (T) N L3(T) such that (divdivT,v)7 = 0, hence it follows

Z [(tra(7),v)F — (NTTN,0p0) F] — Z Z (Nf TN, v)e = 0.

FeoT FeoT ecOF

This means the DoFs (2.3a)—-(2.3c) for traces are not linearly independent when

k < 2. The range of the div div operator should contain P;(7") piecewisely.

2.4. Raviart-Thomas type elements. We enrich the range of the divdiv op-
erator with the addition of high order inner moments. Take the space of shape

functions as
S+ (T5S) :=Pp(T;S) ® xx ™y, (T), k> 2.

The additional component xxTHj_1(T) expands the range of the divdiv operator
to Pr_1(T) as divdiv(xxTHg_1(T")) = Hi_1(T"), which is one degree higher than

the range divdiv P (T;S) = Pr_o(T).

For k > 3, the degrees of freedom are nearly identical to those given in (2.3),

with the exception of enriching the DoF in (2.3e) to
(2.14) (1,def q)r for q € Pp_o(T;R?).

The degree of freedom (7, def q)r is increased from g € NDy,_3(T) = grad Py, _o(T)®
P, _3(T; K)x in (2.3e) to P,_»(T;RY) = grad Py, (T) &Py _3(T; K)z. All boundary

DoFs (2.3a)-(2.3d) remain the same as (zzTHy_1(T))n|r € Pp(F;R?).
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14 LONG CHEN AND XUEHAI HUANG

For k = 2, ker(def) = NDo(K) € Po(T;R?) in DoF (2.14). We propose the
following DoF's for Yo+ (T; S) which is a generalization of the H(div div)-conforming
finite element constructed in [15] by the redistribution process:

(2.15a) (tre(7),q)e, q €Pale),e € Ag_o(T),

(2.15b) (nTtn,q)r, q€Py(F),Fedl,

(2.15¢) (tra(7),@)p, g € P1(F), F € T,

(2.15d) (HanFrvq)fa q GBgiv(f)’f:fO:r72 €A o(Fy),r=d,...,3,
(2.15€) (1,9)r, q € ker(zT - x) NPL(T}S),

where fy., = Convex(vg,vi,...,v,) is the r-dimensional simplex spanned by the
vertices {vg,vi,...,v,.}. A proof of the unisolvence can be found in Appendix [A]

(Theorem [AJF).

Define the global spaces, for k > 2,
Slvdiv.—fr ¢ L2(;S) : 7|r € X+ (T;S) for each T € Ty,
DoFs ([23h) and (2.3¢) are single-valued, [tr,(7)]]. =0 for all e€ &}

We have S04V c H(div div, Q;S).
Similar to the proof of (2.12) by using the canonical interpolation operator
Ig“’ div e have the inf-sup condition

(diV div Th, ph)

(2.16) inf sup =a>0, fork>2.

preV Y ThpERdly div ||Tthiv divHPhHo

2.5. A lower order H(divdiv)-conforming finite element. For & = 1, we en-
rich the Py (T;S) space by adding some quadratic and cubic polynomials. Take the
shape function space as

(2.17) Y114 (T;S) = Py (T;S) @ sym(z ® Hy (T;RY)) @ xaxTH, (T).
The range div div(zzTH; (7)) = H;(T) and divdivsym(z @ H; (T;R?)) = Po(T).
Consequently divdiv X1++(T;S) = Py (7).

When 7 € X144+ (T;S), we can see that tr.(7) € Pi(e) for e € Ay_o(T), and
nTTn)|p, tra(7)|r € P1(F) for F € OT. Hence, we propose the following DoF's:
2.184a) (tre(7),9)e, q€Pi(e),e € Ag_o(T),
2.18b) (n"tn,q)r, q€Pi(F),F €T,
2.18c¢) (tro(7),q)r, q€P1(F),F € OT.

Lemma 2.11. The DoFs [2.18) are unisolvent for the space Xi++(T;S).

Proof. DoFs (2.18a)—(2.18DL) are redistribution of vertex DoFs for P (T;S). The

enrichment in (2.17) has dimension d?+d while the number of DoF (2.18c) is (d+1)d.

Therefore the number of DoF (2.18) is equal to dim $y++(T;S) = 2d(d+1)(d + 3).
Assume 7 € X1++(T;S), and all the DoFs ([2.18]) vanish. Then

(2.19) tri(7) =0, tra(7) =0, Qn. (7)=0foreec Ay_o(T).

Apply the integration by parts to get divdivr = 0. Consequently T € P1(T;S) +
sym(z ® Py (T; RY)).

Let 7 = 71 +sym(z ® q) with 7, € P, (T;S) and q € H;(T;R?). Then divg =0
follows from div div T = 0. Since tra(71) is piecewise constant, the fact tra(7) = 0in

(
(
(
(
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A NEW DIV-DIV-CONFORMING FINITE ELEMENT SPACE 15

([2.19) means try(sym(x®q))|r € Po(F) for face F' € 9T. By div(zqT) = g+x div q,
div(qzT) = (d + 1)q, and divp(xzq - n) = dq - n, we get
1
tro(sym(z ® q))|r = (d+1)g-n+ 3% n(divg + divp q) € Po(F).

This indicates (g-n)|r € Po(F), which means g € RT. By q € H; (T; R?)Nker(div),
g =0. Now 7 € P1(T’;S). The third identity in (2.19) implies 7 vanishes on all the
vertices of T', therefore 7 = 0. ([

Define the global space
YAV —fr € L2(;S) : 7|r € 214+ (T;S) for each T € Ty,
DoF's (2.18h) and (2I8c) are single-valued, [tr.(7)]|. =0 for all e &)}

We have E‘fﬁdiv C H(divdiv,2;S). Again using the canonical interpolation oper-
ator Iﬁi" div it holds the inf-sup condition
(div div T, pr)

(2.20) inf sup ——— =a>0.
preVy ! rexdiv v [Talldivaivllpallo

In two dimensions, i.e., d = 2, the finite element space Zfir‘;di" has been constructed
n [22]. Our construction of E‘lﬁ‘ﬁrdi" for general d > 2 is motivated by their work.

3. A MIXED METHOD FOR THE BIHARMONIC EQUATION

This section will discuss a mixed finite element method for solving the biharmonic
equation. Optimal convergence rates are obtained. Post-processing techniques will
be introduced to further improve the accuracy of the solution.

3.1. Mixed methods for the biharmonic equation. Let f € L%(2) be given.
Consider the biharmonic equation

(3.1) {Azu =f inQ,

uloo = Opuloq = 0.
The mixed formulation is: find o € H(divdiv,Q;S),u € L*(Q) s.t.
(3.2a) (o,7)+ (divdivr,u) =0 V7 € H(divdiv, ;S),
(3.2b) (divdive,v) = —(f,v) Vv e L*(Q).

Notice that the Dirichlet boundary condition u|gg = dnulaqn = 0 is built naturally
into the weak formulation.
We will use either the pair E(,if;’mdvlv" — V74 or divdiv — -1 Cand unify the
notation as
o ngﬁéivivv - V,;_é, r=k—2k>3,
Say v — b= ndivdi _p ol e =k -1,k > 2,
pdvdiv _yrl r=k=1.
A mixed finite element method for biharmonic equation (B.1)) is to find (o, up) €
E‘gf‘;d“’ x V71 with r > 1, s.t.
(3.3a) (o, T)+ (divdivr,up) =0 VT € ng‘r’div,
(3.3b) (divdivep,v) = —(f,v) YoeV L
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16 LONG CHEN AND XUEHAI HUANG

The mixed method ([B.3) is well-posed due to the discrete inf-sup conditions (2.12)),
([2.16) and ([2.20). By the standard procedure, we have the following error estimates.

Lemma 3.1. Let u € HZ(Q) be the solution of biharmonic equation (3.1) and
o =—V?u. Let (op,up) € Z‘g%‘r’ 4V x V.1 be the solution of the mized method (3.3)
forr > 1. Assume u € H*™3(Q) and f € H™1(Q2). We have

[ div div(e = an)lo < A" f 41,
(3-4) 1Qru = unllo + llo = anllo < Aol

(3.5) = unllo S A"l rg

Proof. By (@3D),
| divdiv(e —an)llo = [[f = @rfllo S A" fllrs1-
From (.2) and (8.3), we have the error equation
(3.6) (0 —op, 1)+ (divdivr,Qru —up) =0 V1 € ng;’ div,
Taking 7 = o, — o and noticing divdiv(e, — o) = 0, we obtain the partial
orthogonality (o0 — op,0, — o) = 0 and thus
lo = anllo < llo = orllo S Kokt

By the inf-sup condition, we can find T € ng‘;di" s.t. divdivr = Qru — up and
obtain the estimate for ||Q,u — up||o by the Cauchy-Schwarz inequality.

Y y y

Estimate (B.5) can be obtained by the triangle inequality and standard error
estimate of the L? projection |[u — @Q,ul|o. O

Observing that when the parameter r satisfies r =k — 1 or r = k — 2, the error
estimate (3.4) exhibits one or two orders of convergence higher than that of (8.5).
It is expected that a refined interior approximation of higher accuracy than wuj can
be obtained via post-processing techniques.

3.2. Post-processing. Following the post-processing in [10] rather than those in
[19,[36], we will construct a new superconvergent approximation to deflection u
by using the optimal estimate of ||o — &4/ and the superconvergent estimate of

[Qru — upllo in (3.4).
Define a new approximation uj € Vk_+12 to u elementwisely as a solution of the
following problem: for any T' € Ty,

(3.72) (V2up, V20)p = —(on, V20)r Yo € Py iofT),

(3.7b) (up,v)r = (up,v)7 Yo e Py(T).

Theorem 3.2. Let u € HZ(Q) be the solution of biharmonic equation (3.1) and
o =-V?u. Letu} € Vk__é be the solution of [B.7) forr > 1. Assumeu € H*3(Q).

We have
lu—uillo + Vi (w = ub)llo S B*F fulrys.

Proof. For simplicity, let z € ijrlg(ﬂl) be defined by z|r = (I — Q1,7)(Qk+2.7u —

u}). Since Q1,72 = 0, we have

(3.8) Izllo,r = hr|zlr = b7z

Take v = z|7 in (B.7a) to obtain
(V2(u—u}),V22)p = —(0 — o, V22)7.

2,T-
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Noting the definition of z, we have

1230 = (V(Qrazru —up,), V22)r = (V2(Qria,ru — u), V22)r — (00 — o4, V22) 1,
which implies

(3.9) |Qrv2,ru —upl2r = |2l20 S |lu— Qryzruler + o = onllor

Hence |u — uj|2.n < ¥ |ulj3 follows from the triangle inequality, the estimate of

Qr+21, and error estimate (3.4).
On the other side, by (3.7h), we have

Q1. 7(Qrr2ru —up)llor = |Q17(Qrru — up)

which together with (B.8) yields

|Qrv2.7u — uj,

lo,r < |Qr, 1w — upn 0,7,

lo,r < (|Q1,7(Qrt2,7u — up)lfor + [[2[lo,7
S NQrru = unllor + b7 lzl2r.

By the triangle inequality and (8.9)),

(3.10) lu—upllor S lu— Qrrzrullor + [Qrru — unllor
+ 07 (Ju = Qurarular + o = anllor).
Hence, ||u — u}lo < h* 1 ulpys follows from the estimate of Qo and (B.4). O

3.3. Duality argument. To further enhance the convergence rate of ||Q,u—unlo
and achieve a superconvergent L2-error estimate for the post-processed approxima-
tion, we employ a duality argument. Consider the biharmonic equation

AU =Q,u—up inQ,
{1739 = Opli]oq = 0.

Let o := —V?24. We assume that u € H*(Q) N HZ(2) and the bound

(3.11) loll2 + [ulla < Qru — unllo-

In two dimensions, when €2 is a bounded polygonal domain with all the inner angles
smaller than 126.383696°, the regularity estimate (3.11)) holds [6], Theorem 2].

Theorem 3.3. Let u € HZ(Q) be the solution of biharmonic equation [B.1) and
o= —V?u. Let (oy,up) € E‘,j%;f 4V x V=1 be the solution of the mized method (3.3)
forr > 1. Let uj, be obtained by the post-processing [B.1D) using oy, and up. Assume
u € H*3(Q), f € H™(Q) and the reqularity estimate (3.11) holds. We have

1Qru = unllo + lu = ujllo S B*2|fullprs + RPEF2TEH | £l
Proof. Set v = Qu — uy, for simplicity. By (2.11)), (3.6) and integration by parts,
1Qru — up||2 = —(divdive,v) = —(divdive,v) = (60 — o, 1)
= (0 —0on,07—0)— (60— o, V)
= (o —op, 01 —0)— (divdiv(e — o), 1)
=(o—onor—0)+(f—-Qf,u—Qru).
Apply the Cauchy-Schwarz inequality and interpolation error estimate to get
1Qru = un§ < h?llo = onllolale + A" f —Q fllo]@lla-

Thus the bound on ||Q,u — up||o follows from the regularity estimate (8.11]), and
the bound on |ju — u}||o follows from (B.10) and (B.4). O
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18 LONG CHEN AND XUEHAI HUANG

4. HYBRIDIZATION

This section will discuss the hybridization of the mixed finite element method
B.3). Spaces of Lagrange multipliers are introduced to relax the continuity of
try(7), tra(7), and the patch constraint imposed on edge jumps. Weak divdiv
stability will be proved. Equivalent weak Galerkin and non-conforming virtual
element methods formulation will also be provided, as well as a C? discontinuous
Galerkin (CDG) method.

4.1. Broken spaces and weak differential operators. For k > 0, define

Siri= ] Skr(T58)
TeTh

with

Pr(T;S =k-2
Ek,r(TQ S) — k( ) )v r )

Pu(T;S) ® xa™Hy_1(T), r=k—1.

We also write E,;l Zk 4o and Z,;} = 21;,}%1 for £ > 0 when r is not emphasized.

The case E;}Jr is defined by the enriched local space (2.17) and is not included in
this notation system. Define the discontinuous polynomial spaces

H ]P)T(F)a Vril(gh) = H ]P)T(e)
FeFy ecép
Spaces for the scalar function are: forr =k —2or k—1
Mg = Vi () < Vil (Fa) < Vi H(Fn) < Vi (En),
Mr,kl—l,k,k =V, (Th) X Vkill(ﬁh) X Vkil(]i_h) X kal(éh)
When the index is less than zero, we use - to de- emphasize it. For example, When
k=1, r=k—2= —1, the space is denotedbyMOll, for k =0, it is M 00
Spaces on Fp and &, can be thought of as Lagrange multiplier for the requlred
continuity. For example, V, ' (F3) is for tra(o) which is one degree lower than
that of o as try(o) consists of ﬁrst order derivatives of . Space M~ k 1k CAn
be treated as a subspace of M~ k 1.k DY zero extension to boundary faces and

edges. A function v € M k 1k Can be written as v = = (vo, Vp, Un, Ve ), Where vg
represents function value in the interior, v, on faces, v, on edges, and v, for the
normal derivative on faces.

Introduce the inner products (-,-)o, with weight:

((’LLO,’U,b,Un,’LLe),(’Uo,’l}b,’l}n,’l}e))Qh: Z (UOavO)T+ Z hF(Ub,Ub)F

TETh FeFy
3 2
+ Z hF(unvvn)F + Z he(uevve)e
FeF, ecly

The induced norm is denoted by || - [|o,;. Different scalings are introduced such that
all terms have the same scaling as the L?-inner product (uo, V).
We will use either the pair Ek b2 Mk 12 k—1,k,k OF Ek b1 Mk 11 1k and

unify the notation as Ek’ Mr_k Lk ke
Define weak divdiv operator (divdiv),, : E,;i — 1\04;,3_1 ko @S

(divdiv),o = ((divdiv)TU,—h;l[trz(a)ﬂp, 3[nT0'n]|p, 2tre(o)]le),
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A NEW DIV-DIV-CONFORMING FINITE ELEMENT SPACE 19

and extend to (divdiv),, : Z,;i — M, ;71’ k& Py including boundary faces and edges.
The negative power scaling is introduced to match the scaling of the second order
derivative (divdiv)ro. When o € Z;i N H(divdiv, ;S), (divdiv),o = (divdiv)o

but (divdiv),o # divdive pointwisely as terms on the boundary faces and edges

are included. However, (divdiv), o = (divdiv),o = divdive in the distribution
sense as the test function vanishes on the boundary.

For v = (vg, Vp, Un, Ve) € Mvikl—l,k,k’ k > 0, define weak Hessian V2 v € Z,;}a s.t.
for all o € Xy - (T5S) and T € Ty,

(V2v,0)r :=(vo,divdiv, o)r

(4.1) — (v, t12(0))or + (Unmp -, nTON)or + Y (Vestre(0))e
e€Ag_2(T)

Using integration by parts, we also have an equivalent formula on V2 v
(4.2)
(V2v,0)r =(Vivg, a)r + (vg — vy, tra(e))or — (Opvo — vanp - n,nTon)sr

+ Z (Ve — Vg, tre(0))e.

e€Aq_2(T)
For piecewise smooth v € H2(2), define Qv € Mgklfl,k,k by local L?-projection
Qumv = (Qr1Y, Qk—1,FV, Qk, FOnp¥, Q eV)TeT;, , FEF, e
then by definition
(4.3) V2 Quv = Qs V30,

where Qy; is the L2-projection to the space E;i.
By definition, we have the following formulae on the integration by parts.

Lemma 4.1. We have the integration by parts
((divdiv),o,v)on = (o, V3v), o€ E,;?ln,v € ]\;[Ekl_l’k’k,
((divdiv),o,v)on = (o, Viv), o€ E,;?ln,v € Mrjkl_Lk’k.
As a consequence, for o € ¥ 1 v € C§°(Q), we have
((div div),o, Quv)on = (o, V) = (divdiv e, v),

where the last (-,-) is the duality pair. Namely (divdiv), can be viewed as a
discretization of div div operator in the distributional sense.

4.2. Weak divdiv stability. Introduce the norm square

||T||(2iivdivw = |75 + H(diniV)wTH(z),m
and
o2 = IR+ T AT
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20 LONG CHEN AND XUEHAI HUANG

Theorem 4.2. We have the inf-sup condition: there exist constants o and & in-
dependent of h s.t.

div di
(4.4) D inf sup ((div IV)wTvv)O,h
veM, i 1kk TES ! ”T”dinivaUHO,h

=a>0, fork>0,

divdiv), 7,v
(4.5) inf sup ((divdiv), 7, v)on =a>0, fork>0.
veM i /P rent ITlEvaw, [0llon

Proof. The proof of (4.4) and (43) is similar. We will prove {.4) for r = k — 2
which also works for r = k — 1 with appropriate change of DoFs to define Egij div
rather than Y1V div,

k,new

Step 1. We first consider the case r > 1 for which an H(div div)-conforming finite
element either Eg“’ div g >3 or Eg‘f div k> 2 has been constructed.

For e € ffh, let |we| be the number of elements in w,.. First consider a tensor
T € 85 ' with DoFs

1 1. .
tr2(7o)|lF = —Shroe, nTTyn|r = ih%Un(nF 'm) onF €dT,

1
—h%v, one€ Ay o(T)

(NE, TOME, + N, TonE, )| o
e

for each T € T, and others in (2.3) vanish. Consequently,
(div div) 7 = ((divdiv)rTe, Ve, Un, Ve)TeT,, and | To|ldivdiv, S ||0]0.k-

Then by the inf-sup condition ([2.12]), we can find 7o € Ed” divigt. divdivry =
o ~ (@ aiviir, and ol £ ol + (@iv dv)ars < ||’U||0 -

Set 7 = 7o + Tp. We have (divdiv),T™ = v and ||7||divdive, S ||V]l0,n, which
verifies the inf-sup condition (4.4).

The pair E;}Jr - M1_ 11,171 can be proved similarly as an H(div div)-conforming
finite element space Z‘fi‘ﬁrdi" can be constructed. However, for Z;l, k=1,2, and
2111, no finite elements have been constructed and will be treated differently.

Step 2. Consider k = 2. Given v € ]\04(;117272 C ]\041_7117272, by the established inf-sup
condition for £ —]\04117)117272, we can find T € 2211 s.t. divdiv,, 7 =v. Weclaim 7 €
¥, ! as divdive 7 € Po(T) and the range of the enrichment div div(zxTH, (T)) =
H, (7). This finishes the weak divdiv stability for divdiv,, : X5 — ]\040_,11)272.

Step 3. Consider k = 1. Given v € ]\;[4)_0171_’1 - Ml_,ll,l-,h by the established inf-sup
condition for 21_# - 1\041_7117171, we can find 7 € E;}Jr s.t. divdiv, 7 =v. As vy =0,
we conclude divdiv, 7 = 0. Consequently T € Py(T;S) + sym(z ® P1(T;R%)).
By the proof of Lemma 2.11] we can derive T € ]P’l(T S) from the fact tra(7) €
Py(F'). Namely we obtain the stability for the pair ¥ — M _0 1,1- Then by adding

xTzPy(T) element-wise, we obtain the stability for 7 — M0_7 0,1,1- This finishes all
k =1 cases.

Step 4. Consider k = O.OWe shall use the non-conforming finite element space as
the bridge. The space M_j’lo’o can be identified as the Morley-Wang-Xu (MWX)

element VMWX [37] through the bijection @y : VMWX — ]\04:)1070. Similar as (4.3]),
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A NEW DIV-DIV-CONFORMING FINITE ELEMENT SPACE 21

it holds V2 Qux = QuV2y for x € VMWVX Given v € ]\04:71070, let wy, € VMWX
satisfy

(V;Ql'th, V}%,X) = (Ua QMX)OJI) X € V2MWX'
Take T = V3w, € ¥5', then divdiv, 7 = v, and

713 = (7, V2Qrmwn) = (v, Qurwn)o.n < |[v]lo.nl|Qarwnllo.n:

By the norm equivalence ||Qpwplor ~ ||wn|lo of the MWX element and the
Poincaré inequality ||wyo < |[Viwgllo [37, Lemma 8], we have ||7]o < ||v]lo.ns
which means ||7||divdiv, S ||vllo,n. Thus the inf-sup condition (4.4) holds for
k=0. ]

As the adjoint of the div div,,, V2

%, is injective. We obtain another version of the
inf-sup condition.

Corollary 4.3. We have
(div divy, T,v)0,1

(4.6) _inf sup =1, fork>0.
UeMTili—l,k,k TGE,ZIT ||T||0||V12UU||0 ’

Proof. We can take 7 = V2 v to finish the proof as V2 : Mgklfl&k — E;i is

injective and ||V2, - ||o is a norm on M;Icl—l,k k& 0

4.3. Hybridized discretization of the biharmonic equation. A hybridization
of the mixed finite element discretization (B.3)) of the biharmonic equation is: Find
oy € E,;l and uy, € Mgklfl,k,k s.t.

(4.7a) (o, )+ (divdivy, 7,up)on =0 VT € Z,;i,
(4.7Db) (divdivy o, v)on = —(f,00) Yo € M1,

with appropriate modification of (f,vg) for the case r < 0 which will be discussed
later. )

More generally, for a given function f, = (fo, fo, fn, fe) € MT_’klka’,€7 we consider
the mixed variational problem

(4.8a) (o, T) + (divdivy, 7,up)on =0 VT € Z,;i,

(4.8b) (divdivy o, v)o.n = (fa, v)on Yo € Mr_klflkk

The biharmonic equation is a special case with f, = (—=Q, f,0,0,0).

Lemma 4.4. The hybridized mized finite element method ([AL8) has a unique so-

lution oy, € E,;lr and up, = ((un)o, (n)ps (Un)n, (up)e) € Mgl_Lk’k for k > 0,
and

(4.9) loh | div dive, + lunllon S [ frllo.n-

Moreover, when r > 1, the solution (o, (up)o) € ng‘r’div x V.71 to (A7) is the
solution of the mized finite element method (B.3).

Proof. The discrete method (4.8)) is well-posed thanks to the weak divdiv stability
(4.4). The stability (4.9) is from the Babuska-Brezzi theory.

For the biharmonic equation (A7), fr = (=Q:f,0,0,0). Therefore o, € ng‘; div
and divdiv ey, = Q. f. By restricting 7 € £ 4 in (.7a)), we conclude (o4, (un)o)
is the solution to (3.3)). O
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22 LONG CHEN AND XUEHAI HUANG

Notice that the mixed formulation (B.3) is only presented for r > 1,k > 2
where H (div div)-conforming finite elements are constructed. While the hybridized
version is well-posed for all k£ > 0.

Using the stability result (4.9]), we can prove the following discrete Poincaré
inequality.

Lemma 4.5. On the space J\kal_l’k x> we have
(4.10) lullon S IVaullo, we ML,y fork>0.

Proof. For fr, = u in (4.8), we can find o € E;i s.t. divdivy, 0 = w and |o|lo S
llullo.n- Set v = u in (48D), we obtain

[ullg = (divdivy o, u)on = (0, Viu) < oo Viullo < llullosllViulo,
which implies the desired inequality. (Il

We now present error analysis of scheme (4.7) for » > 1 which is equivalent to

the mixed finite element method ([B.3)). Thus we focus on the error estimate of uy,.
Theorem 4.6. Let u € HZ(Q) be the solution of biharmonic equation [B.1) and
o= —-V2u. Let o}, € E;}n,uh € M;qu_k . be the solution of the discrete method

@1) forr >1 and k > 2. Assume u € H**3(Q). We have
V2, (Qaru — up)llo + | Qarw — unllon S B*FHulrs.

Proof. In ([.1), as o}, is discontinuous, we can eliminate o, elementwisely and use
the weak Hessian to obtain an equivalent formulation: find uy € M kl—l e -4

(V2un, Vo) = (fivo) Yo e Ml .
For r > 1, we have the canonical interpolation o; € X, satisfying
(o1, V2 0) = (divdiv, o7,v)0, = (divdiver,v) = (Q, divdive,vy) = —(f, vo).

On the other hand, we have the property V2 Qpu = Qs V3?u = —Qxo.
Let v = Qpu — up. We then have

IV (Quu —up)|l§ = —(Qso, Vi) — (f,v0) = (07 — Quo, Viv).

Then the error estimate on ||V2 (Qaru—up)||o follows from Cauch-Schwarz inequal-
ity, triangle inequality, and the estimate of || — Qxso|| and |l — o ||.

Estimate on ||Qau — up|lo,n is a consequence of the Poincaré inequality (4.10]).

O

Note that Theorem .6l covers only the case r > 1,k > 2. We now give corrections
to low order cases: £k =0,1,2 and r < 0.

For k = 1,2, we define vCF € Py(T) by Qo rv°R = Qo rvp for F € OT. The
load term (f,vp) is replaced by (f,vR) for k = 1 and by (f, v°F +vg — Qouv°R) for
k=2,r=0.

For k=0, v = (vn,v) € M:}O’O, we define vy = Qv € VMWX and vy, = Qv
on OT. With this v, we can define v°F. From this point of view, (A7) generalizes
the well-known P, Morley element to higher order and arbitrary dimensions.

We can write (f,vo + (I —Q,)v°R) for all k > 0 cases. We will present the error
analysis after we identify (4.7) with the non-conforming virtual element methods
(VEM).
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A NEW DIV-DIV-CONFORMING FINITE ELEMENT SPACE 23

4.4. Equivalence to other methods. In (7)), as o is discontinuous, we can
eliminate o, elementwisely and use the weak Hessian to obtain a weak Galerkin
formulation: find uy € Mgkl_l g S:E.

(4.11) (V2up, VEv) = (fovo+ (I — Q)0 ™) Ywe M} ., k>0

The discrete method (&11)) is well-posed, since || V2 (-)|| constitutes a norm on the
space Mr_kl_lk w by (.6). Indeed (4.11)) is equivalent to (.7). Moreover, the weak
divdiv stability, which is equivalent to the coercivity of the bilinear form (V2 ., V2 .),
obviates the need for any additional stabilization. This not only simplifies the im-
plementation, but also facilitates the error analysis. Some weak Galerkin methods
without extrinsic stabilization for the biharmonic equation are designed recently on
polytopal meshes in [39,/40].

For a simplex T, recall the local space of the H2-non-conforming virtual element
introduced in [11] forr =k —2or k —1

VIEM(T) == {u € H*(T) :t11(V?u)|p € Pr(F), tr2(Vu)|p € Pp_1(F),
tre(V2u) € Py(e)VF € 0T, e € Ay_o(T),A%u € P.(T)}.

Define the global virtual element space

,XLEQM = {ue L*(Q) :ulr € V,C\QEQM(T) for T € T, Qr—1,rt, Qi 5 (Onpu), Qr et
are single-valued for F' € .7-0';1, e€ éh, and vanish on boundary 89}.

The well-posedness of VEM space using DoF's (Q, ru, Qk—1,rt, Qr, 7 (Onpt), Qr,et)
can be found in [11]. In general a function v € V,XEQM is non-polynomial, with the
only exception of k = 0, and thus its point-wise value may not be known. Instead
several projections to polynomial spaces using DoF's will be used.

Given a function (vg, Uy, Vp, Ve) € M;£717k_k, we can define an H? non-conforming
virtual element function v & VkYFEZM by Qumv = (vo,vp,Vn,ve). That is Qur :

,XFEQM — ]\Olfkl_l &k is a bijection. Similar as (4.3), it holds
(4.12) VZQuv=QsViv  Yve VBN

We have a unified construction v“® = I°R®y where I° is the interpolation operator
to the non-conforming linear element space. The face integral f 7 ¥ is a DoF when
k>1and when k=0, [ v is computable as v is a quadratic polynomial.

Then (411 becomes: find u, € f/k\iEQM, for k > 0, s.t.

(4.13) (@sViun, QuViv) = (f,0" + @ (v —v")) Vo e VYEM.

So we obtain a stabilization free non-conforming VEM for the biharmonic equation
on triangular meshes due to the weak divdiv stability.

We will use the following norm equivalence, whose proof can be found in Ap-
pendix [B, and the error analysis of VEM to provide another convergence analysis

of (1)
(4.14) 1QsV3ollo = [V3vllo, v e VYN, k> 0.

Theorem 4.7. Let u € HZ(Q) be the solution of biharmonic equation B.) and

o =—-V%u. Let o}, € E,;}n,uh € J\oigklflﬂk’k be the solution of the discrete method
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24 LONG CHEN AND XUEHAI HUANG

@1) for k > 0. Assume u € H*3(Q). We have
IV (@nru —un)llo + 1Qaru = unllop S h** (Julirs + rohll fllo)-
Proof. Due to the equivalence between (4.13) and (4.7), it is equivalent to prove

IV2 @ (u = un)llo + 1Qar (u = un)llop S B (Julkss + dxohllf o),
where u, € V,XFEQM is the solution of the virtual element method (4.13).
We outline the proof and refer to [L1] for details. Notice that there is an index

shift in the notation. Results in [11] are applied to k\ng with degree k + 2 for
k>0.
Let Iu be the nodal interpolation of u based on the DoFs of V,YEM(T') [L1}, (2.6)-

(2.9)]. Then Qunu = Qu(Ipu) and thus Qs Vi (Ihu) = V2Qum(Ihu) = V2Qnmu =
QxV>?u. Set v = Iu — up. We have the error equation

1Q= Vi (Inu — un)|I5 =((Qs — I)V?u, Viv) + (VZu, Viv) = (f,v)
+(f, (I = Qp)(v =0 M)

The first term is bounded by
(@s — DV?u, Vi) < [[(Qs = DV2ullo|[Vivllo S P* fulss]| V3 vllo-
The second term is the consistence error [11, Lemma 5.5 and 5.6]
(V2u, Vion) = (fron) S B (|uliees + kol flo) [ Vion]lo-
The third term is a perturbation and can be bounded by
(f,(I=Qr)(w—vT) = (I = Q) frv —v°T)
S B = Sk0) | flr—1 + Srohll fllo) Vi ]lo-
Putting together, we have
Qs Vi (Inu — up) 5 S W ([ulkrs + dkohl| fllo) V7 v]lo
S WM (Julrs + Okoh| f1lo) 1@ Vi v o,

where in the last step, we have used the norm equivalence ({.14). Canceling one
Q= V3iv|lo to get the desired error estimate. O

In view of o), = —QxV3uy, the post-processing u} defined by (B.7) is indeed
the local H? projection of uy, to the polynomial space, i.e.,
(V2u;, V20)r = (V2up, V20)7, v € Ppio(T),T € T

When some partial continuity is imposed on Z,;l, we can simplify the pair space.
For example, consider the normal-normal continuous element Y% by asking DoF's
on nTTn are unique, then there is no need of Lagrange multiplier for u,,. We have
the surjectivity

nn divdivey -1
gt — M,€_27,€_17,,,€ —0 for k>0.

Given a function (ug,up, te) € Mk__l2 k1. for k> 1, using (ug,up), we can
define a weak gradient V,,(ug, up) € Pr_1(T;R?) by

(Va (0, wp), @) = —(uo, div @) + (up, n7q)ar, g € Py_1(T;RY),
and a surface weak gradient V., r(up, ue) € Pip(F; R using (up, ue) by

(Vo (un, te), @) = —(up, dive @) p + (ue, n} @or, q € Pe(F;RIY),
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where P;_1(F;R%1) is the polynomial vector tangential to F. For k = 0, we only
have u,. on edges and can define u; as the non-conforming linear element on F' based
on u. on OF. After that, using the average of uy, to define the non-conforming linear
element inside 7.

With this notation, we have a simpler formulation of div div,,

(div dive, 7, (vo, Vb, Ve))o,n = — Z (divy, T, Vi (vo, v)) 7
TETh
(4.15) + Z (Mprn), Vi r(Vs, ve)) .
FeFy,
In computation, (£.15) provides an alternative discretization without relatively com-
plicated trace tro(7) and tr.(7).

In two dimensions, the space Mk__l2 w_1., can be identified as the Lagrange
element XD/,CIQ_I. The weak gradient operators become the gradient operators and
(4.159) is the bilinear form used in the HHJ formulation. Therefore restricting to the
pair ;% — M, ,;_12 k1. 1» We generalize HHJ to high dimensions whose hybridization
is exactly (A1) with appropriate correction on (f,v) for low order cases.

45. A C° DG method for the biharmonic equation. A C° discontinuous
Galerkin (CDG) method for biharmonic equation can be developed by embedding
the Lagrange element space Vi (Tr) into the broken space M[ kl_l .- Lhis approach
enables us to preserve the optimal order of convergence while r7educing the size of
the linear algebraic system.

We start with the embedding, for k > 2,

ECPC - Vi(Th) = Mﬁkl—l,k,k’
ECDG’U, = (QT7TU7 Qkfl,Fuu {anF'U/}lF, u|e)T€7—h»Fej:h’eeéh.

For the boundary face F' € 0Fp, and F' C 9T, modify the jump and the average as
1

(4.16) [u] =2u|lp, {u}= §u|T

By (1), for any T € ¥, (T;S), the weak Hessian V2 E¢PGy is

(V2 EPCy, 7)p =(u, (divdiv)rT)r + ({Oppu}np - n, n'Tn) oz,

—(wtrz(M)or + Y (u[nf rollr).

(417) ey _»(T)

:(Viu, ) — %([5‘”14, nTrn)sr,

where we use the fact 0,u — {On u}np - n = 3[0yu).
Let (0,0, u,,0) € M;,ifl,k’k be given. By the definition of the weak Hessian, we
have
(V2 U, )1 = (V2(0,0,u,,0),7)r = (upynp - n,nTTn)ar,

where u,, is defined on faces only, while V2 u,, is element-wise polynomial. This
quantity is sometimes referred to as the “lifting” of a boundary trace in the litera-
ture [5L181138].
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To save notation, define VZu := V2 EPCy for u € Vi,. We can write [{.17) as
1
(4.18) Viu=Viu— EVfU[@nu]nF “Mor,

where [0,u] € V,;ll(}"h) and np - ngr = +1 accounting for the consistency of
orientation of face F'.

Restricting the bilinear form (V2,-, V2.) to the subspace ECPCV;(T;,), we obtain
a C% DG formulation.

Lemma 4.8. For u,v € Vk(’ﬁl), for k> 2, we have
(V2 u,V2v) = a®PC(u,v),
where

a®PG(u,v) = Y (Viw, Vivyr — Y [({Ounud, [0a0]) 7 + ([0nt], {0nv})F]

TEThH FeFy,
1
+ Z(V?u [Onul, V2w [Onv]).

Proof. Tt is a straightforward substitution of (418) into (VZu,V2v). The cross

term

1 1

3 > (Viu, Vi [0nvnpe - nor) = 3 > (Onnts, [0n))or = > ({Onnul, [0n0])
TETh TETh FEFy,

where the scaling 2 or 1/2 in (4.16]) is introduced for the unity of notation for
interior and boundary faces. ([

We obtain a C° DG method for the biharmonic equation: Find uy, € Vj (Tn) s.t.
(4.19) a®PC (up,v) = (f,Qv) Vv € Vi(Th).

The boundary condition u|gg = 0 is built into the space Vi (Tr) while 0, u|sq =0
is weakly imposed in DG sense.

It is worth noting that the widely-used interior penalty C® DG (IPCDG) method
for the biharmonic equation [7,[20] requires a stabilization term in the form
y(h'[0nul, [0nv]) 7, , Where 7 is chosen to be sufficiently large. In contrast, the
CDG method (£.19) employs the bilinear form of the weak Hessian of jumps, i.e.,
(V2 [0nu], V2 [0,v]), as a parameter-free stabilization technique. It coincides with
the approach proposed in [29, (2.9)] for the two-dimensional case.

The error analysis can be carried out following the approach in 2D [29]. To save
the space, we only present the result below.

Theorem 4.9. Let u € H3(Q) be the solution of biharmonic equation (3.1). Let
up, € Vi(Tn) be the solution of the discrete method [{AI19) for k > 2. Assume
u € H*1(Q). We have

IV2u = Viunllo € B* (Julisr + | Flmaxga—3,0)-

The resulting linear algebraic system from the CY DG discretization is signifi-
cantly reduced compared to the hybridized version. Despite the use of this simpler
element, the method retains the optimal order of convergence. Hence, the C° DG
method provides an attractive alternative to the hybridized approach. On the other
hand, the hybridized mixed finite element method (L.4) can be post-processed to
improve the convergence rate.
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5. FINITE ELEMENT DIVDIV COMPLEXES IN THREE DIMENSIONS

In this section we will first present finite element divdiv complexes involving con-
forming finite element spaces. Then we construct the distributional finite element
divdiv complexes using the weak divdiv operator.

5.1. Conforming finite element divdiv complexes. The three-dimensional di-
vdiv complex is [4,[32]

dev grad sym curl

RT < H'(Q;R?) 225 H(sym curl, Q; T) 25 H(div div, €; S)

div div LQ(Q) N 07

where RT = {az + b : a € R,b € R3}, H(symecurl, ;T) is the space of trace-
less tensor o € L?(Q;T) such that symcurle € L?(Q;S) with the row-wise curl
operator.

5.1.1. Finite element complexes starting from Hermite element. We start from the
vectorial Hermite element space in three dimensions [17]

Vi, = {v, € HY(QR?) |1 € Prso(T;R?) for each T € T,
Vv, (9) is single-valued at each vertex § of T,}.

Since no supersmooth DoFs in (23], we can use DoFs for H(sym curl, {;
T)-conforming finite elements simpler than those in [13}[15}[26]. Take the space
of shape functions as Py41(7; T). The degrees of freedom are given by

(5.1a) T7(6), d0€A(T),T€eT,

(5.1b) (n]7t,q)e, q€Pr_i(e),ec A(T),i=1,2,
(5.1c) (n x sym(T xn) xn,q)p, q€B} (F;S),F €T,

(5.1d) (n-Txmn,q)p, q€eBT(F),F el

(5.1e) (t.9)7, ¢q € Biy1(symecurl, T; T),
where

B 1 (F;S) := {1 € Pyy1 (F;S) : 7(v) = 0 for v € Ag(F), tTrt|op = 0},
BoY T (F) = {v € Py (F3R?) 1 v - npelop = 0},
Bit1(symeurl, T T) := {7 € Ppy1(T;T) : (n- 7 x n)|sor = 0,
(n x sym(T X n) X n)|gr = 0}.

Characterization of ]B%iijr’f (F) can be found in [12] Lemma 4.2] and By, (sym curl, T}
T) in [15, Lemma 5.7]. In particular, we know dim By 1 (symcurl, T T) = 3(4k® +
6k? — 10k) and dimB},\'7 (F) = 2dim Py, 1(F) — 3 x (k+2) = k? + 2k. The bubble
space dim B} | (F;S) = 3dimPr41(F) — 3 x 3 =3 x k = 3(k? + 3k).
Lemma 5.1. The DoFs (5.1) are unisolvent for the space Py1(T;T) for k > 0.
Proof. The number of DoFs (B.1) is

1 4
4x8+46x2k+4x (g(k2+3k)+(k2+2k)) +§(4k3+6k2—10k)=8<k‘; )

which equals dim Py (T;T).
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Assume 7 € Py41(T;T) and all the DoFs (5.1) vanish. Clearly (n]7t)l. = 0
follows from the vanishing DoFs (5.1al)-(5.1D) for e € Ay(T) and i = 1,2. Notice
that for e € Aq(T) being an edge of face F' € 9T, we have

(5.2) n}& sym(T X np)np. = n}7e7't, nL(T X np)np. = nL7t.

Hence (nxsym(rxn)xn)|p € B, | (F;S) and (n-7xn)|p € ByY T (F) for F € OT.
Then we get from the vanishing DoFs (5.1c)-(5.1d) that 7 € By (symcurl, T; T),

which together with the vanishing DoF (B.1e) yields 7 = 0. O

The finite element space EZ‘T{CUH is defined as follows

ZZ“ﬂC“rl = {1 € L*(T) :7|r € Pyy1(T;T) for each T € Ty,
all the DoFs (5.1)) are single-valued}.

DoFs (5.1a)-(51Dh) on e € Ay (T) determine (n] 7t)|.. By (6.2), (n]Tt)|. and (5.1c)
determine (n x sym(7 x n) X n)|p, and (n]7t)|. and (B.1d) determine (n - T x
n)|r. Therefore, Ezbﬂcurl C H(symecurl,; T) by the characterization of traces of
functions in H (sym curl, Q; T) given in [15].

Theorem 5.2. Assume 2 is a bounded and topologically trivial Lipschitz domain
in R3. The finite element divdiv complex
(5.3)

C dev grad sym curl v div divdi _
RT = Vi, S5E55 symontt AT, wdivdly S8 Vol — 0, for k>3,

k,new

is exact. Similarly, the finite element divdiv complex

C dev grad sym curl v div divdi _
RT = Vi, 255, ypymewd WA, sylivdiv SV E% vl — 0, fork > 2,

involving Raviart-Thomas type space Z‘gif div js ezact.

Proof. The proof of two complexes is similar. So we focus on (5.3]).

Clearly (5.3) is complex. We have proved the div div operator is surjective. For

T € ker(sym curl) N Ezﬁcurl, there exists a v € H1(Q2) s.t. devgradv = 7. As T is

piecewise polynomial, so is v. And the continuity of T at vertices implies v is C*

at vertices. Therefore we verified 7 € ker(sym curl) N 37 el — dev grad VE,.

Zsym curl

It remains to verify ngrvmdvivvﬁker(div div) = sym curl 7 “*" by dimension count.

It is easy to show the constraints [tr,(7)]|e = 0 for all e € &, are linearly indepen-
dent. Therefore

dim BV = dim BT (k4 1)|6,|
= (k+ 1)K + k + 2)|Th| + (k 4+ 1) Fu| — (k + 1)|En]-
Hence we have

dim(ZdiV div M ker(div le)) = dlm Ediv div _ dlm Vk:12(77l)

k,new k,new

1 .
:g(k + 1) (5% + Tk 4+ 12)|Th| + (k + )| Fn| — (k + 1)|En].

While
dim sym curl ¥;74 el — dim DI ! _dim Vi, + dimRT
1
=5k - Dk(5k +17)|T| + (k% + 5k)|Fn| — (k — 3)|Ex| — 4|Vi| + 4.
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Then
dim(E§y 4 N ker(div div)) — dim sym curl £37 curl
= (6k + 2)|Ta| — (3k — 1)|Fn| — (k + 1)|€n| + (k = 3)|En| +4|Va| — 4
= k(6| Ta| = 31Fnl + |E71) + 2|Thl + |Fnl| + |EF| — 41En] + 4|Vn| — 4.

By the relation 4|7;,| = 2|F,| — |F?| and 3|F?| = 2|&7),
3
6[Th| = 31Fn| + [€7] = =5 |F3| + €] = 0.
This together with the Euler’s formula |V | — |Ex| + | Fr| — |Th| = 1 yields
2Tl + [ Fil + 7] — 41| + 4IVi| = 4 = —4|Th| + 4|Fn| — 4IEn| + 4[Va| — 4 = 0.
Combining the last three identities gives

dim (S Y Nker(div div)) = dim(sym curl £ curly

Therefore, ng}’léjviv" N ker(div div) = sym curl 377 curl, 0

5.1.2. Finite element complexes starting from Lagrange element. We present finite
element divdiv complexes with the lowest smoothness in three dimensions.

We start from the vectorial Lagrange element space Vch-s-2- Define the H(sym curl,
Q; T)-conforming space with the lowest smoothness

—=sym curl

Yp1  ={r € H(symcur,;T): 7|p € Ppy1 (T T) for each T' € T }.
Although fiﬁ’icurl exists, it is hard to give local DoFs. Notice that Ez}iﬁcml C
i?::ri curl

Theorem 5.3. Assume 2 is a bounded and topologically trivial Lipschitz domain
in R3. The finite element divdiv complezes

(5.4)
de ad —symcurl s curl ivdiv divdi —
RT & Vb, S80S, S o R, sdivdiy SVEY, vl — 0, for k>3,

k,new

and
(5.5)

RT < VL,

devgrad symcurl sym curl div div

div di -1
2k+1 —_— Zkﬂf Y ka1 =0, fork>2,
are exact.

Proof. By the similarity of two complexes, we focus on the exactness of complex
6.4).
By the exactness of complex (5.3), we have

e divdi - 1 iv di o
divdivSphay = Vih,  symeurl S = SEY AV N ker(div div).

—=sym curl

Noting that Ezyficurl CXy; it follows

—sym curl s A . .
sym curl ;7% o Csymeurl Ty T C VAN A ker(div div).

seymewl iy div o i
Hence symcurl ¥, = EgNV SV M ker(div div).
=sym curl

Clearly devgrad V5, C (5,  Nker(symecurl)). On the other side, for 7 €

=sym curl

Y1 Nker(symcurl), there exists v € H'(€;R?) satisfying 7 = sym curlv. On
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each tetrahedron T € Ty, sym curl(v|r) € Pyy1(T; T), then v|r € Pryo(T;R?) and
v € Vi ,. Therefore complex (B.4) is exact. O

5.1.3. Lower order finite element divdiv complezes. The previous divdiv complexes
did not cover the case k = 0,1. In this subsection, we consider k¥ = 1 and refer
to Section 5.2 for £ = 0 in the distributional sense. For the H(sym curl, Q;T)-
conforming finite element, we take the space of shape functions as

S0+ (T T) :=Po(T; T) & (& @ (z x Hy (T;R?))),

whose dimension is 80 + 8 = 88. Since symcurl(z ® v) = sym(x ® curlv) for
v € HY(T;R?), we have sym curl(z ® (x x H; (T;R3))) = sym(x @ curl Hy(T; R?)),
which means dim sym curl(z ® (& x H;(T;R?))) = dim curl Hy(7; R?) = 8, hence
sym curl is injective on & @ (x x Hy(T;R?)).

The degrees of freedom are given by

(5.6a) 7(6), 0€A(T),T€eT,

(5.6b) (n]Tt,q)e, q€Pole),ec A(T),i=1,2,
(5.6¢) (n x sym(T xn) xn,q)r, q€BY(F;S),F €T,
(5.6d) (n-7xn,q)p, qeBIF(F) Fedl,

where
BY (F;S) := {1 € Po(F;S) + (x x n) @ (z x n)P1(F) :
7(v) =0 for v e Ag(F),tTrt|sgr = 0}.
By Section 3 in [10], dimBY, (F;S) = 8. Recall that dim By (F) = 3.
Lemma 5.4. The DoFs (0.6) are unisolvent for the space Yo+ (T;T).
Proof. The number of DoFs (5.6) is
4x8+6x2+4x8+4x3=_88=dimXy+(T;T).

Assume 7 € Yo+ (T;T) and all the DoFs (5.6) vanish. Notice that (n]rt)|. €
Py(e) for e € A(T), and (n -7 x n)|p € Po(F;R?) and (n x sym(T x n) x
n)|p € Py(F;S) + (£ x n) ® (x x n)Py(F) for F € 9T. Hence the vanishing
DoFs (5.6) imply 7 € 3o+ (T;T) N Bs(symcurl, T;T). By Theorem 5.12 in [15]
and symcurlT € X1++(T;S), we get symcurlT™ = 0. Thus, 7 = devgrad g with
q € P3(T;R3) satisfying g|sr = 0. Therefore, ¢ = 0 and 7 = 0. O

Define H (sym curl)-conforming finite element spaces as follows
et = {r € LA T) : 7|p € o+ (T3 T) for each T € Ty,
all the DoF's (5.6)) are single-valued},
f;imcml i={1 € H(symcurl, ; T) : 7|p € o4 (T;T) for each T € Ty, }.
Clearly, S """ ¢ H(symcurl, ;T), and dim ™™ = 11| F,| + 2(&x] + 8 Vil

Applying the argument in Theorem [5.2] and Theorem [5.3] we have the following
lower order finite element divdiv complexes.
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Theorem 5.5. Assume 2 is a bounded and topologically trivial Lipschitz domain
in R3. The finite element divdiv complezes

RT _C_) V3H dev grad E;{m curl symcurl Eilirvfiv div div Vfl =0,
RT _C_) ‘/3L dev grad i;)jrm curl sym curl E(liiJr‘/+div div div Vl_l 0
are exact.
5.2. Distributional finite element divdiv complexes. With the weak div div,,

operator, we can construct the distributional finite element divdiv complexes. We
first present finite element discretization of the distributional divdiv complex

RT S H'(QR3) 22 F(sym curl, Q; T) 22 72(0;S)

div div H_2(Q) 0.

Theorem 5.6. Assume  is a bounded and topologically trivial Lipschitz domain
in R3. The following complex

(5.7)
C g devgrad symcurl symcurl —1 divdivy °r—1
RT S v, S2ed, sevm =t M on =0, fork =1,
s exact.

Proof. The proof is similar to that for Theorem[5.2] The only difference is to verify

dim sym curl ;7% ! — dim ker(div div,,) N 2 by dimension count:

dimker(divdiv,) N2, = dim 2, —dim MY, = dim Sy — dim v, 7L
O

By dimension count and the structure of the enrichment, we have two more
complexes for k =0, 1.

Proposition 5.7. For k =1, the following complex

C g devgrad sym curl sym curl —1 divdivy °r—1
RT = V37— X% X Mi111—0
is also exact. For k =0, the following complex
d ad —symcurl s curl —1 divdivy °r—
RT _C_> ‘/QL ev gr. 21y sym cur E01 ivdiv M .10.0 =0
s exact.
=divdiv
We can define ¥, , for k =0,1,2,7 <0,
=divdiv . .
Ypr =17 € H(divdiv,Q;S) : 7 [r€ X (T3 S)}.
=divdiv

Although local DoF's cannot be given for space 3, ,k=0,1,2, a discretization

of the biharmonic equation can be obtained by the hybridization. For example,
=divdiv

DI = ker(divdiv,) N S, " is defined by applying the following constraints to
2t

[tre(T)]le =0 fore€&,, [nTrn]lp=0 for F e Fp.
By counting the dimension of ig” dw, these constraints are linearly independent.

Corollary 5.8. Both conforming finite element divdiv complezes (5.4) and (G.5)
div div or sdiv div
Kt

) —div di
are exact for all k = 0,1,2 using space Ekt: ™ to replace Y new
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Remark 5.9. The first half of complexes (0.7) can be replaced by

devgrad symcurl sym curl

RT & yjb, V8 S0 R for k> 0.
Rerriark 5.10. Recall that we can identity non-conforming VEM space Qs : Vk\iEQM
— M} |, . through Q. Then we can rewrite the second half of complexes (5.7)

as
Caymenl, g1 WAV, gy g g g >,

When some partial continuity is imposed on Z,;l, we can simplify the last space.
For example, consider the normal-normal continuous element 3" by asking DoF's
on nTTn are single valued, then there is no need of Lagrange multiplier u,. The
corresponding divdiv complexes are still exact as we only reduce the range space
of divdiv,; see the” operation introduced in [I3]. As a result of Theorem [£.6] we
will get finite element discretizations of the distributional divdiv complex

RT & HY (Q;R?) devgrad, H(sym curl, Q; T) Sym ewrl, H~(divdiv, ;S)
div div H_l(Q) 0.

Theorem 5.11. Assume 2 is a bounded and topologically trivial Lipschitz domain
in R3. The following complexes

C g  devgrad sym curl sym curl nn  divdivy, °r—1
RT & Vi, S0 s ML, =0, fork>1,

k+1
C . devgrad osymecurl symcurl nn  divdive L% —1
RT = Vi@ ——— X kor My =0, fork >0,

are exact.

In two dimensions, the space M,;lz k_1., can be identified as the Lagrange

element VkLJrl The first distributional divdiv complex constructed in [9] can be
written as

1 divdivy
RT & (VL )2 224, e Ve, L 50, for k> 0.

Complexes in Theorem [B.11] are its generalization to 3-D.
We can further reduce the space of u to M, kl_l_” when the normal-normal
continuity and [tr.(-)] = 0 are both imposed and denoted by X." for k > 1. The

space MT_ ,6171},’_ can be identified as the H' non-conforming virtual element space
[11} Section 2.2]

VYN = Ly e L2(Q) s uly € VEVE(T) for T € Th,

Qr—1,Fu is single-valued for F' € .72";1, and vanish on boundary 89},
where V'VEM(T) i= {u € HY(T) : Au € P.(T),d,ulr € Py_1(F) for F € 9T}.
The DoF's of Io/kl’VEM are given by Qpu = {QrvTU7Qk_1vFU}TE7-;L re, through

which can be identified MT_,€171

We then obtain a divdiv complex ending with ‘o/kl’VEM

C dev grad 5 sym curl Q_ldiv divy o
RT = Vi, S080S, yoymend & ypne M VEVEM 0, for k> 1.
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APPENDIX A. UNISOLVENCE

In this appendix, we give the unisolvence of DoF's (2.15]) for the space 3o+ (T';S).
First we recall a decomposition of a polynomial space and some barycentric calculus
developed in [15].

Lemma A.1. Let Ps(T)\P1(T) = {q € P3(T) : q(0) = 0,Vq(0) = 0}. The
mapping xTV? - x : P3(T)\P1(T) — P3(T)\P1(T) is one-to-one. The mapping
T -x: P (T;S) = P3(T)\P1(T) is surjective.

Proof. By direct computation z7(V2q)x = r(r — 1)q for ¢ € H,.(T),r > 0. O
Lemma A.2. We have the decomposition

(A1) Py (T;S) = V?P3(T) @ (ker(zT - x) NPy (T;S)),

and consequently,

dimker(zT - ) NP (T;S) = dimP1(T;S) — dim P3(T) + dim Py (T)
d+1 d+3 d+1

Proof. By Lemma [AT, V2P3(T) N (ker(zT - ) NP(T;S)) = 0, and
dimker(zT - ) NP1(T;S) = dim Py (T;S) — dim P3(T") + dim Py (T),
which ends the proof. ([
Define
BV (T) := Py (T;RY) N Ho(div, T) = {v € Px(T;R?) : v - n|or = 0}.
Recall the characterization of the div bubble function.

Lemma A.3 (Lemma 4.2 in [12]). For an edge e = [v;,v,], let be = X\ be the
quadratic edge bubble function and t. be tangential vector of e. Then we have

(A.2) BYY(T) = span{be(z)t. : e € Ay (T)}.

As a consequence dim B3 (T) = |A(T)| = (“3") for a d-dimensional simplex 7.

We can easily show that b.(z)t. is an element of B$Y(T). In order to establish
(A2), it is necessary to demonstrate that all quadratic divergence-free bubbles can
be expressed in this form. See [12] for details.

Lemma A.4. Let v € BSY(T) satisfy dive = 0 and for one F € 9T
(A.3) (Ilpv,q)r =0, g€ By (F).
Then v = 0.

Proof. Without loss of generality, take ' = Fy. Then ([A.3) implies that v does not

contain edge bubbles on Fy, i.e., v = Zf;ol Cibey ta with ¢; € Rand t4; = v; —vq.

By direct computation and the fact V; - t4; = d;;, we have

T .
mci = (v, VA)r = —(divo, A\))7 =0
foreachi=0,1,...,d—1. Sov =0. O
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To facilitate the proof of unisolvence, we can select an intrinsic coordinate sys-
tem. Let ¢; :=v; —vg for i = 1, ..., d. The set of tangential vectors {t1,...,tqs}
forms a basis of R%, and its dual basis is given by {VAy,...,VA;}. We have the
property that VA;-t; = d;; for 4,7 = 1,...,d, where 6;; is the Kronecker delta. We
can then express the symmetric tensor 7 as 7 = Zf =1
7i;, which are computed as 7;; = (V)77 (V).

Since T is symmetric, we have that 7;; = 7;; for 1 < 4,7 < d. Therefore, we can
represent T as a symmetric matrix function (7;;(x)) in this coordinate system.
Theorem A.5. The DoFs (2.158) are unisolvent for the space o+ (T5S).

Proof.

Step 1 (Dimension count). The number of DoF (2.15d) is

o)+ () (%)= ()

and the number of DoF (2.15¢) is dimker(xT - ) NP1 (T;S) = Q(d‘gl). Hence the
total number of DoFs (2.13)) is

(Zd;r 1))((;? +()d+ 1)(6“2r 1) +(d+1)d+ (g) +2<d§1>
S\ [d+2
2 p )T

which is exactly the dimension of Xo+ (T S).

Tijt; ® t; using coeflicients

Step 2 (Consequence of vanishing DoFs). Assume 7 € Yo+ (T;S) = Pyo(T;S) &
xxTH; (T'), and all the DoFs (2.15]) vanish. The vanishing DoFs (2.15a)—(2.15¢)
imply the traces of 7 vanish

(A4) tr1(7) =0, tra(7T) =0,
and
Qn,(T)=0for f € A(T),r=0,...,d—2.

Then apply the integration by parts ([2.1) and the fact divdivr € Py(T) to
conclude divdiv T = 0 and consequently

T €Py(T;S), (1,V*)r =0 Yo H*T).
Then the vanishing DoF (2.15¢) and the decomposition (A.1) imply
(A.5) (T,9)7 =0 Vq € P\(T;S).

Recall that 7 is represented as a symmetric matrix function (7;;(z)) in the co-
ordinate {t1,...,tqs}. We are going to show 7;; =0 forall 1 <i<j<d AsrT
is quadratic, being orthogonal to P (T;S) is not enough to conclude 7 = 0. More
conditions will be derived from vanishing DoF's.

Step 3 (Diagonal is zero). By tri(7) =0, it follows
=0 1=1,...,d
For each ¢ = 1, ..., d, there exists p; € Py(K) satisfying 7;; = \;p;. Taking
g = p;n;n] in (A5) will produce
Tii:O; ’L:L,d

Tii|F; = |V)\Z|2TIITTLZ
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Namely the diagonal of 7 is zero. Notice that the index ¢ = 1, ...d not including
¢ = 0. Will use vanishing n}oTnFO |, in the last step.

Step 4 (Off-diagonal: the last row/column). By Qur.(7) = 0 in (A1), we have

Mp(tnr) € BYY(F)  for each F € 9T.

As n}iTnFi =0inTfori=1,...,d, it follows 9, (n}irnpi) =0, and tra(7) =0
becomes
(A6) diVFT(HFT(TnFT)”FT :0, T:d,...,]..

Again r = 0 is not included in (A.6).
Consider r = d in @I5d). As llg,(Tnr,) € B3V (F;) and

(HfO:d—2Tan’ q)f():d—Q =0, gqg¢ IB(211‘/(.]00:(1—2);

applying Lemma[A. 4 to (d — 1)-dimensional simplex Fy, we conclude (I, 7np,)|F,
= 0. Together with the vanishing normal-normal component, we have 7np,|r, = 0.

Then there exists p € P;(T; R?) such that 7ng, = \yp. Take ¢ = sym(p®@nx,)
in (A5) to conclude 7np, = 0 in T. That is the last column of the symmetric
matrix representation of T is zero.

Step 5 (Off-diagonal: the r-th row/column). Assume we have proved the ¢-th
columns are zero for ¢ > r. By symmetry and vanishing normal-normal component
ng, Tnp, =0 for £ > r. Expand in the edge coordinate Tnp, = Z::_ll pi(z)t; with
pi(x) € Po(T). So

Uprnelr = Y.  cbe(@)te € BYY(F,) with c. € R,
e€Ai(foir—1)

which contains only the edge bubble corresponding to edges of simplex fo.,_1.
Notice that Il mnp, |1, , € BSY(fo.r—2). The vanishing 2I5d) on fo.,—o will
further rule out the edge bubbles on fy.._o and simplify to

r—2
g, mnr,|r, =Y cibe,_, (2)tir 1.
1=0

Use —(divp, Ip.mnp., \i)p. = %ci = 0 to conclude IIp mnp, |F. = 0. Together

with the vanishing normal-normal component, we have Tnp_|r. = 0. The rest to
prove Tng. = 0 in T is like Step [l

Step 6 (Entry 712). Only one entry 71 is left, i.e., 7 = 2712 sym(¢1¢]). Multiplying
T by V¢ from both sides and restricting to Fp, we have

1
Ti2|lFy = §‘v>‘0|2(n;‘0TnFo)|Fo =0.

Again there exists p € Py (K) satisfying 112 = A\op. Taking g = sym(¢1t])p in (A.5)
gives 719 = 0. We thus have 7 = 0 and consequently prove the unisolvence. O
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Corollary A.6. The DoFs
(A.7a) (tre(7),q9)e, q €Pa(e),e € Ay_o(T),

(A.7b) (nTtn,q)r, q€Py(F),F €T,

(A.7c) (tro(7),qQ)r, q€P1(F)/R,F € 9T,

(A.7d) (Mg, q)r, q€BIV(f), f = foro €A o(F),r=4d,...,3,
(A7e) (T7 q)Ta qc ker(wT : w) NPk, (T7 S)7

(A.7f) (divdivT,q)r, ¢ € Po(T),

are unisolvent for Po(T;S).

Proof. Compared with DoFs (2.15)) for X+ (T S), the number of DoFs (A7) equals
dim Py (T;S). Assume 7 € Po(T';S) and all the DoFs (A7) vanish. By the vanishing
DoFs (A7a)-(A.7c) and (A7L), we have tr.(7) = 0 for e € Ay_o(T), (nTTn)|p =0
and tra(7)|p € Po(F) for F € 0T, and divdivT = 0. Apply (2.13) to get

D (tra(r),v)p =0, veP(T),

FeadT
which implies tra(7) = 0. Finally, 7 = 0 follows from Theorem [A.5. O

The finite element space defined by (A.7) is not H(div div)-conforming as tro(7)
is not continuous. It will be used in the proof of norm equivalence in Appendix [B.
APPENDIX B. NORM EQUIVALENCE

For u € ]\04;,371 . With k& > 0, define a discrete H?-norm:

ul3n =Y (h:?4||Qr,TuCR —wollgr+ D hp?llQr-1,put — ubll%y)

TETh FeoT

+ 2| D 10ne ™ i+ D Qe — el |

TeT, \FedT e€Ag_o(T)

where u®® = ICR(Q]T/}U) with I°® being the interpolation operator to the non-

. . -1 - . . °r—1 > VEM
conforming linear element space and ()}, is the bijection from Mn k—1kk 0 Vila'

When k£ =0,1,r <0, it is simplified to

ulsn =D | Do he'l0neu™ —waldp+ Y0 hp?lQueu™ —ue

TET, \FeoT e€Aq_2(T)

6.e

Lemma B.1. On the space Mr_,kl—lﬁ,kf we have the norm equivalence

(B.1) V2 ullo = |ulan, ue€ Mrfklfl’k)k for k> 0.

Proof. By (1) and the Green’s identity [2.1), for 7 € X ,.(T;S) we have
(V2u,7)r = (up — QhTuCR, (divdiv)r7T)r — (up — Qk_LpuCR, tra(7))or

(B.2)

+ (upnp -m — 0, uR nTrn)or + Z (e — Qk,euCR, [n}’eTnaT]|e)e.
e€Ag_o(T)
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Then [|[VZullo < |ul2,n follows from the Cauchy-Schwarz inequality, and the inverse
trace inequality.
Next we prove |ulz.n < || VZullo.

Step 1. First consider k = 0. By @I2) and the fact Qylu € VWX V2y =
V2Q,; u. Tt follows from the norm equivalence and the error estimate of I°® that

—4 — C —
3, S > bt llQutu — uR G SIVEQu ull§ = IV2ullp.
TETh

Step 2. Next consider k = 1,2, and r = k— 2. By the DoFs (A.7), we can construct
T € X (T;S) such that

L mnorlle = hy? (ue —u™)|e, e € Ag—o(T),
(nTrn)|p = h;l(unnp ‘n— 8nuCR)|F, FeAyg1(T),
(I — Qo,r) tra(7)|p = hp (u — w)|p, FeNg(T)if k=2,

divdivyp T = h;4(uo — QnTuCR), if k=2,

and all the other DoFs in (A.7) vanish. By the norm equivalence and the scaling
argument, we have

H"'H(2J,T N h#”Qr,TUCR — Uo |(2J,T + h;gan—l,FU - ub”aé)T

+hptllun = Onpu o+ Y A — w3
eeAd_Q(T)

CR

Substituted into (B.2)), we get
h Qe = woll§ 7 + A2 1Qu—1,ru™ — wllf o7 + A 100, u™ — wnllf o7

+ > bt = wf e = (Vi m)r < [ Viullor|7]
€€Ad,2(T)

0,T-

We conclude |ulz, < [|VZullo by combining the last two inequalities.

Step 3. Consider k > 2 and r > 1. By the DoFs (2.3) or ([2.15), we can construct
T € Pi(T;S) such that

[n}. . mnorlle = hy”(ue — uo)le, e € Ag—o(T),
(B.3) (nTrn)|p = hy' (upnp -1 — dyu)|lp, F €Ay i(T),
tro(7)|F = h;3(u0 —wp)|F, FeAg1(T),
(7. @)1 = (Viuo, @)1, q € VP, (T),

and all the other DoFs in ([2.3) and (2.15]) vanish. By the norm equivalence and
the scaling argument, we have

1718, < IViuolld v + b2 | Qr—1.ru0 = usllf o + h [un = Onpuoll§ or

+ D hptlluo = uelfg .-
e€Ag—2(T)

By (4.2) we get

IViuollg r + hy’luo — wllf oz + Az 100,10 — unlf o7

+ Y hptlue — uelly . = (Viu,m)r < [ Viu
EGAd,Q(T)

lo.7ITllo,7-
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Finally, we obtain |ulz < |[VZullo by combining the last two inequalities. O
Lemma B.2. We have the norm equivalence
(B.4) IVEQurvllo = 1QsVivllo = [Vivlo, v e VYR, k>0.

Proof. First (B4) is obviously true for k = 0, since V2,Qnv = QsViv = Viv.
Then we focus on k£ > 1.
By the norm equivalence (B.J)), it suffices to prove

(B.5) Quvlan = |[Vivlo, v e VYEM.

By the definition of |Qasv]2,, and v“F, and the norm equivalence on V,.2Y(T),

Qa3 = Y hptllQrr@ T =o)lFz+ Y > hp?|Que (™ —0)l5,

TeTh TETh eeAd_g(T)
+ 30 (h 1@k 0, (WO =) 5 + hp Q-1 m (v = )5 £)
TET;, FEIT
~ > o = vl
T<Th
Therefore, (B.E) follows from the inverse inequality and the interpolation estimate
of the non-conforming linear element. O
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