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A B S T R A C T   

Implicit learning refers to learning without conscious awareness of the content acquired. Theoretical frameworks 
of human cognition suggest that intuitions develop based on incomplete perceptions of regularity during implicit 
learning and, in turn, lead to the development of more explicit, consciously-accessible knowledge. Surprisingly, 
however, this putative information processing pathway (i.e., implicit learning ➔ intuition ➔ explicit knowledge) 
has yet to be empirically demonstrated. The present study investigated the relationship between implicit 
learning, intuitions, and explicit knowledge using a modified Serial Reaction Time Task. Results indicate that 
intuitions of implicitly-learned patterns emerge prior to the development of explicit knowledge. Moreover, 
intuition timing and accuracy were significantly associated with accuracy of explicit reports. We did not, 
however, find that stronger implicit learners developed more accurate intuitions. Our findings suggest a crucial 
role of intuition in the formation of explicit knowledge from implicit learning.   

1. Introduction 

One of the essential adaptations in the evolution of the brain – 
including human brains – is the capacity to learn and make predictive 
inferences on the basis of environmental patterns (Clark, 2013). When 
such learning occurs without conscious awareness, the learning is 
commonly described as being “implicit” (Reber, 1989). Implicit learning 
has been implicated in language development (Aslin & Newport, 2012; 
Saffran, Aslin, & Newport, 1996), visual perception (Rosenthal, 
Andrews, Antoniades, Kennard, & Soto, 2016), the capacity to under
stand and appreciate music (Rohrmeier & Widdess, 2017), religious 
belief (Weinberger et al., 2020), and mastering sequences of movements 
(Nissen & Bullemer, 1987; Willingham, 1999). 

Although the defining characteristic of implicit learning is that it 
occurs non-consciously, decades of research have clearly indicated that 
humans are able to acquire explicit knowledge of implicitly-learned 
information (Cleeremans & Jiménez, 2002; Destrebecqz & Cleere
mans, 2001; Esser & Haider, 2017; Overgaard, 2018; Reber, 1989; 
Robertson, 2007; Rose, Haider, & Buchel, 2010; Song, Marks, Howard 
Jr, & Howard, 2009). Here we define explicit knowledge as a state that 
closely resembles “access consciousness”, when information or knowl
edge is reportable and/or able to be used for reasoning or justifying 

behavior (Block, 1995; Overgaard, 2018; Sandberg, Timmermans, 
Overgaard, & Cleeremans, 2010; Seth, Dienes, Cleeremans, Overgaard, 
& Pessoa, 2008). That is, the defining feature of explicit knowledge is 
that such knowledge is able to be reported and described. The rela
tionship between implicit and explicit knowledge – as well as the process 
by which information moves between these two states – has been the 
subject of considerable inquiry. 

According to one perspective – often referred to as the “single sys
tem” view – there is no distinction between explicit and implicit rep
resentation. Rather, implicit knowledge becomes explicit through a 
strengthening of associations (Cleeremans & Jiménez, 2002; Destre
becqz & Cleeremans, 2003; Esser & Haider, 2017). By contrast, other 
models indicate distinct but interrelated information processing systems 
(e.g., System 1 vs. System 2; Kahneman, 2003; Stanovich & West, 2000) 
with putatively different functions (Cleeremans, 2006; Cleeremans & 
Jiménez, 2002; Evans, 2003; St. Evans, 2008). Crucially, because in
formation can move between these systems (Esser & Haider, 2017; 
Haider & Frensch, 2005; Rose et al., 2010; Wessel, Haider, & Rose, 
2012), an intermediate “stage” may be needed to create metacognitive 
judgements, which in turn may render implicitly-learned information 
explicit. 

Consistent with the existence of an intermediate stage, a number of 
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accounts of human information processing suggest that implicitly- 
learned information does indeed become explicit by way of an addi
tional knowledge state: intuition. While several compatible definitions 
for intuition have been offered (Hodgkinson, Langan-Fox, & Sadler- 
Smith, 2008), one generally-agreed upon characteristic of intuition is 
the sense of “knowing without knowing how one knows” (Epstein, 2010; 
Shirley & Langan-Fox, 1996). Intuitions are believed to develop from 
implicit learning of information structure/regularity and probabilistic 
associations (Bowers, Regehr, Balthazard, & Parker, 1990; Hodgkinson 
et al., 2008; Lieberman, 2000). Thus, intuitions are a product of implicit 
learning (Dienes & Perner, 1999; Reber, 1989), and manifest as sub
jective experiences such as gut feelings (Hodgkinson et al., 2008) or tacit 
knowledge (Reber, 1989). In turn, intuitions can influence subsequent 
explicit beliefs, knowledge, and behaviors (Greenwald et al., 2002; 
Kahneman, 2003). According to these accounts, there is a temporally 
directional relationship between knowledge formation stages: implicit 
learning precedes intuitions, which emerge prior to explicit knowledge. 
The present study empirically tested this theoretical framework, inves
tigating the hypothesis that intuitions develop from implicit learning 
and facilitate explicit awareness. 

One of the most frequently used paradigms to measure implicit 
learning is the Serial Reaction Time Task (SRTT; Nissen & Bullemer, 
1987). Although there are many SRTT variations, the basic structure of 
the task is relatively consistent: participants are instructed to respond 
quickly and accurately to targets that appear at different locations 
onscreen by pressing buttons that correspond to those locations. At 
various times during the task, the targets appear in a complex repeating 
pattern and, at other times, targets appear randomly. Implicit learning is 
operationalized as the difference between responding on random vs. 
patterned presentations, such that scores distinguish responding that is 
due to actual implicit learning of the patterns from responding due to 
confounding influences such as motivation, fatigue, or task familiarity 
(Robertson, 2007). Implicit learning varies widely across participants, 
and SRTT performance is frequently studied as an individual difference 
variable (e.g., Howard & Howard, 2001; Howard Jr & Howard, 1997; 
Kalra, Gabrieli, & Finn, 2019; Song et al., 2009). 

Different variations of the SRTT can be classified based on whether 
they involve a deterministic or probabilistic pattern sequence. In the 
classical SRTT, patterns are deterministic, meaning that the presentation 
of targets follow a predetermined pattern. For example, in a 4-target 
version of the classical SRTT, a pattern of “1–3–2-4” may appear at 
different points during the task. By contrast, target stimuli in the 
Alternating Serial Reaction Time task (ASRT; Howard Jr & Howard, 
1997) rely on probabilistic pattern sequences. Thus, an ASRT corollary 
to the deterministic pattern would be “1-r-3-r-2-r-4-r”, where “r” in
dicates a randomly selected target from one of the four possible target 
locations. During the ASRT, implicit learning reflects differences in 
responding to higher probability structures such as “1-[any target]-3” 
(which can occur when a random target falls between the predetermined 
targets in the first and third position, and when any predetermined 
target is bookended by r = 1 and r = 3) relative to lower probability 
structures like “2-[any target]-3” (which can only occur when a pre
determined target is bookended by r = 1 and r = 3). 

Critically, a growing body of work has indicated that learners can 
obtain varying levels of explicit awareness during the deterministic SRTT 
(Esser & Haider, 2017; Haider, Eichler, & Lange, 2011; Haider & 
Frensch, 2005; Haider & Rose, 2007; Verleger, Seitz, Yordanova, & 
Kolev, 2015; Willingham & Goedert-Eschmann, 1999; Yordanova et al., 
2008; Yordanova, Kirov, & Kolev, 2015) but not the probabilistic ASRT 
(Howard Jr & Howard, 1997; Kóbor et al., 2021). The extent to which 
explicit awareness during the deterministic SRTT occurs is influenced by 
trial duration (i.e., extended exposure to patterns increases opportunity 
for explicit awareness; Reber, 2013; Willingham, 2001) as well as the 
time interval between when the participant makes a key press and when 
the next target appears (i.e., shorter intervals limit opportunities to 
search for patterns and, in turn, obtain explicit awareness; Destrebecqz 

& Cleeremans, 2001; Reber, 2013). Another factor that can influence 
explicit awareness is whether participants are instructed that the targets 
may follow a pattern. For example, some experimenters have changed 
visual features of the targets to indicate when they appear in a pattern 
and when they appear randomly (Miyawaki, 2012; Rüsseler, Münte, & 
Wiswede, 2018). Other experimental designs include training runs in 
which participants are instructed on the specific patterns that will occur 
during the task (Batterink, Reber, & Paller, 2015). When participants 
obtain explicit awareness of patterns, RT differences between pattern 
and random blocks are increased (Esser & Haider, 2017; Haider et al., 
2011; Haider & Rose, 2007), but the act of searching for a pattern may be 
deleterious (Batterink et al., 2015; Fletcher et al., 2005; Howard & 
Howard, 2001; but see Horváth, Török, Pesthy, Nemeth, & Janacsek, 
2020 for evidence that divided attention does not influence learning 
during the probabilistic ASRT). 

Some have argued that the deterministic SRTT is not a task of im
plicit learning due to the wide range of conditions under which in
dividuals can obtain explicit awareness and because learning can be 
altered by external variables or top-down influences (Shanks, 2005; 
Vadillo, Konstantinidis, & Shanks, 2016). Indeed, extensive efforts have 
been made to isolate implicit learning and enable experimental in
ferences about explicit awareness without revealing to participants that 
patterns may occur, as doing so can disrupt implicit learning (Fu, Dienes, 
& Fu, 2010a; Fu, Dienes, & Fu, 2010b; Haider & Rose, 2007; Norman & 
Price, 2010; Rose et al., 2010; Rünger & Frensch, 2008; Wessel et al., 
2012). 

We take a different perspective. First, “process-pure” implicit 
learning is not theoretically or empirically supported (Aru & Bachmann, 
2017; Huang et al., 2017; Overgaard, 2018; Rose et al., 2010; Sergent, 
2018; Sun, Merrill, & Peterson, 2001; Sun, Slusarz, & Terry, 2005; Sun & 
Zhang, 2004); different neurocognitive systems are differentially 
involved based on the extent of conscious processing, but the systems are 
unlikely to be fully dichotomous. Second, in a practical sense, it is 
evident that implicit learning frequently occurs alongside more 
conscious and effortful cognitive operations outside the laboratory. For 
instance, when learning a new language (especially as an adult), the 
acquisition of grammatical and structural rules is generally regarded as 
largely implicit (Aslin & Newport, 2012; Ellis, 1994; Ellis, 2009; Rob
inson, 1997). In turn, implicitly learned content eventually becomes 
explicit, confirming the initial expectation of grammatical structure. 
Experimental work using a dual-task paradigm has demonstrated im
plicit learning rates are disrupted when individuals are asked to listen to 
sentences (i.e., syntactic processing) but not when implicit learning is 
paired with a word recognition or arithmetic task, suggesting that a 
domain-general implicit learning mechanism contributes to sentence 
processing (Nemeth et al., 2011). Similarly, learning or listening to 
music relies on implicit learning of structure, melody, and rhythm 
(Grahn & Rowe, 2013; Krumhansl & Keil, 1982; Krumhansl, Louhivuori, 
Toiviainen, Järvinen, & Eerola, 1999; Rohrmeier & Widdess, 2017), 
even though listeners are aware of – and may be looking for – these 
characteristics of music composition. Thus, rather than a shortcoming, 
the potential for acquisition of explicit knowledge during the deter
ministic SRTT – and the fact that implicit learning may occur in concert 
with explicit search – makes it ideally suited to explore how implicit 
information can become explicit. Since the primary questions of the 
present study concern how implicitly-learned information can become 
explicit, we used a modified version of the deterministic SRTT. 

Implicit learning is a neurocognitive mechanism that underscores a 
wide range of mental operations and behaviors. Crucially, however, 
implicit processes are not fully separable from explicit ones. According 
to a number of extant perspectives, intuitions facilitate explicit knowl
edge of implicitly-learned content. That is, implicit learning gives rise to 
intuitions, which, in turn, bring about explicit knowledge. Somewhat 
surprisingly, however, there is presently little experimental work to 
support intuitions based on implicit learning, and the role of intuition in 
the development of more explicit knowledge is largely untested. 
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Although individual differences in implicit learning are well- 
documented, the downstream effects of such variation remain poorly 
understood. That is, do stronger implicit learners develop more accurate 
intuitions? Similarly, do more accurate intuitions yield more accurate 
explicit knowledge? 

Here, we addressed these outstanding questions using a modified 
deterministic Serial Reaction Time Task in which participants were 
asked to self-report intuitions and explicit knowledge of block structure 
(i.e., pattern or random). We hypothesized that implicit learning pre
cedes intuitions (H1). That is, we predicted that, during the implicit 
learning task, participants would develop intuitions after showing evi
dence of implicit learning. This hypothesis is related to, but distinct from 
H2: stronger implicit learners form more accurate intuitions. Whereas 
H1 concerns only the temporal arrangement of implicit learning and 
intuitions, H2 includes the prediction that individual differences in 
implicit learning will be associated with variability in the formation of 
intuitions. Results consistent with both H1 and H2 would provide the 
strongest support for the formation of intuitions based on implicit 
learning. Additional hypotheses concerned the relationship between 
intuitions and explicit knowledge – specifically, that intuitions emerge 
prior to explicit knowledge (H3), and that better intuitions (i.e., faster, 
more accurate) lead to better explicit knowledge (H4). Additional 
exploratory analyses examined the effects of explicit knowledge on 
sequence learning (i.e., differences in RT for pattern and random con
ditions over time). The hypotheses, methods, and analytic framework 
for the present study were preregistered on the Open Science Framework 
prior to data collection (https://osf.io/4pjmz). 

2. Method 

2.1. Participants 

One hundred and sixty-six participants completed the study online 
through Prolific. The validity of online data collection has become an 
important topic of inquiry in behavioral science, and recent evidence 
indicates that Prolific offers higher quality data (e.g., based on partici
pant attention and honesty) and a more diverse participant pool 
compared to alternative online research platforms, such as Amazon 
Mechanical Turk (Palan & Schitter, 2018; Peer, Brandimarte, Samat, & 
Acquisti, 2017). The experiment was designed with Gorilla (https://go 
rilla.sc/),an online behavioral experiment builder that allows for accu
rate recording of participant RT (Anwyl-Irvine, Massonnié, Flitton, 
Kirkham, & Evershed, 2019). Participants provided informed consent, 
and all study procedures were approved by the Georgetown University 
IRB. Participants were paid $7.50. Following careful quality control of 
participant data (see Supplementary Information), the final sample 
consisted of 121 participants (Mage = 28.45, SD = 8.92; 58.58% male, 
40.50% female), in line with a priori power considerations. 

An additional group of participants (“confirmatory sample”) were 
also recruited online through Prolific to directly investigate the temporal 
relationship between intuitions and explicit knowledge. That is, do in
tuitions precede explicit knowledge? Study procedures for this sample 
(N = 42, Mage = 25.42, SD = 8.31; 76.19% male, 23.81% female, see 
Supplementary Information) are described at the end of the Method 
section. 

2.2. Serial reaction time task 

Participants completed a modified version of the deterministic Serial 
Reaction Time Task (SRTT), a widely-used implicit learning paradigm. 
In the present version of the SRTT, target circles (henceforth referred to 
as “targets”) appeared in one of four positions arrayed horizontally 
onscreen (Fig. 1). Each target corresponded to a specific key on the 
keyboard. Participants were instructed on the target-key mappings, and 
were told to press the appropriate key as accurately and quickly as 
possible when each target appeared onscreen. The defining feature of 

the SRTT is that, at various times during the task, the targets appear in a 
repeating pattern and, at other times, appear randomly. Patterns are 
designed to elude explicit awareness – at least initially – and implicit 
learning is operationalized as the difference in responding (based on RT) 
on pattern and random sections of the task to differentiate changes in RT 
based on implicit learning from those based on confounding influences. 

Notably, some participants may consciously search for embedded 
patterns during the SRTT, regardless of whether they are instructed to do 
so. The literature is somewhat mixed with respect to the effect of explicit 
search during the deterministic SRTT, although a reasonably well- 
replicated collection of studies have demonstrated that searching does 
not lead to faster responding and may actually harm performance 
(Fletcher et al., 2005; Howard & Howard, 2001; Reber, 2013). 
Regardless of whether searching is ameliorative or deleterious, the op
portunities for – and effect of – explicit search on the SRTT can be 
mitigated by shortening the response-stimulus-interval (RSI), the delay 
between when a participant makes a correct key press and the presen
tation of the subsequent target. While early versions of the SRTT had an 
RSI of approximately 250 ms (Destrebecqz & Cleeremans, 2001; Nissen 
& Bullemer, 1987), the next target in the present study appeared 
immediately after participants pressed the corresponding key. This so- 
called “no-RSI” version of the SRTT significantly reduces the extent to 
which participants can search for patterns because the next target ap
pears immediately after a correct button-press, thereby eliminating the 
opportunity for participants to use the inter-stimulus-interval to antici
pate the next target and explicitly learn the pattern structure (Destre
becqz & Cleeremans, 2001). 

After receiving task instructions, participants completed a 44-target 
practice block in which the targets appeared randomly. They then 
advanced through two phases of the SRTT (described below; Fig. 2). The 
entire SRTT paradigm is freely available for use at: https://app.gorilla. 
sc/openmaterials/268426. 

2.2.1. Phase 1: Uninstructed learning phase 
Following practice, participants performed the “uninstructed 

Fig. 1. Serial reaction time task. Participants indicated target locations by 
pressing the corresponding key. For example, a target in the left most location 
was associated with the “D” key (Position 1). During the uninstructed learning 
phase, pattern blocks consisted of a 10-target repeating pattern (repeated 10×), 
comprised of three first-order structures (orange bar) and two second order 
structures (purple bar). During the instructed learning phase, participants 
completed three 10-target pattern blocks and two 15-target pattern blocks, 
which also consisted of first-order (orange bar) and second-order (purple bar) 
structures. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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learning” phase of the experiment, which consisted of four 100-target 
blocks (2 pattern, 2 random), with order counterbalanced. The two 
pattern blocks each contained a distinct 10-target repeating pattern, 
which consisted of three first-order structures and two second-order 
triplets. (Fig. 1). First and second-order structures are consecutive tar
gets that occur at a high frequency over the course of a block. The 
appearance of the first target of a structure (e.g., Position 1 in the 10- 
target pattern in Fig. 1) is associated with greater likelihood of an 
ensuing target (e.g., Position 4 appears following Position 1 75% of the 
time). Implicit learning, therefore, is likely to depend on participants’ 
ability to detect these reccurring structures (Song, Howard, & Howard, 
2007, 2008). Random blocks did not include regular repetitions (see SI 
for more information about creation of random blocks). Notably, the 
uninstructed learning phase was completed before participants received 
information about the possible presence of patterns. Learning during 
this phase was therefore likely to be less influenced by top-down pro
cesses compared to the instructed learning blocks. 

2.2.2. Phase 2: Instructed learning phase 
Following completion of the uninstructed learning phase, partici

pants were informed that the targets may appear in a pattern and that at 
other times the targets would appear randomly. Additional text indi
cated that, at different points during the task, they may develop in
tuitions (“you may have a sense that [there might be a pattern/dots 
might be appearing randomly] but may not be sure why you feel that 
way”) and explicit knowledge (“clear knowledge that the dots [are 
following a pattern/appearing randomly]”). Participants were instruc
ted to self-report the precise moment at which they developed an intu
ition and/or explicit knowledge by pressing a “stop key” (“Y” on the 
keyboard). Upon making a self-report, participants were immediately 
directed to a separate screen to indicate (1) whether they had an intu
ition or explicit knowledge and (2) whether they were reporting a 
pattern or randomness. If they reported explicit knowledge of a pattern, 
participants were asked to reproduce it. After providing this informa
tion, participants were redirected back to the same block and were 
permitted to stop the block again at any point. Participants could report 
explicit knowledge prior to reporting an intuition, thus allowing for an 
empirical assessment of whether intuitions emerged before explicit 
knowledge. The instructed learning phase consisted of 10 blocks (5 
pattern, 5 random) with 105 targets each. Pattern blocks were distinct 
from the pattern blocks in the uninstructed phase. All blocks ended after 
the 105th target. 

We were interested in both timing and accuracy of self-reports. Self- 
report timing (i.e., when a participant indicated an intuition or explicit 
knowledge) was scored based on the target number in the block when 

the report was made, such that lower values indicated an earlier report. 
For example, a participant who reported an intuition on the 30th target 
and explicit knowledge on the 80th target would have timing scores of 
30 for intuition and 80 for explicit knowledge for that block. Timing 
information was averaged across all the blocks, resulting in an average 
timing score for intuitions and an average timing score for explicit 
knowledge for each participant. Self-report accuracy (i.e., whether a 
participant’s report of a pattern or randomness was correct) was scored 
using a discriminability index, in which correct responses were coded as 
1 (i.e., participant self-reported a pattern during a pattern block, or 
random during a random block), incorrect responses as − 1 (i.e., 
participant self-reported a pattern block as being random, or vice-versa), 
and no-response as 0 (i.e., a block in which a self-report was not made). 
Separate average accuracy indices were obtained for intuitions and 
explicit knowledge for each participant (see SI for more detailed scoring 
information on self-report timing and accuracy). 

Finally, following an explicit report of a pattern, participants were 
asked to reproduce the pattern (henceforth, “pattern recall”). Pattern 
recall was scored in accordance with prior work on explicit recall for the 
SRTT (Willingham & Dumas, 1997). Specifically, pattern recall was 
based on the reported number of correct, contiguous elements of the 
repeating pattern, starting/ending anywhere within the repeating 
pattern. For example, in the case of the 10-target pattern in Fig. 1, a 
participant who entered the pattern “1–4–2-3-2-1-3-1” would have 
received a score of 6, because “1–4-2” and “1–3-1” are both included in 
the sequence (note that at least 3 continuous targets are required, so 
“2–1” is not scored; Willingham & Dumas, 1997). Similarly, a partici
pant who entered “3–1–4-2-1-4” would have a score of 6 as well. Scores 
for all five patterns were summed for an overall pattern recall score. 

2.3. Analytic strategy 

Implicit learning was measured using mixed effects models, consis
tent with recent work on sequence learning (Kahn, Karuza, Vettel, & 
Bassett, 2018; Karuza, Kahn, & Bassett, 2019). Mixed effects models can 
account for within and between subject effects, and are appropriate 
when several repeated measurements (Level 1) are nested within a 
higher level of data (Level 2; Goldstein, 2011; Longford, 1995). In the 
present study, target-level information (e.g., target number within the 
block, block condition) were modeled as Level 1 variables, nested within 
each participant; Level 2). All mixed effects models (described in detail 
below) were fit via maximum likelihood and unstructured variances and 
covariances, using the mixed command in STATA 15 (Stata, 2017). 
Significance tests were two-sided. Because learning during the unin
structed and instructed blocks were performed under different task 

Fig. 2. SRTT study design. Participants completed 4 
uninstructed learning blocks (Left; order counterbalanced) 
before receiving additional instructions. The instructed 
learning phase of the study (Right) consisted of 10 blocks 
(also counterbalanced), during which participants were 
tasked with making self-reports to indicate intuitions and/ 
or explicit knowledge. After a self-report, participants 
returned to the learning block. Each block ended after the 
105th target, regardless of the number of self-reports 
made.   
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demands, we performed separate mixed effects models for these two 
phases of the experiment. Detailed model information can be found in 
Supplementary Information. 

2.3.1. Uninstructed learning phase 
Implicit learning during the uninstructed learning phase was calcu

lated by fitting a mixed effects model in which RT (for each individual 
target) was positioned as the dependent variable, with the following 
Level 1 independent variables: target number (i.e., 1 to 100), block 
condition (pattern or random), and corresponding button (D, F, J, K). 
Crucially, all models also included a Target Number X Block Condition 
interaction term, which indicated the extent to which learning rate 
(based on changes in RT over the course of the block) varied as a 
function of block condition. That is, the interaction term provided an 
estimate of implicit learning. Note that RT differences in Block Condi
tion alone (i.e., without an interaction with Target Number) reflect 
differences in the average RT between the two conditions and do not 
account for how the RT discrepancy changes as individuals advance 
through each block. Because we anticipated that participants would 
become faster on the pattern blocks over time (i.e., RT decrease with 
successive targets), we modeled implicit learning by calculating the 
extent to which the change in RT over time differed between block 
conditions (i.e., a Target Number X Block Condition interaction).The 
first 10 targets for each block were excluded to allow for a brief famil
iarization. We also excluded all targets with an RT > 1000 ms or RT <
200 ms as well as those for which a participant made an incorrect button 
press. 

2.3.2. Instructed learning phase 
We fit three different mixed effects models for the instructed learning 

phase to test different hypotheses about implicit learning, intuitions, and 
explicit knowledge. In addition to what is described below, all instructed 
learning phase models included an additional covariate regressor – “Lag 
Time” – to control for any aberrant delays between when a participant 
made a correct button-press and the appearance of the next target (see 
Supplementary Information for more discussion of this variable). 

2.3.2.1. Instructed implicit learning. Instructed implicit learning was 
investigated by constraining the analyses to targets prior to the first self- 
report in each block because responding after a self-report was no longer 
“fully” implicit (i.e., because the participant indicated an intuition or 
explicit knowledge). A Target Number X Block Condition interaction 
term was again used to measure implicit learning. In order to partially 
control for implicit learning differences based on the number of Level 1 
data points (e.g., a participant who made a self-report on the 30th target 
would have fewer Level 1 data points compared with a participant who 
self-reported on the 60th target), the model also included an additional 
Level 1 covariate that indicated, for each participant at each block, how 
many targets were presented before the first self-report. 

2.3.2.2. Self-report effect on sequence learning. A second mixed effects 
model examined the extent to which the first self-report influenced 
sequence learning (i.e., differences in RT for pattern and random con
ditions over time) during the SRTT. In other words, does sequence 
learning improve with greater explicit awareness? Note that for this 
model we refer to “sequence learning” rather than “implicit learning” 
because we are examining RT differences between pattern and random 
blocks after a self-report was made (i.e., when learning was no longer 
implicit). This question was explored using an additional three-way 
interaction term – Target Number X Block Condition X Self-Report – 
that indicated the extent to which learning rate (i.e., Target Number X 
Block Condition) changed following a self-report. 

2.3.2.3. Differences in implicit learning based on intuition accuracy. A 
third mixed effects model investigated the relationship between implicit 

learning and intuitions (i.e., H2). Here, we constrained analyses to 
before the first intuition self-report for each participant at each block (i. 
e., while learning was still implicit). A Level 1 dummy variable – Intu
ition Accuracy – coded each Level 1 data point based on whether the 
participant self-reported a correct or incorrect intuition for each block 
(blocks for which a participant did not make a self-report were excluded 
from this model). This variable was then used in an additional three-way 
interaction (Target Number X Block Condition X Self-Report Accuracy), 
with the coefficient of this interaction term reflecting the extent to 
which implicit learning (i.e., Target Number X Block Condition) varied 
based on intuition accuracy. In this case, a significant effect would 
indicate differences in implicit learning based on intuition accuracy. 

2.4. Confirmatory sample procedures 

One of the primary research questions of the present study concerned 
the temporal relationship between intuitions and explicit knowledge. 
Said simply, do intuitions develop before explicit knowledge? Although 
participants in the main sample were provided with specific definitions 
for these two terms, it is plausible that participants may have entered the 
study with preconceived definitions about explicit knowledge and/or 
intuition. That is, they may have inferred or assumed that intuitions 
come first. 

A small confirmatory sample was recruited in order to rule out this 
alternative explanation. For this sample, half of the participants received 
instructions for how to report intuitions while the other half were 
instructed on how to report explicit knowledge. In other words, partic
ipants were made aware of – and asked to indicate – only one type of 
knowledge. At the midway point of the study, participants received in
structions on how to report the alternative type of knowledge (e.g., 
participants who were first asked to report intuitions received in
structions on reporting explicit knowledge). This design allowed us to 
examine differences using both a within subject (i.e., comparing timing 
of judgements for intuitions and explicit knowledge) and between- 
subject design (examining timing differences based on task instruction 
during the first half of the instructed learning phase). 

3. Results 

3.1. Confirmatory sample: temporal relationship of intuitions and explicit 
knowledge 

We hypothesized that intuitions precede explicit knowledge (H3). 
Results from the confirmatory sample were consistent with this hy
pothesis. A paired samples t-test indicated a significant within-subject 
effect, such that participants reported intuitions (MTarget = 51.39, SD 
= 22.02, 95% CI [44.53–58.25]) earlier than explicit knowledge 
(MTarget = 67.88, SD = 22.588, 95% CI [60.84–74.91]; t(41) = − 5.14, p 
< 0.0001). Similarly, a two-sample t-test with unequal variances 
revealed a significant between-subject effect of instruction type (t 
(39.96) = 2.70, p = 0.01), demonstrating that participants told to self- 
report intuitions (MTarget = 50.34, SD = 23.41, 95% CI [40.49–60.26]) 
did so earlier than those told to self-report explicit knowledge (MTarget =

67.64, SD = 17.97, 95% CI [58.70–76.68]). Taken together, results from 
this sample are in line with the hypothesized temporal relationship of 
intuitions and explicit knowledge (i.e., intuitions come first). Further, 
these results argue against the interpretation that differences in intuition 
and explicit knowledge timing in the main sample would stem from 
participants’ pre-existing beliefs about intuitions and explicit 
knowledge. 

3.2. Uninstructed implicit learning 

All participants performed an uninstructed learning phase of the 
SRTT in which they completed four 100-target blocks, of which two 
contained a unique 10-target repeating pattern. Learning rates for 
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pattern and random blocks are displayed in Fig. 3A. Results indicated 
clear evidence of implicit learning; we observed a significant Target 
Number X Block Condition interaction (estimated effect: 0.45, z = 8.94, 
p < 0.001; Table 1), such that participants responded increasingly fast 
during the pattern blocks relative to the random blocks (see SI for 
learning rates using accuracy data). Participant-level estimates for im
plicit learning were retained for use in subsequent analyses. Finally, 
split-half analysis was performed to test the reliability of uninstructed 
implicit learning. Specifically, we ran two separate mixed models, with 
each model including only half of the total targets (randomly selected). 
Participant-level implicit learning estimates obtained from these two 
models were strongly correlated with uninstructed implicit learning 
calculated from the full set of targets (both r > 0.74, p < 0.0001) and 
with each other (r = 0.46, p < 0.0001), indicating good reliability. 

3.3. Instructed implicit learning 

After completing the uninstructed learning phase, participants were 
informed that, at different points during the remainder of the task (i.e., 
the instructed learning phase), the targets would appear in a complex 
pattern. Additionally, they were asked to self-report when they devel
oped intuitions and/or explicit knowledge. Consistent with findings 
from the small confirmatory sample, paired t-tests revealed that par
ticipants reported intuitions (MTarget = 65.27, SD = 19.10, 95% CI 
[61.84–68.71]) earlier than explicit knowledge (MTarget = 86.94, SD =
13.70, 95% CI [84.48–89.40]; t(120) = − 11.03, p < 0.0001; see SI for 
distribution of these variables). Thus, as hypothesized (H3), intuitions 
preceded explicit knowledge. Self-report accuracy was also greater than 
chance (0) for both intuitions (MIndex = 0.24, SD = 0.29, 95% CI 
[0.19–0.29]; t(120) = 9.41, p < 0.0001) and explicit knowledge (MIndex 
= 0.21, SD = 0.23, 95% CI [0.17–0.25]; t(120) = 10.16, p < 0.0001; SI), 
indicating that participants were able to accurately assess their own 
awareness of block structure. 

To investigate instructed implicit learning, we restricted our analyses 
to the targets for each block that occurred prior to the first self-report. 
For example, if a participant made a self-report on the 30th target of a 
given block, we examined targets 1–29 for that block for that partici
pant. Analyses were further constrained to include only blocks for which 
a participant made a self-report. 

A mixed effects model revealed that, even with the additional in
structions that preceded the instructed phase of the SRTT, participants 
were able to implicitly learn the patterned structure (Fig. 3B). That is, 
we observed a significant Target Number X Block Condition interaction 
before participants made a self-report (estimated effect = 0.30, z = 3.56, 
p < 0.001; Table 2). To test the reliability of instructed implicit learning, 
we conducted another split-half analysis, which revealed excellent 
reliability (associations between each “split-half” implicit learning es
timate and full model estimate: both r > 0.93, p < 0 0.0001; correlations 

across halves: r = 0.75, p < 0.0001). 
It is worth noting, however, that participants displayed a small in

crease in RT for patterned blocks (estimated increase of 0.83 ms at each 
target), but this increase was significantly less than the increase 
observed on random blocks (i.e., as indicated by the significant inter
action). This may be due to the increased pattern complexity during the 

Fig. 3. Implicit learning during uninstructed and 
instructed blocks. Trajectories reflect average RT 
for the whole sample, smoothed with a 10-window 
sliding mean. (A) Implicit learning during the unin
structed blocks. (B) Implicit learning (i.e., before first 
self-report) during the instructed blocks. Differences 
in learning rate between patterned and random 
blocks significant for both (p < 0.001). Despite dif
ferences in RT trajectories, visual inspection indicates 
similar RT drop-off for patterned blocks around 
midpoint of learning period.   

Table 1 
Mixed effects model for implicit learning during uninstructed learning phase 
(fixed effects).  

Reaction Time Estimate Std. 
Err. 

z p 95% Conf. 
Interval 

Target Number † − 0.03 0.04 − 0.78 0.435 − 0.11 0.05 
Block Condition       
Random✤ 9.00 1.70 5.29 <0.001 5.67 12.33 
IL: Target Number 

X Block 
Condition       
Random 0.45 0.05 8.94 <0.001 0.35 0.55 

Button       
F 40.28 1.41 28.54 <0.001 37.52 43.05 
J 32.56 1.91 17.01 <0.001 28.81 36.31 
K − 8.83 2.48 − 3.56 <0.001 − 13.70 − 3.96 

Intercept 463.26 7.20 64.33 <0.001 449.14 477.38 

Note: † effect for patterned blocks, ✤ effect at Target Number 45.5; IL = implicit 
learning. 

Table 2 
Mixed effects model for implicit learning during instructed learning phase (fixed 
effects).  

Reaction Time Estimate Std. 
Err. 

z P 95% Conf. Interval 

Target Number 
†

0.83 0.04 20.43 <0.001 0.75 0.91 

Block Condition       
Random ✤ 9.89 1.80 5.49 <0.001 6.37 13.43 

IL: Target 
Number X 
Block 
Condition       
Random 0.30 0.08 3.56 <0.001 0.13 0.46 

Button        
28.75 1.54 18.62 <0.001 25.72 31.78 

J 1.79 1.52 1.17 0.241 − 1.20 4.78 
K − 13.44 1.53 − 8.80 <0.001 − 16.44 − 10.45 

Lag Time 4.87 1.67 2.92 0.003 1.60 8.14 
Number of 

Targets 
− 0.43 0.04 − 11.95 <0.001 − 0.50 − 0.36 

Intercept 452.36 28.10 16.10 <0.001 397.30 507.43 

Note: † effect for patterned blocks; ✤ effect at Target Number 53; IL = implicit 
learning. 
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instructed learning phase or top-down influences – indeed, the overall 
increase in RT is greater during the instructed learning phase compared 
with the uninstructed phase (Fig. 3). Another explanation may be that 
implicit learning was calculated from comparatively fewer targets 
relative to the uninstructed learning phase (i.e., because participants 
stopped the block to report knowledge), and with more time on the 
instructed learning blocks, participants may have become even faster to 
respond to patterns. Consistent with this interpretation, we found a 
significant main effect of Number of Targets, such that participants who 
responded to more targets prior to making a self-report were faster 
(estimated effect = − 0.43, z = − 11.95, p < 0.001; Table 2). Finally, the 
greatest “noise” in RT – for both blocks conditions – occurred towards 
the end of the uninstructed learning phase (approximately around 
Target 80 and then again around Target 95; Fig. 3). Given the mean 
report time of intuitions (MTarget = 65.27; as described above), these RT 
spikes were based only on the data from the small number of partici
pants who self-reported well after the average for the sample (because 
we only considered RT before a response was made). 

Lastly, a paired t-test to compare participant-level estimates of im
plicit learning during the instructed and uninstructed phases of the study 
indicated that implicit learning was greater during the uninstructed 
phase (t(120) = 2.47, p = 0.02, 95% CI[0.03–0.28]), consistent with 
previous findings that searching for a pattern during the deterministic 
SRTT (which, presumably, occurred during the instructed phase) im
pedes implicit learning. Implicit learning was uncorrelated across the 
two phases (r = − 0.03, p = 0.77), with Bayesian analyses (performed in 
JASP; Love et al., 2019) indicating the null hypothesis was 8.12 times 
more likely in this case (BF01 = 8.12). 

3.4. Association between implicit learning and intuitions 

3.4.1. Uninstructed implicit learning 
We hypothesized that stronger implicit learners would have more 

accurate intuitions (H2). Given recent work demonstrating implicit 
learning stability across different contexts (Kalra et al., 2019), we first 
asked whether uninstructed implicit learning was correlated with accu
racy and timing of intuitions in the instructed phase. To be clear, this 
question concerned whether implicit learning with one set of stimuli (i. 
e., uninstructed phase) was correlated with the development of in
tuitions on a separate set of implicitly-learned stimuli (instructed phase). 
We did not find any evidence in favor of this association (Table 3); better 
implicit learning in the uninstructed phase was unassociated with 
intuition timing (r = 0.16, p = 0.07, BF01 = 1.83) or accuracy (r = − 0.09, 
p = 0.32, BF01 = 5.43). 

3.4.2. Instructed implicit learning 
We next fit another mixed effects model to more directly test the 

hypothesis that intuitions develop from implicit learning (H1). Further, 
we investigated whether stronger implicit learning was associated with 
more accurate intuitions (H2). Here, we focused specifically on learning 
during the instructed learning phase before the first self-reported intu
ition for each participant in each block (i.e., when learning was still 
implicit), and used a 3-way Target Number X Block Condition X Intui
tion Accuracy interaction to estimate the extent to which implicit 

learning differed based on intuition accuracy, with a significant (and 
negative) coefficient indicating that stronger implicit learning preceded 
correct intuitions (relative to incorrect intuitions). 

Results from this model revealed that both correct and incorrect 
intuitions were preceded by implicit learning (Fig. 4B). Thus, consistent 
with our hypothesis (H1), intuitions were temporally preceded by im
plicit learning. However, results did not support the hypothesis (H2) 
that better implicit learning leads to more accurate intuitions. That is, 
accurate intuitions (relative to inaccurate intuitions) were not preceded 
by stronger implicit learning (Target X Block Condition X Intuition Ac
curacy estimated effect = 0.19, z = 1.47, p = 0.14, BF01 = 1.14; Fig. 4, 
Table S5). Therefore, although implicit learning occurred before par
ticipants reported an intuition, it is unclear the extent to which the 
implicit learning process influenced the formation of intuitions. 

3.5. Relationship between intuitions and explicit knowledge 

Having established that intuitions developed prior to explicit 
knowledge, we next examined whether accuracy and/or timing of in
tuitions were associated with explicit knowledge (H4). First, we 
observed a positive, weak correlation between timing of intuitions and 
timing of explicit knowledge (r = 0.16, p = 0.08, BF01 = 1.83; Table 3). 
Further, intuition timing was significantly correlated with accuracy of 
explicit self-reports (i.e., correctly identifying the block structure as 
either pattern or random; r = − 0.26, p = 0.004). Thus, participants who 
reported earlier intuitions also reported earlier – and more accurate – 
explicit knowledge. 

In cases in which a participant self-reported explicit knowledge of a 
pattern, they were asked to type the pattern on the keyboard. We found 
that pattern recall was significantly correlated with intuition timing 
(earlier intuitions associated with better pattern recall; r = − 0.31, p =
0.0005) and intuition accuracy (r = 0.19, p = 0.03). Taken together, 
these results suggest that the timing and quality of intuitions are asso
ciated with explicit knowledge. 

3.6. Self-report effect on sequence learning 

Lastly, we explored whether obtaining more consciously-accessible 
knowledge influenced sequence learning. In other words, did partici
pants respond increasingly fast on pattern blocks (relative to random) 
after reporting sequence knowledge? This question was investigated by 
fitting a mixed effects model with a Target Number X Block Condition X 
Self-Report interaction term. Results from this model (Table S4), 
revealed a significant three-way interaction (estimated effect = − 0.17, z 
= − 2.08, p = 0.038), with greater sequence learning (i.e., difference in 
learning rate for pattern and random blocks) after a self-report (Fig. 4A). 
This result is in line with prior literature demonstrating superior 
sequence learning with more explicit awareness. 

4. Discussion 

The present study investigated the development of intuitions and 
explicit knowledge during an implicit learning paradigm. Theoretical 
accounts of human information processing indicate implicit learning as 

Table 3 
Correlations between uninstructed implicit learning, intuitions, and explicit knowledge.   

Uninstructed IL Intuition Timing Intuition Accuracy Explicit Timing Explicit Accuracy 

Intuition Timing 0.16 –    
Intuition Accuracy − 0.09 − 0.30*** –   
Explicit Timing − 0.04 0.16 0.14 –  
Explicit Accuracy − 0.01 − 0.26** 0.28** − 0.42*** – 
Pattern Recall − 0.04 − 0.31** 0.19* − 0.40*** 0.63*** 

Note: “Intuition Accuracy” and “Explicitly Accuracy” are based on participants’ self-report of pattern structure (see “Method: Phase 2 Instructed Learning Phase”; SI) 
for a given block. “Pattern Recall” refers to report the number of correct elements of the pattern reported *; p < 0.05; **p < 0.01; ***p < 0.001, uncorrected. 
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a basis of intuition (Bowers et al., 1990; Epstein, 2010; Hodgkinson 
et al., 2008; Lieberman, 2000; Reber, 1989; Shirley & Langan-Fox, 
1996), and intuition as a precursor to explicit knowledge (Greenwald 
et al., 2002; Kahneman, 2003). Our results supported some, but not all of 
this conceptual framework. Consistent with our first hypothesis, we 
found that intuitions were temporally preceded by implicit learning 
(H1). However, results did not support our second hypothesis that 
stronger implicit learners provide more accurate intuitions (H2). Thus, 
our findings cannot shed light on the bases of individual differences in 
intuition accuracy (i.e., since they do not appear to stem from differ
ences in implicit learning). Our results do, however, demonstrate that 
intuitions may be a basis for individual differences in explicit knowl
edge. We found that participants indicated intuitions prior to explicit 
knowledge (H3), and that better/earlier intuitions were associated with 
to more explicit knowledge (H4). 

A number of theoretical models highlight the role of intuitions in the 
process by which implicitly-learned information becomes explicit 
(Epstein, 2010; Kahneman, 2003; Reber, 1989, 1992). Despite the 
prominence of intuition-based theories of human cognition, we are un
aware of any work that has empirically demonstrated that intuitions are 
preceded by implicit learning, or that intuitions emerge before – and are 
associated with – later explicit knowledge. The present findings lend 
some support to these accounts. First, intuitions emerged after a period 
of implicit learning. Second, participants who reported earlier intuitions 
made more accurate explicit reports and, perhaps most notably, were 
able to recall more pattern elements. 

By contrast, results did not support our hypothesis that stronger 
implicit learners would achieve faster or more accurate intuitions (H2), 
which challenges prior suggestions that implicit learning is a basis for 
intuitions or “tacit knowledge” (Reber, 1989).We investigated this hy
pothesis in two ways. First, given recent work demonstrating some 
consistency in implicit learning across different experimental paradigms 
(Kalra et al., 2019), we correlated intuition timing and discriminability 
with participant-level estimates of uninstructed implicit learning. In this 
way, we asked whether implicit learning of one set of stimuli (i.e., the 
uninstructed phase) was associated with the development of intuitions 
in a second set of stimuli (the instructed phase). No such association was 
identified, and results revealed a trending association for uninstructed 
implicit learning and intuition timing in the opposite direction (i.e., 
higher uninstructed implicit learning associated with later intuitions). 
However, because uninstructed and instructed implicit learning were 
not correlated in the present study, these null results are somewhat 
unsurprising. 

On the other hand, we were surprised to find that differences in 
instructed implicit learning were also unrelated to intuition accuracy, 
particularly because intuitions were temporally preceded by implicit 
learning. That is, when analyses were constrained to the period of time 
before self-reports, we still observed clear evidence of implicit learning 
(i.e., faster responding on the pattern blocks). Had we failed to observe 
implicit learning before participants made a self-report, one could sim
ply conclude that implicit learning did not occur during the instructed 
learning phase and, thus, there would be no reason to observe an asso
ciation between pre-report sequence learning and accuracy of the 
report. Therefore, because implicit learning did occur, it remains an 
open question as to what mechanism is responsible for variability in the 
development of intuitions (i.e., since differences in learning rate did not 
account for this variability within our data set). Parallel, dissociable 
development of implicit and explicit knowledge during deterministic 
implicit learning tasks has been well-document (e.g., Gabrieli, 1998; 
Nissen & Bullemer, 1987; Willingham, 2001; Willingham & Goedert- 
Eschmann, 1999; Willingham, Salidis, & Gabrieli, 2002). Given the 
present finding that intuitions and explicit knowledge are closely related 
to each other (i.e., better intuitions were associated with better explicit 
knowledge) but not with implicit learning, it may be more appropriate 
to consider intuitions as “partial” explicit knowledge rather than stem
ming from implicit learning. Since implicit and explicit knowledge can 
develop independently and in parallel, it would therefore not necessarily 
be the case that variability in implicit learning is associated with vari
ability in intuitions (when considered as partial explicit knowledge). 

Alternatively, it is possible that better implicit learners do form faster 
or more accurate intuitions, but that task demands of the present study – 
specifically, top-down search during the instructed learning phase – 
obscured this association. There is growing evidence that explicit search 
can influence implicit learning on deterministic versions of the SRTT 
(Fletcher et al., 2005; Howard & Howard, 2001; Reber, 2013), and that 
obtaining explicit knowledge further influences responding (Esser & 
Haider, 2017; Haider et al., 2011; Haider & Rose, 2007). However, in 
devising the present study, we accepted the potential for a certain 
amount of top-down influence during the instructed learning phase 
because “real world” implicit learning is often accompanied by a host of 
additional external factors (Aru & Bachmann, 2017; Aslin & Newport, 
2012; Ellis, 1994; Ellis, 2009; Overgaard, 2018; Robinson, 1997; Rose 
et al., 2010; Sun et al., 2005). We do not assume that the instructed 
learning phase involved no additional top-down search – indeed our 
findings indicate that top-down search likely did occur because learning 
was greater during the uninstructed learning phase. As it relates to the 

Fig. 4. Differences in learning rates. (A) Sequence learning was greater after making a self-report (see mixed effects model; SI). (B) No differences in instructed 
implicit learning for correct and incorrect intuitions. Note: ** indicates significant estimated effect in mixed effects model at p < 0.001; 95% CI indicated. 
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development of intuitions, however, it is plausible that cognitive de
mands associated with requiring participants to report multiple kinds of 
knowledge influenced working memory and/or attention in unintended 
ways, and that this increased load impacted implicit learning perfor
mance (as well as subsequent self-reports). Prior work has demonstrated 
correlations between working memory and intentional/explicit 
sequence learning (Bo, Borza, & Seidler, 2009; Bo, Jennett, & Seidler, 
2012), putatively because working memory resources are required to 
direct attention and cognitive control (Janacsek & Nemeth, 2013; 
Kaufman et al., 2010). The influence of working memory on undirected 
implicit learning is less clear, but appears to be comparatively less than 
during intentional learning (Janacsek & Nemeth, 2013, 2014; Martini, 
Sachse, Furtner, & Gaschler, 2015). Therefore, working memory ca
pacity may have influenced sequence learning during the instructed 
learning phase of the present study, such that individuals higher in 
working memory demonstrated superior learning. This increased influ
ence of working memory may have interfered with a putative associa
tion between implicit learning and intuitions. 

Since the results of the present study provide reasonably clear evi
dence that intuitions precede – and are associated with – explicit 
knowledge, future studies should ask participants to report only one 
kind of knowledge (i.e., intuitions). Such a paradigm would minimize 
the burden on working memory (compared to the present study), 
thereby reducing the potential influence of working memory demand on 
learning rates and intuitions. This simplified system of self-report would 
ideally be paired with the ASRT, which contains probabilistic, rather 
than deterministic, pattern sequences. Learning during the ASRT has 
been reliably shown to remain implicit (e.g., Gamble, Lee, Howard, & 
Howard, 2014; Howard Jr & Howard, 1997; Kaufman et al., 2010; Kóbor 
et al., 2021) and may be less influenced by working memory demands 
related to explicit search (Janacsek & Nemeth, 2013, 2014; Martini 
et al., 2015). As discussed above, we used the classical SRTT because we 
wanted to allow participants the opportunity to obtain explicit aware
ness. That is, our primary questions of interest concerned what factors 
predict how quickly and accurately participants become aware of the 
pattern in the SRTT (e.g., Do participants form intuitions before devel
oping explicit knowledge? Do better/faster sequence learners report 
intuitions earlier?). Given evidence provided by the present study that 
intuitions precede – and predict the quality of – explicit knowledge, 
subsequent work using the ASRT should focus more specifically on the 
first part of the pathway: how does implicit learning relate to intuitions 
(if at all)? 

Our findings should also be considered alongside other theoretical 
frameworks of human cognition. Dual-system accounts indicate that 
implicit and explicit processes are driven by different inputs and have 
different functions, but they are nonetheless interlinked in their opera
tion (Evans, 2003; Kahneman, 2003; St. Evans, 2008). According to 
these perspectives, however, some sort of additional step is needed in 
order to allow information initially processed in one system to be 
accessed by the other. For example, the Unexpected Event Hypothesis 
(Esser & Haider, 2017; Frensch & Rünger, 2003; Haider & Frensch, 
2005; Rünger & Frensch, 2008), drawing in part from error-prediction 
learning models (Clark, 2013; Rescorla & Wagner, 1972), suggests 
that explicit knowledge develops from implicit learning when one gains 
some sort of meta-awareness, often through a consciously-perceivable 
change in behavior. In the case of the present study, the emergence of 
an intuition may have functioned in this sort of role; participants 
intuited block structure (i.e., pattern or random), and then used that 
intuition to develop more conscious knowledge. In other words, par
ticipants gained a meta-awareness of their own intuition, allowing them 
to explicitly attend to and identify the block structure. It should be 
noted, however, that none of these explanations necessitate that implicit 
learning leads directly to intuitions. Rather, intuitions may develop in 
parallel. 

Alternatively, our findings may provide support for single-system 
accounts of human cognition. According to such perspectives, implicit 

and explicit processes are not neurocognitively distinct, but instead 
belong to a shared, graded system (Cleeremans, 2006; Cleeremans & 
Jiménez, 2002; Destrebecqz & Cleeremans, 2003; Esser & Haider, 
2017). Implicitly-acquired information enters explicit awareness if its 
representation is strong, stable, and distinct (Cleeremans, 2006). Viewed 
in the context of the present study, it is likely that the strength, stability, 
and distinctness of participants’ representations increased as they 
advanced through each learning block. That is, with greater exposure to 
a specific block’s structure, participant were able to obtain more infor
mation about its properties (i.e., pattern or random), particularly during 
the instructed learning phase. When block structure remained implicit 
(i.e., a participant did not make an accurate self-report), this may have 
been because the learned information was not distinct, stable, or 
appropriately integrated with other explicit content, rather than because 
it had not “moved” from the implicit system to the explicit one. The 
finding that participants who developed faster intuitions also had better 
explicit knowledge indicates that participants acquired increasingly 
more information about structure over the duration of a learning block 
that, in many cases, culminated in explicit knowledge. It is plausible, 
though somewhat speculative, that differences in learning rate were also 
related to the extent to which a representation was explicit, although the 
finding that learning rate preceding intuitions was unassociated with the 
accuracy of the intuitions appears contrary to this interpretation. 

Results from the present study also extend prior findings concerning 
the effect of (1) explicit search and (2) explicit knowledge during the 
deterministic SRTT. Mixed effects models indicated clear evidence of 
implicit learning during both the uninstructed and instructed phases of 
the task. Notably, prior to beginning the instructed (but not unin
structed) learning phase, participants were informed that some blocks 
may contain complex repeating patterns. They were also asked to indi
cate when they developed intuitions and explicit knowledge. Prior work 
has demonstrated that explicit searching – which presumably occurred 
to a greater degree during the instructed phase – may impede implicit 
learning by disrupting task elements that would otherwise facilitate 
learning (for deterministic stimuli; Fletcher et al., 2005; Howard & 
Howard, 2001; Reber, 2013). Our findings lend additional support for 
this disruptive effect; implicit learning during the uninstructed phase 
was significantly greater than implicit learning during the instructed 
phase. This suggests that the additional top-down processes induced by 
the instructions to report/search for block structure negatively influ
enced implicit learning. Although searching may harm performance, 
having explicit knowledge of the embedded pattern has been shown to 
amplify RT differences between pattern and random blocks during the 
deterministic SRTT (Esser & Haider, 2017; Haider et al., 2011; Haider & 
Rose, 2007). Here, too, our findings support prior work. Mixed effects 
models indicated a significant 3-way Target Number X Block Condition 
X Self-Report interaction, with sequence learning (i.e., the difference 
between pattern and random block RT over time) greater for targets 
after a self-report. Thus, explicit search may disrupt implicit learning, 
but once a learner reported more consciously-accessible knowledge (i.e., 
intuitive or explicit), sequence learning improved. In this way, more 
accessible knowledge of the embedded sequence may have allowed 
participants to better anticipate subsequent targets, particularly during 
pattern blocks. A potential complementary explanation, though not 
directly reflected by our data, is that, upon indicating knowledge, par
ticipants reduced their explicit search (because of a belief that they had 
identified the block structure). In other words, the improvement in 
sequence learning could be an indirect consequence of reported 
knowledge because learners “turned off” their deleterious searching. 
Future research employing an ASRT-based paradigm, as described 
above, could provide a worthwhile comparison for these results because 
divided attention (e.g., searching) has been shown to have no influence 
on probabilistic sequence learning (Horváth et al., 2020). 

Recent initiatives in psychology have re-emphasized the inherent 
value of introspection and self-report (Locke, 2009), and such ap
proaches have been previously used within the context of the SRTT 
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(Esser & Haider, 2018; Haider et al., 2011), although in a different 
manner than in the present study. We see no reason to doubt the validity 
of the self-report provided by participants. More materially, a number of 
our findings indicate that participants were able to accurately assess 
their own knowledge. First, the accuracy of both intuition and explicit 
knowledge self-reports were significantly greater than chance. Addi
tionally, the observed effect of the self-report on sequence learning (i.e., 
greater RT differences for pattern and random blocks following self- 
report) further suggests that participants made a self-report only once 
they obtained more accessible knowledge. Indeed, failure to observe this 
effect would have been inconsistent with prior work on the benefits of 
awareness during the SRTT (Esser & Haider, 2017; Haider et al., 2011; 
Haider & Rose, 2007). 

A limitation of the present study on the implementation level is that 
data were obtained online. The validity of online data has become a 
topic of increasing priority in psychology research (Allahbakhsh et al., 
2013; Buhrmester, Kwang, & Gosling, 2016; Palan & Schitter, 2018; 
Smith, Roster, Golden, & Albaum, 2016). Although some recent findings 
suggest superior data from in-person samples (Chmielewski & Kucker, 
2020), differences can be mitigated with careful quality control and 
attention checks that screen out inattentive participants (as was done in 
the present study; Allahbakhsh et al., 2013; Chmielewski & Kucker, 
2020; Thomas & Clifford, 2017). It is perhaps notable that analyses in 
the present study examined millisecond-level RT information, and that 
improper participant responding may have been difficult to identify at 
this level of precision (e.g., as opposed to inappropriate answers to a 
survey), although there is precedent for examining millisecond-level 
differences in sequence learning with online samples (e.g., Kahn et al., 
2018; Karuza et al., 2019). Moreover, internet and computer speeds vary 
widely across participants, and these factors may influence things like 
loading speed and latency (although this is likely to vary primarily be
tween – rather than within – participants). In addition to extensive data 
quality control, mixed effects models also considered putative differ
ences in computer speed by controlling for how quickly targets appeared 
on screen for each participant (“Lag time”; see SI). Replicating the 
present findings using an in-person sample would further demonstrate 
the reliability of RT data collected online. 

To conclude, the present study tested theoretical accounts of the 
emergence of intuitions from implicit learning using a modified SRTT 
paradigm. Findings indicated that intuitions were preceded by implicit 
learning. Although we did not identify an association between implicit 
learning and intuition accuracy, we found that accuracy and timing of 
intuitions were correlated with later-reported explicit knowledge. 
Together, these results suggest that, when individuals gain explicit 
awareness of implicitly-learned information, the quality of such 
awareness is related to the quality of the preceding intuitions. Future 
efforts should be made to investigate whether individual differences in 
implicit learning are responsible for subsequent variability in intuition 
accuracy. 
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