Cognition 222 (2022) 105008

e 4

ELSEVIER

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cognit

Cognition

Dynamic development of intuitions and explicit knowledge during

implicit learning

Adam B. Weinberger >, Adam E. Green®

@ Department of Psychology, Georgetown University, United States of America
Y penn Center for Neuroaesthetics, University of Pennsylvania, United States of America

Check for

updates

ARTICLE INFO ABSTRACT

Keywords:

Implicit learning
Intuition

Explicit knowledge
Serial reaction time task

Implicit learning refers to learning without conscious awareness of the content acquired. Theoretical frameworks
of human cognition suggest that intuitions develop based on incomplete perceptions of regularity during implicit
learning and, in turn, lead to the development of more explicit, consciously-accessible knowledge. Surprisingly,
however, this putative information processing pathway (i.e., implicit learning - intuition - explicit knowledge)

has yet to be empirically demonstrated. The present study investigated the relationship between implicit
learning, intuitions, and explicit knowledge using a modified Serial Reaction Time Task. Results indicate that
intuitions of implicitly-learned patterns emerge prior to the development of explicit knowledge. Moreover,
intuition timing and accuracy were significantly associated with accuracy of explicit reports. We did not,
however, find that stronger implicit learners developed more accurate intuitions. Our findings suggest a crucial
role of intuition in the formation of explicit knowledge from implicit learning.

1. Introduction

One of the essential adaptations in the evolution of the brain —
including human brains - is the capacity to learn and make predictive
inferences on the basis of environmental patterns (Clark, 2013). When
such learning occurs without conscious awareness, the learning is
commonly described as being “implicit” (Reber, 1989). Implicit learning
has been implicated in language development (Aslin & Newport, 2012;
Saffran, Aslin, & Newport, 1996), visual perception (Rosenthal,
Andrews, Antoniades, Kennard, & Soto, 2016), the capacity to under-
stand and appreciate music (Rohrmeier & Widdess, 2017), religious
belief (Weinberger et al., 2020), and mastering sequences of movements
(Nissen & Bullemer, 1987; Willingham, 1999).

Although the defining characteristic of implicit learning is that it
occurs non-consciously, decades of research have clearly indicated that
humans are able to acquire explicit knowledge of implicitly-learned
information (Cleeremans & Jiménez, 2002; Destrebecqz & Cleere-
mans, 2001; Esser & Haider, 2017; Overgaard, 2018; Reber, 1989;
Robertson, 2007; Rose, Haider, & Buchel, 2010; Song, Marks, Howard
Jr, & Howard, 2009). Here we define explicit knowledge as a state that
closely resembles “access consciousness”, when information or knowl-
edge is reportable and/or able to be used for reasoning or justifying

behavior (Block, 1995; Overgaard, 2018; Sandberg, Timmermans,
Overgaard, & Cleeremans, 2010; Seth, Dienes, Cleeremans, Overgaard,
& Pessoa, 2008). That is, the defining feature of explicit knowledge is
that such knowledge is able to be reported and described. The rela-
tionship between implicit and explicit knowledge — as well as the process
by which information moves between these two states — has been the
subject of considerable inquiry.

According to one perspective — often referred to as the “single sys-
tem” view — there is no distinction between explicit and implicit rep-
resentation. Rather, implicit knowledge becomes explicit through a
strengthening of associations (Cleeremans & Jiménez, 2002; Destre-
becqz & Cleeremans, 2003; Esser & Haider, 2017). By contrast, other
models indicate distinct but interrelated information processing systems
(e.g., System 1 vs. System 2; Kahneman, 2003; Stanovich & West, 2000)
with putatively different functions (Cleeremans, 2006; Cleeremans &
Jiménez, 2002; Evans, 2003; St. Evans, 2008). Crucially, because in-
formation can move between these systems (Esser & Haider, 2017;
Haider & Frensch, 2005; Rose et al., 2010; Wessel, Haider, & Rose,
2012), an intermediate “stage” may be needed to create metacognitive
judgements, which in turn may render implicitly-learned information
explicit.

Consistent with the existence of an intermediate stage, a number of
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accounts of human information processing suggest that implicitly-
learned information does indeed become explicit by way of an addi-
tional knowledge state: intuition. While several compatible definitions
for intuition have been offered (Hodgkinson, Langan-Fox, & Sadler-
Smith, 2008), one generally-agreed upon characteristic of intuition is
the sense of “knowing without knowing how one knows” (Epstein, 2010;
Shirley & Langan-Fox, 1996). Intuitions are believed to develop from
implicit learning of information structure/regularity and probabilistic
associations (Bowers, Regehr, Balthazard, & Parker, 1990; Hodgkinson
et al., 2008; Lieberman, 2000). Thus, intuitions are a product of implicit
learning (Dienes & Perner, 1999; Reber, 1989), and manifest as sub-
jective experiences such as gut feelings (Hodgkinson et al., 2008) or tacit
knowledge (Reber, 1989). In turn, intuitions can influence subsequent
explicit beliefs, knowledge, and behaviors (Greenwald et al., 2002;
Kahneman, 2003). According to these accounts, there is a temporally
directional relationship between knowledge formation stages: implicit
learning precedes intuitions, which emerge prior to explicit knowledge.
The present study empirically tested this theoretical framework, inves-
tigating the hypothesis that intuitions develop from implicit learning
and facilitate explicit awareness.

One of the most frequently used paradigms to measure implicit
learning is the Serial Reaction Time Task (SRTT; Nissen & Bullemer,
1987). Although there are many SRTT variations, the basic structure of
the task is relatively consistent: participants are instructed to respond
quickly and accurately to targets that appear at different locations
onscreen by pressing buttons that correspond to those locations. At
various times during the task, the targets appear in a complex repeating
pattern and, at other times, targets appear randomly. Implicit learning is
operationalized as the difference between responding on random vs.
patterned presentations, such that scores distinguish responding that is
due to actual implicit learning of the patterns from responding due to
confounding influences such as motivation, fatigue, or task familiarity
(Robertson, 2007). Implicit learning varies widely across participants,
and SRTT performance is frequently studied as an individual difference
variable (e.g., Howard & Howard, 2001; Howard Jr & Howard, 1997;
Kalra, Gabrieli, & Finn, 2019; Song et al., 2009).

Different variations of the SRTT can be classified based on whether
they involve a deterministic or probabilistic pattern sequence. In the
classical SRTT, patterns are deterministic, meaning that the presentation
of targets follow a predetermined pattern. For example, in a 4-target
version of the classical SRTT, a pattern of “1-3-2-4” may appear at
different points during the task. By contrast, target stimuli in the
Alternating Serial Reaction Time task (ASRT; Howard Jr & Howard,
1997) rely on probabilistic pattern sequences. Thus, an ASRT corollary
to the deterministic pattern would be “1-r-3-r-2-r-4-r”, where “r” in-
dicates a randomly selected target from one of the four possible target
locations. During the ASRT, implicit learning reflects differences in
responding to higher probability structures such as “1-[any target]-3”
(which can occur when a random target falls between the predetermined
targets in the first and third position, and when any predetermined
target is bookended by r = 1 and r = 3) relative to lower probability
structures like “2-[any target]-3” (which can only occur when a pre-
determined target is bookended by r = 1 and r = 3).

Critically, a growing body of work has indicated that learners can
obtain varying levels of explicit awareness during the deterministic SRTT
(Esser & Haider, 2017; Haider, Eichler, & Lange, 2011; Haider &
Frensch, 2005; Haider & Rose, 2007; Verleger, Seitz, Yordanova, &
Kolev, 2015; Willingham & Goedert-Eschmann, 1999; Yordanova et al.,
2008; Yordanova, Kirov, & Kolev, 2015) but not the probabilistic ASRT
(Howard Jr & Howard, 1997; Kébor et al., 2021). The extent to which
explicit awareness during the deterministic SRTT occurs is influenced by
trial duration (i.e., extended exposure to patterns increases opportunity
for explicit awareness; Reber, 2013; Willingham, 2001) as well as the
time interval between when the participant makes a key press and when
the next target appears (i.e., shorter intervals limit opportunities to
search for patterns and, in turn, obtain explicit awareness; Destrebecqz
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& Cleeremans, 2001; Reber, 2013). Another factor that can influence
explicit awareness is whether participants are instructed that the targets
may follow a pattern. For example, some experimenters have changed
visual features of the targets to indicate when they appear in a pattern
and when they appear randomly (Miyawaki, 2012; Riisseler, Miinte, &
Wiswede, 2018). Other experimental designs include training runs in
which participants are instructed on the specific patterns that will occur
during the task (Batterink, Reber, & Paller, 2015). When participants
obtain explicit awareness of patterns, RT differences between pattern
and random blocks are increased (Esser & Haider, 2017; Haider et al.,
2011; Haider & Rose, 2007), but the act of searching for a pattern may be
deleterious (Batterink et al., 2015; Fletcher et al., 2005; Howard &
Howard, 2001; but see Horvath, Torok, Pesthy, Nemeth, & Janacsek,
2020 for evidence that divided attention does not influence learning
during the probabilistic ASRT).

Some have argued that the deterministic SRTT is not a task of im-
plicit learning due to the wide range of conditions under which in-
dividuals can obtain explicit awareness and because learning can be
altered by external variables or top-down influences (Shanks, 2005;
Vadillo, Konstantinidis, & Shanks, 2016). Indeed, extensive efforts have
been made to isolate implicit learning and enable experimental in-
ferences about explicit awareness without revealing to participants that
patterns may occur, as doing so can disrupt implicit learning (Fu, Dienes,
& Fu, 2010a; Fu, Dienes, & Fu, 2010b; Haider & Rose, 2007; Norman &
Price, 2010; Rose et al., 2010; Riinger & Frensch, 2008; Wessel et al.,
2012).

We take a different perspective. First, “process-pure” implicit
learning is not theoretically or empirically supported (Aru & Bachmann,
2017; Huang et al., 2017; Overgaard, 2018; Rose et al., 2010; Sergent,
2018; Sun, Merrill, & Peterson, 2001; Sun, Slusarz, & Terry, 2005; Sun &
Zhang, 2004); different neurocognitive systems are differentially
involved based on the extent of conscious processing, but the systems are
unlikely to be fully dichotomous. Second, in a practical sense, it is
evident that implicit learning frequently occurs alongside more
conscious and effortful cognitive operations outside the laboratory. For
instance, when learning a new language (especially as an adult), the
acquisition of grammatical and structural rules is generally regarded as
largely implicit (Aslin & Newport, 2012; Ellis, 1994; Ellis, 2009; Rob-
inson, 1997). In turn, implicitly learned content eventually becomes
explicit, confirming the initial expectation of grammatical structure.
Experimental work using a dual-task paradigm has demonstrated im-
plicit learning rates are disrupted when individuals are asked to listen to
sentences (i.e., syntactic processing) but not when implicit learning is
paired with a word recognition or arithmetic task, suggesting that a
domain-general implicit learning mechanism contributes to sentence
processing (Nemeth et al., 2011). Similarly, learning or listening to
music relies on implicit learning of structure, melody, and rhythm
(Grahn & Rowe, 2013; Krumhansl & Keil, 1982; Krumhansl, Louhivuori,
Toiviainen, Jarvinen, & Eerola, 1999; Rohrmeier & Widdess, 2017),
even though listeners are aware of — and may be looking for — these
characteristics of music composition. Thus, rather than a shortcoming,
the potential for acquisition of explicit knowledge during the deter-
ministic SRTT — and the fact that implicit learning may occur in concert
with explicit search — makes it ideally suited to explore how implicit
information can become explicit. Since the primary questions of the
present study concern how implicitly-learned information can become
explicit, we used a modified version of the deterministic SRTT.

Implicit learning is a neurocognitive mechanism that underscores a
wide range of mental operations and behaviors. Crucially, however,
implicit processes are not fully separable from explicit ones. According
to a number of extant perspectives, intuitions facilitate explicit knowl-
edge of implicitly-learned content. That is, implicit learning gives rise to
intuitions, which, in turn, bring about explicit knowledge. Somewhat
surprisingly, however, there is presently little experimental work to
support intuitions based on implicit learning, and the role of intuition in
the development of more explicit knowledge is largely untested.
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Although individual differences in implicit learning are well-
documented, the downstream effects of such variation remain poorly
understood. That is, do stronger implicit learners develop more accurate
intuitions? Similarly, do more accurate intuitions yield more accurate
explicit knowledge?

Here, we addressed these outstanding questions using a modified
deterministic Serial Reaction Time Task in which participants were
asked to self-report intuitions and explicit knowledge of block structure
(i.e., pattern or random). We hypothesized that implicit learning pre-
cedes intuitions (H1). That is, we predicted that, during the implicit
learning task, participants would develop intuitions after showing evi-
dence of implicit learning. This hypothesis is related to, but distinct from
H2: stronger implicit learners form more accurate intuitions. Whereas
H1 concerns only the temporal arrangement of implicit learning and
intuitions, H2 includes the prediction that individual differences in
implicit learning will be associated with variability in the formation of
intuitions. Results consistent with both H1 and H2 would provide the
strongest support for the formation of intuitions based on implicit
learning. Additional hypotheses concerned the relationship between
intuitions and explicit knowledge — specifically, that intuitions emerge
prior to explicit knowledge (H3), and that better intuitions (i.e., faster,
more accurate) lead to better explicit knowledge (H4). Additional
exploratory analyses examined the effects of explicit knowledge on
sequence learning (i.e., differences in RT for pattern and random con-
ditions over time). The hypotheses, methods, and analytic framework
for the present study were preregistered on the Open Science Framework
prior to data collection (https://osf.io/4pjmz).

2. Method
2.1. Participants

One hundred and sixty-six participants completed the study online
through Prolific. The validity of online data collection has become an
important topic of inquiry in behavioral science, and recent evidence
indicates that Prolific offers higher quality data (e.g., based on partici-
pant attention and honesty) and a more diverse participant pool
compared to alternative online research platforms, such as Amazon
Mechanical Turk (Palan & Schitter, 2018; Peer, Brandimarte, Samat, &
Acquisti, 2017). The experiment was designed with Gorilla (https://go
rilla.sc/),an online behavioral experiment builder that allows for accu-
rate recording of participant RT (Anwyl-Irvine, Massonnié, Flitton,
Kirkham, & Evershed, 2019). Participants provided informed consent,
and all study procedures were approved by the Georgetown University
IRB. Participants were paid $7.50. Following careful quality control of
participant data (see Supplementary Information), the final sample
consisted of 121 participants (Mg = 28.45, SD = 8.92; 58.58% male,
40.50% female), in line with a priori power considerations.

An additional group of participants (“confirmatory sample”) were
also recruited online through Prolific to directly investigate the temporal
relationship between intuitions and explicit knowledge. That is, do in-
tuitions precede explicit knowledge? Study procedures for this sample
(N = 42, Mgg = 25.42, SD = 8.31; 76.19% male, 23.81% female, see
Supplementary Information) are described at the end of the Method
section.

2.2. Serial reaction time task

Participants completed a modified version of the deterministic Serial
Reaction Time Task (SRTT), a widely-used implicit learning paradigm.
In the present version of the SRTT, target circles (henceforth referred to
as “targets”) appeared in one of four positions arrayed horizontally
onscreen (Fig. 1). Each target corresponded to a specific key on the
keyboard. Participants were instructed on the target-key mappings, and
were told to press the appropriate key as accurately and quickly as
possible when each target appeared onscreen. The defining feature of
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Fig. 1. Serial reaction time task. Participants indicated target locations by
pressing the corresponding key. For example, a target in the left most location
was associated with the “D” key (Position 1). During the uninstructed learning
phase, pattern blocks consisted of a 10-target repeating pattern (repeated 10x),
comprised of three first-order structures (orange bar) and two second order
structures (purple bar). During the instructed learning phase, participants
completed three 10-target pattern blocks and two 15-target pattern blocks,
which also consisted of first-order (orange bar) and second-order (purple bar)
structures. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

the SRTT is that, at various times during the task, the targets appear in a
repeating pattern and, at other times, appear randomly. Patterns are
designed to elude explicit awareness — at least initially — and implicit
learning is operationalized as the difference in responding (based on RT)
on pattern and random sections of the task to differentiate changes in RT
based on implicit learning from those based on confounding influences.

Notably, some participants may consciously search for embedded
patterns during the SRTT, regardless of whether they are instructed to do
so. The literature is somewhat mixed with respect to the effect of explicit
search during the deterministic SRTT, although a reasonably well-
replicated collection of studies have demonstrated that searching does
not lead to faster responding and may actually harm performance
(Fletcher et al., 2005; Howard & Howard, 2001; Reber, 2013).
Regardless of whether searching is ameliorative or deleterious, the op-
portunities for — and effect of — explicit search on the SRTT can be
mitigated by shortening the response-stimulus-interval (RSI), the delay
between when a participant makes a correct key press and the presen-
tation of the subsequent target. While early versions of the SRTT had an
RSI of approximately 250 ms (Destrebecqz & Cleeremans, 2001; Nissen
& Bullemer, 1987), the next target in the present study appeared
immediately after participants pressed the corresponding key. This so-
called “no-RSI” version of the SRTT significantly reduces the extent to
which participants can search for patterns because the next target ap-
pears immediately after a correct button-press, thereby eliminating the
opportunity for participants to use the inter-stimulus-interval to antici-
pate the next target and explicitly learn the pattern structure (Destre-
becqz & Cleeremans, 2001).

After receiving task instructions, participants completed a 44-target
practice block in which the targets appeared randomly. They then
advanced through two phases of the SRTT (described below; Fig. 2). The
entire SRTT paradigm is freely available for use at: https://app.gorilla.
sc/openmaterials/268426.

2.2.1. Phase 1: Uninstructed learning phase
Following practice, participants performed the “uninstructed
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learning” phase of the experiment, which consisted of four 100-target
blocks (2 pattern, 2 random), with order counterbalanced. The two
pattern blocks each contained a distinct 10-target repeating pattern,
which consisted of three first-order structures and two second-order
triplets. (Fig. 1). First and second-order structures are consecutive tar-
gets that occur at a high frequency over the course of a block. The
appearance of the first target of a structure (e.g., Position 1 in the 10-
target pattern in Fig. 1) is associated with greater likelihood of an
ensuing target (e.g., Position 4 appears following Position 1 75% of the
time). Implicit learning, therefore, is likely to depend on participants’
ability to detect these reccurring structures (Song, Howard, & Howard,
2007, 2008). Random blocks did not include regular repetitions (see SI
for more information about creation of random blocks). Notably, the
uninstructed learning phase was completed before participants received
information about the possible presence of patterns. Learning during
this phase was therefore likely to be less influenced by top-down pro-
cesses compared to the instructed learning blocks.

2.2.2. Phase 2: Instructed learning phase

Following completion of the uninstructed learning phase, partici-
pants were informed that the targets may appear in a pattern and that at
other times the targets would appear randomly. Additional text indi-
cated that, at different points during the task, they may develop in-
tuitions (“you may have a sense that [there might be a pattern/dots
might be appearing randomly] but may not be sure why you feel that
way”) and explicit knowledge (“clear knowledge that the dots [are
following a pattern/appearing randomly]”). Participants were instruc-
ted to self-report the precise moment at which they developed an intu-
ition and/or explicit knowledge by pressing a “stop key” (“Y” on the
keyboard). Upon making a self-report, participants were immediately
directed to a separate screen to indicate (1) whether they had an intu-
ition or explicit knowledge and (2) whether they were reporting a
pattern or randomness. If they reported explicit knowledge of a pattern,
participants were asked to reproduce it. After providing this informa-
tion, participants were redirected back to the same block and were
permitted to stop the block again at any point. Participants could report
explicit knowledge prior to reporting an intuition, thus allowing for an
empirical assessment of whether intuitions emerged before explicit
knowledge. The instructed learning phase consisted of 10 blocks (5
pattern, 5 random) with 105 targets each. Pattern blocks were distinct
from the pattern blocks in the uninstructed phase. All blocks ended after
the 105th target.

We were interested in both timing and accuracy of self-reports. Self-
report timing (i.e., when a participant indicated an intuition or explicit
knowledge) was scored based on the target number in the block when

Cognition 222 (2022) 105008

Fig. 2. SRTT study design. Participants completed 4
uninstructed learning blocks (Left; order counterbalanced)
before receiving additional instructions. The instructed
learning phase of the study (Right) consisted of 10 blocks
(also counterbalanced), during which participants were
tasked with making self-reports to indicate intuitions and/
or explicit knowledge. After a self-report, participants
returned to the learning block. Each block ended after the
105th target, regardless of the number of self-reports
made.

[ Repeatio|

the report was made, such that lower values indicated an earlier report.
For example, a participant who reported an intuition on the 30th target
and explicit knowledge on the 80th target would have timing scores of
30 for intuition and 80 for explicit knowledge for that block. Timing
information was averaged across all the blocks, resulting in an average
timing score for intuitions and an average timing score for explicit
knowledge for each participant. Self-report accuracy (i.e., whether a
participant’s report of a pattern or randomness was correct) was scored
using a discriminability index, in which correct responses were coded as
1 (i.e., participant self-reported a pattern during a pattern block, or
random during a random block), incorrect responses as —1 (i.e.,
participant self-reported a pattern block as being random, or vice-versa),
and no-response as 0 (i.e., a block in which a self-report was not made).
Separate average accuracy indices were obtained for intuitions and
explicit knowledge for each participant (see SI for more detailed scoring
information on self-report timing and accuracy).

Finally, following an explicit report of a pattern, participants were
asked to reproduce the pattern (henceforth, “pattern recall”). Pattern
recall was scored in accordance with prior work on explicit recall for the
SRTT (Willingham & Dumas, 1997). Specifically, pattern recall was
based on the reported number of correct, contiguous elements of the
repeating pattern, starting/ending anywhere within the repeating
pattern. For example, in the case of the 10-target pattern in Fig. 1, a
participant who entered the pattern “1-4-2-3-2-1-3-1” would have
received a score of 6, because “1-4-2” and “1-3-1” are both included in
the sequence (note that at least 3 continuous targets are required, so
“2-1” is not scored; Willingham & Dumas, 1997). Similarly, a partici-
pant who entered “3-1-4-2-1-4” would have a score of 6 as well. Scores
for all five patterns were summed for an overall pattern recall score.

2.3. Analytic strategy

Implicit learning was measured using mixed effects models, consis-
tent with recent work on sequence learning (Kahn, Karuza, Vettel, &
Bassett, 2018; Karuza, Kahn, & Bassett, 2019). Mixed effects models can
account for within and between subject effects, and are appropriate
when several repeated measurements (Level 1) are nested within a
higher level of data (Level 2; Goldstein, 2011; Longford, 1995). In the
present study, target-level information (e.g., target number within the
block, block condition) were modeled as Level 1 variables, nested within
each participant; Level 2). All mixed effects models (described in detail
below) were fit via maximum likelihood and unstructured variances and
covariances, using the mixed command in STATA 15 (Stata, 2017).
Significance tests were two-sided. Because learning during the unin-
structed and instructed blocks were performed under different task
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demands, we performed separate mixed effects models for these two
phases of the experiment. Detailed model information can be found in
Supplementary Information.

2.3.1. Uninstructed learning phase

Implicit learning during the uninstructed learning phase was calcu-
lated by fitting a mixed effects model in which RT (for each individual
target) was positioned as the dependent variable, with the following
Level 1 independent variables: target number (i.e., 1 to 100), block
condition (pattern or random), and corresponding button (D, F, J, K).
Crucially, all models also included a Target Number X Block Condition
interaction term, which indicated the extent to which learning rate
(based on changes in RT over the course of the block) varied as a
function of block condition. That is, the interaction term provided an
estimate of implicit learning. Note that RT differences in Block Condi-
tion alone (i.e., without an interaction with Target Number) reflect
differences in the average RT between the two conditions and do not
account for how the RT discrepancy changes as individuals advance
through each block. Because we anticipated that participants would
become faster on the pattern blocks over time (i.e., RT decrease with
successive targets), we modeled implicit learning by calculating the
extent to which the change in RT over time differed between block
conditions (i.e., a Target Number X Block Condition interaction).The
first 10 targets for each block were excluded to allow for a brief famil-
iarization. We also excluded all targets with an RT > 1000 ms or RT <
200 ms as well as those for which a participant made an incorrect button
press.

2.3.2. Instructed learning phase

We fit three different mixed effects models for the instructed learning
phase to test different hypotheses about implicit learning, intuitions, and
explicit knowledge. In addition to what is described below, all instructed
learning phase models included an additional covariate regressor — “Lag
Time” - to control for any aberrant delays between when a participant
made a correct button-press and the appearance of the next target (see
Supplementary Information for more discussion of this variable).

2.3.2.1. Instructed implicit learning. Instructed implicit learning was
investigated by constraining the analyses to targets prior to the first self-
report in each block because responding after a self-report was no longer
“fully” implicit (i.e., because the participant indicated an intuition or
explicit knowledge). A Target Number X Block Condition interaction
term was again used to measure implicit learning. In order to partially
control for implicit learning differences based on the number of Level 1
data points (e.g., a participant who made a self-report on the 30th target
would have fewer Level 1 data points compared with a participant who
self-reported on the 60th target), the model also included an additional
Level 1 covariate that indicated, for each participant at each block, how
many targets were presented before the first self-report.

2.3.2.2. Self-report effect on sequence learning. A second mixed effects
model examined the extent to which the first self-report influenced
sequence learning (i.e., differences in RT for pattern and random con-
ditions over time) during the SRTT. In other words, does sequence
learning improve with greater explicit awareness? Note that for this
model we refer to “sequence learning” rather than “implicit learning”
because we are examining RT differences between pattern and random
blocks after a self-report was made (i.e., when learning was no longer
implicit). This question was explored using an additional three-way
interaction term — Target Number X Block Condition X Self-Report —
that indicated the extent to which learning rate (i.e., Target Number X
Block Condition) changed following a self-report.

2.3.2.3. Differences in implicit learning based on intuition accuracy. A
third mixed effects model investigated the relationship between implicit
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learning and intuitions (i.e., H2). Here, we constrained analyses to
before the first intuition self-report for each participant at each block (i.
e., while learning was still implicit). A Level 1 dummy variable — Intu-
ition Accuracy — coded each Level 1 data point based on whether the
participant self-reported a correct or incorrect intuition for each block
(blocks for which a participant did not make a self-report were excluded
from this model). This variable was then used in an additional three-way
interaction (Target Number X Block Condition X Self-Report Accuracy),
with the coefficient of this interaction term reflecting the extent to
which implicit learning (i.e., Target Number X Block Condition) varied
based on intuition accuracy. In this case, a significant effect would
indicate differences in implicit learning based on intuition accuracy.

2.4. Confirmatory sample procedures

One of the primary research questions of the present study concerned
the temporal relationship between intuitions and explicit knowledge.
Said simply, do intuitions develop before explicit knowledge? Although
participants in the main sample were provided with specific definitions
for these two terms, it is plausible that participants may have entered the
study with preconceived definitions about explicit knowledge and/or
intuition. That is, they may have inferred or assumed that intuitions
come first.

A small confirmatory sample was recruited in order to rule out this
alternative explanation. For this sample, half of the participants received
instructions for how to report intuitions while the other half were
instructed on how to report explicit knowledge. In other words, partic-
ipants were made aware of — and asked to indicate — only one type of
knowledge. At the midway point of the study, participants received in-
structions on how to report the alternative type of knowledge (e.g.,
participants who were first asked to report intuitions received in-
structions on reporting explicit knowledge). This design allowed us to
examine differences using both a within subject (i.e., comparing timing
of judgements for intuitions and explicit knowledge) and between-
subject design (examining timing differences based on task instruction
during the first half of the instructed learning phase).

3. Results

3.1. Confirmatory sample: temporal relationship of intuitions and explicit
knowledge

We hypothesized that intuitions precede explicit knowledge (H3).
Results from the confirmatory sample were consistent with this hy-
pothesis. A paired samples t-test indicated a significant within-subject
effect, such that participants reported intuitions (MTarger = 51.39, SD
= 22.02, 95% CI [44.53-58.25]) earlier than explicit knowledge
(Mrtarget = 67.88, SD = 22.588, 95% CI [60.84-74.91]; t(41) = —5.14, p
< 0.0001). Similarly, a two-sample t-test with unequal variances
revealed a significant between-subject effect of instruction type (t
(39.96) = 2.70, p = 0.01), demonstrating that participants told to self-
report intuitions (Mrarger = 50.34, SD = 23.41, 95% CI [40.49-60.26])
did so earlier than those told to self-report explicit knowledge (Mrarget =
67.64, SD =17.97,95% CI [58.70-76.68]). Taken together, results from
this sample are in line with the hypothesized temporal relationship of
intuitions and explicit knowledge (i.e., intuitions come first). Further,
these results argue against the interpretation that differences in intuition
and explicit knowledge timing in the main sample would stem from
participants’ pre-existing beliefs about intuitions and explicit
knowledge.

3.2. Uninstructed implicit learning
All participants performed an uninstructed learning phase of the

SRTT in which they completed four 100-target blocks, of which two
contained a unique 10-target repeating pattern. Learning rates for



A.B. Weinberger and A.E. Green

pattern and random blocks are displayed in Fig. 3A. Results indicated
clear evidence of implicit learning; we observed a significant Target
Number X Block Condition interaction (estimated effect: 0.45, z = 8.94,
p < 0.001; Table 1), such that participants responded increasingly fast
during the pattern blocks relative to the random blocks (see SI for
learning rates using accuracy data). Participant-level estimates for im-
plicit learning were retained for use in subsequent analyses. Finally,
split-half analysis was performed to test the reliability of uninstructed
implicit learning. Specifically, we ran two separate mixed models, with
each model including only half of the total targets (randomly selected).
Participant-level implicit learning estimates obtained from these two
models were strongly correlated with uninstructed implicit learning
calculated from the full set of targets (both r > 0.74, p < 0.0001) and
with each other (r = 0.46, p < 0.0001), indicating good reliability.

3.3. Instructed implicit learning

After completing the uninstructed learning phase, participants were
informed that, at different points during the remainder of the task (i.e.,
the instructed learning phase), the targets would appear in a complex
pattern. Additionally, they were asked to self-report when they devel-
oped intuitions and/or explicit knowledge. Consistent with findings
from the small confirmatory sample, paired t-tests revealed that par-
ticipants reported intuitions (Mrarger = 65.27, SD = 19.10, 95% CI
[61.84-68.71]) earlier than explicit knowledge (Mrarger = 86.94, SD =
13.70, 95% CI [84.48-89.40]; t(120) = —11.03, p < 0.0001; see SI for
distribution of these variables). Thus, as hypothesized (H3), intuitions
preceded explicit knowledge. Self-report accuracy was also greater than
chance (0) for both intuitions (Miygex = 0.24, SD = 0.29, 95% CI
[0.19-0.29]; t(120) = 9.41, p < 0.0001) and explicit knowledge (Mindex
=0.21, SD =0.23, 95% CI [0.17-0.25]; t(120) = 10.16, p < 0.0001; SI),
indicating that participants were able to accurately assess their own
awareness of block structure.

To investigate instructed implicit learning, we restricted our analyses
to the targets for each block that occurred prior to the first self-report.
For example, if a participant made a self-report on the 30th target of a
given block, we examined targets 1-29 for that block for that partici-
pant. Analyses were further constrained to include only blocks for which
a participant made a self-report.

A mixed effects model revealed that, even with the additional in-
structions that preceded the instructed phase of the SRTT, participants
were able to implicitly learn the patterned structure (Fig. 3B). That is,
we observed a significant Target Number X Block Condition interaction
before participants made a self-report (estimated effect = 0.30, z = 3.56,
p < 0.001; Table 2). To test the reliability of instructed implicit learning,
we conducted another split-half analysis, which revealed excellent
reliability (associations between each “split-half” implicit learning es-
timate and full model estimate: both r > 0.93, p < 0 0.0001; correlations
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Table 1
Mixed effects model for implicit learning during uninstructed learning phase
(fixed effects).

Reaction Time Estimate Std. z p 95% Conf.
Err. Interval

Target Number —0.03 0.04 —0.78 0.435 —0.11 0.05
Block Condition
Randome 9.00 1.70 5.29 <0.001 5.67 12.33
IL: Target Number

X Block

Condition

Random 0.45 0.05 8.94 <0.001 0.35 0.55
Button

F 40.28 1.41 28.54  <0.001 37.52 43.05

J 32.56 1.91 17.01 <0.001 28.81 36.31

K —-8.83 2.48 -3.56 <0.001 -13.70 -3.96
Intercept 463.26 7.20 64.33  <0.001  449.14  477.38

Note: { effect for patterned blocks, %+ effect at Target Number 45.5; IL = implicit
learning.

Table 2
Mixed effects model for implicit learning during instructed learning phase (fixed
effects).

Reaction Time Estimate Std. z P 95% Conf. Interval
Err.

Target Number 0.83 0.04 2043 <0001 075 0.91
Block Condition

Random < 9.89 1.80 5.49 <0.001 6.37 13.43
IL: Target

Number X

Block

Condition

Random 0.30 0.08 3.56 <0.001 0.13 0.46
Button

28.75 1.54 18.62 <0.001 25.72 31.78

J 1.79 1.52 1.17 0.241 -1.20 4.78

K —13.44 1.53 —8.80 <0.001 —16.44 —10.45
Lag Time 4.87 1.67 2.92 0.003 1.60 8.14
Number of —043 004 -11.95 <0001 -050  —0.36

Targets
Intercept 452.36 28.10 16.10 <0.001 397.30 507.43

Note: 1 effect for patterned blocks; < effect at Target Number 53; IL = implicit
learning.

across halves: r = 0.75, p < 0.0001).

It is worth noting, however, that participants displayed a small in-
crease in RT for patterned blocks (estimated increase of 0.83 ms at each
target), but this increase was significantly less than the increase
observed on random blocks (i.e., as indicated by the significant inter-
action). This may be due to the increased pattern complexity during the

Fig. 3. Implicit learning during uninstructed and
instructed blocks. Trajectories reflect average RT
for the whole sample, smoothed with a 10-window
sliding mean. (A) Implicit learning during the unin-
structed blocks. (B) Implicit learning (i.e., before first
self-report) during the instructed blocks. Differences
in learning rate between patterned and random
blocks significant for both (p < 0.001). Despite dif-
ferences in RT trajectories, visual inspection indicates
similar RT drop-off for patterned blocks around
midpoint of learning period.

15 25 35 45 55 65 75 85 95
Target Number

Pattern =— Random

15 25 35 45 55 65 75 85 95
Target Number
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instructed learning phase or top-down influences — indeed, the overall
increase in RT is greater during the instructed learning phase compared
with the uninstructed phase (Fig. 3). Another explanation may be that
implicit learning was calculated from comparatively fewer targets
relative to the uninstructed learning phase (i.e., because participants
stopped the block to report knowledge), and with more time on the
instructed learning blocks, participants may have become even faster to
respond to patterns. Consistent with this interpretation, we found a
significant main effect of Number of Targets, such that participants who
responded to more targets prior to making a self-report were faster
(estimated effect = —0.43, z = —11.95, p < 0.001; Table 2). Finally, the
greatest “noise” in RT — for both blocks conditions — occurred towards
the end of the uninstructed learning phase (approximately around
Target 80 and then again around Target 95; Fig. 3). Given the mean
report time of intuitions (Mrarger = 65.27; as described above), these RT
spikes were based only on the data from the small number of partici-
pants who self-reported well after the average for the sample (because
we only considered RT before a response was made).

Lastly, a paired t-test to compare participant-level estimates of im-
plicit learning during the instructed and uninstructed phases of the study
indicated that implicit learning was greater during the uninstructed
phase (t(120) = 2.47, p = 0.02, 95% CI[0.03-0.28]), consistent with
previous findings that searching for a pattern during the deterministic
SRTT (which, presumably, occurred during the instructed phase) im-
pedes implicit learning. Implicit learning was uncorrelated across the
two phases (r = —0.03, p = 0.77), with Bayesian analyses (performed in
JASP; Love et al., 2019) indicating the null hypothesis was 8.12 times
more likely in this case (BFp; = 8.12).

3.4. Association between implicit learning and intuitions

3.4.1. Uninstructed implicit learning

We hypothesized that stronger implicit learners would have more
accurate intuitions (H2). Given recent work demonstrating implicit
learning stability across different contexts (Kalra et al., 2019), we first
asked whether uninstructed implicit learning was correlated with accu-
racy and timing of intuitions in the instructed phase. To be clear, this
question concerned whether implicit learning with one set of stimuli (i.
e., uninstructed phase) was correlated with the development of in-
tuitions on a separate set of implicitly-learned stimuli (instructed phase).
We did not find any evidence in favor of this association (Table 3); better
implicit learning in the uninstructed phase was unassociated with
intuition timing (r = 0.16, p = 0.07, BFy; = 1.83) or accuracy (r = —0.09,
p = 0.32, BFp; = 5.43).

3.4.2. Instructed implicit learning

We next fit another mixed effects model to more directly test the
hypothesis that intuitions develop from implicit learning (H1). Further,
we investigated whether stronger implicit learning was associated with
more accurate intuitions (H2). Here, we focused specifically on learning
during the instructed learning phase before the first self-reported intu-
ition for each participant in each block (i.e., when learning was still
implicit), and used a 3-way Target Number X Block Condition X Intui-
tion Accuracy interaction to estimate the extent to which implicit

Table 3
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learning differed based on intuition accuracy, with a significant (and
negative) coefficient indicating that stronger implicit learning preceded
correct intuitions (relative to incorrect intuitions).

Results from this model revealed that both correct and incorrect
intuitions were preceded by implicit learning (Fig. 4B). Thus, consistent
with our hypothesis (H1), intuitions were temporally preceded by im-
plicit learning. However, results did not support the hypothesis (H2)
that better implicit learning leads to more accurate intuitions. That is,
accurate intuitions (relative to inaccurate intuitions) were not preceded
by stronger implicit learning (Target X Block Condition X Intuition Ac-
curacy estimated effect = 0.19, z = 1.47, p = 0.14, BFy; = 1.14; Fig. 4,
Table S5). Therefore, although implicit learning occurred before par-
ticipants reported an intuition, it is unclear the extent to which the
implicit learning process influenced the formation of intuitions.

3.5. Relationship between intuitions and explicit knowledge

Having established that intuitions developed prior to explicit
knowledge, we next examined whether accuracy and/or timing of in-
tuitions were associated with explicit knowledge (H4). First, we
observed a positive, weak correlation between timing of intuitions and
timing of explicit knowledge (r = 0.16, p = 0.08, BFy; = 1.83; Table 3).
Further, intuition timing was significantly correlated with accuracy of
explicit self-reports (i.e., correctly identifying the block structure as
either pattern or random; r = —0.26, p = 0.004). Thus, participants who
reported earlier intuitions also reported earlier — and more accurate —
explicit knowledge.

In cases in which a participant self-reported explicit knowledge of a
pattern, they were asked to type the pattern on the keyboard. We found
that pattern recall was significantly correlated with intuition timing
(earlier intuitions associated with better pattern recall; r = —0.31, p =
0.0005) and intuition accuracy (r = 0.19, p = 0.03). Taken together,
these results suggest that the timing and quality of intuitions are asso-
ciated with explicit knowledge.

3.6. Self-report effect on sequence learning

Lastly, we explored whether obtaining more consciously-accessible
knowledge influenced sequence learning. In other words, did partici-
pants respond increasingly fast on pattern blocks (relative to random)
after reporting sequence knowledge? This question was investigated by
fitting a mixed effects model with a Target Number X Block Condition X
Self-Report interaction term. Results from this model (Table S4),
revealed a significant three-way interaction (estimated effect = —0.17, z
= —2.08, p = 0.038), with greater sequence learning (i.e., difference in
learning rate for pattern and random blocks) after a self-report (Fig. 4A).
This result is in line with prior literature demonstrating superior
sequence learning with more explicit awareness.

4. Discussion
The present study investigated the development of intuitions and

explicit knowledge during an implicit learning paradigm. Theoretical
accounts of human information processing indicate implicit learning as

Correlations between uninstructed implicit learning, intuitions, and explicit knowledge.

Uninstructed IL Intuition Timing

Intuition Accuracy Explicit Timing Explicit Accuracy

Intuition Timing 0.16 -
Intuition Accuracy —0.09 —0.30%**
Explicit Timing —0.04 0.16
Explicit Accuracy —0.01 —0.26%*
Pattern Recall —0.04 _0.31%*

0.14 -
0.28+* —0.42%%* -
0.19* —0.40%% 0.63%++

Note: “Intuition Accuracy” and “Explicitly Accuracy” are based on participants’ self-report of pattern structure (see “Method: Phase 2 Instructed Learning Phase”; SI)
for a given block. “Pattern Recall” refers to report the number of correct elements of the pattern reported *; p < 0.05; **p < 0.01; ***p < 0.001, uncorrected.
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Fig. 4. Differences in learning rates. (A) Sequence learning was greater after making a self-report (see mixed effects model; SI). (B) No differences in instructed
implicit learning for correct and incorrect intuitions. Note: ** indicates significant estimated effect in mixed effects model at p < 0.001; 95% CI indicated.

a basis of intuition (Bowers et al., 1990; Epstein, 2010; Hodgkinson
et al., 2008; Lieberman, 2000; Reber, 1989; Shirley & Langan-Fox,
1996), and intuition as a precursor to explicit knowledge (Greenwald
etal., 2002; Kahneman, 2003). Our results supported some, but not all of
this conceptual framework. Consistent with our first hypothesis, we
found that intuitions were temporally preceded by implicit learning
(H1). However, results did not support our second hypothesis that
stronger implicit learners provide more accurate intuitions (H2). Thus,
our findings cannot shed light on the bases of individual differences in
intuition accuracy (i.e., since they do not appear to stem from differ-
ences in implicit learning). Our results do, however, demonstrate that
intuitions may be a basis for individual differences in explicit knowl-
edge. We found that participants indicated intuitions prior to explicit
knowledge (H3), and that better/earlier intuitions were associated with
to more explicit knowledge (H4).

A number of theoretical models highlight the role of intuitions in the
process by which implicitly-learned information becomes explicit
(Epstein, 2010; Kahneman, 2003; Reber, 1989, 1992). Despite the
prominence of intuition-based theories of human cognition, we are un-
aware of any work that has empirically demonstrated that intuitions are
preceded by implicit learning, or that intuitions emerge before — and are
associated with - later explicit knowledge. The present findings lend
some support to these accounts. First, intuitions emerged after a period
of implicit learning. Second, participants who reported earlier intuitions
made more accurate explicit reports and, perhaps most notably, were
able to recall more pattern elements.

By contrast, results did not support our hypothesis that stronger
implicit learners would achieve faster or more accurate intuitions (H2),
which challenges prior suggestions that implicit learning is a basis for
intuitions or “tacit knowledge” (Reber, 1989).We investigated this hy-
pothesis in two ways. First, given recent work demonstrating some
consistency in implicit learning across different experimental paradigms
(Kalra et al., 2019), we correlated intuition timing and discriminability
with participant-level estimates of uninstructed implicit learning. In this
way, we asked whether implicit learning of one set of stimuli (i.e., the
uninstructed phase) was associated with the development of intuitions
in a second set of stimuli (the instructed phase). No such association was
identified, and results revealed a trending association for uninstructed
implicit learning and intuition timing in the opposite direction (i.e.,
higher uninstructed implicit learning associated with later intuitions).
However, because uninstructed and instructed implicit learning were
not correlated in the present study, these null results are somewhat
unsurprising.

On the other hand, we were surprised to find that differences in
instructed implicit learning were also unrelated to intuition accuracy,
particularly because intuitions were temporally preceded by implicit
learning. That is, when analyses were constrained to the period of time
before self-reports, we still observed clear evidence of implicit learning
(i.e., faster responding on the pattern blocks). Had we failed to observe
implicit learning before participants made a self-report, one could sim-
ply conclude that implicit learning did not occur during the instructed
learning phase and, thus, there would be no reason to observe an asso-
ciation between pre-report sequence learning and accuracy of the
report. Therefore, because implicit learning did occur, it remains an
open question as to what mechanism is responsible for variability in the
development of intuitions (i.e., since differences in learning rate did not
account for this variability within our data set). Parallel, dissociable
development of implicit and explicit knowledge during deterministic
implicit learning tasks has been well-document (e.g., Gabrieli, 1998;
Nissen & Bullemer, 1987; Willingham, 2001; Willingham & Goedert-
Eschmann, 1999; Willingham, Salidis, & Gabrieli, 2002). Given the
present finding that intuitions and explicit knowledge are closely related
to each other (i.e., better intuitions were associated with better explicit
knowledge) but not with implicit learning, it may be more appropriate
to consider intuitions as “partial” explicit knowledge rather than stem-
ming from implicit learning. Since implicit and explicit knowledge can
develop independently and in parallel, it would therefore not necessarily
be the case that variability in implicit learning is associated with vari-
ability in intuitions (when considered as partial explicit knowledge).

Alternatively, it is possible that better implicit learners do form faster
or more accurate intuitions, but that task demands of the present study —
specifically, top-down search during the instructed learning phase —
obscured this association. There is growing evidence that explicit search
can influence implicit learning on deterministic versions of the SRTT
(Fletcher et al., 2005; Howard & Howard, 2001; Reber, 2013), and that
obtaining explicit knowledge further influences responding (Esser &
Haider, 2017; Haider et al., 2011; Haider & Rose, 2007). However, in
devising the present study, we accepted the potential for a certain
amount of top-down influence during the instructed learning phase
because “real world” implicit learning is often accompanied by a host of
additional external factors (Aru & Bachmann, 2017; Aslin & Newport,
2012; Ellis, 1994, Ellis, 2009; Overgaard, 2018; Robinson, 1997; Rose
et al., 2010; Sun et al., 2005). We do not assume that the instructed
learning phase involved no additional top-down search — indeed our
findings indicate that top-down search likely did occur because learning
was greater during the uninstructed learning phase. As it relates to the
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development of intuitions, however, it is plausible that cognitive de-
mands associated with requiring participants to report multiple kinds of
knowledge influenced working memory and/or attention in unintended
ways, and that this increased load impacted implicit learning perfor-
mance (as well as subsequent self-reports). Prior work has demonstrated
correlations between working memory and intentional/explicit
sequence learning (Bo, Borza, & Seidler, 2009; Bo, Jennett, & Seidler,
2012), putatively because working memory resources are required to
direct attention and cognitive control (Janacsek & Nemeth, 2013;
Kaufman et al., 2010). The influence of working memory on undirected
implicit learning is less clear, but appears to be comparatively less than
during intentional learning (Janacsek & Nemeth, 2013, 2014; Martini,
Sachse, Furtner, & Gaschler, 2015). Therefore, working memory ca-
pacity may have influenced sequence learning during the instructed
learning phase of the present study, such that individuals higher in
working memory demonstrated superior learning. This increased influ-
ence of working memory may have interfered with a putative associa-
tion between implicit learning and intuitions.

Since the results of the present study provide reasonably clear evi-
dence that intuitions precede — and are associated with — explicit
knowledge, future studies should ask participants to report only one
kind of knowledge (i.e., intuitions). Such a paradigm would minimize
the burden on working memory (compared to the present study),
thereby reducing the potential influence of working memory demand on
learning rates and intuitions. This simplified system of self-report would
ideally be paired with the ASRT, which contains probabilistic, rather
than deterministic, pattern sequences. Learning during the ASRT has
been reliably shown to remain implicit (e.g., Gamble, Lee, Howard, &
Howard, 2014; Howard Jr & Howard, 1997; Kaufman et al., 2010; Kébor
et al., 2021) and may be less influenced by working memory demands
related to explicit search (Janacsek & Nemeth, 2013, 2014; Martini
et al., 2015). As discussed above, we used the classical SRTT because we
wanted to allow participants the opportunity to obtain explicit aware-
ness. That is, our primary questions of interest concerned what factors
predict how quickly and accurately participants become aware of the
pattern in the SRTT (e.g., Do participants form intuitions before devel-
oping explicit knowledge? Do better/faster sequence learners report
intuitions earlier?). Given evidence provided by the present study that
intuitions precede — and predict the quality of — explicit knowledge,
subsequent work using the ASRT should focus more specifically on the
first part of the pathway: how does implicit learning relate to intuitions
(if at all)?

Our findings should also be considered alongside other theoretical
frameworks of human cognition. Dual-system accounts indicate that
implicit and explicit processes are driven by different inputs and have
different functions, but they are nonetheless interlinked in their opera-
tion (Evans, 2003; Kahneman, 2003; St. Evans, 2008). According to
these perspectives, however, some sort of additional step is needed in
order to allow information initially processed in one system to be
accessed by the other. For example, the Unexpected Event Hypothesis
(Esser & Haider, 2017; Frensch & Riinger, 2003; Haider & Frensch,
2005; Riinger & Frensch, 2008), drawing in part from error-prediction
learning models (Clark, 2013; Rescorla & Wagner, 1972), suggests
that explicit knowledge develops from implicit learning when one gains
some sort of meta-awareness, often through a consciously-perceivable
change in behavior. In the case of the present study, the emergence of
an intuition may have functioned in this sort of role; participants
intuited block structure (i.e., pattern or random), and then used that
intuition to develop more conscious knowledge. In other words, par-
ticipants gained a meta-awareness of their own intuition, allowing them
to explicitly attend to and identify the block structure. It should be
noted, however, that none of these explanations necessitate that implicit
learning leads directly to intuitions. Rather, intuitions may develop in
parallel.

Alternatively, our findings may provide support for single-system
accounts of human cognition. According to such perspectives, implicit
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and explicit processes are not neurocognitively distinct, but instead
belong to a shared, graded system (Cleeremans, 2006; Cleeremans &
Jiménez, 2002; Destrebecqz & Cleeremans, 2003; Esser & Haider,
2017). Implicitly-acquired information enters explicit awareness if its
representation is strong, stable, and distinct (Cleeremans, 2006). Viewed
in the context of the present study, it is likely that the strength, stability,
and distinctness of participants’ representations increased as they
advanced through each learning block. That is, with greater exposure to
a specific block’s structure, participant were able to obtain more infor-
mation about its properties (i.e., pattern or random), particularly during
the instructed learning phase. When block structure remained implicit
(i.e., a participant did not make an accurate self-report), this may have
been because the learned information was not distinct, stable, or
appropriately integrated with other explicit content, rather than because
it had not “moved” from the implicit system to the explicit one. The
finding that participants who developed faster intuitions also had better
explicit knowledge indicates that participants acquired increasingly
more information about structure over the duration of a learning block
that, in many cases, culminated in explicit knowledge. It is plausible,
though somewhat speculative, that differences in learning rate were also
related to the extent to which a representation was explicit, although the
finding that learning rate preceding intuitions was unassociated with the
accuracy of the intuitions appears contrary to this interpretation.

Results from the present study also extend prior findings concerning
the effect of (1) explicit search and (2) explicit knowledge during the
deterministic SRTT. Mixed effects models indicated clear evidence of
implicit learning during both the uninstructed and instructed phases of
the task. Notably, prior to beginning the instructed (but not unin-
structed) learning phase, participants were informed that some blocks
may contain complex repeating patterns. They were also asked to indi-
cate when they developed intuitions and explicit knowledge. Prior work
has demonstrated that explicit searching — which presumably occurred
to a greater degree during the instructed phase — may impede implicit
learning by disrupting task elements that would otherwise facilitate
learning (for deterministic stimuli; Fletcher et al., 2005; Howard &
Howard, 2001; Reber, 2013). Our findings lend additional support for
this disruptive effect; implicit learning during the uninstructed phase
was significantly greater than implicit learning during the instructed
phase. This suggests that the additional top-down processes induced by
the instructions to report/search for block structure negatively influ-
enced implicit learning. Although searching may harm performance,
having explicit knowledge of the embedded pattern has been shown to
amplify RT differences between pattern and random blocks during the
deterministic SRTT (Esser & Haider, 2017; Haider et al., 2011; Haider &
Rose, 2007). Here, too, our findings support prior work. Mixed effects
models indicated a significant 3-way Target Number X Block Condition
X Self-Report interaction, with sequence learning (i.e., the difference
between pattern and random block RT over time) greater for targets
after a self-report. Thus, explicit search may disrupt implicit learning,
but once a learner reported more consciously-accessible knowledge (i.e.,
intuitive or explicit), sequence learning improved. In this way, more
accessible knowledge of the embedded sequence may have allowed
participants to better anticipate subsequent targets, particularly during
pattern blocks. A potential complementary explanation, though not
directly reflected by our data, is that, upon indicating knowledge, par-
ticipants reduced their explicit search (because of a belief that they had
identified the block structure). In other words, the improvement in
sequence learning could be an indirect consequence of reported
knowledge because learners “turned off”’ their deleterious searching.
Future research employing an ASRT-based paradigm, as described
above, could provide a worthwhile comparison for these results because
divided attention (e.g., searching) has been shown to have no influence
on probabilistic sequence learning (Horvath et al., 2020).

Recent initiatives in psychology have re-emphasized the inherent
value of introspection and self-report (Locke, 2009), and such ap-
proaches have been previously used within the context of the SRTT
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(Esser & Haider, 2018; Haider et al., 2011), although in a different
manner than in the present study. We see no reason to doubt the validity
of the self-report provided by participants. More materially, a number of
our findings indicate that participants were able to accurately assess
their own knowledge. First, the accuracy of both intuition and explicit
knowledge self-reports were significantly greater than chance. Addi-
tionally, the observed effect of the self-report on sequence learning (i.e.,
greater RT differences for pattern and random blocks following self-
report) further suggests that participants made a self-report only once
they obtained more accessible knowledge. Indeed, failure to observe this
effect would have been inconsistent with prior work on the benefits of
awareness during the SRTT (Esser & Haider, 2017; Haider et al., 2011;
Haider & Rose, 2007).

A limitation of the present study on the implementation level is that
data were obtained online. The validity of online data has become a
topic of increasing priority in psychology research (Allahbakhsh et al.,
2013; Buhrmester, Kwang, & Gosling, 2016; Palan & Schitter, 2018;
Smith, Roster, Golden, & Albaum, 2016). Although some recent findings
suggest superior data from in-person samples (Chmielewski & Kucker,
2020), differences can be mitigated with careful quality control and
attention checks that screen out inattentive participants (as was done in
the present study; Allahbakhsh et al., 2013; Chmielewski & Kucker,
2020; Thomas & Clifford, 2017). It is perhaps notable that analyses in
the present study examined millisecond-level RT information, and that
improper participant responding may have been difficult to identify at
this level of precision (e.g., as opposed to inappropriate answers to a
survey), although there is precedent for examining millisecond-level
differences in sequence learning with online samples (e.g., Kahn et al.,
2018; Karuza et al., 2019). Moreover, internet and computer speeds vary
widely across participants, and these factors may influence things like
loading speed and latency (although this is likely to vary primarily be-
tween - rather than within - participants). In addition to extensive data
quality control, mixed effects models also considered putative differ-
ences in computer speed by controlling for how quickly targets appeared
on screen for each participant (“Lag time”; see SI). Replicating the
present findings using an in-person sample would further demonstrate
the reliability of RT data collected online.

To conclude, the present study tested theoretical accounts of the
emergence of intuitions from implicit learning using a modified SRTT
paradigm. Findings indicated that intuitions were preceded by implicit
learning. Although we did not identify an association between implicit
learning and intuition accuracy, we found that accuracy and timing of
intuitions were correlated with later-reported explicit knowledge.
Together, these results suggest that, when individuals gain explicit
awareness of implicitly-learned information, the quality of such
awareness is related to the quality of the preceding intuitions. Future
efforts should be made to investigate whether individual differences in
implicit learning are responsible for subsequent variability in intuition
accuracy.
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