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Abstract. We define an action of words in [m]n on Rm to give a new char-
acterization of rational parking functions—they are exactly those words whose
action has a fixed point. We use this viewpoint to give a simple definition of
Gorsky, Mazin, and Vazirani’s zeta map on rational parking functions when
m and n are coprime [28], and prove that this zeta map is invertible. A
specialization recovers Loehr and Warrington’s sweep map on rational Dyck
paths [4, 60, 29].

1. Introduction

1.1. Parking Words. Let m and n be positive integers, not necessarily coprime.
Classical parking words have a well-known interpretation in the language of parking
cars. There are n parking places and n cars, each indexed from 0 to n−1. As in [40,
Section 6], car i has a preference for parking place pi, and cars attempt to park as
follows: for 0 ≤ i ≤ n− 1, car i takes the unoccupied parking place with the lowest
number larger than or equal to pi, should such a parking place exist. The classical
parking words PWn are defined as those words for which each car is able to park.

The 16 parking words in PW3 are given on the left side of Figure 1. Garsia in-
troduced a combinatorial interpretation of PWn as certain super-diagonal labelled
paths in an n×n square, which has served as the basis of many subsequent investi-
gations. Replacing the square by an m×n rectangle gives the (m,n)-parking words
PWn

m—those words

p = p0 · · · pn−1 ∈ [m]n := {0, 1, . . . ,m−1}n such that∣∣∣{j : pj < i
}∣∣∣ ≥ in

m
for 1 ≤ i ≤ m.

(1)

The classical parking words are recovered as PWn = PWn
n+1. The 25 parking

words in PW3
5 are illustrated on the right side of Figure 1.

000 001 002 011 012
010 020 101 021
100 200 110 102

120
201
210

000 001 002 003 011 012 013
010 020 030 101 021 031
100 200 300 110 201 301

210 310
120 130
102 103

Figure 1. Left: the 16 (4, 3)-parking words in PW3 (these are
also the (3, 3)-parking words). Right: the 25 (5, 3)-parking words
in PW3

5. Each column is an orbit under S3.
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1.2. A New Characterization of Parking Words. Our main result is a new
characterization of (m,n)-parking words as piecewise-linear functions from Rm to
Rm. This characterization is new even for classical parking words. Define

V m0 :=
{
x = (x0, . . . , xm−1) ∈ Rm :

m−1∑
i=0

xi = 0 and x0 ≤ x1 ≤ · · · ≤ xm−1
}
.

A letter i ∈ [m] acts on x ∈ V m0 by adding m to xi, subtracting the tuple 1m :=
(1, 1, . . . , 1), and then resorting. A word w ∈ [m]n acts on x ∈ V m0 by acting by
its letters from left to right. The following theorem distinguishes parking words in
[m]n by their action on V m0 .

Theorem 1.1. The action of w ∈ [m]n on V m0 has a fixed point if and only if w is
an (m,n)-parking word. More precisely, the action of w ∈ [m]n on V m0 :

• has a unique fixed point iff w ∈ PWn
m and gcd(m,n) = 1;

• has infinitely many fixed points iff w ∈ PWn
m and gcd(m,n) > 1; and

• has no fixed points iff w ∈ [m]n \ PWn
m.

The motivation for Theorem 1.1 comes from generalizations of the space of di-
agonal coinvariants and the zeta map on parking functions, as we now explain.

1.3. Coinvariants and the Symmetric Group. The Hilbert series for the space
of coinvariants is the generating function for two important statistics on the n!
permutations in Sn:

(2) Hilb
(
C[xn]/〈C[xn]Sn

+ 〉; q
)

=
∑
w∈Sn

qinv(w) =
∑
w∈Sn

qmaj(w),

where C[xn] is shorthand for a polynomial ring in n variables and 〈C[xn]Sn
+ 〉 is the

ideal of C[xn] generated by symmetric polynomials with no constant term.
Artin gave a basis for this space using the code of a permutation to reflect the

first generating function of Equation (2) [7], while Garsia and Stanton found a basis
using the descents of a permutation to explain the second [24].

A statistic with the same distribution as inv or maj is eponymously named ma-
honian [47], but Foata gave the first bijection sending one statistic to the other [20].
Exploiting the fact that this bijection preserves descents of the inverse permuta-
tion, Foata and Schützenberger later found an involution that interchanges inv and
maj [21].

1.4. Diagonal Coinvariants. The study of the space of diagonal coinvariants
originated with Garsia and Haiman; its relationship to parking words was first
suggested by Gessel [36, 23]. More precisely, Carlsson and Mellit’s recent proof of
the shuffle conjecture [33, 12, 35] implies the long-suspected fact that the bigraded
Hilbert series of the space of diagonal coinvariants is encoded as a positive sum over
the (n+1)n−1 parking words PWn [38, 34]:1

(3) Hilb
(
C[xn,yn]/〈C[xn,yn]Sn

+ 〉; q, t
)

=
∑

p∈PWn

qdinv(p)tarea(p),

where q records the degree of the variables xn, t the degree of yn, and area and
dinv are certain statistics on parking functions. Recently, Carlsson and Oblomkov
artfully merged the Artin and Garsia-Stanton bases to give an explicit basis of
the space of diagonal coinvariants [13], explaining the generating function in Equa-
tion (3).

1Carlsson and Mellit actually proved a stronger result, giving an explicit formula for the Frobe-
nius series for the space of diagonal coinvariants.
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It is known from Equation (3) that area and dinv are symmetric, i.e.,

(4)
∑

p∈PWn

qarea(p)tdinv(p) =
∑

p∈PWn

qdinv(p)tarea(p).

However, it is a long-standing open problem to find an involution that interchanges
area and dinv—in the style of Foata and Schützenberger’s involution for inv and
maj—thus combinatorially proving Equation (4). This problem is still wide open,
even for the alternating subspace [17, 25]. As a first step towards this elusive in-
volution, the equidistribution of dinv and area—obtained by setting t = 1 in Equa-
tion (4)—was proven combinatorially by Loehr and Remmel [45, 34] [32, Corollary
5.6.1]:
Theorem 1.2 ([45]). For n ≥ 1,∑

p∈PWn

qarea(p) =
∑

p∈PWn

qdinv(p).

This bijection on PWn takes area to dinv, combinatorially proving the symmetry
of Theorem 1.2. It was first understood, generalized, and inverted for the alternat-
ing subspace, where it was called the zeta map [41, 31, 34, 22, 32, 4, 60]. It has been
rediscovered many times. We review the history of the zeta map in Section 5.1.

1.5. Rational Parking Words and the Affine Symmetric Group. We now
assume m and n are coprime. The classical parking words PWn, their statistics
area and dinv, and the shuffle conjecture have all been (at least combinatorially)
generalized to the (m,n)-parking words PWn

m [11, 5, 28, 30, 57, 29].
The Fuss (nk+1, n) generalization of the story of diagonal coinvariants is due to

Garsia and Haiman [37, 23]. Writing A for the ideal generated by the alternating
polynomials in C[xn,yn], Mellit proved the rational shuffle conjecture in [48], which
implies that

Hilb
(
Ak−1/Ak−1C[xn,yn]Sn

+ ; q, t
)

=
∑

p∈PWn
kn+1

qarea(p)tdinv(p).

The more general rational (m,n) version comes from Hikita’s study of the Borel-
Moore homology of affine type A Springer fibers, which has a natural basis indexed
by the mn−1 elements of the affine symmetric group S̃n lying inside an m-fold
dilation of the fundamental alcove [53, 36, 15, 16, 54, 39, 28, 57]. Thus, while the
space of coinvariants C[xn]/〈C[xn]Sn

+ 〉 is related to the symmetric group Sn, the
diagonal coinvariants are related to the affine symmetric group S̃n.

There are many bijections from these affine elements to the parking words PWn
m.

Armstrong found natural interpretations of area and dinv in terms of affine permu-
tations for the Fuss case [2], and his work was extended to the rational case by
Gorsky, Mazin, and Vazirani [28, 29]. Gorsky and Negut formulated the ratio-
nal shuffle conjecture in [30]—that Hikita’s polynomial was given by an operator
from an elliptic Hall algebra (see also [11]). This operator formulation leads to a
q, t-symmetric bivariate polynomial generalizing Equation (4):2

(5)
∑

p∈PWn
m

qarea(p)tdinv(p) =
∑

p∈PWn
m

qdinv(p)tarea(p).

As a combinatorial proof of q, t-symmetry seems out of reach even in the classical
m = n+1 case, the next best thing is the analogue of the equidistribution of Theo-
rem 1.2. To this end, Gorsky, Mazin, and Vazirani defined a zeta map on PWn

m (a
map taking area to dinv), and conjectured that it was a bijection by providing what

2Something is lost in the rational case: one statistic remains the degree, but the second statistic
now appears only using a filtration.
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they believed to be an inverse map. A curious feature of their conjectural inverse
is that it appears to converge to the correct answer.

As a corollary to our Theorem 1.1, we prove Gorsky, Mazin, and Vazirani’s
conjecture and obtain a rational generalization of Theorem 1.2.

Theorem 1.3. For m and n relatively prime,∑
p∈PWn

m

qarea(p) =
∑

p∈PWn
m

qdinv(p).

1.6. Outline of the Paper. In Section 3 we define (m,n)-parking words, the
action of words in [m]n on Rm, and prove our characterizations in Theorem 1.1
using the Brouwer fixed point theorem.

To relate this characterization to parking functions, we introduce some notation.
Fixing (m,n) relatively prime, we define (m,n)-filters as certain periodic filters of
Z×Z in Section 4.1, and show that equivalence classes of these filters are naturally
parameterized by rational (m,n)-Dyck paths and balanced (m,n)-filters. We define
(m,n)-filter tuples in Section 4.3 as certain sequences of (m,n)-filters, and relate
these sequences to labeled (m,n)-Dyck paths.

The notion of (m,n)-filters allows us to give a new, remarkably simple definition
of the zeta map on (m,n)-parking words in Section 5. We summarize past work
on zeta maps in Section 5.1, define the zeta map in Section 5.2, and relate our
construction to Loehr and Warrington’s sweep map on (m,n)-Dyck paths in Sec-
tion 5.3.

In Section 6, we finally turn to the affine symmetric group. After basic def-
initions in Section 6.1, we use balanced (m,n)-filters to give a bijection between
(m,n)-filter tuples and affine permutations whose inverses lie in the Sommers region
in Section 6.2. We use this bijection in Section 6.3 to relate our constructions to the
work of Gorsky, Mazin, and Vazirani, showing that our Theorem 1.1 resolves [28,
Conjecture 1.4].

2. Words and Actions

2.1. Parking Words. Let m and n be positive integers, not necessarily coprime.
As in the introduction, we define the (m,n)-parking words PWn

m to be those words
p = p0 · · · pn−1 ∈ [m]n such that

(6)
∣∣∣{j : pj < i

}∣∣∣ ≥ in

m
for 1 ≤ i ≤ m.

By definition, any (m,n)-parking word is a permutation of the column lengths of
a lattice path staying above the main diagonal in an m×n rectangle, as illustrated
in Figure 7. (Here, by “column lengths,” we mean the distances between the top of
the rectangle and the horizontal steps of the lattice path.) We write DWn

m for the
increasing (m,n)-parking words—the (m,n)-Dyck words—which are in bijection
with the set of such lattice paths.

2.2. Hyperplanes. Although we defer most of the connections between parking
words and the affine symmetric group to Section 6, we will require the hyperplane
arrangement of the affine symmetric group S̃m immediately. For 0 ≤ i, j < m and
k ∈ Z, define the hyperplane

Hki,j = {x ∈ Rm : xi − xj = mk}.

Observe that Hki,j = H−kj,i . We define the height of Hki,j to be j − i + mk, where
we assume that k is positive or k = 0 and j > i. It follows that the affine simple
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hyperplanes
{
H0
i,i+1

}
0≤i<m−1 ∪

{
H1
m−1,0

}
each have height one. We call the set{

H0
i,i+1

}
0≤i<m−1 the simple hyperplanes. Write

H =
⋃

0≤i<j<m
k∈Z

Hki,j

for the affine hyperplane arrangement of type S̃m and let

Rmt =

{
x ∈ Rm :

m−1∑
i=0

xi = t

}
∼= Rm−1.

The closure of each connected region of Rmt \H is called an alcove. For 0 ≤ i < m,
write ei for the ith standard basis vector of Rm and 1m =

∑m−1
i=0 ei. The set of

alcoves in Rmt is permuted under translations by mei−1m and under reflections in
any hyperplane Hki,j . There is an alcove-preserving bijection between Rmt1 and Rmt2 ,
defined by the addition of the multiple (t2 − t1)1m; we call this rebalancing.

We will need a metric on Rmt . This metric is a constant multiple of the usual
Euclidian metric, but it will be convenient for us to describe it in a different way.
To begin with, define:

N (x) :=
∑

0≤i<j<m

(xj − xi)2

|x| := x · xᵀ =
m−1∑
i=0

x2i

Observe that N (x) = N (x − t1m) for any t ∈ R. Thus, to understand the
behaviour of N (x), it suffices to assume x ∈ Rm0 . Define a matrix

N = (nij)0≤i,j<m with nij =

{
(m− 1) if i = j

−1 otherwise

and write 1m×m for the m×m matrix containing all ones. Then, for x ∈ Rm0 , we
can write

N (x) = x ·N · xᵀ = x · (N + 1m×m) · xᵀ = m(x · xᵀ) = m|x|.
Now, for x,y ∈ Rmt set d(x,y) = N (x− y)1/2. Since x− y ∈ Rm0 , we have that

N (x−y) = m|x−y|. It follows that d(x, z) ≤ d(x,y) + d(y, z), with equality only
if y is on the line segment between x and z. (We refer to this statement, including
the conditions for equality, as the “strong triangle inequality.”) Since d is a multiple
of the usual Euclidean metric, the metric topology defined by d is the same as the
usual (metric) topology on Rmt .

Definition 2.1. A fundamental domain for the natural action of Sm on Rm is
given by those points whose coordinates weakly increase. Define the cone

V mt :=
{
x ∈ Rmt : x0 ≤ x1 ≤ · · · ≤ xm−1

}
.

We may rebalance an element of V mt1 to an element of V mt2 by adding the appropriate
multiple of 1m.

2.3. Actions of Words. For each i ∈ [m], we define piecewise linear transforma-
tions on Rmt \ H and on V mt .

Definition 2.2. A letter i ∈ [m] acts on x ∈ Rmt \H by addingm to the ith smallest
coordinate of x and subtracting the tuple 1m. (This definition is unambiguous
because we exclude the points of H, which are exactly the points where there are
some equal coordinates. The coordinates of a point x ∈ Rmt \ H are all distinct, so
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it makes sense to speak of its i-th smallest coordinate.) The letter i acts on x ∈ V mt
in the same way, but with a final resorting step at the end. A word w ∈ [m]n acts
on x ∈ Rmt \ H or x ∈ V mt by acting by its letters from left to right.

More explicitly, writing y := sort(x) for the increasing rearrangement of a point
x ∈ Rmt , define

i(x) := x +mej − 1m for x ∈ Rmt \ H if xj = yi, and
i(x) := sort(x +mei − 1m) for x ∈ V mt .

(7)

An example of the action on R3
6 \ H is given in Figure 2.3
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Figure 2. An orbit of the action of the letters 0, 1, and 2 on R3
6\H.

Acting by 0 adds 3 to the smallest coordinate and subtracts 13;
acting by 2 adds 3 to the largest coordinate and subtracts 13; and
acting by 1 adds 3 to the coordinate that is neither largest nor
smallest and subtracts 13. For formatting, we have written i for
−i and suppressed commas and parentheses; thus, the string 253
stands for the point with coordinates (−2, 5, 3).

The action of a letter i ∈ [m] on V mt is the restriction to V mt of a piecewise-linear
function from Rmt ∼= Rm−1 to V mt that sends alcoves to alcoves. By Equation (7),
the letter i acts on x ∈ Rmt by the translation x+mei−1m, and the final resorting
of the coordinates into increasing order may be interpreted geometrically by folding
once along the simple hyperplane H0

i,i+1, and then folding again as needed along
simple hyperplanes until all points lie in the cone V mt .

Lemma 2.3. The action of a word w ∈ [m]n on V mt sends alcoves to alcoves and
only decreases distances between points: d(x,y) ≥ d(w(x),w(y)). In particular, w
defines a continuous map from V mt to V mt .

3To cleanly bridge from this section to the affine symmetric group in Section 6, we will want
to normalize points so that

∑m−1
i=0 xi =

(m+1
2

)
. We therefore use that normalization in Figure 2.
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Proof. The lemma follows from the geometric description given above. The action
of w is the composition of a translation with a sequence of reflections; each of these
operation sends alcoves to alcoves, so the same is true of the action of w.

To see that the action of w reduces relative distances with respect to the metric d,
observe first that the initial translation step does not change relative distances. The
subsequent folding steps apply either the identity map or a reflection. Reflections
and the identity map each individually preserve distances with respect to d, and so
each folding step can only reduce distances between points with respect to d, by the
triangle inequality. Since w does not increase distances with respect to d (which is
a constant multiple of the usual Euclidian distance), it is continuous. �

2.4. Affine Dimension. We say that a subset X ⊆ V mt is of affine dimension k
if it is a convex set contained in an affine subspace of dimension k and contains
an open ball in that affine subspace. In particular, X is of affine dimension 0 if
it consists of a single fixed point. Note that affine dimension is not defined for an
arbitrary subset of V mt ; to say that a subset is of affine dimension k is to make a
strong statement about the kind of subset it is.

For w ∈ [m]n, define

Fix(w) :=
{
x ∈ V mt : w(x) = x

}
for the set of points fixed under w. Choose p ∈ PWn

m and write d := gcd(m,n). We
will prove Theorem 1.1 in Section 3 by showing that Fix(p) is of affine dimension
d−1. For now, we prove that Fix(p) is convex and is contained in an affine subspace
of dimension d− 1.

Lemma 2.4. Fix(p) is convex.

Proof. Let p ∈ PWn
m and suppose x,y ∈ Fix(p). Since the application of p only

decreases distances, the fact that the strong triangle inequality implies that the line
between them is fixed. �

Lemma 2.5. Let gcd(m,n) = d, p ∈ PWn
m, and suppose x ∈ Fix(p). Then the

multiset of coordinates {xi}m−1i=0 can be partitioned into disjoint multisets, each of
which is of size m/d and of the form {a+ kd+ bkm}m/d−1k=0 .

Proof. Up to the rebalancing by subtraction of a multiple of 1m, the action of each
letter of p increases one coordinate of x by m, but the effect of the entire parking
word is to send xi to xi + n. Since each individual entry changes by a multiple
of m, it does not change modulo m. This means that the multiset of remainders
of xi modm must be fixed under addition of n, so this multiset must also be fixed
under addition of gcd(n,m) = d. �

Example 2.6. Fix (m,n) = (6, 9) with d = gcd(m,n) = 3, and consider the
(m,n)-parking word p = 020101151. We verify that p has a fixed point x =
(−3, 1, 2, 4, 6, 11) ∈ V 6

21 (up to rebalancing by subtraction of a multiple of 1m):

(−3, 1, 2, 4, 6, 11)
07−→ (1, 2, 3, 4, 6, 11)

27−→ (1, 2, 4, 6, 9, 11)
07−→ (2, 4, 6, 7, 9, 11)

17−→
17−→ (2, 6, 7, 9, 10, 11)

07−→ (6, 7, 8, 9, 10, 11)
17−→ (6, 8, 9, 10, 11, 13)

17−→
17−→ (6, 9, 10, 11, 13, 14)

57−→ (6, 9, 10, 11, 13, 20)
17−→ (6, 10, 11, 13, 15, 20).

Then x is a fixed point of p, since rebalancing gives

p(x) = p(−3, 1, 2, 4, 6, 11) = (6, 10, 11, 13, 15, 20)− 9 · 1 = (−3, 1, 2, 4, 6, 11) = x.

The partition guaranteed by Lemma 2.5 is {−3, 6}, {1, 4}, {2, 11}.
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Lemma 2.7. Let gcd(m,n) = d ≥ 1 and p ∈ PWn
m. Then Fix(p) is contained in

an affine subspace of dimension d− 1.

Proof. Let x ∈ Fix(p), and let y ∈ Fix(p) be another fixed point in a small ball
around x. By Lemma 2.5, the coordinates of y can be partitioned into d disjoint
multisets of size m/d, each of which consists of a set of residues mod m which are
fixed under addition of d. Because y is close to x, the partition we have found
for the coordinates of y also works for the coordinates of x. For each of the parts
in the partition, there is therefore some offset such that adding this offset to the
coordinates of x in that part, yields the coordinates of y in that part. These offsets
must add up to zero, since the sum of the entries of x and y are assumed to be the
same. Therefore, y lies in an affine subspace of dimension d−1 which also contains
x.

In principle, if we chose a different y′ ∈ Fix(p) near x, we could obtain a different
affine subspace (corresponding to a different way of partitioning the coordinates of
x). However, convexity would then imply that the line between y and y′ is also in
Fix(p), and this includes points which are not on any affine subspace of the above
form, which is impossible. Thus all the points in Fix(p) near x lie in a single affine
subspace. By convexity, any point in Fix(p) lies in the same affine subspace. �

3. A New Characterization of Parking Words

In this section we prove Theorem 1.1, distinguishing parking words in the set of
all words in [m]n using the action of a word on V mt .

Definition 3.1. For p ∈ PWn
m and 1 ≤ i < m, define i to be a touch point of p if∣∣∣{j : pj < i

}∣∣∣ = i
n

m
.

Note that we do not count 0 or m as touch points, so that when n and m are
coprime, no parking word has a touch point.

We break the proof of Theorem 1.1 into five parts. Let p ∈ PWn
m and d :=

gcd(m,n):
• Lemma 3.3: if p has no touch points, then it has a fixed point.
• Corollary 3.4: if d = 1, then p has a unique fixed point.
• Lemma 3.5: if p has no touch points, then its fixed point space is bounded

of affine dimension d− 1.
• Lemma 3.7: if p has a touch point, then it has infinitely many fixed points,

on which N is arbitrarily large.
• Lemma 3.9: if w ∈ [m]n \ PWn

m, then it has no fixed points.

3.1. Parking words without touch points. We begin by recalling the Brouwer
fixed point theorem.

Theorem 3.2 (Brouwer [61, Theorem 1.2]). Any continuous function from a closed
topological ball to itself has a fixed point.

Lemma 3.3. Let p ∈ PWn
m have no touch point. Then p has a fixed point in V mt .

Proof. We argue for t = 0, since the the statement for general t follows by rebal-
ancing. We want to show that N (p(x)) < N (x) for N (x) > N , provided N is
sufficiently large (that is, parking contracts). By Lemma 2.3, the Brouwer fixed
point theorem can then be invoked on the (m− 1)-ball

{x ∈ V m0 : N (x) ≤ N}

to guarantee a fixed point.
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We first consider the case that the xi are sufficiently separated that each “resort”
step does nothing—that is, the actions of p on x as an element of Rm0 \ H and as
an element of V m0 coincide. For 0 ≤ i < m, let

qi =
∣∣∣{j : pj = i

}∣∣∣
be the number of occurrences of i in the (m,n)-parking word p. Now, for x ∈ V m0 ,

(8) N (p(x))−N (x)

=
∑

0≤i<j<m

[
(xi +mqi − xj −mqj)2 − (xi − xj)2

]
=

∑
0≤i<j<m

m2(qi − qj)2 +
m−1∑
i=0

2m2qixi − 2

(
m−1∑
i=0

xi

)(
m−1∑
i=0

qi

)
.

Of the three terms on the right-hand side of Equation (8), the first sum depends
only on p. The third vanishes because we have assumed that

∑
i xi = 0. We want

to show that the second sum on the right-hand side

m−1∑
i=0

2m2qixi

is sufficiently negative to dominate the first, provided N (x) is big enough. We will
begin by establishing that the second sum is negative, by showing that we can add
a sequence of positive numbers to it to make it zero.

More precisely, we will do the following. For 0 ≤ i ≤ m−1, initialize the variable
yi = xi. We will now carry out a process where we gradually change the value y, so
that, at each step

∑
i qiyi increases, and so that, at the end, yi = 0 for all i. Since∑

i qi · 0 = 0, this will show that the initial value,
∑
i qixi, was negative.

Suppose that y0 = y1 = · · · = yb−1 (with b maximal) and ym−1 = ym−2 = · · · =
ym−c (with c maximal). (At the beginning of the process, when yi = xi for all i, b
and c will both be 1, but as we continue, this will change.) If we increase each of the
b minimal coordinates of y by cα and decrease each of the c maximal coordinates
of y by bα, we have not changed the average value of y. On the other hand, the
value of

∑
i qiyi changes by

(9)
b−1∑
i=0

αcqi −
m−1∑
i=m−c

αbqi.

By Equation (6)—because p is an (m,n)-parking word—the first term of Equa-
tion (9) is greater than αcb nm , while the second term is less than αcb nm . Thus,
changing the values of y in this way increases the sum

∑
i qiyi.

Choose α maximal so that, in increasing the b minimal coordinates and decreas-
ing the c maximal coordinates, none of the values changed pass any other values of
y. We call this a step. Since at least one of b or c increases, after a finite number
of steps, we will have all entries of y at zero and the value of the sum

∑
i qiyi will

also be zero. But since we increased the value of the sum at each step, its initial
value was negative.
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In fact, we can bound the value of
∑
i qixi away from 0 by approximating the

change of
∑
i qiyi across all steps. For b, c < m, we have(

i=b−1∑
i=0

qi

)
− bn

m
≥ 1

m
and

cn

m
−

(
i=m−1∑
i=m−c

qi

)
≥ 1

m
,

since both left-hand sides are strictly positive (because of our assumption that p
has no touch points) and can be expressed as a rational number with denominator
m. Therefore,

(10)
b−1∑
i=0

αcqi −
m−1∑
i=m−c

αbqi ≥
αc

m
+
αb

m
.

To approximate
∑
i qiyi, we bound the two terms on the right-hand side of Equa-

tion (10) over the entire process which moves all the yi to zero.
Since αc is the amount that each of the minimal yi’s were moved during each

step, the sum of αc/m over all steps is 1/m times the total amount the minimal
coordinates are increased over the whole process. But this begins at x0 and termi-
nates at 0, so the total amount they change by is −x0 and the sum of the first term
on the right-hand side of Equation (10) over the whole process is −x0/m. Similarly,
the sum of the second term on the right-hand side of Equation (10) over the whole
process is xm−1/m. We obtain the bound

m−1∑
i=0

2m2qixi ≤ 2m (x0 − xm−1) ,

which we can make as negative as we like by requiring N (x) to be sufficiently large.

We now consider the case that the resorting is not necessarily trivial—that is,
the action on x as an element of Rm0 \H and as an element of V m0 do not necessarily
coincide. Fix a sorted tuple x and distinguish this tuple as living in Rm0 \H or V m0
by writing xU ∈ Rm0 \ H and xV ∈ V m0 . Let

x
(j)
U := p0p1 · · · pj−1(xU ) and x

(j)
V := p0p1 · · · pj−1(xV ).

We note that after applying a single letter i to xU and xV , the difference between
any coordinate of xU and the same coordinate of xV is less than m. By induction,
corresponding coordinates of x(j)

U and x
(j)
V differ by at most mj.

On the other hand, for any tuple y, applying a single letter i to yU or yV , we
compute

N (i(yU ))−N (yU ) = N (i(yV ))−N (yV ) =
∑

0≤j<m
j 6=i

[
(yi +m− yj)2 − (yi − yj)2

]

= (m− 1)m2 + 2m
∑

0≤j<m
j 6=i

(yi − yj)

= (m− 1)m2 + 2m2yi.

By telescoping, we can now bound the difference N (p(xU ))−N (p(xV )):
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N (p(xU ))−N (p(xV )) =
n−1∑
j=0

(
N (x

(j+1)
U )−N (x

(j)
U )
)
−
(
N (x

(j+1)
V )−N (x

(j)
V )
)

≤
n−1∑
j=0

2m3j = n(n− 1)m3,

using our analysis that corresponding coordinates in x
(j)
U and x

(j)
V differ by at most

mj. This quantity is still a constant in the fixed parameters n and m, so we can
overcome it by requiring that N (x) be sufficiently large.

We conclude that the second term of the right-hand side of Equation (8) dom-
inates the first if N (x) > N for N sufficiently large, so that N (p(x)) < N (x) for
N (x) > N . �

In the case gcd(m,n) = 1, Lemma 2.7, together with our previous results, suffices
to show that the set of fixed points is of affine dimension 0 (i.e., consists of a single
point).

Corollary 3.4. Let gcd(m,n) = 1 and p ∈ PWn
m. Then Fix(p) is of affine dimen-

sion 0. In particular, |Fix(p)| = 1.

We now show that Fix(p) is of affine dimension d − 1 for d = gcd(m,n) in the
case that p has no touch points.

Lemma 3.5. Let gcd(m,n) = d ≥ 1 and p ∈ PWn
m with no touch points. Then

Fix(p) is bounded of affine dimension d− 1.

Proof. Fix(p) is bounded, since we showed in Lemma 3.3 that N (p(x)) < N (x) for
N (x) > N for some large N .

Let F be a face of the affine arrangement H such that for any face G having F
as a face, we have G∩ Fix(p) = F ∩ Fix(p). Suppose, seeking a contradiction, that
some F of codimension c ≥ 1 exists. Consider the action of p on a small sphere
S around a point x of Fix(p) in the plane normal to F . Since the sphere is not
fixed by p, the action of p on it is by some non-trivial foldings. The image therefore
misses some open ball B in the sphere. Restricting, p now defines a map from
S \ B to S \ B, and by Brouwer’s fixed point theorem, it has a fixed point. This
contradicts our assumption on F . Thus there must be a fixed point x not lying on
any hyperplane.

Lemma 2.5 divides the set of all coordinates of x into d subsets of sizem/d, where
the elements of each set are congruent modulo d. Since x lies on no hyperplane, no
coordinate value modulo m is repeated, so it is unambiguous how to apportion the
coordinates into these sets.

Now consider the action of p, omitting rebalancing. Each entry in the multiset of
coordinates is changed by a multiple of d. Thus the entries in each of the d subsets
are permuted among themselves by the action of p. We may translate each family
with respect to the others by some small amount without changing the relative
order of the coordinates, so all such points are still fixed. This gives us an open
ball around x in the (d− 1)-dimensional affine subspace constructed in Lemma 2.7
consisting entirely of fixed points. Fix(p) is therefore of affine dimension d− 1. �

Example 3.6. As in Example 2.6, fix (m,n) = (6, 9) with d = gcd(m,n) = 3 and
the (m,n)-parking word p = 020101151. Note that p has no touch points, and
recall that p has a fixed point x = (−3, 1, 2, 4, 6, 11) ∈ V 6

21. Modulo d, this fixed
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point is of the form (0, 1, 2, 1, 0, 2). Let

v0 = (−3, 0, 3, 3, 6, 12),

v1 = (−2, 1, 1, 4, 7, 10), and
v2 = (−4, 2, 2, 5, 5, 11).

Then one can check that Fix(p) ⊇ conv(v0, v1, v2).

3.2. Parking words with touch points. When the parking word has a touch
point, we now use Lemma 3.3 to also produce infinitely many fixed points. The
value of N on these fixed points may now be arbitrarily large.

Lemma 3.7. The action of w ∈ PWn
m on V mt has infinitely many fixed points

when w has at least one touch point. The set Fix(w) has affine dimension d − 1,
and contains fixed points on which N is arbitrarily large.

Proof. As in Lemma 3.3, it suffices to argue for V mt for t = 0. Suppose that
gcd(m,n) = d 6= 1 and that w has k ≥ 1 touch points. We will break p into a
number of smaller parking words based on its touch points, find the unique fixed
points for each of those parking words, and then reassemble them in uncountably
many ways to find fixed points for p. To this end, list the k touch points of p as
m1, . . . ,mk with

m0 = 0 < m1 < m2 < · · · < mk < m = mk+1.

For 0 ≤ j ≤ k, let p(j) be the (not-necessarily consecutive) subword of p containing
all letters p of p such that mj ≤ p < mj+1. Let nj be the length of p(j)—necessarily
a multiple of n/d—and note that p is a shuffle of p(0), p(1), . . . , p(k−1).

To define smaller parking words, we shift the individual letters of p(j) by the
previous touch point to produce the (mj , nj)-parking word q(j) := p(j) −mj .

We can now use Lemma 3.3 and the previous case to find x(j) ∈ V mj

0 that are
fixed points for the q(j). In preparation to reassemble these individual fixed points
x(j) into a fixed point for p, we scale them to define

x
(j)
N :=

n

nj
x(j) +Nj

for some Nj ∈ R. Finally, define xN ∈ V m0 by the concatenation:

xN :=
(
x
(0)
N ,x

(1)
N , . . . ,x

(k)
N

)
,

and then rebalancing so that the sum is 0.
We now check that xN is really a fixed point of p, as long as the Nj give sufficient

space between the x
(j)
N . Since p is a shuffle of the p(j), as long as the individual

coordinates of xN do not overlap during the application of the letters of p (for
example, we may take Nj > mn + Nj−1), we may discuss the action of p on each
component x(j)

N separately. On x
(j)
N , then, only the subword p(j) of p will act; the

only difference from its usual action on x(j) is that (as a piece of the larger parking
word p) it adds m rather than mj—but we have compensated for this by the scaling
factor n

nj
. �

Example 3.8. We illustrate the proof of Lemma 3.7. Let (m,n) = (9, 12) so that
d = 3, and let p = 531030678631. Then there are 2 touch points of p: m1 = 3 and
m2 = 6, so that

p(0) = 1001, p(1) = 5333, and p(2) = 6786

and
q(0) = 1001, q(1) = 2000, and q(2) = 0120.
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Fixed points for q(j) are

x(0) = (−2, 0, 2), x(1) = (−1, 0, 1), and x(2) = (−2,−1, 3),

so that

x
(0)
N = (−6, 0, 6), x

(1)
N = (−3, 0, 3) +N2, and x

(2)
N = (−6,−3, 9) +N3,

and before rebalancing

xN = (−6, 0, 6,−3 +N2, N2, 3 +N2,−6 +N3,−3 +N3, 9 +N3) .

When N2 > 21 and N3 > 21 +N2, we see that portion of p corresponding to p(j)

acts only on the 3j − 2, 3j − 1, and 3jth coordinates of x.

3.3. Non-parking words.

Lemma 3.9. For any x ∈ V mt and any w ∈ [m]n\PWn
m, limi→∞(wi(x))m−1 =∞.

In particular, w has no fixed points.

Proof. It suffices to argue for V mt for t = 0. We show that repeated application of
w sends the last coordinate of any point to infinity. Suppose that w ∈ [m]n \PWn

m

is not a parking function because it has too many numbers that are at least k, and
choose k maximal. Let

x = (x0, x1, . . . , xm−1) ∈ V m0
be a vector with sum 0. We claim that the result of applying w to x has the effect of
increasing the difference between the average value of xk, . . . , xm−1 and the average
value of x0, . . . , xk−1 by a fixed quantity. Thus, after enough applications of w, the
value of xm−1 will be arbitrarily large.

In the course of applying w to x there are two ways that the difference between
the average value of x0, . . . , xk−1 and the average value of xk, . . . , xm−1 changes.
One is as a result of adding m to an entry corresponding to an element of w. By
the assumption on w, these steps have the property that, on average, a more than
proportionate number of these steps are applied to the entries xk, . . . , xm−1, which
therefore increases the difference between the average values by a fixed positive
amount. The other way that the difference between the averages increases is in the
resort step. If an element in x1, . . . , xk−1 is increased far enough that it moves into
the top m − k elements, then it is resorted into one of these positions. Whenever
this happens, this also increases the difference between the average values. �

3.4. Summary. We obtain Theorem 1.1 as a corollary of Lemmas 3.3, 3.5, 3.7
and 3.9 and Corollary 3.4. Examples for m = 3 are given in Figure 3.

The remainder of this paper is devoted to explaining the coprime case in more
detail, explicitly identifying the isolated fixed points of parking words as the centers
of alcoves of dominant affine permutations whose inverses lie in the Sommers region.
It would be desirable to explicitly identify the regions of fixed points in the non-
relatively prime case. We note that in the special (m,mk) case when the fixed
regions are full dimensional, Gorsky, Mazin, and Vazirani have recently identified
the set of fixed regions of an (m,mk)-parking word with the dominant regions in
the k-Shi arrangement of S̃m [29, Section 3.4] (compare with Figure 3).

4. Parking Filters

For the rest of the paper, we fix m and n relatively prime. In this section, we
define the combinatorial objects—generally thought of as Dyck paths and labeled
Dyck paths—that we will use to compute the zeta map defined in Section 5. These
objects are all well-known; our main contribution is the simplicity of our definition
of the zeta map on parking functions in Definition 5.7, and its relation with affine
permutations in Section 6.
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123

024

226

015134

000 010 100
110 200 210

0000 0010 0100 0110
0200 0210 1000 1010
1100 2000 2010 2100

001 020 101
110 200 210

0001 0020 0101
1001 1020 1200

011 021 101
110 201 210

002 020 102
120 200 210

0011 0021 0201 2001

0002 0102 0120 1002

012 021 102
120 201 210

0012

Figure 3. The dominant part of the S̃3 Shi arrangement. Each
region is labeled by a coordinate corresponding to the one-line
notation of the affine permutation whose alcove is lowest in the
region (see Section 6 for more details). The gray words on the
left are the (3, 3)-parking words that fix every point of the (closed)
region to which they point; the gray words on the right are the
(4, 3)-parking words that fix precisely the coordinate to which they
point.

4.1. Filters. Fix m and n relatively prime, and label the point (i, j) ∈ Z × Z by
its level

`(i, j) = (i, j) · (m,n) = im+ jn.

If we draw the levels of points in the plane, rows correspond to residue classes
modulo m, while columns correspond to residue classes modulo n. Any fixed row
and column intersect in a unique point, and the Chinese remainder theorem ensures
that the levels are distinct modulo mn in any contiguous n×m rectangle. A portion
of the levels of Z× Z for (m,n) = (3, 4) and (3, 5) is illustrated in Figure 4.

Definition 4.1. An (m,n)-filter i is a subset of Z×Z with min(i,j)∈i `(i, j) > −∞,
such that whenever the point (i, j) is in i, then the following points are also in i:

• (i+m, j) and (i, j + n), as well as
• all (i′, j′) for which `(i′, j′) = `(i, j).

A corner of i is a point (i, j) such that neither (i−m, j) nor (i, j − n) are in i. We
write Fnm for the set of all (m,n)-filters.

Interchanging the copies of Z in Z×Z gives a bijection between the set of (m,n)-
filters and the set of (n,m)-filters; we call this the (m↔n)-bijection. An (m,n)-filter
i is specified in three natural ways:

• `(i) := {`(i, j) : (i, j) ∈ i}, the set of all its levels,
• m(i) := sort([min(i,j)∈i `(i, j) : j ∈ Z]), i.e., the sorted list formed by taking,

for each row, the minimal level of a point in that row which is also in i, or
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• n(i) := sort([min(i,j)∈i `(i, j) : i ∈ Z]), i.e., the sorted list formed by taking,
for each column, the minimal level of a point in that column which is also
in i.

Note that m(i) consists of m integers, one from each congruence class mod m, while
n(i) consists of n integers, one from each congruence class mod n. An example
of Definition 4.1 is given in Figure 4.

036912

41258

85214

129630

03691215

5214710

1074125

15129630

Figure 4. Ignoring the shading, a portion of the levels of Z × Z
for (m,n) = (3, 4) and (3, 5) (the picture is extended to the rest of
the plane by periodicity). The solid gray line through the points
of level 0 separates the positive and negative levels. On the left,
the shading specifies i ∈ F4

3 as those lattice points contained in the
shaded region; similarly, the shading on the right specifies i′ ∈ F5

3 .
One checks that m(i) = [−1, 1, 3], n(i) = [−1, 1, 2, 4], m(i′) =
[2, 4, 6], and n(i′) = [2, 4, 5, 6, 8].

Definition 4.2. We say that i, i′ ∈ Fnm are equivalent if i = i′ + (x, y) for some
(x, y) ∈ Z× Z, and write F̃nm for the set of equivalence classes of Fnm.

Definition 4.3. Define a directed graph Fnm on F̃nm with a directed edge from
ĩ ∈ F̃nm to ĩ′ ∈ F̃nm iff there is some i′ ∈ ĩ′ and some i ∈ ĩ such that `(i′) can be
obtained from `(i) by removing a single level from i (pictorially, this means that i′

can obtained from i by removing a corner). We write b̃nm for the equivalence class
containing the (m,n)-filters generated by a single level.

The (m↔n)-bijection gives an isomorphism between Fnm and Fmn . The graphs
F4
3 and F5

3 are illustrated in Figures 5 and 6.

4.2. Representatives. In this section, we introduce two natural representatives
of the equivalence classes of (m,n)-filters:

• Dyck (m,n)-filters, in bijection with Dyck paths and most useful to re-
late our constructions to the standard combinatorial objects (Remarks 4.5
and 4.13); and
• balanced (m,n)-filters, which will be essential for specifying affine permu-

tations (Theorem 6.6, Proposition 6.7, and Theorem 6.11).

4.2.1. Dyck filters. We define a first representative of the equivalence classes in
F̃nm. These representatives are usually defined in the literature as lattice paths
staying above or below a diagonal, and we show how our definition recovers this
interpretation in Remark 4.5.

Definition 4.4. A Dyck (m,n)-filter is an (m,n)-filter d such that

min
(i,j)∈d

`(i, j) = 0.
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036912

41258

85214

129630

036912

41258

85214

129630

036912

41258

85214

129630

036912

41258

85214

129630

036912

41258

85214

129630

−1

0 2

4

1

2 0

3

−2

1

Figure 5. The directed graph F4
3
∼= F3

4, with equivalence classes
represented by the balanced (3, 4)-filters of Section 4.2.2. The edge
labels record the level of minimal element removed. Compare with
Figure 18.

We write DFnm for the set of all Dyck (m,n)-filters.

In particular, for d ∈ DFnm, min(n(d)) = min(m(d)) = 0. Note that the (m↔n)-
bijection restricts to a bijection between DFnm and DFmn .

Remark 4.5. We relate Definition 4.4 to the set of (m,n)-Dyck paths—those lattice
paths from (0, 0) to (−n,m) using north steps (0, 1) and west steps (−1, 0) and
staying above the line (x, y) · (m,n) = 0. The boundary of an (m,n)-filter of Z×Z
traces out a periodic path in the plane. This periodicity allows us to restrict to
the contiguous n×m rectangle with corners at level 0 without losing information,
giving DFnm the standard geometric interpretation as (m,n)-Dyck paths. This is
illustrated in Figures 4 and 7.

All (m,n)-filters whose boundaries trace out the same path—up to translation—
are equivalent to the same Dyck (m,n)-filter.

Proposition 4.6. Each equivalence class in F̃nm contains a unique element of
DFnm.

Proof. To a (m,n)-filter i we associate the unique equivalent Dyck (m,n)-filter d
obtained by translating i so that it touches the line (x, y) · (m,n) = 0, but does not
go below. �
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03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

03691215

5214710

1074125

15129630

start cycle here

−1

0 2

5

−2 4

3

1

2 0

3

−3

−1

1

1

Figure 6. The directed graph F5
3
∼= F3

5, with equivalence classes
represented by the balanced (3, 5)-filters of Section 4.2.2. The edge
labels record the level of the minimal element removed. The cy-
cle consisting of the dotted red edges corresponds to the parking
(m,n)-filter tuple considered in Example 4.12. Compare with Fig-
ure 19.

Lemma 4.7. There is a directed path in Fnm from the equivalence class b̃nm (con-
taining the (m,n)-filters generated by a single level) to any other equivalence class.

Proof. Starting from b̃nm, the directed graph Fnm contains a copy of the distributive
lattice (whose Hasse diagram is thought of as a directed graph) consisting of the
(m,n)-Dyck paths ordered by inclusion. (Note that this is via the identification
with Dyck paths which lie below the diagonal, not above it.) �
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036912

41258

85214

129630

03691215

5214710

1074125

15129630

Figure 7. The Dyck (3, 4)- and (3, 5)-filters corresponding to the
filters in Figure 4 (they also happen to be balanced). The boundary
between two consecutive points with level 0 traces an (m,n)-Dyck
path (marked in red). Recording the column lengths of the left
path gives the (3, 4)-Dyck word [0, 0, 1, 1], while the right path
corresponds to the (3, 5)-Dyck word [0, 0, 0, 1, 2]

The following enumeration is a well-known application of the cycle lemma.

Proposition 4.8. For m and n relatively prime,∣∣∣F̃nm∣∣∣ =
∣∣∣F̃mn ∣∣∣ =

1

n+m

(
n+m

n

)
.

4.2.2. Balanced Filters. We define a second representative of the equivalence classes
in F̃nm. These objects appear to have been much less studied, and will allow us to
relate F̃nm and affine permutations.

Definition 4.9. We call an (m,n)-filter b ∈ Fnm satisfying∑
m(b) :=

∑
i∈m(b)

i =

(
m+ 1

2

)
and

∑
n(b) :=

∑
j∈n(b)

j =

(
n+ 1

2

)
a balanced (m,n)-filter. We write BFnm for the set of balanced (m,n)-filters

It is a simple check that this set is nonempty—it contains the (m,n)-filter bnm
generated by the points with level ` = 1+m+n−mn

2 .

Proposition 4.10. Each equivalence class in F̃nm contains a unique element of
BFnm. Furthermore, for b ∈ Fnm,∑

m(b) =

(
m+ 1

2

)
if and only if

∑
n(b) =

(
n+ 1

2

)
.

Proof. We first show that any equivalence class in F̃nm contains an element of BFnm.
Let i be a balanced filter. Removing a minimal element from i to make a new
filter i′ has the effect of adding m to the sum of elements of m(i) and the effect
of adding n to the sum of the elements of n(i). Rebalancing, the (m,n)-filter
defined by `(i′′) = `(i′) − 1 therefore is also balanced. By starting with bnm and
applying Lemma 4.7, we conclude that it is possible to find a balanced filter in each
equivalence class of F̃nm.

Now, if b 6= b′ are in the same equivalence class, then
∑
m(b) 6=

∑
m(b′) and∑

n(b) 6=
∑
n(b′). This shows than any element of a given equivalence class other

than the balanced element we found above, satisfied neither that
∑
m(b) =

(
m+1
2

)
nor that

∑
n(b) =

(
n+1
2

)
. This completes the proof of the proposition. �

The five balanced (3, 4)-filters are illustrated in Figure 5.
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4.3. Filter Tuples. We define (m,n)-filter tuples as certain sequences of (m,n)-
filters, and we explain in Remark 4.13 how (m,n)-filter tuples are in bijection with
the usual definition of parking functions as labeled Dyck paths.

Definition 4.11. An (m,n)-filter tuple p is a tuple of n+1 (m,n)-filters

p =
(
p(0), p(1), . . . , p(n)

)
such that:

• for 0 ≤ i < n, m(p(i+1)) is obtained from m(p(i)) by removing some pi ∈
m(p(i)) and inserting pi + m (pictorially, as in Definition 4.3, this means
that p(i+1) is obtained from p(i) by removing a corner), and
• m(p(0)) + n = m(p(n)) (pictorially, this means that p(n) is obtained by

displacing p(0) one step upwards).
We write T nm for the set of all (m,n)-filter tuples and we say that two (m,n)-filters
tuples p1 and p2 are equivalent if p(i)1 = p

(i)
2 + (x, y) for all 0 ≤ i ≤ n and some fixed

(x, y) ∈ Z× Z.

Definition 4.11 is illustrated in Figure 8; the caption is explained in the next few
paragraphs.

03691215

5214710

1074125

15129630

2017141185

37−→

03691215

5214710

1074125

15129630

2017141185

17−→

03691215

5214710

1074125

15129630

2017141185

27−→

03691215

5214710

1074125

15129630

2017141185

57−→

03691215

5214710

1074125

15129630

2017141185

67−→

03691215

5214710

1074125

15129630

2017141185

Figure 8. A balanced (3, 5)-filter tuple p with n(p) =
[3,−1, 2, 5, 6] corresponding to the cycle consisting of the dotted
red edges in Figure 6.

An (m,n)-filter tuple may be equivalently thought of as a cycle of length n in
the directed graph Fmn of Definition 4.3 with a choice of initial representative in the
first equivalence class, as in Example 4.12.

An (m,n)-filter tuple p is specified by the sequence of the n levels removed:

(11) n(p) = [p0, p1, . . . , pn−1].

Definition 4.11 ensures that n(p) is a permutation of n(p(0)), such that levels in the
same residue class modulo m appear in increasing order.

Example 4.12. Figure 6 illustrates a cycle of length 5 in F3
5: start at the vertex

labeled by the balanced (3, 5)-filter b with m(b) = [−1, 3, 4] and then follow the red
edges. This cycle corresponds to the (3, 5)-filter tuple p with n(p) = [3,−1, 2, 5, 6]
in Figure 8.
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We call p ∈ T nm parking if p(0) ∈ DFnm and write PT nm for the set of all parking
(m,n)-filter tuples. We call p ∈ T nm balanced if p(0) ∈ BFnm and write BT nm for
the set of all balanced (m,n)-filter tuples. Propositions 4.8 and 4.10 show that any
(m,n)-filter tuple is equivalent to a unique parking (m,n)-filter tuple and a unique
balanced (m,n)-filter tuple.

Remark 4.13. We relate Definition 4.11 to the definition of (m,n)-parking paths—
(m,n)-Dyck paths whose n horizontal edges are labeled 1, 2, . . . , n, such that levels
in the same row increase from left to right. Fix p ∈ PT nm, so that p(0) may be
thought of as an (m,n)-Dyck path by Remark 4.5. Number each horizontal step in
this path by the order in which its left endpoint is removed in p. Since p(i) is an
(m,n)-filter, points in the same row must be removed in order—this recovers the
condition on levels for parking paths, as illustrated in Figure 9 (which corresponds
to the parking (m,n)-filter tuple of Figure 8). Thus, we may represent a parking
(m,n)-filter as an (m,n)-parking path.

2 3 4

1 5

03691215

5214710

1074125

15129630
4

1 5

2 3 4

03691215

5214710

1074125

15129630

Figure 9. On the left is the parking (3, 5)-filter tuple correspond-
ing to the balanced (3, 5)-filter tuple in Figure 8, encoded in the
traditional manner as a Dyck path with labeled horizontal steps
(the path is marked in red). The labels record the order in which
the points to their left were removed. On the right is the corre-
sponding balanced (3, 5)-filter tuple.

The following enumerative result follows from the cycle lemma, and is given
geometric meaning in Section 6.2.2.

Proposition 4.14 ([5, Corollary 4],[10]). For m, n coprime,

|PT nm| = mn−1 and |PT mn | = nm−1.

5. The Zeta Map

After reviewing the state of the art for zeta maps in Section 5.1, we use the com-
binatorial objects of Section 4 to define two (different) bijections between parking
(m,n)-filter tuples and (m,n)-parking words (Definitions 5.1 and 5.3)—the first
map is trivially a bijection, but we only conclude that the second map is a bijec-
tion as a corollary of Theorem 1.1 in Theorem 5.5. The composition of these two
bijections defines the zeta map for rational parking words (Definition 5.7).

In Section 5.3, we show that our zeta map on rational words recovers Armstrong,
Loehr, and Warrington’s sweep map on rational Dyck paths using a canonical in-
jection of Dyck paths inside parking paths.
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5.1. Context and History. The classical zeta map ζ is a bijection from (n+1, n)-
Dyck paths to themselves developed by Garsia, Haglund, and Haiman to explain
the equidistribution on Dyck paths of (area, bounce) and (dinv, area). The statistic
bounce is due to Haglund, while dinv is due to Haiman; we shall not review their
definitions here. This equidistribution expresses the agreement of the two formulas
on the righthand side of the following combinatorial expansion of the Hilbert series
of the alternating subspace of the space of diagonal coinvariants [22, 38, 12]:

Hilb
((

C[xn,yn]/〈C[xn,yn]Sn
+ 〉

)ε
; q, t

)
=

∑
d∈DWn

n+1

qarea(d)tbounce(d)

=
∑

d∈DWn
n+1

qdinv(d)tarea(d),

With the proper conventions4, the map ζ explains the equidistribution of these
statistics, in the sense that area(d) = dinv(ζ(d)) and bounce(d) = area(ζ(d)).

From the point of view of lattice path combinatorics, the Dyck paths encoding
the Hilbert series of the alternating subspace of the space of diagonal coinvariants
are much simpler than the parking paths encoding the full Hilbert series of the
space of diagonal coinvariants. Presumably due to this difference in complexity, the
definition and study of the zeta map was restricted to Dyck paths at first [31, 22],
and its extension by Haglund and Loehr [34]5 and by Loehr and Remmel [45] to
parking paths only came later:

Hilb
(
C[xn,yn]/〈C[xn,yn]Sn

+ 〉; q, t
)

=
∑

p∈PWn
n+1

qarea(p)tpmaj(p)

=
∑

p∈PWn
n+1

qdinv(p)tarea(p),

where pmaj is a generalization of bounce, area(p) = dinv(ζ(p)), and pmaj(p) =
area(ζ(p)). When restricted to Dyck paths, this result generalizes the zeta map on
Dyck paths [32, Exercise 5.7]; see also our Proposition 5.9.

As Dyck paths and parking paths were generalized to the Fuss (kn+ 1, n), Do-
golon (kn− 1, n), and rational (m,n) cases, extensions of the zeta map were again
first defined on Dyck paths, and only later for parking paths. The definition of zeta
on rational parking words turns out to be surprisingly simple, as we show in Defi-
nitions 5.1, 5.3 and 5.7. This definition appears in [28]—but in a different language
that we postpone to Section 6.3.

The table in Figure 10 contains a historical summary of the definitions of zeta,
where for brevity we have suppressed some details as to the exact generality of the
maps involved—in the column with heading “Type,” we use “Dyck” or “Parking”
to refer to the unlabeled or labeled case of lattice paths, respectively. (We recom-
mend [4] for a thorough survey of the literature on zeta maps defined on lattice
paths, at least when the dimensions of the bounding rectangle are coprime.)

5.2. The Zeta Map. We define the zeta map using two bijections A,B from
parking (m,n)-filter tuples to (m,n)-parking words. The zeta map is then defined
to be the map ζ := B ◦A−1.

4For consistency with its generalization to parking paths, we are using the inverse of the zeta
map from [32, Theorem 3.15].

5Although this bijection is between two slightly different manifestations of parking paths.
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Authors Reference Type Generality Proof of Bijectivity
Garsia
Haiman
Haglund

[22] Dyck (n+1, n) [22]

Loehr [44] Dyck (kn+1, n) [44]
Haglund
Loehr [34] Parking (n+1, n) [34]

Gorsky
Mazin

[26]
[27] Dyck coprime (m,n)

[26] for (kn±1, n)
[60]

This paper
Amstrong
Loehr
Warrington

[4] Dyck N -dim. box
(integer labels) [60]

Thomas
Williams [60] Dyck N -dim. box

(modular labels) [60]

Gorsky
Mazin
Vazirani

[28] Parking coprime (m,n)
[26] for (kn±1, n)

This paper

Gorsky
Mazin
Vazirani

[29] Dyck (m,n) [29]

Figure 10. A brief overview of various definitions and work on
zeta maps.

Following Gorsky, Mazin, and Vazirani, the q and t statistics may be read off
these (m,n)-parking words [2, 28]:

area(p) :=
(n− 1)(m− 1)

2
−
n−1∑
i=0

A(p)i,

dinv(p) :=
(n− 1)(m− 1)

2
−
n−1∑
i=0

B(p)i.

5.2.1. Area (A). Our first map is a simple application of the interpretation in Re-
mark 4.13 of an (m,n)-filter tuple as an (m,n)-parking path. This will be useful
again in Section 6.3.1 in the context of affine permutations.

Definition 5.1. Define A : PT nm → PW
n
m to be the (m,n)-parking word recording

the column lengths (in the order of the edge labels) of the (m,n)-parking path
associated to p by Remark 4.13.

It is easy to see that A may be equivalently defined by

n(p) = [p1, p2, . . . , pn]
A7−→ [ap1, ap2, . . . , apn] modm,

where an = −1 modm.

Example 5.2. The parking (3, 5)-filter tuple p ∈ PT 5
3 encoded by the (3, 5)-

parking path in Figure 9 is mapped to the (3, 5)-parking word A(p) = 10001 (there
is one gray box in each column containing the horizontal edges with labels 1 and 5,
and no gray boxes in the other columns). We may also compute it using the word
n(p) from Figure 9:

n(p) = [4, 0, 3, 6, 7]
A7−→ [1 · 4, 1 · 0, 1 · 3, 1 · 6, 1 · 7] mod 3 = [1, 0, 0, 0, 1],
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since 1 · 5 = −1 mod 3. We compute area(p) = 2·4
2 − (1 + 0 + 0 + 0 + 1) = 2.

On the other hand, since 3 · 3 = −1 mod 5, we compute the (5, 3)-parking word
for the element p ∈ PT 3

5 with n(p) = [0, 4, 5] to be:

n(p) = [0, 4, 5]
A7−→ [3 · 0, 3 · 4, 3 · 5] mod 5 = [0, 2, 0].

It is immediate from Remark 4.13 that Definition 5.1 is a bijection from PT nm
to PWn

m.

5.2.2. Dinv (B). Our second map is more subtle, requiring an application of The-
orem 1.1 to prove that it is well-defined.

Definition 5.3. Define B : PT nm → [m]n to be the word w = w1 · · ·wn ∈ [m]n

where wi+1 = j if pi is the jth smallest number in m(p(i)). That is, B(p) is defined
by recording the number of letters in m(p(i)) strictly less than pi for 0 ≤ i < n (we
call this number the position of pi in m(p(i))).

Example 5.4. As in Example 4.12, we compute m(p(i)) for each (3, 5)-filter in Fig-
ure 8 to be

[−1,3, 4]→ [−1, 4, 6]→ [2, 4, 6]→ [4,5, 6]→ [4,6, 8]→ [4, 8, 9],

where we haven’t rebalanced (but note that this doesn’t change relative order, and
so won’t change the image of B). Recording the position of the elements removed
(marked in bold above) gives the (3, 5)-parking word B(p) = 10011. As with area,
we compute dinv(p) = 2·4

2 − (1 + 0 + 0 + 1 + 1) = 1.

It is not obvious that Definition 5.3 really does produce (m,n)-parking words.

Theorem 5.5. The map B is a bijection from PT nm to PWn
m.

Proof. Let p ∈ PT nm. For 0 ≤ i ≤ n, we define a point x(i) ∈ V m0 by x(i) =
m(p(i)), and adding a multiple of 1 so that the sum of the elements in x(i) is zero
(since every element in m(p(i)) changes by the same amount, their relative order is
preserved). So the action of B(p) on x(0) ∈ V m0 (as defined in Section 3) is recorded
by the sequences x(i). Finally, x(0) = x(n) because p is a parking (m,n)-tuple. In
particular, we have shown that the word B(p) has a fixed point. Now Theorem 1.1
tells us that B(p) is a parking word.

Further, Theorem 1.1 tells us that the fixed point of B(p) is unique. Therefore,
from B(p), we can identify its unique fixed point x(0), from which we can reconstruct
x(i) for all i, and thus p(i) for all i. That is to say, from B(p), we can reconstruct p.
This implies that the map B is an injection from PT nm to PWn

m. We have already
established that the map A is a bijection between these two sets, so the fact that
B is an injection means that it must also be surjective. �

Given an (m,n)-filter tuple p, the fixed point for B(p) in V m0 is the word
m(p(0))—up to addition of a multiple of 1.

Example 5.6. Continuing Example 5.4 (and recalling Example 4.12), balancing
each (3, 5)-filter p(i) gives the sequence of m(p(i))

[−1,3, 4]→ [−2, 3, 5]→ [0, 2, 4]→ [1,2, 3]→ [0,2, 4]→ [−1, 3, 4].

Balancing adds the same amount to each element, and thinking of m(p(0)) as an
element of V 3

6 , we observe that m(p(0)) is a fixed point for the action of B(p) =
10011.
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5.2.3. The Zeta Map (A 7→ B). The zeta map ζ sends the first method of associat-
ing an (m,n)-parking word to a parking (m,n)-filter tuple in Definition 5.1 to the
second in Definition 5.3. By Theorem 5.5, we conclude that ζ is a bijection.

Definition 5.7. The zeta map is the bijection from PWn
m to itself defined by

ζ : PWn
m → PW

n
m

p 7→ B ◦A−1(p)

Examples are illustrated in Figures 11 and 12. The grid in Figure 11 gives the
expansions of the q, t-Catalan and parking polynomials:∑

d∈DF3
4

qarea(d)tdinv(d) = q3 + q2t+ qt+ qt2 + t3,

∑
p∈PT 3

4

qarea(p)tdinv(p) = q3 + 2q2 + q2t+ 2q + 3qt+ qt2 + 1 + 2t+ 2t2 + t3.

n(p) A(p) B(p) n(p) A(p) B(p) n(p) A(p) B(p)

123 012 000 134 001 011 015 011 002
132 021 010 143 010 021 105 101 102
213 102 100 413 100 201 150 110 120
231 120 110 024 020 001 226 000 012
312 201 200 042 002 020
321 210 210 204 200 101

1 q q2 q3

1 0 0 0 1

t 0 1 1 0

t2 0 1 0 0

t3 1 0 0 0

1 q q2 q3

1 1 2 2 1

t 2 3 1 0

t2 2 1 0 0

t3 1 0 0 0

Figure 11. The zeta map on PW3
4, along with the q, t-Catalan

and parking polynomials. The rows shaded in gray correspond
to the canonical embedding of DF3

4 in PT 3
4 from Remark 5.8.

The grids represent the q, t-Catalan and parking polynomial—the
number in the column labeled qi and tj is the coefficient of qitj in
the corresponding polynomial

∑
d∈DF3

4
qarea(d)tdinv(d) or∑

p∈PT 3
4
qarea(p)tdinv(p).

5.3. The Sweep Map. In this section, we relate the zeta map on (m,n)-parking
words to the sweep map on (m,n)-Dyck paths.

Having fixed m and n coprime, define the level of a step of a lattice path in
Z × Z to be the level of its north/west endpoint. In [4], Armstrong, Loehr, and
Warrington defined the sweep map on (m,n)-Dyck paths by sorting the steps of
a given path by their levels, that is to say, we reorder the steps of the path by
increasing order of level.6 See Figure 13 for an example. One can visualize this
procedure geometrically as a sweep of the line Ha,k := {x : x · (m,n) = k} up from
k = 0 to k =∞, as illustrated in Figure 14 for (m,n) = (4, 7).

6This is a special case of the general definition of the sweep map, which is on general lattice
paths in an N -dimensional box.
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n(p) A(p) B(p) n(p) A(p) B(p) n(p) A(p) B(p) n(p) A(p) B(p)

123 031 000 024 012 001 235 001 012 015 030 002
132 013 010 042 021 020 253 010 031 051 003 030
312 103 200 204 102 101 523 100 301 105 300 102
321 130 210 240 120 120 134 020 011 116 011 003
213 301 100 402 201 300 143 002 021 116 101 103
231 310 110 420 210 310 314 200 201 161 110 130

327 000 013

1 q q2 q3 q4

1 0 0 0 0 1

t 0 0 1 1 0

t2 0 1 1 0 0

t3 0 1 0 0 0

t4 1 0 0 0 0

1 q q2 q3 q4

1 0 1 2 2 1

t 1 4 3 1 0

t2 2 3 1 0 0

t3 2 1 0 0 0

t4 1 0 0 0 0

Figure 12. The zeta map on PW3
5. The rows shaded in gray

correspond to the canonical embedding of DF3
5 in PT 3

5 from Re-
mark 5.8. The grids represent the q, t-Catalan and parking poly-
nomials, as in Figure 11.

0 4 8 12
16

9
13

6 10
14

7

0481216202428

73159131721

141062261014

21171395137

2824201612840

sweep7−−−→

0 4 6
7

8 9 10 12
13

14

16

0481216202428

73159131721

141062261014

21171395137

2824201612840

Figure 13. The (4, 7)-filters corresponding to a path d (left) and
the corresponding path sweep(d) (right). The horizontal steps of d
are labeled by the level to their west, while the vertical steps are
labeled by the level to their north; we have preserved these labels
on the steps of sweep(d). To form the path sweep(d), the steps
of the path d are rearranged according to the order in which they
are encountered by a line of slope −4/7 sweeping up from below.
Compare with Figure 14.

It is not hard to argue that the sweep map sends an (m,n)-Dyck path to another
(m,n)-Dyck path [60, Theorem 6.7], but invertibility is considerably more difficult.
The sweep map and its various generalizations were first shown to be bijective by
Thomas and Williams in [60].

Remark 5.8. There is a canonical injection

DFnm ↪−→ PT nm
d 7→ pd,

where pd is the unique element of PT nm such that n(d) = n(pd). (That is to say,
pd is the parking tuple from which corners of d are removed in increasing order of
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0 6 7 9
→

4 6 7 9
→

6 7 8 9
→

7 8 9 10
→

7 8 9 10
→

7 9 10 12
→

7 10 12 13
→

7 12 13 14
→

7 13 14 16
→

7 13 14 16
→

7 13 14 16
→

7 13 14 16
.

Figure 14. An illustration of the geometric interpretation of
sweep for (m,n) = (4, 7) and the path d of Figure 13. Each box in
the figure corresponds to a step of the sweeping procedure. Each
box contains the path d with the steps already swept marked in
red (top left) and the steps of the new path sweep(d) already built
(top right). The 4-tuples record the levels visible from the west in
d if the red (swept) steps are rendered invisible—the level to be
swept next is colored red. Sweeping either increases the level by 4
if it corresponds to the level to the west of a swept horizontal step,
or freezes the level (indicated by bold styling) if it corresponds to
the level to the north of a swept vertical step. See Remark 5.11.

label.) We call pd a Dyck (m,n)-filter tuple. By replacing d by pd, we may consider
DFnm as a subset of PT nm.

We can rephrase this injection using the interpretation of d as an (m,n)-Dyck
path and elements of PT nm as (m,n)-parking paths. Thinking of d as an (m,n)-Dyck
path from (0, 0) to (−n,m) (as in Figure 7), we label each horizontal edge by the
position of the level of its left endpoint. This associates a canonical (m,n)-parking
path to d, which corresponds to a parking (m,n)-filter tuple pd by Remark 4.13.
Note that the lattice path used to compute sweep(d) is the same as the (unlabeled)
lattice path associated to pd in Remark 4.13, whose column heights are counted by
A(pd).

The injection of Remark 5.8 allows us to relate the zeta and sweep maps as
follows.

Proposition 5.9. For d an (m,n)-Dyck path, B(pd) is an increasing word that
records the column heights of sweep(d).

Proof. We check that B(pd) encodes sweep(d): by construction of pd, the number
pi being removed when passing from p

(i)
d to p

(i+1)
d is the minimal level among those

levels in m(p
(i)
d ) which are the levels of horizontal edges. Meanwhile, the levels in

m(p
(i+1)
d ) with value less than that minimal horizontal edge level keep track of the

vertical steps in the construction of sweep(d). The number of such vertical edge
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levels which are present as we pass from p
(i)
d to p

(i+1)
d tells us, on the one hand,

the height of the i-th column in sweep(d) and on the other hand the number of
letters in m(p

(i)
d ) strictly less than pi (which is what B records). This is illustrated

in Figure 14. �

By Theorem 5.5, since B : PT nm → PW
n
m is a bijection, we obtain a new proof

that the sweep map on (m,n)-Dyck paths is invertible.

Theorem 5.10. For m,n coprime, the sweep map on (m,n)-Dyck paths is invert-
ible.

Remark 5.11. In [4, Section 5.2], Armstrong, Loehr, and Warrington remark
that the sweep map can be inverted if the levels of each of the steps on the path
specified by sweep(d) can be determined. The last two authors gave an algorithm
to determine these levels in [60].

This strategy of determining levels can be related to the fixed point of a parking
word as follows. Proposition 5.9 shows that the fixed point of the (increasing)
parking word B(pd) encodes the levels of the vertical steps of sweep(d). For example,
the left path d in Figure 14 corresponds to the (m,n)-filter tuple pd specified on
the left of Figure 13. Then m(p

(n)
d ) = [7, 13, 14, 16] records the levels that should

be assigned (from top left to bottom right) to the vertical steps of sweep(d), as
illustrated on the right of Figure 13. The remaining levels—corresponding to the
horizontal steps (again from top left to bottom right)—are determined from by the
word n(p

(0)
d ) = [0, 4, 6, 8, 9, 10, 12].

6. The Affine Symmetric Group

In Sections 2 and 3, we gave a new interpretion of (m,n)-parking words as
transformations of V m0 —that is, they were words acting with fixed points on points
with m coordinates. In this section, we recall the interpretation of (m,n)-parking
words as points in Rnn(n+1)/2—that is, as certain points with n coordinates.

The coincidence between the number of regions in the type S̃n Shi arrangement
(Section 6.2) and the number of (n+1, n)-parking words has led to many purely
combinatorial investigations [55, 56, 9, 6, 43]. Although many different authors
have found many different bijections between Shi regions and parking words, this
direction of research culminates in work of Gorsky, Mazin, and Vazirani [28], who
expand upon and generalize Armstrong’s work in [2] from the Fuss to the rational
level of generality. In this section, we prove several of their conjectures.

We first review the basic combinatorics of S̃n in Section 6.1. We state the
simple relationship between parking (m,n)-filter tuples and the affine symmetric
group in Theorems 6.6 and 6.11 and Proposition 6.7. This relationship allows us
to define two maps from a generalization of Shi regions (alcoves in the Sommers
region) to parking words, which are a restatement of Definitions 5.1 and 5.3.

6.1. The Affine Symmetric Group. The affine symmetric group S̃n is the group
of bijections w : Z→ Z such that

w(i+ n) = w(i) + n and
n∑
i=1

w(i) =

(
n+ 1

2

)
.

We often represent elements of S̃n in (short) one-line notation

w = [w(1), w(2), . . . , w(n)] .
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A dominant permutation is an affine permutation w whose one-line notation in-
creases, so that w(1) < w(2) < · · · < w(n). An inversion of w is a pair (i, j) with
1 ≤ i ≤ n and i < j such that w(i) > w(j). We refer the reader to [46, 28] for more
details.

The one-line notation of affine permutations bijectively corresponds to the al-
coves in the affine S̃n hyperplane arrangement, introduced in Section 2.2.7

Theorem 6.1 ([28, Lemma 2.9]). Each alcove of Rnn(n+1)/2 \ H contains a unique

point (x1, . . . , xn) that is the one-line notation of an element of S̃n. Conversely,
each element of S̃n occurs as such a point.

The alcove labeled by the identity permutation [1, 2, . . . , n] is called the fun-
damental alcove A0. An inversion (i, j) of w ∈ S̃n corresponds to the hyperplane
Hki,j′ that separates the alcove containing the one-line notation for w fromA0, where

j′ =

{
jmodn if j 6= 0 modn

n otherwise
and k = 1

n (j − j′). The bijection of Theorem 6.1

between S̃n and the alcoves of Rnn(n+1)/2 \ H is illustrated for n = 3 in Figure 15.
On the other hand, Figure 16 depicts the the labeling of an alcove by the inverse
of the corresponding permutation.
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Figure 15. The labeling of alcoves in R3
6 \ H by S̃3. The three

solid black lines are the hyperplanes H0
1,2,H0

1,3, and H0
2,3.

6.2. The Sommers Region.

Definition 6.2. For m coprime to n, the Sommers region Snm ⊂ Rnn(n+1)/2 is the

region bounded by the n affine hyperplanes in S̃n of height m.

The regions S34 and S35 are illustrated in Figure 17. We have chosen to denote
the Sommers region as Snm so that the exponent n matches the exponent in the

7But note that we are now working with S̃n not S̃m.
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Figure 16. The labeling of alcoves in R3
6 \ H by inverse permutations.

ambient space Rnn(n+1)/2—some references, such as [28], make the choice of opposite

convention so that the subscript matches the subscript of S̃n. Note that when m
is not coprime to n, the hyperplanes of height m do not bound a finite region.

By abuse of notation, using Theorem 6.1 we write w ∈ Snm if w is an affine
permutation labeling an alcove inside Snm. We can detect such affine permutations
with the following simple proposition.

Proposition 6.3 ([28, Definition 2.14]). An affine permutation w−1 ∈ S̃n labels
an alcove in the region Snm iff w(i)− w(j) 6= m for all i < j.

6.2.1. History of the Sommers Region. The Sommers region originated in Shi’s
study of Kazhdan-Lusztig cells of affine Weyl groups [52], as we now outline. The
collection of affine hyperplanes ⋃

1≤i<j≤n

(
H0
i,j ∪H1

j,i

)
is called the Shi arrangement, and these hyperplanes cut out connected regions
called Shi regions. Each Kazhdan-Lusztig cell is a union of Shi regions. Following a
suggestion of Carter, Shi gave an elegant geometric proof that there are (n+ 1)n−1

Shi regions by showing that the inverses of the permutations labeling the minimal
alcoves in the Shi regions coalesce into what has become known as the Sommers
region Snn+1 [53, 54].8

There is a Fuss analogue of the Shi arrangement, defined as the hyperplanes⋃
1≤i<j≤n
−k≤s≤k−1

Hsi,j .

This arrangement has (kn + 1)n−1 connected regions—again, the inverses of the
minimal alcoves coalesce into the Sommers region Snkn+1.

8Eric Sommers was surprised to learn that the region has recently been named after him.
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The fundamental alcove A0 in Rnn(n+1)/2 is the simplex bounded by the affine
simple hyperplanes. It turns out that Snm is congruent to the m-fold dilation of the
fundamental alcovemA0—this may be realized by multiplication by the element [28,
Lemma 2.16],[58, Theorem 4.2]

(12) wnm := [`, `+m, . . . , `+ (n− 1)m] ∈ S̃n, where ` =
1 +m+ n−mn

2
.

Variations on subarrangements of affine Weyl hyperplane arrangements has led
to interesting and surprisingly difficult combinatorics [55, 56, 8, 51, 6, 43, 59], but
outside of m = kn + 1 there are no hyperplane arrangements whose regions have
minimal alcoves given by the inverses of the elements in Snm [28, Example 9.2].
Suggestive results exist for m = kn − 1 using Zaslavsky’s theorem enumerating
bounded regions of a hyperplane arrangement (or Ehrhart duality) [19, 18], and
some work has been done when m and n are not coprime [29].
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Figure 17. The Sommers regions S34 and S35 , with alcoves labeled
by inverse permutations.

6.2.2. Filters and the Sommers Region. To connect (m,n)-filters and affine permu-
tations, we define the analogue of the directed graph Fnm in Definition 4.3.

Fix w ∈ S̃n with w−1 ∈ Snm. An m-minimal element of w is an element of
{w(i) : i ∈ N} that is minimal in its residue class modulo m. We say that an m-
minimal element of w is removable if it is in the short one-line notation of w—that
is, if it is w(i) for some 1 ≤ i ≤ n.

Definition 6.4. Define a directed graph Pn
m with vertex set{

w dominant : w−1 ∈ Snm
}

and a directed edge between w and w′ iff the short one-line notation of w′ can
be obtained from the short one-line notation of w by adding n to a removable
m-minimal element of w, subtracting one from every element, and then resorting.

Lemma 6.5. Acting as described in Definition 6.4 on a removable m-minimal
element of a dominant w with w−1 ∈ Snm produces another dominant element whose
inverse is in Snm.

Proof. Suppose that w(i) is a removablem-minimal element, and let w′ be produced
as above starting from that element. Clearly w′ is dominant. We now apply the
condition of Proposition 6.3 to w′. The only way a problem could arise would be if
there were some j > n with w(j) = w(i) + n −m. But if j − n < i, the fact that
w(j−n) is congruent modulo m to w(i) would violate the m-minimality of i, while
j − n > i would violate the condition of Proposition 6.3 for w. �
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[1, 2, 3, 4]

[0, 1, 3, 6]

[−2, 1, 4, 7]

[−1, 2, 4, 5]

[0, 2, 3, 5]

0

0 1

2

1

1 0

2

0

0

[1, 2, 3]

[0, 1, 5]

[−2, 2, 6]

[−1, 3, 4]

[0, 2, 4]

0

0 1

2

1

1 0

2

0

0

Figure 18. The five dominant permutations whose inverses lie
in S43 and S34 , arranged in the directed graphs P4

3
∼= P3

4. The
edge labels record the position of the removablem-minimal element
chosen. Each parking word in PW3

4 occurs as a unique directed
cycle of length 3 in P4

3, while each parking word in PW4
3 occurs

as a unique directed cycle of length 4 in P3
4. Compare with Fig-

ure 5.

We now relate (m,n)-filters and the Sommers region, using the balanced repre-
sentatives of (m,n)-filters. We first use (m,n)-filters to understand dominant affine
permutations whose inverses lie in the Sommers region.

Theorem 6.6. A dominant affine permutation w ∈ S̃n satisfies w−1 ∈ Snm if and
only if

[w(1), w(2), . . . , w(n)] = n(bw)

for some balanced (m,n)-filter bw ∈ BFnm.

Proof. Note that the one-line notation of the element wnm defined in Equation (12)
is n(bnm), where bnm is the balanced (m,n)-filter generated by the points with level
` (see Definition 4.9). If we have w = n(b) for some balanced (m,n)-filter, then
the corresponding notion of minimal elements coincide, and acting on a minimal
element of w mirrors removing the corresponding minimal element of b. The result
now follows from Definitions 4.3 and 6.4. �

Of course, Theorem 6.6 applies equally well with the roles of m and n switched,
and so we obtain an (m↔n)-bijection and a version of Proposition 4.8 for dominant
affine permutations whose inverses lie in the Sommers region.

Proposition 6.7. For m and n coprime, there is a bijection{
w dominant : w−1 ∈ Snm

}
↔
{
w dominant : w−1 ∈ Smn

}
.

Furthermore, both sets have cardinality

1

n+m

(
n+m

n

)
.
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[1, 2, 3, 4, 5]

[0, 1, 3, 4, 7]

[−1, 1, 2, 5, 8]

[−3, 0, 3, 6, 9]

[−1, 2, 3, 5, 6]

[−2, 1, 4, 5, 7]

[0, 2, 3, 4, 6]

0

0 1

3

0 3

2

1

1 0

2

0

0

1

0

[1, 2, 3]

[0, 1, 5]

[−1, 1, 6]

[−3, 2, 7]

[−1, 3, 4]

[−2, 3, 5]

[0, 2, 4]

0

0 1

2

0 2

1

1

1 0

2

0

0

1

0

Figure 19. The seven dominant permutations whose inverses lie
in S53 and S35 , arranged in the directed graphs P5

3 (left) and P3
5

(right). The edge labels record the position of the minimal element
chosen. Note that although the graphs are isomorphic as unlabeled
direct graphs, the edge labels differ. Each parking word in PW3

5

occurs as a unique directed cycle of length 3 in P5
3, while each

parking word in PW5
3 occurs as a unique directed cycle of length

5 in P3
5. Compare with Figure 6.

Proof. The enumeration follows from Theorem 6.6, and the bijection is induced by
the map n(b)↔ m(b). �

Example 6.8. For example, looking at the balanced (3, 5)-filter on the righthand
side of Figure 9, and disregarding the labels on the horizontal steps, the sorted list
of the left-most level in each row gives m(b) = [−1, 3, 4], while the sorted list of the
bottom level in each column gives n(b) = [−1, 2, 3, 5, 6].

Remark 6.9. Proposition 6.7 is well-known in the language of simultaneous (m,n)-
cores using the bijection between n-cores (respectively m-cores) and the coroot lat-
tices of S̃n (respectively S̃m). This bijection of Proposition 6.7 takes an element
in S̃n associated to a particular simultaneous (m,n)-core and produces the corre-
sponding element in S̃m associated to the same (m,n)-core. We refer the reader
to [1, 49] and [3, Section 4] for more details on cores and simultanous cores.

Remark 6.10. We can compute the bijection of Proposition 6.7 directly on the
one-line notation of an affine permutation w by recording the m-minimal elements
of w. The sequence w(1), w(2), . . . is obtained by recording the lowest entry of each
column of bw, in order, then the second-lowest entry of each column, and continuing
in this way. The first time an entry in a given congruence class is recorded is when
we come to the leftmost entry of the corresponding row (i.e., an element of m(bw)).
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Thus, the 3-minimal elements of w = [−1, 2, 3, 5, 6] are [−1, 3, 4]:

i 1 2 3 4 5 6 . . .

w(i) −1 2 3 5 6 4 . . .

w(i) mod 3 2 2 0 2 0 1 . . .

.

Similarly, the 5-minimal elements of w = [−1, 3, 4] are [−1, 2, 3, 5, 6]:

i 1 2 3 4 5 6 7 . . .

w(i) −1 3 4 2 6 7 5 . . .

w(i) mod 5 4 3 4 2 1 2 0 . . .

.

In fact, Theorem 6.6 can be extended to the whole Sommers region if we pass
from balanced (m,n)-filters to balanced (m,n)-filter tuples.

Theorem 6.11. An affine permutation w ∈ S̃n satisfies w−1 ∈ Snm if and only if

[w(1), w(2), . . . , w(n)] = n(pw)

for some balanced (m,n)-filter tuple pw ∈ BT nm.

Proof. Choose p ∈ BT nm. Now n(p) is the short one-line notation of an affine
permutation w since n(p) is a permutation of n(p(0)) and p(0) is balanced. We
can think of the sequence w(1), w(2), . . . as being obtained by recording the levels
removed from n(p(0)) by repeatedly removing boxes in the order specified by p. (In
this way, w(1) through w(n) are the levels removed on the first pass, w(n+ 1),. . . ,
w(2n) are the levels removed on the second pass, and so on.) Since levels that
differ by m lie in the same row, the smaller is necessarily removed before the larger,
guaranteeing that the condition of Proposition 6.3 is satisfied, so w−1 ∈ Snm.

Now Snm is an m-fold dilation of the fundamental alcove in Rn−1, and so contains
mn−1 affine permutations. Since p 7→ n(p) is a bijection and |BT nm| = mn−1

by Proposition 4.14, we conclude the result. �

Remark 6.12. Since Pm
n
∼= Fmn as unlabeled directed graphs, by Definition 4.11

we can interpret affine elements w with w−1 ∈ Snm as cycles of n vertices in the
directed graph Pm

n (we recall that vertices of Pm
n are short one-line notation of

permutations in Smn ), with a choice of initial vertex. The short one-line notation
of w is given by reading the m-minimal element chosen for the edge (undoing the
rebalancing that occurs at each step).

For example, reproducing Example 4.12 with m = 3 and n = 5 (see also Fig-
ure 8), the 5-cycle in P3

5 with removable 3-minimal elements in bold

[−1,3, 4]→ [−2, 3, 5]→ [0, 2, 4]→ [1,2, 3]→ [0,2, 4]→ [−1, 3, 4] (rebalanced)
+ 0 + 1 + 2 + 3 + 4 + 5

[−1,3, 4]→ [−1, 4, 6]→ [2, 4, 6]→ [4,5, 6]→ [4,6, 8]→ [4, 8, 9] (not rebalanced)

produces the short one-line notation of the affine Weyl group element

w = [3,−1, 2, 5, 6] ∈ S̃5.

6.3. Parking Words from the Sommers Region. Using Theorem 6.11, we can
easily restate the maps A and B from Sections 5.2.1 and 5.2.2—originally defined
on parking (m,n)-tuple filters—in the language of affine permutations. These maps
originally appeared in this form in [28].

Remark 6.13. There are many statistics one can define on Dyck paths and park-
ing functions (in their various combinatorial manifestations). In [2] for (m,n) =
(n+1, n), Armstrong introduced statistics on the affine symmetric group that cor-
responded to what Haglund and Loehr called area′ and bounce in [34]. Armstrong
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suggested that his statistics would recover work in the (kn+ 1, n) case, previously
considered by Loehr and Remmel in [45]. By using the relationship between Shi
arrangements and Sommers regions, Gorsky, Mazin, and Vazirani generalized Arm-
strong’s constructions to general coprime (m,n)—and called the statistics dinv and
area (see Section 5.1). Finally, we note that the paper [5] also defines statistics for
general coprime (m,n), but doesn’t define a zeta map on (m,n)-parking paths or
words.

6.3.1. The Map A: the Anderson Labeling. Translating Definition 5.1 using the
bijection of Theorem 6.11 gives the following definition (compare with [28, Section
3.1]).

Definition 6.14. Let w ∈ S̃n be given with w−1 ∈ Snm. Then A(w) is defined by

w
A7−→ [a · w′(1), a · w′(2), . . . , a · w′(n)] modm,

where w′(i) = w(i)−min{w(1), w(2), . . . , w(n)} and an = −1 modm.

Example 6.15. As in Example 5.2, for w = [3,−1, 2, 5, 6] with w−1 = [0, 3, 1, 7, 4] ∈
S53 and w′ = [3 + 1,−1 + 1, 2 + 1, 5 + 1, 6 + 1] = [4, 0, 3, 6, 7], since 1 · 5 = −1 mod 3
we compute A(w) as

w = [3,−1, 2, 5, 6]
A7−→ [1 · 4, 1 · 0, 1 · 3, 1 · 6, 1 · 7] mod 3 = [1, 0, 0, 0, 1].

Using 3·3 = −1 mod 5, we also find A(w) for w = [−1, 3, 4] with w−1 = [0, 4, 2] ∈ S35
and w′ = [0, 4, 5]:

w = [−1, 3, 4]
A7−→ [3 · 0, 3 · 4, 3 · 5] mod 5 = [0, 2, 0].

If the short one-line notations of w1 and w2 are permutations of each other,
then so are A(w1) and A(w2), so that elements in the same coset of S̃n/Sn are
assigned to the same (m,n)-parking word by A, up to a permutation. It follows
from Section 5.2.1 and Theorem 6.11 that A is a bijection; this is illustrated for
(m,n) = (4, 3) and (5, 3) in Figure 20.

Theorem 6.16. For m and n relatively prime, the map

A∗ : Snm → PW
n
m

w 7→ A(w−1)

is a bijection.

There is a more geometric way to recover the parking word A(w), which we
quickly sketch. There is a natural bijection between dominant affine permutations
in S̃n and the coroot lattice Q̌ := {x ∈ Zn :

∑n
i=1 xi = 0}:

w ∈ S̃n 7→ w−1(0),

where 0 = (0, 0, . . . , 0) ∈ Q̌. This extends to a bijection between affine permutations
and Sn n Q̌. The restriction of this bijection to the permutations whose inverses
lie in the Sommers region Snm gives a set of representatives for Q̌/mQ̌, which are in
bijection with (m,n)-parking words using natural coordinates and the cycle lemma.
We refer the reader to [36, 28, 57] for more details relating to this construction.

6.3.2. The Map B: the Pak-Stanley Labeling. It is natural to ask for a bijective
proof for the number of Shi regions—for example, via a bijection betwen Shi re-
gions and (n+1, n)-parking words. Pak and Stanley found such a labeling of the
Shi regions [55, Theorem 5.1], which Stanley later extended to the Fuss level of
generality [56]. Using the correspondence between the minimal alcoves of the Shi
arrangement and the Sommers region, the Pak-Stanley labeling was finally extended
to the rational level in [28] as an affine analogue of the code of a permutation.
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Figure 20. The Sommers regions S34 and S35 , with alcoves labeled
by parking words under the Anderson bijection A.

Definition 6.17. For w ∈ S̃n with w−1 ∈ Snm, B(w) is defined by

w
B7−→ p1 . . . pn,

where for 1 ≤ i ≤ n,
pi = |{j : j > i and 0 < w(i)− w(j) < m}| .

Using the correspondence between inversions and hyperplanes, pi counts the
number of hyperplanes of the form Hki,j of height less than m separating the alcove
corresponding to w−1 from the fundamental alcove. The Pak-Stanley labeling of
the Sommers region is illustrated in the cases (m,n) = (4, 3) and (5, 3) in Figure 21.
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Figure 21. The Sommers regions S34 and S35 , with alcoves labeled
by parking functions under the Pak-Stanley bijection B.

We will now show that B(w) in Definition 6.17 is equivalent to B(pw) in Defini-
tion 5.3 under the bijection in Theorem 6.11.

Theorem 6.18. For any w ∈ S̃n with w−1 ∈ Snm, we have that B(w) = B(pw),
where pw is the (m,n)-filter tuple with [w(1), w(2), . . . , w(n)] = n(pw).

Proof. Remark 6.12 gives a bijection between n-cycles in Pm
n and affine permuta-

tions w ∈ S̃n with w−1 ∈ Snm. Since Pm
n
∼= Fmn , we can see B(pw) directly on the

n-cycle. Fix 1 ≤ i ≤ m. At most one element from each residue class modulo n
in the one-line notation of w can contribute to pi. The number of residue classes
which contribute (which equals pi) is also the position of the number removed when
calculating B(pw). �
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Remark 6.19. Continuing Remark 6.12, we interpret parking words p ∈ PWn
m (of

length n) as cycles with n vertices in the directed graph Pm
n . The word is obtained

by recording the position of the element chosen for the edge. For example, for
(m,n) = (3, 5) and w = [3,−1, 2, 5, 6] with w−1 = [0, 3, 1, 7, 4] ∈ S53 , recording the
position of the element removed computes the parking word B(pw) from the 5-cycle
encoding the corresponding parking (3, 5)-filter tuple pw:

[−1,3, 4]→ [−2, 3, 5]→ [0, 2, 4]→ [1,2, 3]→ [0,2, 4]→ [−1, 3, 4]

+ 0 + 1 + 2 + 3 + 4 + 5

[−1,3, 4]→ [−1, 4, 6]→ [2, 4, 6]→ [4,5, 6]→ [4,6, 8]→ [4, 8, 9]

B(pw) : 1 0 0 1 1

On the other hand, we can compute B(w) = p1 . . . p5 by extending the short one-
line notation of w. Theorem 6.18 tells us that the results of these two calculations
agree.

i 1 2 3 4 5 6 7 8 9 10

w(i) 3 ;;−1 2 5 CC6 <<8 4 7 10 11

pi 1 0 0 1 1

.

The letters in the one-line notation of w that occur in p
(0)
w are written in bold,

and we have marked the inversions that count towards B(w) using arrows. Note
that the inversion (i, j) = (1, 2) doesn’t count towards B(w) because w(1)−w(2) =
3− (−1) ≥ 3.

Now Theorems 5.5 and 6.18 imply that B is a bijection from affine permutations
whose inverse lies in Snm to (m,n)-parking words. This resolves [28, Conjecture 1.4].

Theorem 6.20 ([28, Conjecture 1.4]). For m and n relatively prime, the map

B∗ : Snm → PW
n
m

w 7→ B(w−1)

is a bijection.

Remark 6.21. In [28, Section 7.1], Gorsky, Mazin, and Vazirani provide a conjec-
tural algorithm to invert B. Their Conjecture 7.9 (which essentially says that their
algorithm succeeds) follows now from our Theorem 5.5 and the convergence proved
in Lemma 3.3 and Corollary 3.4.
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