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Background: COVID-19is constantly evolving, and highly populated communities
consist of many different characteristics that may contribute to COVID-19 health
outcomes. Therefore, we aimed to (1) quantify the relationships between county
characteristics and severe and non-severe county-level health outcomes related
to COVID-19. We also aimed to (2) compare these relationships across time
periods where the Delta (B.1.617.2) and Omicron (B.1.1.529 and BA.1.1) variants
were dominant in the U.S.

Methods: We used multiple regression to measure the strength of relationships
between healthcare outcomes and county characteristics in the 50 most
populous U.S. counties.

Results: We found many different significant predictors including the proportion
of a population vaccinated, median household income, population density, and
the proportion of residents aged 65+, but mainly found that socioeconomic
factors and the proportion of a population vaccinated play a large role in the
dynamics of the spread and severity of COVID-19 in communities with high
populations.

Discussion: The present study shines light on the associations between public
health outcomes and county characteristics and how these relationships change
throughout Delta and Omicron’s dominance. It is important to understand factors
underlying COVID-19 health outcomes to prepare for future health crises.
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1 Introduction

As new variants of the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) evolve and mutate, it is vital to understand
how these new variants affect public health outcomes. Our understanding
of COVID-19 can have significant impacts on how we approach
measures to mitigate the virus’s deleterious effects on communities.

Before the Omicron variant (B.1.1.529 and BA.1.1) became the
dominant strain in the United States (U.S.), the Delta variant
(B.1.617.2) existed in the U.S. from late June 2021 to late December
2021 as the dominant strain (1). It has been reported to be up to over
two times more contagious than preceding variants (2-5) along with
increased severity (2, 4).

In what became the newest variant of concern (VOC) at the time,
the first confirmed case of the Omicron variant in the U.S was discovered
on 1 December 2021 (6). Data show that the Omicron variant became
dominant in the U.S. only about 3 weeks after the first confirmed case,
approximately on 19 December 2021 according to weekly reports (1).
While Omicrons expeditious rise to dominance points to higher
transmission levels relative to preceding variants, numerous studies also
highlight the variant’s highly transmissive nature (2, 7-9). Studies suggest
that the Omicron variant can infect three to six times as many people as
the Delta variant over the same time period (7, 8, 10). However, it is
reported to cause less severe symptoms (10). In the present study, the two
lineages that make up the Omicron variant are B.1.1.529 and BA.1.1,
which accounted for the majority of COVID-19 cases in the U.S. from
approximately 19 December 2021 to the study end date (19 March 2022).

COVID-19 has historically been dubbed as “the great equalizer”
(11) as the disease purportedly transcends wealth, fame, prestige, and
age. However, there exists nuance surrounding this line of reasoning
that shines light on the impact of social, economic, and demographic
characteristics in communities.

The social, economic, and demographic characteristics of
communities are largely cited to affect macro-level health outcomes
and contribute to several indices that aim to draw relationships
between regional characteristics and health outcomes (12-16).
Although the variables included in the present study were drawn from
more than one existing framework, careful consideration of each
variable and its empirical implications were taken.

The common denominator among a vast amount of
COVID-19
demographic, and environmental/behavioral factors (12-16).

epidemiological studies are: socioeconomic,
Therefore, we aimed to include core variables from each
aforementioned facet of a community’s makeup in order to
examine their relationship with the non-severe and severe
outcomes in highly populated regions, over the course of the
virus’s evolution into new variants. We also included the variable
of the proportion of residents vaccinated to address the effect of
community-wide interventional measures on health outcomes.
Median household income represented the socioeconomic facet
of a community’s make up as it has been shown in other studies
to have one of the highest relative effects on COVID-19 case and
death rates (15, 17-22). The proportion of residents aged 65 and
older are included to represent the demographic facet of a
community’s make up, as it has been reported that individuals
aged 65 and older are at a higher risk for more severe outcomes
from COVID-19 and contribute to much of COVID-19 related
deaths (23). Lastly, population density, although not widely
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reported in vulnerability indices like the CDC vulnerability index
(SVI), has been shown to have differing effects overtime (24-26)
and is reported as imperative to investigate in the context of
COVID-19 (14) as not all current vulnerability indices
incorporate this measure. Altogether, these independent variables
each represent a core aspect (socioeconomic, demographic,
environmental, and interventional) of a community’s risk for
non-severe and severe health outcomes. Although case rate is a
primary indicator of non-severe macro-level health outcomes,
we also included positivity rate and infection rate as additional
indicators in order to deeper investigate non-severe macro-level
health outcomes. By a similar token for severe health outcomes,
deaths are also a primary indicator, but we also included
hospitalizations, ICU occupancies, and ICU occupancy from
COVID-19 to deeper explore severe macro-level health outcomes.

SARS-CoV-2 variants are reported to have differing levels of
effects, with the Delta variant being more severe and the Omicron
variant being more transmissive (6, 27). Therefore, we aimed to
measure the relationships of the aforementioned independent
variables with macro-level health outcomes to observe how these
relationships change in different periods of variant dominance.
With respect to the proportion of residents vaccinated, as the
COVID-19 vaccine has been reported to wane in effectiveness
from Delta to the Omicron variant (28), it becomes valuable to
investigate the macro-level relationship of vaccines and
community health outcomes. By the same token, investigating the
relationship of the proportion of residents aged older than 65 and
community health outcomes may provide insight into the distinct
variant’s macro-level effects on the older adult population. In the
case of population density, its effect on macro-level health
outcomes has been shown to change over time (27), thus making
it valuable to investigate inter-variant trends. Socioeconomic
trends are also vital to monitor throughout the time course of
different variant dominances as findings may implicate the
necessity for assistance programs and policy-changes to support
equitable health outcomes.

Given the multifactorial etiology of the different macro-level
health outcomes related to COVID-19, along with its mutative
behavior, we aimed to (1) investigate the relationship between
county-level characteristics and county-wide COVID-19 health
outcomes pertaining to transmission and severity, and (2)
investigate how these trends change over the evolution of new
SARS-CoV-2 variants. We used multiple regression models to
investigate the relationship between the aforementioned
independent variables and public health outcomes in the 50 most
populated U.S. counties over different periods of SARS-CoV-2
variant dominance. Overall, this study aims to elucidate
COVID-19 trends on a macro-level and their possible
implications for advancing public health knowledge and informed
decision making.

2 Materials and methods
2.1 Sample

The study sample consisted of the 50 most populous counties in
the U.S according to the 2020 U.S. census estimates (29).
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TABLE 1 Definitions and sources of variables.

Definition Source

Independent variables
Proportion of residents The proportion of residents in each county who have received 2+ doses or a J&]J dose, reported daily and COVID Act Now API
vaccinated (2+ doses or ] & J) averaged across time period.
Median household income The median household income of a respective county USDA
Population Density The number of people per square mile CDC county view
Proportion of residents aged 65+ | The number of residents aged 65+ divided by the population estimate of the respective county CDC pop 65
Dependent variables
Group 1 (severe)
New deaths per 100,000 residents | The number of new deaths per day, divided by the 2020 population estimate of the respective county, See note

multiplied by 100,000.
Hospitalizations per 100,000 The number of residents occupying a hospital bed due to a COVID-19 case (reported every 7 days), divided See note
residents by the 2020 population estimate of the respective county, multiplied by 100,000
Proportion of ICU beds in use The total number of ICU beds being used divided by the ICU bed capacity of a county (reported every 7 days) = COVID Act Now API
Proportion of ICU beds used for | The total number of ICU beds being used for COVID-19 divided by the total number of ICU beds being used = COVID Act Now API
COVID-19 in a county (reported every 7 days)
Group 2 (non-severe)
Positivity rate The ratio of people who test positive using a 7-day rolling average COVID Act Now API
Infection rate The approximate number of infections arising from a typical case COVID Act Now API
Case density The number of cases per 100,000 population calculated using a 7-day rolling average COVID Act Now API

Definitions and sources of independent and dependent variables used in the study. Group 1 variables are variables taken from COVID Act Now and then modified using the 2020 census

population estimates (29). All metrics used in the study are averaged during the respective time frame (Delta 1, which is from 20 June 2021 to 18 September 2021; Delta 2, which is from 19
September 2021 to 18 December 2021; and Omicron, which spans from 19 December 2021 to 19 March 2022). Median household income is retrieved from USDA (30). Group 2 variables are

variables that are taken directly from the COVID Act Now data using the COVID Act Now API (30).

2.2 Variables of interest and data
definitions

2.2.1 Independent variables

The independent variables used in this study were: proportion of
residents with 2+ doses (or one dose of Johnson & Johnson), MHI,
population density, and the proportion of residents aged 65 and older.
See Table 1 for expounded descriptions of variables.

2.2.2 Dependent variables

Among non-severe public health outcomes, we investigated the
average positivity rate, average infection rate, and the average number
of cases per 100,000 persons in a county (using an average of a
seven-day rolling average; case density) within each time frame.
Among severe outcomes, we investigated average deaths and
hospitalizations per 100,000 persons, average ICU occupancy
(reported every 7 days), and average proportion of ICU admissions
related to COVID-19 (reported every 7 days) within each time frame.
See Table 1 for expounded descriptions of variables.

2.3 Data acquisition

Data pertaining to case density, positivity rate, infection rate, and
proportion of ICU beds in use and the proportion of ICU beds that are
being used for COVID-19 of a county were obtained from COVID Act
Now (31) and data pertaining to new deaths and hospitalizations per
100,000 residents were gathered from COVID Act Now (31), then
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modified using population data from the 2020 census (29). The
vaccination data for New York County were unavailable from COVID
Act Now and were therefore retrieved from CDC (32). Vaccination data
from Texas were obtained from COVID Act Now until 22 October 2021,
and then retrieved from the CDC thereafter because of unavailability.

2.4 Data curation

New deaths and hospitalizations per 100,000 residents were
calculated by dividing the metric of interest (e.g., new deaths per day)
by the 2020 population estimate of the respective county (29) and then
multiplying this value by 100,000. All variables that were reported
periodically across each period were averaged.

2.5 Time periods

The present study was split into three time periods, each consisting
of 91 days, in which either the Delta or Omicron variant was dominant.
The first two time periods (Delta 1 and Delta 2) both represent when
Delta was dominant in the U.S. but was split into two time periods to
allow for a more uniform comparison to Omicrons period
of dominance.

2.5.1 Delta variant dominance

Delta 1 spanned from 20 June 2021 to 18 September 2021. Delta
2 spanned from 19 September 2021 to 18 December 2021. According
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to the COVID Data Tracker by CDC (1), the Delta variant accounted
for ~37.5% of all cases in the U.S. on 19 June 2021 and 55% by 26 June
2021, therefore making it the dominant strain in the U.S. as early as 20
June 2021. This time frame ends on 19 September 2021, as this date
was determined to divide Delta’s dominance into two separate time
frames of nearly congruent data. That is, both the first and second time
frames had a similar average proportion of Delta cases, which was
~90.6% and ~95.7%, respectively. The second time frame (Delta 2)
ends on 18 December 2021. 19 December 2021, is the first possible
day where Omicron could become the dominant strain in the U.S. as
the Omicron variant accounted for ~37.9% of all U.S. cases on 18
December 2021, and ~77% by 25 December 2021 (1).

2.5.2 Omicron variant dominance

Omicron dominance spanned from 19 December 2021 to 19
March 2022 (study end date). When the study ended, B.1.1.529 and
BA.1.1 were the most dominant, which share similar characteristics in
terms of transmissibility and severity (32). The BA.2 and BA.2.12.1
lineages have been identified to be slightly more contagious than
previous Omicron lineages but became dominant after the study end
date (33).

2.6 Data analysis

Data across each period were averaged, with the numerator being
the sum of all daily or weekly recorded variables and the denominator
being the total number of time points the data were recorded for each
time period.

For each time frame, we used the ggpubr and the stats library in
RStudio (version 4.0.4) (34) to perform multiple regression analysis
between each dependent variable and all four independent variables.
During Delta 1, Florida changed their reporting standards and thus
the data was not compatible for analysis (32), so mean new deaths per
100,000 residents analysis was performed using 43 counties. The value
of p of the association between the independent variable and the
dependent variable, coefficient estimates, 95% confidence intervals for
coefficient estimates, R*, and p-values of each of the multiple
regression models were recorded. p-values smaller than 0.05 were
considered statistically significant.

3 Results

See Figure 1 for a display of findings of significant predictors
across time periods and Supplementary Table A.1 for findings
regarding simple regression results.

3.1 Delta 1 (20 June 2021 to 18 September
2021)

3.1.1 Non-severe outcomes

In the mean case density model, MHI was a significant predictor
(coeflicient estimate (CE) =—0.000292, 95% Confidence Interval (CI)
[—0.000567, —0.0000170]) while population density trended toward
significance (CE=-0.000315, 95% CI [—0.000662, 0.0000310]). In the
mean positivity rate model, population density was a significant
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predictor (CE=-0.00000109, 95% CI [-0.00000194, —0.000000226]).
The mean infection rate model yielded no significant predictors.

3.1.2 Severe outcomes

In the mean ICU occupancy model, the proportion of residents
aged 65+ was significant (CE=-0.0128, 95% CI [-0.0235, —0.00209]).
In the mean hospitalizations from COVID-19 per 100,000 residents
model, MHI trended toward significance (CE=—0.000225, 95% CI
[—0.000483, 0.0000334]), while population density was significant
(CE=-0.0000032, 95% CI [—0.00000551, —0.0000000890]) in the
mean proportion of ICU admissions due to COVID-19 model. The
mean new deaths per 100,000 residents model resulted in no significant
predictors. See Table 2 for all multiple regression results during Delta 1.

3.2 Delta 2 (19 September 2021 to 18
December 2021)

3.2.1 Non-severe outcomes

The mean positivity rate model yielded the proportion of residents
with 2+ doses (CE=-0.108, 95% CI [-0.214, —0.000781]) and
population density (CE=-0.000000642, 95% CI [—0.00000127,
—0.0000000174]) as a significant predictor. In the mean infection rate
model, population density was a significant predictor
(CE=0.00000182, 95% CI [0.000000800, 0.00000284]). There were no
significant predictors in the mean case density model.

3.2.2 Severe outcomes

The mean new deaths per 100,000 model yielded three significant
predictors, which were MHI (CE=—0.000004, 95% CI [—0.00000554,
—0.00000246]), population density (CE=-0.0000041, 95% CI
[—0.00000634, —0.00000186]), and the proportion of residents aged 65
and older (CE=0.0123, 95% CI [0.00365, 0.0209]). The proportion of
residents with 2+ doses trended toward significance (CE=-0.362, 95%
CI [—-0.743,0.0187]). In the mean ICU occupancy model, the proportion
of residents aged 65+ was a significant predictor (CE=—0.0142, 95% CI
[—0.0226, —0.00586]). The mean hospitalizations from COVID-19 per
100,000 residents model showed that the proportion of residents with
2+ doses (CE=—33.08, 95% CI [—60.068, —6.098]) and MHI
(CE=-0.000111, 95% CI [—0.000220, —0.00000136]) were significant
predictors. Lastly, the mean proportion of ICU admissions due to
COVID-19 showed that population density was a significant predictor
(CE=-0.00000253, 95% [—0.00000409, —0.000000968]). See Table 3 for
all multiple regression results during Delta 2.

3.3 Omicron (19 December 2021 to 19
March 2022)

3.3.1 Non-severe outcomes

In the mean case density model, the proportion of residents with
2+ doses (CE=194.8, 95% CI [100.842, 288.837]) and MHI
(CE=-0.00063, 95% CI [—0.00101, —0.000240]) were significant
predictors. In the mean positivity rate model, the proportion of
residents with 2+ doses (CE=-0.1816, 95% CI [—0.312, —0.0512]) and
population density (CE=-0.000000751, 95% CI [—0.00000150,
—0.00000000180]) were significant predictors. Finally, the mean
infection rate model was not significant.

frontiersin.org


https://doi.org/10.3389/fpubh.2023.1252668
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Bruckhaus et al. 10.3389/fpubh.2023.1252668

- = significant predictor in the multiple
regression model (p < 0.05)

Mean 2+ Vax Dose
P ion Density -
Proportion of population 65+ -
Median Household Income

o - predictor approaching
significance in the multiple
regression model (p < 0.10)

Mean 2+ Vax Dose
P ion Density
Proportion of p ion 65+
Median Household Income

Mean 2+ Vax Dose
Population Density
Proportion of population 65+
Median Household Income

Mean 2+ Vax Dose - - -
Population Density - - -
Proportion of lation 65+
Median Household Income

Mean 2+ Vax Dose
Population Density
Proportion of population 65+
Median Household Income

Mean 2+ Vax Dose
Population Density -
Proportion of population 65+
Median Household Income

Mean 2+ Vax Dose

Population Density 0o -
Proportion of population 65+ - - -
Median Household Income | :

FIGURE 1

Significant predictors (or marginally significant) during each time period for each dependent variable. Significant predictors (p <0.05, dark green
highlight) or predictors approaching significance (p < 0.10, light green highlight) in each time period in each multiple regression model with severe
outcomes on the top and non-severe outcomes on the bottom. Mean 2+ Vax Dose = mean proportion of residents vaccinated in a county over the
course of variant dominance.

TABLE 2 Multiple regression results from Delta 1.

Mean new Mean Mean Mean Mean proportion

Delta 1 fean Fase deaths per positivity infection hCERE hospitalizations of ICU from

Gl 100k rate rate occupancy per 100 k COVID-19
Vax—value of p of predictor 0.949 0.372 0.124 0.212 0.620 0.444 0.951
Vax—coefficient estimate 2.074 —0.195 —0.128 —0.080 —0.126 —23.49 0.013
Vax—95% CI [-63.16,67.31] [~0.63,0.24] [~0.29, 0.038] [~0.21, 0.048] [~0.63, 0.38] [~84.79, 37.81] [~0.42, 0.45]
MHI—value of p of predictor 0.038 0.100 0.168 0.100 0231 0.086 0.127
MHI—coefficient estimate ~0.00029 ~0.000002 ~0.00000047 0.00000045 ~0.000001 ~0.00023 ~0.000001
MHI—95% CI [~0.00057, [~0.0000034, [~0.0000012, [~0.000000089, [~0.0000034, [~0.00048, 0.000033] [~0.0000033, 0.00000042]

—0.000017] 0.00000031] 0.00000021] 0.00000098] 0.00000085]
PD—value of p of predictor 0.073 0.174 0.015 0.709 0.440 0.167 0.008
PD—coefficient estimate —0.00032 —0.000001 —0.000001 0.00000012 —0.000001 —0.00023 —0.000003
PD—95% CI [~0.00066, [~0.0000037, [~0.0000019, [~0.00000054, [~0.0000037, [~0.00055, 0.000098] [~0.0000055,

0.000031] 0.00000068] ~0.00000023] 0.00000079] 0.0000017) ~0.000000089]
65+—value of p of predictor 0.627 0.160 0.755 0.921 0.020 0.667 0.526
65+—Coefficient Estimate 0335 —0.0082 0.00054 —0.0013 —0.013 0.279 ~0.0029
65+—95% CI [~1.05,1.72] [~0.02, 0.0034] [~0.0029,0.0040] | [-0.0028,0.0025] | [-0.024,—0.0021] [~1.02, 1.58] [~0.012, 0.0063]
Adjusted R? of model 0.150 0.254 0.293 —0.018 0.163 0.171 0.156
value of p of model 0.023 0.002 0.001 0.536 0.017 0.014 0.020
n 50 43 49 47 50 50 50

Vax, mean proportion of residents with 2+ doses; MHI, median household income; PD, population density; 65+, Proportion of residents aged 65 and older; 1, sample size.

Frontiers in Public Health 05 frontiersin.org


https://doi.org/10.3389/fpubh.2023.1252668
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Bruckhaus et al.

TABLE 3 Multiple regression results from Delta 2.

Delta 2

Mean case
density

Mean new
deaths per
100k

Mean
positivity rate

Mean
infection
rate

Mean ICU
occupancy

10.3389/fpubh.2023.1252668

Mean
hospitalizations
per 100 k

Mean proportion
of ICU from
COVID-19

Vax—value of p of predictor 0.291 0.062 0.048 0.667 0.328 0.017 0.510
Vax—coefficient estimate —23.570 —0.362 —0.108 0.038 —0.182 —33.080 —0.088
Vax—95% CI [—68.04, 20.90] [—0.74,0.019] [—0.21, —0.00078] [—0.14, 0.22] [—0.55,0.19] [—60.07, —6.01] [—0.35,0.18]
MHI—value of p of predictor 0.551 0.0000044 0.221 0.281 0.385 0.047 0.311
MHI—coefficient estimate —0.000054 —0.000004 —0.00000027 0.00000039 —0.000001 —0.00011 —0.000001
MHI—95% CI [-0.00023, [-0.0000055, [=0.00000069, [=0.00000033, [=0.0000022, [~0.00022, —0.0000014] | [-0.0000016, 0.00000053]
0.00013] —0.0000025] 0.00000017] 0.0000011] 0.00000084]
PD—value of p of predictor 0.679 0.001 0.044 0.001 0.711 0.312 0.002
PD—coefficient estimate —0.000054 —0.000004 —0.000001 0.000002 0.0000004 —0.000081 —0.000003
PD—95% CI [-0.00032, [—0.0000063, [—0.0000013, [0.00000080, [—0.0000018, [—0.00024, 0.000078] [—0.0000041,
0.00021] —0.0000019] —0.000000017] 0.0000028] 0.0000026] —0.00000097]
65+—value of p of predictor 0.214 0.006 0.435 0.197 0.001 0.284 0.400
65+—coefficient estimate 0.630 0.012 0.00094 0.0026 —0.014 —0.329 —0.0025
65+—95% CI [-0.38, 1.64] [0.0037, 0.021] [—0.0015, 0.0034] [—-0.0014, 0.0065] [-0.023, —0.0059] [-0.28, 0.94] [—0.0086, 0.0035]
Adjusted R? of model 0.012 0.648 0.264 0.266 0.238 0.346 0.221
value of p of model 0.279 0.00000000015 0.001 0.002 0.003 0.0001 0.004
n 50 50 49 47 50 50 50

Vax, mean proportion of residents with 2+ doses; MHI, median household income; PD, population density; 65+, Proportion of residents aged 65 and older; n, sample size.

TABLE 4 Multiple regression results from Omicron.

Omicron

Mean case
density

Mean new
deaths per
100k

Mean
positivity rate

Mean
infection
rate

Mean ICU
occupancy

Mean
hospitalizations
per 100 k

Mean proportion
of ICU from
COVID-19

Vax—value of p of predictor 0.000 0.169 0.007 0.710 0.153 0.016 0.556

Vax—coefficient estimate 194.8 —0.4059 —0.1816 —0.0391 —0.21400 —45.53 —0.0704

Vax—95% CI [100.84, 288.84] [-0.99,0.18] [-0.31, -0.051] [-0.25,0.17] [-0.51, 0.083] [—82.03, —9.02] [-0.31,0.17]

MHI—value of p of predictor 0.002 0.002 0.208 0.211 0.734 0.3 0.959

MHI—coefficient estimate —0.00063 —0.000004 —0.00000034 0.000001 —0.00000021 —0.000078 —0.000000025

MHI—95% CI [—-0.0010, [—0.0000062, [—0.00000087, [—0.000000320, [—0.0000014, [—0.00023, 0.000072] [—0.000001, 0.00000096]
—0.00024] —0.0000014] 0.0000002] 0.00000141] 0.000001]

PD—value of p of predictor 0.113 0.012 0.049 0.092 0.608 0.000 0.745

PD—coefficient estimate 0.00044 0.000004 —0.000001 —0.000001 0.000000 0.000539 —0.00000022

PD—95% CI [-0.00011, [0.0000010, [—0.0000015, [—0.0000022, [—0.0000013, [0.00033, 0.00075] [—-0.0000012, 0.0000016]

0.00098] 0.0000078] —0.0000000018] 0.00000017] 0.0000022]

65+—value of p of predictor 0.404 0.00013 0.489 0.485 0.000061 0.358 0.142

65+—coefficient estimate —0.825 0.025 —0.00094 —0.0015 —0.014 0.353 —0.0037

65+—95% CI [-2.8,1.15] [0.013, 0.038] [-0.0037, 0.0018] [=0.0059, 0.0028] [-0.02, —0.0075] [-0.41, 1.12] [~0.0088, 0.0013]

Adjusted R” of model 0.353 0.532 0.43 0.066 0.343 0.444 —0.009

value of p of model 0.000082 0.000000078 0.0000071 0.141 0.00011 0.0000033 0.475

n 50 50 49 48 50 50 50

Vax, mean proportion of residents with 2+ doses; MHI, median household income; PD, population density; 65+, Proportion of residents aged 65 and older; n, sample size.

3.3.2 Severe outcomes

The mean new deaths per 100,000 residents model yielded three
significant predictors, which were MHI (CE=—-0.000003831, 95% CI
[—0.00000623, —0.000001433]), population density (CE=0.0000044,
95% CI [0.00000103, 0.00000778]), and the proportion of residents aged
65 and older (CE=0.02548, 95% CI [0.0132, 0.0378]). The mean ICU
occupancy model showed that the proportion of residents aged 65+ was
a significant predictor (CE=-0.0137, 95% CI [-0.0199, —0.00746]). In
the mean hospitalizations from COVID-19 per 100,000 residents
model, the proportion of residents with 2+ doses (CE=—45.53, 95% CI
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[—82.030, —9.021]) and population density (CE=0.000539, 95% CI
[0.000328, 0.000750]) were significant predictors. Finally, the mean
proportion of ICU admissions due to COVID-19 model was not
significant. See Table 4 for all multiple regression results during Omicron.

4 Discussion

To understand how community characteristics and evolving
COVID-19 variants affect macro-level public health outcomes,
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we used multiple regression models using data from the 50 most
populated counties in the U.S during the Delta and Omicron variant’s
time of dominance. Our results convey relationships between county
characteristics and health outcomes in the 50 most populated US
counties over the three time periods. Although R? values of models
vary across time frames from low to moderate to high, we include all
significant predictors as they may help shine light on fundamental
factors affecting COVID-19 health outcomes.

4.1 Trends across time periods

4.1.1 Non-severe outcomes

Relative to non-severe community health outcomes, our models
displayed notable trends among the time frames of Delta 1, Delta 2,
and Omicron.

Population density was a significant predictor of mean positivity
rate in all time periods (negative coefficient estimates),
corroborating that counties with higher population densities may
benefit from increased infrastructure in their healthcare systems
(24). Another significant predictor in the positivity rate model was
the proportion of residents with 2+ COVID-19 vaccine doses
(negative coeflicient estimates) during the Delta 2 and Omicron
time frame. If taken at face value, this points to the possibility that
counties with a higher proportion of residents vaccinated achieve
lower positivity rates. However, this relationship may
be confounded, as one’s vaccination status could influence their
likelihood to get tested. Yet, the relationship remains modestly high
and may help validate the inverse relationship between vaccination
and positivity rates.

Regarding the mean infection rate model, population density
was a significant predictor in the Delta 2 time period (positive
coefficient estimate) and trended toward significance in the
Omicron time period (negative coefficient estimate). Interestingly,
the positive simple regression association in Delta 2 between mean
infection rate and population density (see Supplementary Table A.1
for simple regression results) seems to contradict the
aforementioned theory that counties with higher population
density experience better non-severe health outcomes. This finding
suggests changing dynamics between the Delta 2 and Omicron
time period.

Finally, in the mean case density model, MHI was a significant
predictor (negative coeflicient estimates) in the Delta 1 and Omicron
time periods. In agreement with previous studies, this finding
confirms that underlying socioeconomic factors may affect COVID-19
transmission rates (17, 18, 35). Additionally, possibly due to the more
transmissive nature of the Omicron variant, the negative relationships
seen between vaccination and positivity rate in Delta 2 and Omicron
are not observed in the relationship of vaccination and case density in
Omicron. This may be the cause of Omicron’s overwhelming initial
surge, coupled with evidence of decreased vaccine effectiveness
against the Omicron variant (2, 28) (yet still shown to be effective) that
caused this temporary relationship.

Altogether, in the case of non-severe outcomes, on a macro-level,
communities with better socio economic conditions and more vaccine
access may experience better outcomes, while Omicron has

indiscriminately spread faster and more resistant to the COVID-19
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vaccine. Thus, the attention to community efforts of vaccination and
methodical resource allocation to more socioeconomically vulnerable
populations are merited.

4.1.2 Severe outcomes

There were several trends among severe outcomes across Delta 1,
Delta 2, and Omicron.

In the mean new deaths per 100,000 model, population
density was a significant predictor during Delta 2 (negative
coefficient estimate) and during Omicron (positive coefficient
estimate). The initial negative relationship during Delta 2 may
suggest that densely populated areas within the U.S. are better able
to adapt overtime (hence the relationship during Delta 2 was
significant and not Delta 1) (26). Additionally, other reports
suggest that population density does not necessarily positively
correlate with severe health outcomes, possibly due to advanced
healthcare systems in densely populated areas in the U.S. (24, 25).
However, the opposite is observed during the Omicron period.
Because of Omicron’s increased levels of transmission (7, 8, 10),
this observation falls in line with a CDC report which indicates
that a surge in cases may lead to significant increases in
hospitalizations and deaths (2), also supporting the claim that
initial surges of variants affect densely populated communities
more (26). MHI remains a significant predictor of new deaths
across Delta 2 and Omicron (negative coefficient estimates). This
may indicate that counties with a lower MHI experience more
deaths possibly because of less robust healthcare systems and
more public-facing occupations, while individuals residing in
higher income areas may have benefitted from work-from-home
practices (36) and more robust healthcare systems. Finally, the
relationship between the proportion of the population aged 65+
and deaths across Delta 2 and Omicron (positive coefficient
estimates) are backed up by the literature that suggests older
people are at a higher risk for death from COVID-19 (23).

In the mean proportion of ICU admissions due to COVID-19
model, population density was a significant predictor across Delta 1
and Delta 2 (negative coeflicient estimates), which supports the theory
that counties with denser populations have greater access to resources
that mitigate transmission and severity. However, it should
be acknowledged that the total number of ICU beds available in a
county (and thus ICU beds occupied), as well as patient transfers to
higher-level facilities may have affected this relationship.

In the mean ICU occupancy model, interestingly, we found that
the proportion of residents aged 65+ is a significant predictor in the
multiple regression model across all time periods (negative coefficient
estimates). This finding should be interpreted with caution, as there
could be one or more confounding factors that may have affected this
relationship. Namely, the proportion of ICU beds occupied is not
simply a function of demand, but rather supply and demand, as some
counties have different ICU capacities. Further, these findings may
be influenced by several outlier counties within Florida and Texas
(and Fresno, California). Also, the mean ICU occupancy model
accounts for all ICU admissions and not just COVID-19. These factors
indicate that the percentage of population aged 65+ does not tell the
whole story when predicting ICU occupancy and it is important to
consider factors beyond this demographic variable when estimating
the ICU occupancy of a county.
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Overall, in the case of severe outcomes, on a macro-level, while
communities with higher median household income tended to have less
deaths during Delta 2 and Omicron, population density was shown to
have differing effects in these respective time periods. In Delta 2, a higher
population density was negatively associated with deaths, possibly
because of advanced healthcare infrastructure in densely populated
areas. However, the positive relationship between population density and
deaths in Omicron again corroborates the CDC report that a surge in
cases (from Omicrons highly transmissive nature) may lead to significant
increases in deaths (2). Age may also play an important role in the
macro-level outcomes of a community, as the proportion of residents
aged 65 and older were associated with deaths. Altogether, these findings
suggest that communities with relatively less median household income
and communities with a higher older adult population may be affected
more severely by COVID-19. It also highlights the change in relationships
over the course of different dominant variants, as evidenced by
population density’s changing relationship with deaths. These
implications may help communities become more aware of possible
macro-level outcomes associated with their characteristics and
plan accordingly.

Among factors known to affect public health outcomes, the four
independent variables chosen in this study have been shown
previously to highly influence health outcomes. That is, (1) COVID-19
vaccinations have been shown to be the most effective tool at curtailing
spread and severity, (2) communities with lower socioeconomic status
tend to fare worse than those with higher socioeconomic status (17-
19), (3) communities with high population density may find it harder
to social distance, but may also even fare better due to higher quality
healthcare systems (24), and (4) individuals aged 65+ are at a higher
risk of severe COVID-19 outcomes (23).

We explored this space in our present study and have found
significant county-characteristic predictors for both severe and
non-severe health outcomes on a macro level in the 50 highest
populated counties in the U.S., that may be useful to elucidate the
knowledge underlying the trends of COVID-19 and its variants.
Namely, we showed that socioeconomic status and the proportion of
a population vaccinated may be a large factor in the spread and
severity in highly populated U.S. counties.

4.2 Limitations of this study

4.2.1 Overall data

Reporting standards across different sources may slightly differ.
However, we did the best we could to ensure the validity of the publicly
available data.

4.2.2 Missing data points

King County, Washington—Positivity rate in Delta 1 and 2, and
Omicron. Riverside County, California—Infection rate in Delta 1 and
2, and Omicron. Montgomery County, Maryland—Infection rate in
Delta 1 and 2. Collin County, Texas—Infection rate in Delta 1 and 2.
Florida counties—Deaths in Delta 1.

4.2.3 Sample
The dynamics of the spread and severity may have been different
in less populous counties that were not included in this study.
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4.2.4 Other

There may have been other factors affecting non-severe and
severe health outcomes like travel patterns and granular case-by-
case health policies toward COVID-19. During the span of the
data collected (20 June 2021 to 19 March 2022), much of the
previously enacted lockdowns in the U.S. were lifted or were not
as stringent or widespread as from 2020 to early 2021. They were
therefore considered to not have been prevalent enough to impact
findings. However, other implied stringencies like mask-wearing
and social distancing could not be accounted for in our data
sources and may have affected relationships depending on
compliance and enforcement of such stringencies.

4.3 Conclusion

As SARS-CoV-2 continues to evolve, it is vital to understand
how the virus’s mutations ultimately affect the health outcomes of
populations as well as factors that may influence the rate of
transmission or level of severity in a community. Our study was
conducted to bring light to the associations of how public health
outcomes change over the course of Delta and Omicron’s
dominance in the 50 most populous U.S. counties, and how these
outcomes differ based on county characteristics. It is important to
note that while this study may suggest relationships between
certain variables, the underlying parameters affecting the health
outcomes of COVID-19 are part of a vastly complex network. Our
study aims to lower the obscurity surrounding this complex
network in order to more precisely understand the dynamics of
COVID-19 spread and severity on a macro-level.
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