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Background: COVID-19 is constantly evolving, and highly populated communities 
consist of many di!erent characteristics that may contribute to COVID-19 health 
outcomes. Therefore, we aimed to (1) quantify the relationships between county 
characteristics and severe and non-severe county-level health outcomes related 
to COVID-19. We  also aimed to (2) compare these relationships across time 
periods where the Delta (B.1.617.2) and Omicron (B.1.1.529 and BA.1.1) variants 
were dominant in the U.S.

Methods: We used multiple regression to measure the strength of relationships 
between healthcare outcomes and county characteristics in the 50 most 
populous U.S. counties.

Results: We found many di!erent significant predictors including the proportion 
of a population vaccinated, median household income, population density, and 
the proportion of residents aged 65+, but mainly found that socioeconomic 
factors and the proportion of a population vaccinated play a large role in the 
dynamics of the spread and severity of COVID-19  in communities with high 
populations.

Discussion: The present study shines light on the associations between public 
health outcomes and county characteristics and how these relationships change 
throughout Delta and Omicron’s dominance. It is important to understand factors 
underlying COVID-19 health outcomes to prepare for future health crises.
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1 Introduction

As new variants of the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) evolve and mutate, it is vital to understand 
how these new variants a!ect public health outcomes. Our understanding 
of COVID-19 can have signi"cant impacts on how we  approach 
measures to mitigate the virus’s deleterious e!ects on communities.

Before the Omicron variant (B.1.1.529 and BA.1.1) became the 
dominant strain in the United  States (U.S.), the Delta variant 
(B.1.617.2) existed in the U.S. from late June 2021 to late December 
2021 as the dominant strain (1). It has been reported to be up to over 
two times more contagious than preceding variants (2–5) along with 
increased severity (2, 4).

In what became the newest variant of concern (VOC) at the time, 
the "rst con"rmed case of the Omicron variant in the U.S was discovered 
on 1 December 2021 (6). Data show that the Omicron variant became 
dominant in the U.S. only about 3 weeks a$er the "rst con"rmed case, 
approximately on 19 December 2021 according to weekly reports (1). 
While Omicron’s expeditious rise to dominance points to higher 
transmission levels relative to preceding variants, numerous studies also 
highlight the variant’s highly transmissive nature (2, 7–9). Studies suggest 
that the Omicron variant can infect three to six times as many people as 
the Delta variant over the same time period (7, 8, 10). However, it is 
reported to cause less severe symptoms (10). In the present study, the two 
lineages that make up the Omicron variant are B.1.1.529 and BA.1.1, 
which accounted for the majority of COVID-19 cases in the U.S. from 
approximately 19 December 2021 to the study end date (19 March 2022).

COVID-19 has historically been dubbed as “the great equalizer” 
(11) as the disease purportedly transcends wealth, fame, prestige, and 
age. However, there exists nuance surrounding this line of reasoning 
that shines light on the impact of social, economic, and demographic 
characteristics in communities.

%e social, economic, and demographic characteristics of 
communities are largely cited to a!ect macro-level health outcomes 
and contribute to several indices that aim to draw relationships 
between regional characteristics and health outcomes (12–16). 
Although the variables included in the present study were drawn from 
more than one existing framework, careful consideration of each 
variable and its empirical implications were taken.

The common denominator among a vast amount of 
epidemiological COVID-19 studies are: socioeconomic, 
demographic, and environmental/behavioral factors (12–16). 
Therefore, we  aimed to include core variables from each 
aforementioned facet of a community’s makeup in order to 
examine their relationship with the non-severe and severe 
outcomes in highly populated regions, over the course of the 
virus’s evolution into new variants. We also included the variable 
of the proportion of residents vaccinated to address the effect of 
community-wide interventional measures on health outcomes. 
Median household income represented the socioeconomic facet 
of a community’s make up as it has been shown in other studies 
to have one of the highest relative effects on COVID-19 case and 
death rates (15, 17–22). The proportion of residents aged 65 and 
older are included to represent the demographic facet of a 
community’s make up, as it has been reported that individuals 
aged 65 and older are at a higher risk for more severe outcomes 
from COVID-19 and contribute to much of COVID-19 related 
deaths (23). Lastly, population density, although not widely 

reported in vulnerability indices like the CDC vulnerability index 
(SVI), has been shown to have differing effects overtime (24–26) 
and is reported as imperative to investigate in the context of 
COVID-19 (14) as not all current vulnerability indices 
incorporate this measure. Altogether, these independent variables 
each represent a core aspect (socioeconomic, demographic, 
environmental, and interventional) of a community’s risk for 
non-severe and severe health outcomes. Although case rate is a 
primary indicator of non-severe macro-level health outcomes, 
we also included positivity rate and infection rate as additional 
indicators in order to deeper investigate non-severe macro-level 
health outcomes. By a similar token for severe health outcomes, 
deaths are also a primary indicator, but we  also included 
hospitalizations, ICU occupancies, and ICU occupancy from 
COVID-19 to deeper explore severe macro-level health outcomes.

SARS-CoV-2 variants are reported to have di!ering levels of 
e!ects, with the Delta variant being more severe and the Omicron 
variant being more transmissive (6, 27). %erefore, we aimed to 
measure the relationships of the aforementioned independent 
variables with macro-level health outcomes to observe how these 
relationships change in di!erent periods of variant dominance. 
With respect to the proportion of residents vaccinated, as the 
COVID-19 vaccine has been reported to wane in e!ectiveness 
from Delta to the Omicron variant (28), it becomes valuable to 
investigate the macro-level relationship of vaccines and 
community health outcomes. By the same token, investigating the 
relationship of the proportion of residents aged older than 65 and 
community health outcomes may provide insight into the distinct 
variant’s macro-level e!ects on the older adult population. In the 
case of population density, its e!ect on macro-level health 
outcomes has been shown to change over time (27), thus making 
it valuable to investigate inter-variant trends. Socioeconomic 
trends are also vital to monitor throughout the time course of 
di!erent variant dominances as "ndings may implicate the 
necessity for assistance programs and policy-changes to support 
equitable health outcomes.

Given the multifactorial etiology of the different macro-level 
health outcomes related to COVID-19, along with its mutative 
behavior, we aimed to (1) investigate the relationship between 
county-level characteristics and county-wide COVID-19 health 
outcomes pertaining to transmission and severity, and (2) 
investigate how these trends change over the evolution of new 
SARS-CoV-2 variants. We used multiple regression models to 
investigate the relationship between the aforementioned 
independent variables and public health outcomes in the 50 most 
populated U.S. counties over different periods of SARS-CoV-2 
variant dominance. Overall, this study aims to elucidate 
COVID-19 trends on a macro-level and their possible 
implications for advancing public health knowledge and informed 
decision making.

2 Materials and methods

2.1 Sample

%e study sample consisted of the 50 most populous counties in 
the U.S according to the 2020 U.S. census estimates (29).
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2.2 Variables of interest and data 
definitions

2.2.1 Independent variables
%e independent variables used in this study were: proportion of 

residents with 2+ doses (or one dose of Johnson & Johnson), MHI, 
population density, and the proportion of residents aged 65 and older. 
See Table 1 for expounded descriptions of variables.

2.2.2 Dependent variables
Among non-severe public health outcomes, we investigated the 

average positivity rate, average infection rate, and the average number 
of cases per 100,000 persons in a county (using an average of a 
seven-day rolling average; case density) within each time frame. 
Among severe outcomes, we  investigated average deaths and 
hospitalizations per 100,000 persons, average ICU occupancy 
(reported every 7 days), and average proportion of ICU admissions 
related to COVID-19 (reported every 7 days) within each time frame. 
See Table 1 for expounded descriptions of variables.

2.3 Data acquisition

Data pertaining to case density, positivity rate, infection rate, and 
proportion of ICU beds in use and the proportion of ICU beds that are 
being used for COVID-19 of a county were obtained from COVID Act 
Now (31) and data pertaining to new deaths and hospitalizations per 
100,000 residents were gathered from COVID Act Now (31), then 

modi"ed using population data from the 2020 census (29). %e 
vaccination data for New York County were unavailable from COVID 
Act Now and were therefore retrieved from CDC (32). Vaccination data 
from Texas were obtained from COVID Act Now until 22 October 2021, 
and then retrieved from the CDC therea$er because of unavailability.

2.4 Data curation

New deaths and hospitalizations per 100,000 residents were 
calculated by dividing the metric of interest (e.g., new deaths per day) 
by the 2020 population estimate of the respective county (29) and then 
multiplying this value by 100,000. All variables that were reported 
periodically across each period were averaged.

2.5 Time periods

%e present study was split into three time periods, each consisting 
of 91 days, in which either the Delta or Omicron variant was dominant. 
%e "rst two time periods (Delta 1 and Delta 2) both represent when 
Delta was dominant in the U.S. but was split into two time periods to 
allow for a more uniform comparison to Omicron’s period 
of dominance.

2.5.1 Delta variant dominance
Delta 1 spanned from 20 June 2021 to 18 September 2021. Delta 

2 spanned from 19 September 2021 to 18 December 2021. According 

TABLE 1 Definitions and sources of variables.

Definition Source

Independent variables

Proportion of residents 
vaccinated (2+ doses or J & J)

%e proportion of residents in each county who have received 2+ doses or a J&J dose, reported daily and 
averaged across time period.

COVID Act Now API

Median household income %e median household income of a respective county USDA

Population Density %e number of people per square mile CDC county view

Proportion of residents aged 65+ %e number of residents aged 65+ divided by the population estimate of the respective county CDC pop 65

Dependent variables

Group 1 (severe)

New deaths per 100,000 residents %e number of new deaths per day, divided by the 2020 population estimate of the respective county, 
multiplied by 100,000.

See note

Hospitalizations per 100,000 
residents

%e number of residents occupying a hospital bed due to a COVID-19 case (reported every 7 days), divided 
by the 2020 population estimate of the respective county, multiplied by 100,000

See note

Proportion of ICU beds in use %e total number of ICU beds being used divided by the ICU bed capacity of a county (reported every 7 days) COVID Act Now API

Proportion of ICU beds used for 
COVID-19

%e total number of ICU beds being used for COVID-19 divided by the total number of ICU beds being used 
in a county (reported every 7 days)

COVID Act Now API

Group 2 (non-severe)

Positivity rate %e ratio of people who test positive using a 7-day rolling average COVID Act Now API

Infection rate %e approximate number of infections arising from a typical case COVID Act Now API

Case density %e number of cases per 100,000 population calculated using a 7-day rolling average COVID Act Now API

De"nitions and sources of independent and dependent variables used in the study. Group 1 variables are variables taken from COVID Act Now and then modi"ed using the 2020 census 
population estimates (29). All metrics used in the study are averaged during the respective time frame (Delta 1, which is from 20 June 2021 to 18 September 2021; Delta 2, which is from 19 
September 2021 to 18 December 2021; and Omicron, which spans from 19 December 2021 to 19 March 2022). Median household income is retrieved from USDA (30). Group 2 variables are 
variables that are taken directly from the COVID Act Now data using the COVID Act Now API (30).
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to the COVID Data Tracker by CDC (1), the Delta variant accounted 
for ~37.5% of all cases in the U.S. on 19 June 2021 and 55% by 26 June 
2021, therefore making it the dominant strain in the U.S. as early as 20 
June 2021. %is time frame ends on 19 September 2021, as this date 
was determined to divide Delta’s dominance into two separate time 
frames of nearly congruent data. %at is, both the "rst and second time 
frames had a similar average proportion of Delta cases, which was 
~90.6% and ~95.7%, respectively. %e second time frame (Delta 2) 
ends on 18 December 2021. 19 December 2021, is the "rst possible 
day where Omicron could become the dominant strain in the U.S. as 
the Omicron variant accounted for ~37.9% of all U.S. cases on 18 
December 2021, and ~77% by 25 December 2021 (1).

2.5.2 Omicron variant dominance
Omicron dominance spanned from 19 December 2021 to 19 

March 2022 (study end date). When the study ended, B.1.1.529 and 
BA.1.1 were the most dominant, which share similar characteristics in 
terms of transmissibility and severity (32). %e BA.2 and BA.2.12.1 
lineages have been identi"ed to be  slightly more contagious than 
previous Omicron lineages but became dominant a$er the study end 
date (33).

2.6 Data analysis

Data across each period were averaged, with the numerator being 
the sum of all daily or weekly recorded variables and the denominator 
being the total number of time points the data were recorded for each 
time period.

For each time frame, we used the ggpubr and the stats library in 
RStudio (version 4.0.4) (34) to perform multiple regression analysis 
between each dependent variable and all four independent variables. 
During Delta 1, Florida changed their reporting standards and thus 
the data was not compatible for analysis (32), so mean new deaths per 
100,000 residents analysis was performed using 43 counties. %e value 
of p of the association between the independent variable and the 
dependent variable, coe&cient estimates, 95% con"dence intervals for 
coe&cient estimates, R2, and p-values of each of the multiple 
regression models were recorded. p-values smaller than 0.05 were 
considered statistically signi"cant.

3 Results

See Figure 1 for a display of "ndings of signi"cant predictors 
across time periods and Supplementary Table A.1 for "ndings 
regarding simple regression results.

3.1 Delta 1 (20 June 2021 to 18 September 
2021)

3.1.1 Non-severe outcomes
In the mean case density model, MHI was a signi"cant predictor 

(coe&cient estimate (CE) = −0.000292, 95% Con"dence Interval (CI) 
[−0.000567, −0.0000170]) while population density trended toward 
signi"cance (CE = −0.000315, 95% CI [−0.000662, 0.0000310]). In the 
mean positivity rate model, population density was a signi"cant 

predictor (CE = −0.00000109, 95% CI [−0.00000194, −0.000000226]). 
%e mean infection rate model yielded no signi"cant predictors.

3.1.2 Severe outcomes
In the mean ICU occupancy model, the proportion of residents 

aged 65+ was signi"cant (CE = −0.0128, 95% CI [−0.0235, −0.00209]). 
In the mean hospitalizations from COVID-19 per 100,000 residents 
model, MHI trended toward signi"cance (CE = −0.000225, 95% CI 
[−0.000483, 0.0000334]), while population density was signi"cant 
(CE = −0.0000032, 95% CI [−0.00000551, −0.0000000890]) in the 
mean proportion of ICU admissions due to COVID-19 model. %e 
mean new deaths per 100,000 residents model resulted in no signi"cant 
predictors. See Table 2 for all multiple regression results during Delta 1.

3.2 Delta 2 (19 September 2021 to 18 
December 2021)

3.2.1 Non-severe outcomes
%e mean positivity rate model yielded the proportion of residents 

with 2+ doses (CE = −0.108, 95% CI [−0.214, −0.000781]) and 
population density (CE = −0.000000642, 95% CI [−0.00000127, 
−0.0000000174]) as a signi"cant predictor. In the mean infection rate 
model, population density was a signi"cant predictor 
(CE = 0.00000182, 95% CI [0.000000800, 0.00000284]). %ere were no 
signi"cant predictors in the mean case density model.

3.2.2 Severe outcomes
%e mean new deaths per 100,000 model yielded three signi"cant 

predictors, which were MHI (CE = −0.000004, 95% CI [−0.00000554, 
−0.00000246]), population density (CE = −0.0000041, 95% CI 
[−0.00000634, −0.00000186]), and the proportion of residents aged 65 
and older (CE = 0.0123, 95% CI [0.00365, 0.0209]). %e proportion of 
residents with 2+ doses trended toward signi"cance (CE = −0.362, 95% 
CI [−0.743, 0.0187]). In the mean ICU occupancy model, the proportion 
of residents aged 65+ was a signi"cant predictor (CE = −0.0142, 95% CI 
[−0.0226, −0.00586]). %e mean hospitalizations from COVID-19 per 
100,000 residents model showed that the proportion of residents with 
2+ doses (CE = −33.08, 95% CI [−60.068, −6.098]) and MHI 
(CE = −0.000111, 95% CI [−0.000220, −0.00000136]) were signi"cant 
predictors. Lastly, the mean proportion of ICU admissions due to 
COVID-19 showed that population density was a signi"cant predictor 
(CE = −0.00000253, 95% [−0.00000409, −0.000000968]). See Table 3 for 
all multiple regression results during Delta 2.

3.3 Omicron (19 December 2021 to 19 
March 2022)

3.3.1 Non-severe outcomes
In the mean case density model, the proportion of residents with 

2+ doses (CE = 194.8, 95% CI [100.842, 288.837]) and MHI 
(CE = −0.00063, 95% CI [−0.00101, −0.000240]) were signi"cant 
predictors. In the mean positivity rate model, the proportion of 
residents with 2+ doses (CE = -0.1816, 95% CI [−0.312, −0.0512]) and 
population density (CE = −0.000000751, 95% CI [−0.00000150, 
−0.00000000180]) were signi"cant predictors. Finally, the mean 
infection rate model was not signi"cant.
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FIGURE 1

Significant predictors (or marginally significant) during each time period for each dependent variable. Significant predictors (p <# 0.05, dark green 
highlight) or predictors approaching significance (p <# 0.10, light green highlight) in each time period in each multiple regression model with severe 
outcomes on the top and non-severe outcomes on the bottom. Mean 2+ Vax Dose# =# mean proportion of residents vaccinated in a county over the 
course of variant dominance.

TABLE 2 Multiple regression results from Delta 1.

Delta 1
Mean case 

density

Mean new 
deaths per 

100" k

Mean 
positivity 

rate

Mean 
infection 

rate

Mean ICU 
occupancy

Mean 
hospitalizations 

per 100" k

Mean proportion 
of ICU from 
COVID-19

Vax—value of p of predictor 0.949 0.372 0.124 0.212 0.620 0.444 0.951

Vax—coe&cient estimate 2.074 −0.195 −0.128 −0.080 −0.126 −23.49 0.013

Vax—95% CI [−63.16, 67.31] [−0.63, 0.24] [−0.29, 0.038] [−0.21, 0.048] [−0.63, 0.38] [−84.79, 37.81] [−0.42, 0.45]

MHI—value of p of predictor 0.038 0.100 0.168 0.100 0.231 0.086 0.127

MHI—coe&cient estimate −0.00029 −0.000002 −0.00000047 0.00000045 −0.000001 −0.00023 −0.000001

MHI—95% CI [−0.00057, 
−0.000017]

[−0.0000034, 
0.00000031]

[−0.0000012, 
0.00000021]

[−0.000000089, 
0.00000098]

[−0.0000034, 
0.00000085]

[−0.00048, 0.000033] [−0.0000033, 0.00000042]

PD—value of p of predictor 0.073 0.174 0.015 0.709 0.440 0.167 0.008

PD—coe&cient estimate −0.00032 −0.000001 −0.000001 0.00000012 −0.000001 −0.00023 −0.000003

PD—95% CI [−0.00066, 
0.000031]

[−0.0000037, 
0.00000068]

[−0.0000019, 
−0.00000023]

[−0.00000054, 
0.00000079]

[−0.0000037, 
0.0000017]

[−0.00055, 0.000098] [−0.0000055, 
−0.000000089]

65+—value of p of predictor 0.627 0.160 0.755 0.921 0.020 0.667 0.526

65+—Coe&cient Estimate 0.335 −0.0082 0.00054 −0.0013 −0.013 0.279 −0.0029

65+—95% CI [−1.05, 1.72] [−0.02, 0.0034] [−0.0029, 0.0040] [−0.0028, 0.0025] [−0.024, −0.0021] [−1.02, 1.58] [−0.012, 0.0063]

Adjusted R2 of model 0.150 0.254 0.293 −0.018 0.163 0.171 0.156

value of p of model 0.023 0.002 0.001 0.536 0.017 0.014 0.020

n 50 43 49 47 50 50 50

Vax, mean proportion of residents with 2+ doses; MHI, median household income; PD, population density; 65+, Proportion of residents aged 65 and older; n, sample size.
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TABLE 3 Multiple regression results from Delta 2.

Delta 2
Mean case 

density

Mean new 
deaths per 

100" k

Mean 
positivity rate

Mean 
infection 

rate

Mean ICU 
occupancy

Mean 
hospitalizations 

per 100" k

Mean proportion 
of ICU from 
COVID-19

Vax—value of p of predictor 0.291 0.062 0.048 0.667 0.328 0.017 0.510

Vax—coe&cient estimate −23.570 −0.362 −0.108 0.038 −0.182 −33.080 −0.088

Vax—95% CI [−68.04, 20.90] [−0.74, 0.019] [−0.21, −0.00078] [−0.14, 0.22] [−0.55, 0.19] [−60.07, −6.01] [−0.35, 0.18]

MHI—value of p of predictor 0.551 0.0000044 0.221 0.281 0.385 0.047 0.311

MHI—coe&cient estimate −0.000054 −0.000004 −0.00000027 0.00000039 −0.000001 −0.00011 −0.000001

MHI—95% CI [−0.00023, 
0.00013]

[−0.0000055, 
−0.0000025]

[−0.00000069, 
0.00000017]

[−0.00000033, 
0.0000011]

[−0.0000022, 
0.00000084]

[−0.00022, −0.0000014] [−0.0000016, 0.00000053]

PD—value of p of predictor 0.679 0.001 0.044 0.001 0.711 0.312 0.002

PD—coe&cient estimate −0.000054 −0.000004 −0.000001 0.000002 0.0000004 −0.000081 −0.000003

PD—95% CI [−0.00032, 
0.00021]

[−0.0000063, 
−0.0000019]

[−0.0000013, 
−0.000000017]

[0.00000080, 
0.0000028]

[−0.0000018, 
0.0000026]

[−0.00024, 0.000078] [−0.0000041, 
−0.00000097]

65+—value of p of predictor 0.214 0.006 0.435 0.197 0.001 0.284 0.400

65+—coe&cient estimate 0.630 0.012 0.00094 0.0026 −0.014 −0.329 −0.0025

65+—95% CI [−0.38, 1.64] [0.0037, 0.021] [−0.0015, 0.0034] [−0.0014, 0.0065] [−0.023, −0.0059] [−0.28, 0.94] [−0.0086, 0.0035]

Adjusted R2 of model 0.012 0.648 0.264 0.266 0.238 0.346 0.221

value of p of model 0.279 0.00000000015 0.001 0.002 0.003 0.0001 0.004

n 50 50 49 47 50 50 50

Vax, mean proportion of residents with 2+ doses; MHI, median household income; PD, population density; 65+, Proportion of residents aged 65 and older; n, sample size.

3.3.2 Severe outcomes
%e mean new deaths per 100,000 residents model yielded three 

signi"cant predictors, which were MHI (CE = −0.000003831, 95% CI 
[−0.00000623, −0.000001433]), population density (CE = 0.0000044, 
95% CI [0.00000103, 0.00000778]), and the proportion of residents aged 
65 and older (CE = 0.02548, 95% CI [0.0132, 0.0378]). %e mean ICU 
occupancy model showed that the proportion of residents aged 65+ was 
a signi"cant predictor (CE = −0.0137, 95% CI [−0.0199, −0.00746]). In 
the mean hospitalizations from COVID-19 per 100,000 residents 
model, the proportion of residents with 2+ doses (CE = −45.53, 95% CI 

[−82.030, −9.021]) and population density (CE = 0.000539, 95% CI 
[0.000328, 0.000750]) were signi"cant predictors. Finally, the mean 
proportion of ICU admissions due to COVID-19 model was not 
signi"cant. See Table 4 for all multiple regression results during Omicron.

4 Discussion

To understand how community characteristics and evolving 
COVID-19 variants a!ect macro-level public health outcomes, 

TABLE 4 Multiple regression results from Omicron.

Omicron
Mean case 
density

Mean new 
deaths per 
100" k

Mean 
positivity rate

Mean 
infection 
rate

Mean ICU 
occupancy

Mean 
hospitalizations 
per 100" k

Mean proportion 
of ICU from 
COVID-19

Vax—value of p of predictor 0.000 0.169 0.007 0.710 0.153 0.016 0.556

Vax—coe&cient estimate 194.8 −0.4059 −0.1816 −0.0391 −0.21400 −45.53 −0.0704

Vax—95% CI [100.84, 288.84] [−0.99, 0.18] [−0.31, −0.051] [−0.25, 0.17] [−0.51, 0.083] [−82.03, −9.02] [−0.31, 0.17]

MHI—value of p of predictor 0.002 0.002 0.208 0.211 0.734 0.3 0.959

MHI—coe&cient estimate −0.00063 −0.000004 −0.00000034 0.000001 −0.00000021 −0.000078 −0.000000025

MHI—95% CI [−0.0010, 
−0.00024]

[−0.0000062, 
−0.0000014]

[−0.00000087, 
0.0000002]

[−0.000000320, 
0.00000141]

[−0.0000014, 
0.000001]

[−0.00023, 0.000072] [−0.000001, 0.00000096]

PD—value of p of predictor 0.113 0.012 0.049 0.092 0.608 0.000 0.745

PD—coe&cient estimate 0.00044 0.000004 −0.000001 −0.000001 0.000000 0.000539 −0.00000022

PD—95% CI [−0.00011, 
0.00098]

[0.0000010, 
0.0000078]

[−0.0000015, 
−0.0000000018]

[−0.0000022, 
0.00000017]

[−0.0000013, 
0.0000022]

[0.00033, 0.00075] [−0.0000012, 0.0000016]

65+—value of p of predictor 0.404 0.00013 0.489 0.485 0.000061 0.358 0.142

65+—coe&cient estimate −0.825 0.025 −0.00094 −0.0015 −0.014 0.353 −0.0037

65+—95% CI [−2.8, 1.15] [0.013, 0.038] [−0.0037, 0.0018] [−0.0059, 0.0028] [−0.02, −0.0075] [−0.41, 1.12] [−0.0088, 0.0013]

Adjusted R2 of model 0.353 0.532 0.43 0.066 0.343 0.444 −0.009

value of p of model 0.000082 0.000000078 0.0000071 0.141 0.00011 0.0000033 0.475

n 50 50 49 48 50 50 50

Vax, mean proportion of residents with 2+ doses; MHI, median household income; PD, population density; 65+, Proportion of residents aged 65 and older; n, sample size.
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we  used multiple regression models using data from the 50 most 
populated counties in the U.S during the Delta and Omicron variant’s 
time of dominance. Our results convey relationships between county 
characteristics and health outcomes in the 50 most populated US 
counties over the three time periods. Although R2 values of models 
vary across time frames from low to moderate to high, we include all 
signi"cant predictors as they may help shine light on fundamental 
factors a!ecting COVID-19 health outcomes.

4.1 Trends across time periods

4.1.1 Non-severe outcomes
Relative to non-severe community health outcomes, our models 

displayed notable trends among the time frames of Delta 1, Delta 2, 
and Omicron.

Population density was a signi"cant predictor of mean positivity 
rate in all time periods (negative coe&cient estimates), 
corroborating that counties with higher population densities may 
bene"t from increased infrastructure in their healthcare systems 
(24). Another signi"cant predictor in the positivity rate model was 
the proportion of residents with 2+ COVID-19 vaccine doses 
(negative coe&cient estimates) during the Delta 2 and Omicron 
time frame. If taken at face value, this points to the possibility that 
counties with a higher proportion of residents vaccinated achieve 
lower positivity rates. However, this relationship may 
be confounded, as one’s vaccination status could in'uence their 
likelihood to get tested. Yet, the relationship remains modestly high 
and may help validate the inverse relationship between vaccination 
and positivity rates.

Regarding the mean infection rate model, population density 
was a signi"cant predictor in the Delta 2 time period (positive 
coe&cient estimate) and trended toward signi"cance in the 
Omicron time period (negative coe&cient estimate). Interestingly, 
the positive simple regression association in Delta 2 between mean 
infection rate and population density (see Supplementary Table A.1 
for simple regression results) seems to contradict the 
aforementioned theory that counties with higher population 
density experience better non-severe health outcomes. %is "nding 
suggests changing dynamics between the Delta 2 and Omicron 
time period.

Finally, in the mean case density model, MHI was a signi"cant 
predictor (negative coe&cient estimates) in the Delta 1 and Omicron 
time periods. In agreement with previous studies, this "nding 
con"rms that underlying socioeconomic factors may a!ect COVID-19 
transmission rates (17, 18, 35). Additionally, possibly due to the more 
transmissive nature of the Omicron variant, the negative relationships 
seen between vaccination and positivity rate in Delta 2 and Omicron 
are not observed in the relationship of vaccination and case density in 
Omicron. %is may be the cause of Omicron’s overwhelming initial 
surge, coupled with evidence of decreased vaccine e!ectiveness 
against the Omicron variant (2, 28) (yet still shown to be e!ective) that 
caused this temporary relationship.

Altogether, in the case of non-severe outcomes, on a macro-level, 
communities with better socio economic conditions and more vaccine 
access may experience better outcomes, while Omicron has 
indiscriminately spread faster and more resistant to the COVID-19 

vaccine. %us, the attention to community e!orts of vaccination and 
methodical resource allocation to more socioeconomically vulnerable 
populations are merited.

4.1.2 Severe outcomes
%ere were several trends among severe outcomes across Delta 1, 

Delta 2, and Omicron.
In the mean new deaths per 100,000 model, population 

density was a significant predictor during Delta 2 (negative 
coefficient estimate) and during Omicron (positive coefficient 
estimate). The initial negative relationship during Delta 2 may 
suggest that densely populated areas within the U.S. are better able 
to adapt overtime (hence the relationship during Delta 2 was 
significant and not Delta 1) (26). Additionally, other reports 
suggest that population density does not necessarily positively 
correlate with severe health outcomes, possibly due to advanced 
healthcare systems in densely populated areas in the U.S. (24, 25). 
However, the opposite is observed during the Omicron period. 
Because of Omicron’s increased levels of transmission (7, 8, 10), 
this observation falls in line with a CDC report which indicates 
that a surge in cases may lead to significant increases in 
hospitalizations and deaths (2), also supporting the claim that 
initial surges of variants affect densely populated communities 
more (26). MHI remains a significant predictor of new deaths 
across Delta 2 and Omicron (negative coefficient estimates). This 
may indicate that counties with a lower MHI experience more 
deaths possibly because of less robust healthcare systems and 
more public-facing occupations, while individuals residing in 
higher income areas may have benefitted from work-from-home 
practices (36) and more robust healthcare systems. Finally, the 
relationship between the proportion of the population aged 65+ 
and deaths across Delta 2 and Omicron (positive coefficient 
estimates) are backed up by the literature that suggests older 
people are at a higher risk for death from COVID-19 (23).

In the mean proportion of ICU admissions due to COVID-19 
model, population density was a signi"cant predictor across Delta 1 
and Delta 2 (negative coe&cient estimates), which supports the theory 
that counties with denser populations have greater access to resources 
that mitigate transmission and severity. However, it should 
be acknowledged that the total number of ICU beds available in a 
county (and thus ICU beds occupied), as well as patient transfers to 
higher-level facilities may have a!ected this relationship.

In the mean ICU occupancy model, interestingly, we found that 
the proportion of residents aged 65+ is a signi"cant predictor in the 
multiple regression model across all time periods (negative coe&cient 
estimates). %is "nding should be interpreted with caution, as there 
could be one or more confounding factors that may have a!ected this 
relationship. Namely, the proportion of ICU beds occupied is not 
simply a function of demand, but rather supply and demand, as some 
counties have di!erent ICU capacities. Further, these "ndings may 
be in'uenced by several outlier counties within Florida and Texas 
(and Fresno, California). Also, the mean ICU occupancy model 
accounts for all ICU admissions and not just COVID-19. %ese factors 
indicate that the percentage of population aged 65+ does not tell the 
whole story when predicting ICU occupancy and it is important to 
consider factors beyond this demographic variable when estimating 
the ICU occupancy of a county.
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Overall, in the case of severe outcomes, on a macro-level, while 
communities with higher median household income tended to have less 
deaths during Delta 2 and Omicron, population density was shown to 
have di!ering e!ects in these respective time periods. In Delta 2, a higher 
population density was negatively associated with deaths, possibly 
because of advanced healthcare infrastructure in densely populated 
areas. However, the positive relationship between population density and 
deaths in Omicron again corroborates the CDC report that a surge in 
cases (from Omicron’s highly transmissive nature) may lead to signi"cant 
increases in deaths (2). Age may also play an important role in the 
macro-level outcomes of a community, as the proportion of residents 
aged 65 and older were associated with deaths. Altogether, these "ndings 
suggest that communities with relatively less median household income 
and communities with a higher older adult population may be a!ected 
more severely by COVID-19. It also highlights the change in relationships 
over the course of di!erent dominant variants, as evidenced by 
population density’s changing relationship with deaths. %ese 
implications may help communities become more aware of possible 
macro-level outcomes associated with their characteristics and 
plan accordingly.

Among factors known to a!ect public health outcomes, the four 
independent variables chosen in this study have been shown 
previously to highly in'uence health outcomes. %at is, (1) COVID-19 
vaccinations have been shown to be the most e!ective tool at curtailing 
spread and severity, (2) communities with lower socioeconomic status 
tend to fare worse than those with higher socioeconomic status (17–
19), (3) communities with high population density may "nd it harder 
to social distance, but may also even fare better due to higher quality 
healthcare systems (24), and (4) individuals aged 65+ are at a higher 
risk of severe COVID-19 outcomes (23).

We explored this space in our present study and have found 
signi"cant county-characteristic predictors for both severe and 
non-severe health outcomes on a macro level in the 50 highest 
populated counties in the U.S., that may be useful to elucidate the 
knowledge underlying the trends of COVID-19 and its variants. 
Namely, we showed that socioeconomic status and the proportion of 
a population vaccinated may be  a large factor in the spread and 
severity in highly populated U.S. counties.

4.2 Limitations of this study

4.2.1 Overall data
Reporting standards across di!erent sources may slightly di!er. 

However, we did the best we could to ensure the validity of the publicly 
available data.

4.2.2 Missing data points
King County, Washington—Positivity rate in Delta 1 and 2, and 

Omicron. Riverside County, California—Infection rate in Delta 1 and 
2, and Omicron. Montgomery County, Maryland—Infection rate in 
Delta 1 and 2. Collin County, Texas—Infection rate in Delta 1 and 2. 
Florida counties—Deaths in Delta 1.

4.2.3 Sample
%e dynamics of the spread and severity may have been di!erent 

in less populous counties that were not included in this study.

4.2.4 Other
There may have been other factors affecting non-severe and 

severe health outcomes like travel patterns and granular case-by-
case health policies toward COVID-19. During the span of the 
data collected (20 June 2021 to 19 March 2022), much of the 
previously enacted lockdowns in the U.S. were lifted or were not 
as stringent or widespread as from 2020 to early 2021. They were 
therefore considered to not have been prevalent enough to impact 
findings. However, other implied stringencies like mask-wearing 
and social distancing could not be  accounted for in our data 
sources and may have affected relationships depending on 
compliance and enforcement of such stringencies.

4.3 Conclusion

As SARS-CoV-2 continues to evolve, it is vital to understand 
how the virus’s mutations ultimately affect the health outcomes of 
populations as well as factors that may influence the rate of 
transmission or level of severity in a community. Our study was 
conducted to bring light to the associations of how public health 
outcomes change over the course of Delta and Omicron’s 
dominance in the 50 most populous U.S. counties, and how these 
outcomes differ based on county characteristics. It is important to 
note that while this study may suggest relationships between 
certain variables, the underlying parameters affecting the health 
outcomes of COVID-19 are part of a vastly complex network. Our 
study aims to lower the obscurity surrounding this complex 
network in order to more precisely understand the dynamics of 
COVID-19 spread and severity on a macro-level.
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