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Abstract. The Wiener index of a finite graph G is the sum over all pairs (p, q) of vertices of
G of the distance between p and q. When P is a finite poset, we define its Wiener index as
the Wiener index of the graph of its Hasse diagram. In this paper, we find exact expressions for
the Wiener indices of the distributive lattices of order ideals in minuscule posets. For infinite
families of such posets, we also provide results on the asymptotic distribution of the distance
between two random order ideals.

1. Introduction

1.1. Background: the Wiener index of the noncrossing partition lattice. Meandric sys-
tems are collections of non-crossing loops (up to isotopy) intersecting the horizontal axis at 2n
fixed points—they have connections to several areas of mathematics, physics, and biology. There
is a simple bijection between meandric systems and pairs of noncrossing partitions of size n.

Let NC(n) be the lattice of noncrossing partitions of n. In the paper [GNP20]—motivated by
asymptotic problems about meanders and meandric systems—Goulden, Nica, and Puder raised
the following question: what is the average distance between two (uniform) random partitions in
NC(n)? The question was answered for large n by Thévenin and the second author in [FT22],
where it was proved that this average distance behaves as κn for some constant κ.

It is natural to ask similar questions for other families of posets, looking either for an exact nice
formula or for an asymptotic answer. When the number of elements is known (which is the case
for NC(n)), one can equivalently ask for the sum of distances between all pairs of elements.

In general, let G = (V,E) be a finite connected graph, and for p, q ∈ V , write d(p, q) for the
distance in G from p to q. The Wiener index of G is defined to be

(1.1) d(G) :=
∑

(p,q)∈V×V

d(p, q).

This definition has its origin as the Wiener index predicting the boiling point of certain organic
compounds [Wie47, Wik22, Rou02], and it has also been called the distance of the graph G [EJS76].
When P is a poset, we define d(P ) := d(G(P )) for the Wiener index of the Hasse diagram G(P )
of P (that is, the vertices of G(P ) are the elements of P , and there is an edge in G(P ) between p
and q when there is a cover relation in P between p and q).

In the case of the noncrossing partition lattice, the results in [FT22] imply that

d(NC(n)) ∼ |NC(n)|2κn ∼ κ 16n

πn2
,

but no exact enumeration appears possible. (There does not even seem to be a simple formula for
κ; see the discussion in [FT22] and the related open problem in [Wil22].)

1.2. Wiener indices of other lattices. Computer experiments suggest that there are few non-
trivial families of graphs {Gn}n≥1 of combinatorial objects for which it is possible to find exact
formulas for the Wiener index. First, there are families with elementary exact solutions, for which
|Gn| is a relatively small polynomial in n (for example: path graphs, grid graphs, etc.), or in which
each graph Gn has a transitive underlying symmetry group (for example: the weak order on a finite
Coxeter group, a boolean lattice or hypercube, etc.). A short list of examples is given in [Wei21].

There is, however, one class of posets in algebraic combinatorics that demonstrates consistently
exceptional enumerative behavior: the minuscule lattices [Pro84]. For example, both the number
of elements and the number of maximal chains in a minuscule lattice have simple (uniformly stated
and proven) product formulas, and the minuscule lattices are well understood from the perspective
of dynamical algebraic combinatorics (promotion, rowmotion, etc.) [SW12, Hop20]. Because of
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their rich algebraic, representation-theoretic, and combinatorial properties, such posets serve as
useful test cases for results and methods that might apply to more complicated structures.

It turns out that the Wiener indices of minuscule lattices also admit simple exact formulas, and
one of the goals of the present paper is to establish such formulas.

For completeness, we first recall the definition of minuscule lattices (note that we will only use
here their classification, and not the algebraic definition). Let g be a complex simple Lie algebra
with Weyl group W . Fix a set Φ+ of positive roots of g, and let Λ+ be the set of dominant weights.
The finite-dimensional irreducible complex representations Vλ of g are indexed by dominant weights
λ ∈ Λ+; λ is called minuscule if the W -orbit of λ is the set of all weights in Vλ. The minuscule
weights are exactly those fundamental weights whose corresponding simple roots appear exactly
once in the simple root expansion of the highest root. For more information, we refer the reader
to [Sta80, Pro84].

For λ minuscule, define a poset on the weights in Vλ by introducing a cover relation µ ⋖ ν
whenever µ+α = ν for some simple root α ∈ Φ+. This poset on Vλ is a distributive lattice, which
we call a minuscule lattice [Pro84].

There are three infinite families of minuscule lattices—the order ideals in:

• a rectangle (type A; in type B, minuscule lattices are chains and thus particular cases of
rectangles),

• a shifted staircase (types C and D), and
• a “double tailed diamond” (type D)

—as well as two exceptional minuscule lattices (of types E6 and E7).

In this paper, we show that the Wiener indices of the infinite families of minuscule lattices admit
simple product formulas, although we regrettably have been unable to find a unifying expression
for these formulas. We also provide information about the asymptotic distribution of the distance
between random elements in these posets (in the rectangle and shifted staircase cases), and we give
a method for computing the higher moments exactly.

Note added in revision: after submitting our paper to the arXiv, our exact enumerative results
have been used by Bourn and Erickson to obtain a close formula for a generating series of pairs of
compositions weighted by the so-called “Earth Moving Distance” (or mass transportation distance)
between them [BE23].

1.3. Rectangles. Write J(P ) for the lattice of order ideals in a finite poset P , ordered by inclusion.
By Birkhoff’s representation theorem, any finite distributive lattice is of this form. In Sections 2
to 4, we consider the Wiener index of Pm,k = J([m] × [k]), the lattice of order ideals in an
m × k rectangle. The elements of Pm,k can be represented as lattice paths in an m × k grid, so
|Pm,k| =

(
m+k
k

)
. In this case (and, more generally, for any distributive lattice), it is easy to see

that d(p, q) = |p △ q|, where p △ q = (p\q)∪ (q\p) is the symmetric difference of the order ideals p
and q.

It will be convenient to draw the elements of Pm,k as lattice paths from (0, 0) to (m+ k,m− k)
using steps of the form U = (1, 1) and D = (1,−1). Writing pi, qi for the heights of p and q after
the ends of their ith steps, the number of squares in column i between the lattice paths p and q is
given as

∣∣ qi−pi

2

∣∣, so that

(1.2) d(p, q) =

∣∣∣∣q1 − p1
2

∣∣∣∣+ ∣∣∣∣q2 − p2
2

∣∣∣∣+ · · ·+
∣∣∣∣qm+k − pm+k

2

∣∣∣∣ .
Example 1.1. The graph G(P2,2) is drawn in Figure 1. Its Wiener index is

56 =
4

18

(
10

5

)
=(0+1+2+2+3+4)+(1+0+1+1+2+3)+(2+1+0+2+1+2)+

+(2+1+2+0+1+2)+(3+2+1+1+0+1)+(4+3+2+2+1+0).

We have three results that completely describe the Wiener index of the lattice of order ideals of
a rectangle.
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Figure 1. The Hasse diagram G(P2,2) of order ideals in a 2× 2 square.

Theorem 1.2. The generating function for the Wiener index of all posets Pm,k = J([m]× [k]) is
given by

(1.3)
∞∑

m=0

∞∑
k=0

d(Pm,k)x
myk =

2xy

(x2 − 2xy + y2 − 2x− 2y + 1)2
.

This theorem is obtained via classical first return decomposition for lattice paths. The fact that
this generating series is rational comes as a surprise, since several intermediate computation steps
involve algebraic non-rational functions. Extracting the coefficient of xmyk from Equation (1.3),
we obtain a formula for d(Pm,k).

Corollary 1.3. The Wiener index of Pm,k is

d(Pm,k) =
mk

4m+ 4k + 2

(
2m+ 2k + 2

2k + 1

)
.

For fixed α, we obtain the asymptotic expected value of d(p, q) in a (αn)×n rectangle as n → ∞.
To keep notation simple, we assume throughout the paper that αn is an integer (otherwise, it
suffices to replace αn by its integer value).

Corollary 1.4. We have

d(Pαn,n)

|Pαn,n|2
∼
√
πα(1 + α)

4
n3/2 as n → ∞.

In Section 7, we also describe in this regime the asymptotic distribution of the distance Dα,n

between two independent uniform random elements of Pαn,n.

Proposition 1.5. The random variable n−3/2Dα,n converges in distribution and in moments to√
2α(1 + α) ·

∫ 1

0
|B0(t)|dt, where B0(t) is a Brownian bridge on [0, 1].

Informally, a Brownian bridge on [0, 1] is a Brownian motion conditioned to have value 0 at
time 1. Alternatively, if B is a Brownian motion, then B0(t) := B(t)− tB(1) is a Brownian bridge.
Brownian bridges have been extensively studied in the probabilistic literature. In particular, much
is known on the random variable

∫ 1

0
|B0(t)|dt; see [Jan07, Section 20] for a survey of results including

numerous references. In particular, a table of the first few moments can be found in [Jan07, Table
2]. We copy here the first three:

E
[∫ 1

0

|B0(t)|dt
]
=

1

4

√
π

2
, E

[(∫ 1

0

|B0(t)|dt
)2
]
=

7

60
, E

[(∫ 1

0

|B0(t)|dt
)3
]
=

21

512

√
π

2
.
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Together with Proposition 1.5, this implies

1

|Pαn,n|2
∑

p,q∈Pαn,n

d(p, q) = E[Dα,n] ∼
√
πα(1 + α)

4
n3/2,

1

|Pαn,n|2
∑

p,q∈Pαn,n

d(p, q)2 = E[D2
α,n] ∼

7

30
α(1 + α)n3,

1

|Pαn,n|2
∑

p,q∈Pαn,n

d(p, q)3 = E[D3
α,n] ∼

21

256

√
πα3/2(1 + α)3/2n9/2.

Note that the first estimate is nothing but Corollary 1.4. This gives a second derivation of this
asymptotic result, which does not go through the exact expression. Exact expressions for such
higher moments can also be obtained through combinatorial means, see Section 8 for a derivation
of the second moment.

1.4. Shifted staircases. In Sections 5 and 6, we consider the Wiener index of Qn, the distributive
lattice of order ideals in the nth shifted staircase poset. Explicitly, Qn is the set of order ideals in
the poset {(i, j) : 1 ≤ i ≤ j ≤ n} under componentwise ordering. The following results determine
d(Qn) exactly.

The elements of Qn can be represented as lattice paths starting at (0, 0), ending somewhere on
the line x = n, and using steps of the form U = (1, 1) and D = (1,−1). In particular, |Qn| = 2n.
Similarly as for rectangles, if p and q are elements in Qn, writing pi, qi for the heights of p and q
after the ends of their ith steps, we have

(1.4) d(p, q) =
n∑

i=1

∣∣∣∣qi − pi
2

∣∣∣∣ .
Example 1.6. The graph G(Q3) is plotted in Figure 2. Its Wiener index is

140 =
6 · 7
3

(
5

3

)
=24 + 18 + 14 + 14 + 14 + 14 + 18 + 24.

Theorem 1.7. The generating function for the Wiener index of all lattices Qn is given by

(1.5)
∞∑

n=0

d(Qn)x
n =

8x
(
1 +

√
1− 4x− x(3 +

√
1− 4x)

)
(1− 4x)(1− 4x+

√
1− 4x)3

.

Corollary 1.8. The Wiener index of Qn is

d(Qn) =
2n(2n+ 1)

3

(
2n− 1

n

)
.

Consequently, as n tends to +∞, we have d(Qn) ∼ 2
3
√
π
4nn3/2.

In Section 7, we turn to the asymptotic distribution of the distance En between two random
order ideals of Qn.

Proposition 1.9. The random variable n−3/2En converges in distribution and in moments to
1√
2
·
∫ 1

0
|B(t)|dt, where B(t) is a Brownian motion on [0, 1].

Again, much is known about the random variable
∫ 1

0
|B(t)|dt, and a comprehensive literature

review appears in [Jan07, Section 21]. In particular, the first few moments are given in [Jan07,
Table 3]:

E
[∫ 1

0

|B(t)|dt
]
=

2

3

√
2

π
, E

[(∫ 1

0

|B(t)|dt
)2
]
=

3

8
, E

[(∫ 1

0

|B(t)|dt
)3
]
=

263

630

√
2

π
.
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Figure 2. The Hasse diagram G(Q3) of order ideals in the third shifted staircase.

Together with Proposition 1.9, this implies

1

|Qn|2
∑

p,q∈Qn

d(p, q) = E[En] ∼
2

3
√
π
n3/2,

1

|Qn|2
∑

p,q∈Qn

d(p, q)2 = E[E2
n] ∼

3

16
n3,

1

|Qn|2
∑

p,q∈Qn

d(p, q)3 = E[E3
n] ∼

263

1260
√
π
n9/2.

Again, recalling that |Qn| = 2n, this allows us to recover the asymptotic behaviour of d(Qn) given
in Corollary 1.8 without going through its exact expression.

1.5. The remaining minuscule lattices. The Wiener indices of the remaining minuscule lattices
are simple calculations.

Let Rn be the nth “double tailed diamond”—that is, the distributive lattice of order ideals in
the minuscule poset of type Dn corresponding to the first fundamental weight.

Theorem 1.10. We have

d(Rn) =
2

3
(n+ 3)

(
4n2 + 9n+ 8

)
.

The minuscule lattices of types E6 and E7 have Wiener indices 3584 and 24048, respectively.

The proof in the case of Rn is elementary and left to the reader. The cases of E6 and E7 are
treated by computer. The expressions for Wiener indices given in Corollary 1.3, Corollary 1.8, and
Theorem 1.10 suggest that there may be a uniform formula for d(P ) for P a minuscule lattice—but
we regrettably have been unable to find such an expression.
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2. Lattice path bijections

We continue to use the steps U = (1, 1) and D = (1,−1), but we will also make use of two
versions (or colors) of the step (1, 0), denoted O1 and O2. For (p, q) ∈ Pk,n−k × Pk,n−k, define a
lattice path A(p, q) using the following dictionary between the ith pair of steps in (p, q) and the
ith step in A(p, q):

(2.1)

(p, q) A(p, q) qi+1−pi+1

2 − qi−pi

2 ri+1 − ri
(D,U) U +1 +1
(U,D) D −1 −1
(U,U) O1 0 0
(D,D) O2 0 0

.

Two examples of this bijection are illustrated in Figure 3. Given a lattice path r of length n with
steps from the set {U,D,O1, O2}, write ri for the height (i.e. the y-coordinate) of r at the end of its
ith step. The unsigned area between r and the x-axis is d(r) = |r0|+ |r1|+ |r2|+ · · ·+ |rn−1|+ 1

2 |rn|.
Then, comparing with Equation (1.2), it is clear that d(p, q) = d(A(p, q)): certainly q0−p0

2 = 0 = r0,
so suppose that qi−pi

2 = ri; then the difference in height at the (i + 1)st step in A(p, q) matches
the difference in height at the (i + 1)st steps of p and q, as shown in the rightmost two columns
of (2.1). Let us also write

(2.2) d(r) = |r0|+ |r1|+ |r2|+ · · ·+ |rn| = d(r) +
1

2
|rn|.

A7−→

A7−→

Figure 3. Illustration of the bijection A from the table in (2.1). The horizontal
steps O1 and O2 are indicated with lines of different thickness.

Write the set of all ordered pairs of paths in Pk.n−k as

P×
k,n−k := Pk,n−k × Pk,n−k,

and denote the restriction of P×
k,n−k to those pairs (p, q) with p ≤ q as

P≤
k,n−k := {(p, q) ∈ P×

k,n−k : p ≤ q}.

We begin by converting the total area between pairs of paths in P×
k,n−k and P≤

k,n−k into the
(unsigned) area under a single Motzkin path.

Definition 2.1. Write W for the set of bilateral Motzkin paths—that is, lattice paths from (0, 0)
to (n, 0) for some n ∈ Z≥0 that use step set {U,D,O1, O2}. We write Wn,k for the set of bilateral
Motzkin paths that end at (n, 0) and use exactly k steps of the form U or O1. A bicolored Motzkin
path is a bilateral Motzkin path that stays weakly above the x-axis. Write M (resp. Mn,k) for
the set of bicolored Motzkin paths in W (resp. Wn,k).
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Proposition 2.2. The map A : P×
n,n−k → Wn,k is a bijection satisfying d(p, q) = d(A(p, q)), and

it restricts to a bijection from P≤
n,n−k to Mn,k.

Proof. The dictionary in (2.1) shows that A is a bijection. When p ≤ q, A(p, q) never goes below the
x-axis, so A maps P≤

n,n−k onto Mn,k. The claim about d was proven immediately after (2.1). □

3. Proof of Theorem 1.2

In this section, we use recurrences on Motzkin paths and their associated generating functions
to deduce Theorem 1.2.

3.1. Bicolored Motzkin paths. Define the generating function for bicolored Motzkin paths to
be

M(x, u) =
∑
n≥0

∑
k≥0

|Mn,k|xnuk,

so that the coefficient of xnuk counts bicolored Motzkin paths of total length n with exactly k
steps of the form U and O1.

Proposition 3.1. The generating function M(x, u) satisfies the functional equation

M(x, u) = 1 + x(1 + u)M(x, u) + ux2M(x, u)2,

with the explicit solution

M(x, u) =
1− (u+ 1)x−

√
(u2 − 2u+ 1)x2 − 2(u+ 1)x+ 1

2ux2
.

Proof. The functional equation comes from decomposing a lattice path r ∈ M by first return to
the x-axis: r is empty; or r starts with an O1 step; or r starts with an O2 step; or r starts with
a U step. This is illustrated in Figure 4. The explicit solution is easily obtained by solving this
quadratic equation in M(x, u). □

M
. . .

. . .

. . .

=
•
1

⊔
ux M

. . .

. . .

. . . ⊔
x M

. . .

. . .

. . . ⊔
M Mux x

.. .

. . .

. . .

. . .

. . .

. . .

M
. . .

. . .

. . .

=

ux M
. . .

. . .

. . . ⊔
x M

. . .

. . .

. . . ⊔
M Mux x

.. .

. . .

. . .

. . .

. . .

. . .

⊔
M Mux x

.. .

. . .

. . .

. . .

. . .

. . . ⊔
∂x(xM) Mux x

.. .

. . .

. . .

. . .

. . .

. . .

W
. . .

. . .

. . .

=
•
1

⊔
ux

W
. . .

. . .

. . .

⊔
x

W
. . .

. . .

. . .⊔
2×

M
W

ux x

. . .

. . .

. . .

. . .

. . .

. . .

W
. . .

. . .

. . .

=
ux

W
. . .

. . .

. . .

⊔
x

W
. . .

. . .

. . .⊔
2×

(
M

W
ux x

. . .

. . .

. . .

. . .

. . .

. . .

⊔
M

W
ux x

. . .

. . .

. . .

. . .

. . .

. . .⊔
∂x(xM)ux x

W. . .

. . .

. . .

. . .

. . .

. . .

)

Figure 4. The decompositions of lattice paths in M, M, W, and W from Propo-
sition 3.1, Proposition 3.2, Proposition 3.3, and Proposition 3.5. The multiplica-
tion by 2 comes from the symmetry of reflecting the first factor across the x-axis.
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Define the generating function for the total area of paths in M by

M(x, u) :=
∑
n≥0

∑
k≥0

xnuk
∑

p∈Mn,k

d(p).

Proposition 3.2. The generating function M(x, u) satisfies the functional equation

M(x, u) = x(1 + u)M(x, u) + ux2(2M(x, u)M(x, u) +M(x, u)
d

dx
(xM(x, u)),

with the explicit solution

M(x, u) =

(
u2 + 1

)
x2 − (u+ 1)x+ ((u+ 1)x− 1)

(√
(u− 1)2x2 − 2(u+ 1)x+ 1− 1

)
2ux2 ((u− 1)2x2 − 2(u+ 1)x+ 1)

.

Proof. As in Proposition 3.1, the functional equation comes from decomposing a lattice path r in
M by first return to the x-axis: either r is empty (in which case it contributes zero area); or r starts
with an O1 step; or r starts with an O2 step; or r starts with a U step. This is illustrated in Figure 4.
The explicit solution is easily obtained by using the explicit form of M(x, u) from Proposition 3.1
and solving the linear equation in M(x, u). □

3.2. Bilateral Motzkin paths. Define the generating function for bilateral Motzkin paths to be

W(x, u) =
∑
n≥0

∑
k≥0

|Wn,k|xnuk,

so that the coefficient of xnuk counts bilateral Motzkin paths of total length n with exactly k steps
of the form U or O1.

Proposition 3.3. The generating function W(x, u) satisfies the functional equation

W(x, u) = 1 + x(1 + u)W(x, u) + 2ux2M(x, u)W(x, u),

with the explicit solution

W(x, u) = (u2x2 − 2ux2 − 2ux+ x2 − 2x+ 1)−1/2.

Proof. As in Proposition 3.1, the functional equation comes from decomposing a lattice path r
in W by first return to the x-axis: r is empty; or r starts with an O1 step; or r starts with an
O2 step; or r starts with a U or D step. This is illustrated in Figure 4. The explicit solution is
easily obtained by using the explicit form of M(x, u) from Proposition 3.1 and solving the linear
equation in W(x, u). □

Remark 3.4. Because Wn,k encodes P×
k,n−k by Proposition 2.2, we have

(3.1) W(x, u) =
∑

n,k≥0

(
n

k

)2

xnuk.

Define the generating function for the total area of paths in W to be

W(x, u) :=
∑
n≥0

∑
k≥0

xnuk
∑

p∈Wn,k

d(p).

Proposition 3.5. The generating function W(x, u) satisfies the functional equation

W(x, u) = x(1 + u)W(x, u) + 2ux2(M(x, u)W(x, u) +M(x, u)W(x, u) +W(x, u)
d

dx
(xM(x, u)),

with the explicit solution

(3.2) W(x, u) =
2ux2

((u− 1)2x2 − 2(u+ 1)x+ 1)
2 .

Proof. As in Proposition 3.2, the functional equation comes from decomposing a lattice path r in
W by first return to the x-axis: if r is empty, then it counts for zero area; otherwise, r starts
with an O1 step; or r starts with an O2 step; or r starts with a U or D step. This is illustrated
in Figure 4. The explicit solution is easily obtained by using the explicit forms of M(x, u), W(x, u),
and M(x, u) from Propositions 3.1 to 3.3 and solving the linear equation in W(x, u). □



WIENER INDICES OF MINUSCULE LATTICES 9

Substituting u = y/x into Equation (3.2), we obtain Equation (1.3) and thus complete the proof
of Theorem 1.2 for the generating function for the Wiener indices of the lattices Pm,k = J([m]×[k]).

4. Proofs of Corollaries 1.3 and 1.4

We note that

x2 − 2xy + y2 − 2x− 2y + 1 = (q − t− 1)(q − t+ 1)(q + t− 1)(q + t+ 1),

where q2 = x and t2 = y. Then, by performing a partial fraction decomposition with a computer
algebra system, we get

2xy

(x2 − 2xy + y2 − 2x− 2y + 1)2
=

1

32

(
1

(−1− t+ q)2
+

1

(1− t+ q)2
+

1

(−1 + t+ q)2
+

1

(1 + t+ q)2

)
+

1

32t(t+ 1)

(
1 + t+ t2

(1 + t− q)
+

1 + t+ t2

(1 + t+ q)

)
+

1

32t(t− 1)

(
1− t+ t2

(1− t+ q)
+

−1 + t− t2

(−1 + t+ q)

)
.(4.1)

Taking the nth coefficient in q from the right-hand side of Equation (4.1) gives

n+ 1

32

(
(1 + t)−2−n + (−1 + t)−2−n + (1− t)−2−n + (−1− t)−2−n

)
+

1

32t

( (
t2 + t+ 1

)
(t+ 1)−n−2 +

(
t2 + t+ 1

)
(−t− 1)−n−2

)
+

1

32t

( (
−t2 + t− 1

)
(1− t)−n−2 +

(
−t2 + t− 1

)
(t− 1)−n−2

)
.(4.2)

Taking the jth coefficient in t from (4.2) and simplifying gives

((−1)n + 1)
(
(−1)j + 1

)
32

(
(n+ j + 1)!

n!j!
− (n+ j)!((n+ 1)2 + j2 + j(n+ 2))

(n+ 1)!(j + 1)!

)
.(4.3)

Restricting (4.3) to n = 2m and j = 2k even, we obtain the desired expression in Corollary 1.3
for the coefficient of qntm, giving the coefficient for xmyk:

1

8

(
(n+ j + 1)!

n!j!
− (n+ j)!((n+ 1)2 + j2 + j(n+ 2))

(n+ 1)!(j + 1)!

)
=

(n+ j)!

8n!j!

(
n+ j + 1− j2 + (n+ 1)2 + j(n+ 2)

(n+ 1)(j + 1)

)
=

nj

8(n+ j + 1)

(
n+ j + 2

j + 1

)
=

mk

4m+ 4k + 2

(
2m+ 2k + 2

2k + 1

)
.

Given the exact expression for d(Pm,k), Corollary 1.4 is routine using Stirling’s asymptotic
equivalent for factorials.

5. Shifted staircases

As for rectangles, we can view elements of Qn as lattice paths of length n that start at (0, 0) and
use steps of the form U = (1, 1) and D = (1,−1). The main difference is that paths representing
different order ideals can have different endpoints. Let

Q×
n := Qn ×Qn and Q≤

n := {(p, q) ∈ Q×
n : p ≤ q}.

Definition 5.1. Define a bilateral Motzkin prefix to be a lattice path that starts at (0, 0) and
uses the steps of the form U,D,O1, O2. Let V denote the set of bilateral Motzkin prefixes, and
let Vn be the set of bilateral Motzkin prefixes that use exactly n steps. A bicolored Motzkin prefix
is a bilateral Motzkin prefix that stays weakly above the x-axis. Write N for the set of bicolored
Motzkin prefixes, and let Nn = N ∩ Vn.
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Throughout this section, we write d(p, q) for the length of a geodesic between bilateral Motzkin
prefixes p and q in the Hasse diagram of Qn.

By applying the same rules as in the table in (2.1), we can transform a pair (p, q) ∈ Qn × Qn

into a path A(p, q) that uses steps U,D,O1, O2. The path A(p, q) is similar to a bilateral Motzkin
path, except it does not necessarily end on the x-axis. Recall the definition of d from (2.2).

Proposition 5.2. The map A : Q×
n → Vn is a bijection satisfying d(p, q) = d(A(p, q)), and it

restricts to a bijection from Q≤
n to Nn.

Proof. The proof is essentially the same as that of Proposition 2.2. □

6. Proof of Theorem 1.7 and Corollary 1.8

6.1. Bicolored Motzkin prefixes. Let

N (x) :=
∑
n≥0

|Nn|xn

be the generating function for bicolored Motzkin prefixes.

Proposition 6.1. The generating function N (x) satisfies the functional equation

N (x) = 1 + 3xN (x) + x2M(x, 1)N (x).

Thus,

N (x) =
2

1− 4x+
√
1− 4x

.

Proof. The expression 1 + xN (x) counts (possibly empty) bicolored Motzkin prefixes that only
touch the x-axis at (0, 0), while the expression 2xN (x)+x2M(x, 1)N (x) counts bicolored Motzkin
prefixes that touch the x-axis at some point other than (0, 0). This is illustrated on the first
line of Figure 5. It is routine to derive the explicit solution from the functional equation and
Proposition 3.1. □

N
. . .

. . .

. . .

=
•
1

⊔
x N

. . .

. . .

. . . ⊔
2×

x N
. . .

. . .

. . . ⊔
M Nx x

.. .

. . .

. . .

. . .

. . .

. . .

N
. . .

. . .

. . .

= 2×
x N

. . .

. . .

. . . ⊔
M Nx x

.. .

. . .

. . .

. . .

. . .

. . . ⊔
M Nx x

.. .

. . .

. . .

. . .

. . .

. . .

⊔
∂x(xM) Nx x

.. .

. . .

. . .

. . .

. . .

. . . ⊔
Nx
. . .

. . .

. . . ⊔
∂x(xN )x

. . .

. . .

. . .

V
. . .

. . .

. . .

=
•
1

⊔
2×

(
x N

. . .

. . .

. . . ⊔ V

x
. . .

. . .

. . .⊔
M

V
x x

. . .

. . .

. . .

. . .

. . .

. . .

)

V
. . .

. . .

. . .

= 2×

(
Nx
. . .

. . .

. . . ⊔
∂x(xN )x

. . .

. . .

. . . ⊔
x

V
. . .

. . .

. . .⊔
M

V
x x

. . .

. . .

. . .

. . .

. . .

. . .

⊔
M

V
x x

. . .

. . .

. . .

. . .

. . .

. . .

⊔
∂x(xM)x x

V. . .

. . .

. . .

. . .

. . .

. . .

)

Figure 5. The decompositions of lattice paths in N , N , V, and V from Propo-
sition 6.1, Proposition 6.2, Proposition 6.3, and Proposition 6.4.

Define the generating function

N (x) :=
∑
n≥0

xn
∑
p∈Nn

d(p).
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Proposition 6.2. The generating function N (x) satisfies the functional equation

N (x) = 2xN (x) + x2M(x, 1)N (x) + x2M(x, 1)N (x) + x2N (x)
∂

∂x
(xM(x, 1))

+ xN (x) + x
∂

∂x
(xN (x)).

Thus,

N (x) =
4x
(
1 +

√
1− 4x− x(1−

√
1− 4x)

)
√
1− 4x(1− 4x+

√
1− 4x)3

.

Proof. Following the same ideas used in the proof of Proposition 3.2, we find that

2xN (x) + x2M(x, 1)N (x) + x2M(x, 1)N (x) + x2N (x)
∂

∂x
(xM(x, 1))

counts bicolored Motzkin prefixes that touch the x-axis at some point other than (0, 0), with each
path p weighted by d(p). The generating function for bicolored Motzkin prefixes that only touch
the x-axis at (0, 0) (with each path p weighted by d(p)) is

xN (x) + x
∂

∂x
(xN (x)).

This is illustrated on the second line of Figure 5. This yields the functional equation, from which
the explicit solution is straightforward to obtain via Propositions 3.1 to 3.2. □

Let
V(x) :=

∑
n≥0

|Vn|xn.

Proposition 6.3. The generating function V(x) satisfies the functional equation

V(x) = 1 + 2xN (x) + 2xV(x) + 2x2M(x, 1)V(x).

Thus,

V(x) = 1 +
√
1− 4x√

1− 4x(1− 4x+
√
1− 4x)

.

Proof. The expression 1 + 2xN (x) counts (possibly empty) bilateral Motzkin prefixes that only
touch the x-axis at (0, 0), while the expression 2xV(x)+ 2x2M(x, 1)V(x) counts bilateral Motzkin
prefixes that touch the x-axis at some point other than (0, 0). This is illustrated on the third line
of Figure 5. The explicit solution can be derived from the functional equation using Propositions 3.1
and 6.1. □

Finally, consider the generating function

V(x) :=
∑
n≥0

xn
∑
p∈Vn

d(p).

Proposition 6.4. The generating function V(x) satisfies the functional equation

V(x) = 2xV(x) + 2x2M(x, 1)V(x) + 2x2M(x, 1)V(x) + 2x2V(x) ∂

∂x
(xM(x, 1))

+ 2xN (x) + 2x
∂

∂x
(xN (x)).

Thus,

(6.1) V(x) =
8x
(
1 +

√
1− 4x− x(3 +

√
1− 4x)

)
(1− 4x)(1− 4x+

√
1− 4x)3

.

Proof. Following the same ideas used in the proof of Proposition 6.2, we find that

2xV(x) + 2x2M(x, 1)V(x) + 2x2M(x, 1)V(x) + 2x2V(x) ∂

∂x
(xM(x, 1))



12 C. DEFANT, V. FÉRAY, P. NADEAU, AND N. WILLIAMS

counts bilateral Motzkin prefixes that touch the x-axis at some point other than (0, 0), with each
path p weighted by d(p). Furthermore, the generating function for bilateral Motzkin prefixes that
only touch the x-axis at (0, 0) (with each path p weighted by d(p)) is

2xN (x) + 2x
∂

∂x
(xN (x)).

This is illustrated on the fourth line of Figure 5. This yields the functional equation, from which
one can derive the explicit solution using Propositions 3.1, 6.1, 3.2 and 6.3. □

We conclude Corollary 1.8 by expanding the explicit generating function for V(x) given in
Equation (6.1) as

8x
(
1 +

√
1− 4x− x(3 +

√
1− 4x)

)
(1− 4x)(1− 4x+

√
1− 4x)3

=
∑
n≥0

anx
n.

Using a computer algebra system, the coefficients an satisfy the difference equation

(2n+ 3)2−2n−1an − (4n+ 5)2−2n−3an+1 + (2 + 2n)2−2n−5an+2 = 0

with initial conditions a0 = 0 and a1 = 2. It is easily checked that 2n(2n+1)
3

(
2n−1

n

)
satisfies this

equation and initial conditions.

7. Asymptotic distributions

In this section, we prove Propositions 1.5 and 1.9, which describe the asymptotic distribution of
the distance between 2 random points (also called 2-point distance) in Pαn,n and Qn, respectively.
We start with the case of shifted staircases, which is easier.

7.1. 2-point distance in Qn. Recall that the elements in Qn are exactly the lattice paths starting
at (0,0), ending somewhere on the line x = n, and using steps of the form U = (1, 1) and D =
(1,−1). Let pn and qn be independent uniform random elements in Qn. Seeing pn and qn as lattice
paths, we write pni and qni for their heights after i steps. Clearly, for all n ≥ 1 and i ≤ n, one has
pni = X1 + · · ·+Xi and qni = Y1 + · · ·+ Yi, where (Xj)j≥1 and (Yj)j≥1 are independent sequences
of i.i.d. Rademacher random variables of parameter 1/2. Using Equation (1.4), we write

d(pn, qn) =
1

2

n∑
i=1

|pni − qni | =
n

2

∫ 1

0

| pn⌈nt⌉ − qn⌈nt⌉|dt.

By Donsker’s theorem, the processes(
1√
n
pn⌈nt⌉

)
t≤1

and
(

1√
n
qn⌈nt⌉

)
t≤1

converge in distribution to independent Brownian motions (Bt)t≤1 and (B′
t)t≤1 in Skorokhod space

D[0, 1] (see [Bil99, Chapter 3] for background on Skorokhod space). Since integration is a contin-
uous functional on D[0, 1], we have

n−3/2d(pn, qn) =
1

2

∫ 1

0

∣∣∣n−1/2pn⌈nt⌉ − n−1/2qn⌈nt⌉

∣∣∣ dt d−→ 1

2

∫ 1

0

|Bt −B′
t|dt,

where d−→ means convergence in distribution. But Bt − B′
t

d
=

√
2Bt, proving that n−3/2d(pn, qn)

converges in distribution to 1√
2

∫ 1

0
|Bt|dt, as claimed in Proposition 1.9.

It remains to prove moment convergence. By [Bil12, Corollary of Theorem 25.12], it suffices to
show that for each s > 1, the sequence of sth moments of n−3/2d(pn, qn) is bounded as n tends to
+∞. We have

n−3/2d(pn, qn) ≤ n−1/2 max
i≤n

|pni |+ n−1/2 max
i≤n

|qni |.

Both terms in the upper bound are identically distributed, so we only consider the first one. By
Doob’s maximal inequality, we have

E
[(

max
i≤n

|pni |
)s]

≤
(

s

s− 1

)s

E
[
|pnn|s

]
.
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Since pnn is a sum of n i.i.d. centered random variables, we have the following classical bound on
its moments (see, e.g., [Pet89]):

E
[
|pnn|s

]
≤ C(s)ns/2 E

[
|X1|s

]
,

where C(s) is a constant depending only on s. In particular the sth moment of n−1/2pnn is bounded
(as n tends to +∞). Consequently, the sth moment of n−1/2 maxi≤n p

n
i is bounded, and that of

n−3/2d(pn, qn) is as well. This proves that the convergence of n−3/2d(pn, qn) to 1√
2

∫ 1

0
|Bt|dt holds

also in moments, concluding the proof of Proposition 1.9. □

7.2. 2-point distance in Pαn,n. We now turn to the case of rectangles. Let pn and qn be indepen-
dent uniform random elements in Pαn,n, seen as lattice paths from (0, 0) to ((α+ 1)n, (α− 1)n).
These paths pn and qn can be constructed as partial sums of sequences of i.i.d. random vari-
ables under some conditioning. To this end, let (Xj)j≥1 and (Yj)j≥1 be independent sequences of
i.i.d. Rademacher random variables of parameter α/(α+ 1). We also let (X̃n

j )j≥1 have the distri-
bution of (Xj)j≥1 conditioned to the event

∑
j≤(α+1)n Xj = (α − 1)n. Then one has the equality

in distribution (
pni
)
i≤(α+1)n

d
=

∑
j≤i

X̃n
j


i≤(α+1)n

.

Recall that we are interested in the quantity

(7.1) n−3/2Dα,n = n−3/2d(pn, qn) =
1

2n3/2

(α+1)n∑
i=1

|pni −qni | =
α+ 1

2
√
n

∫ 1

0

|pn⌈(α+1)nt⌉−qn⌈(α+1)nt⌉|dt.

A version of Donsker’s theorem for conditioned partial sums has been proved by Liggett [Lig68]
(see in particular the corollary of Theorem 4 there). In our case, the centered process(

1

σ
√

(1+α)n

(
pn⌈(α+1)nt⌉ − ⌈nt⌉(α− 1)

))
0≤t≤1

converges in distribution to B0(t) in Skorokhod space D[0, 1], where σ2 = Var(X1) and B0(t) is a
Brownian bridge. A similar convergence result holds for qn with an independent Brownian bridge
B′

0(t).
Using the continuity of taking integrals on D[0, 1], the quantity in (7.1) converges in distribution

to
1

2
(α+ 1)σ

√
α+ 1

∫ 1

0

|B0(t)−B′
0(t)|dt.

An easy computation gives σ = 2
√
α/(α+1), while B0(t)−B′

0(t)
d
=

√
2B0(t) in distribution. Con-

sequently, n−3/2Dα,n converges in distribution to
√
2α(α+ 1)

∫ 1

0
|B0(t)|dt, as claimed in Proposi-

tion 1.5.
It remains to prove moment convergence. As above, we shall prove that for any s > 1, the

random variable n−3/2Dα,n has a bounded sth moment as n tends to +∞. Using the convexity of
the map t 7→ |t|s, we obtain
(7.2)

n−sDs
α,n = 2−s

 1

n

∑
i≤(α+1)n

|pni − qni |

s

≤ 2−s

n

∑
i≤(α+1)n

|pni − qni |s ≤
1

n

∑
i≤(α+1)n

|p̄ni |s + |q̄ni |s

2
,

where p̄ni = pni − iα−1
α+1 is the centered version of pni (and idem for q). Writing X̄i = Xi − α−1

α+1 , we
have

E
[
|p̄ni |s] = E

∣∣∣∣∑
j≤i

X̄j

∣∣∣∣s
∣∣∣∣∣ ∑
j≤(α+1)n

X̄j = 0

 =
∑
k

|k|s P

∑
j≤i

X̄j = k

∣∣∣∣∣ ∑
j≤(α+1)n

X̄j = 0

 ,
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where the sum runs over possible values k for
∑

j≤i X̄j . Using the independence of the X̄j , we
have

P

∑
j≤i

X̄j = k

∣∣∣∣∣ ∑
j≤(α+1)n

X̄j = 0

 =
P
[∑

j≤i X̄j = k ∧
∑

j≤(α+1)n X̄j = 0
]

P
[∑

j≤(α+1)n X̄j = 0
]

= P
[∑

j≤i X̄j = k
]
·
P
[∑

i<j≤(α+1)n X̄j = −k
]

P
[∑

j≤(α+1)n X̄j = 0
] .

Take i ≤ (α+1)n/2. The probabilities in the fraction can be evaluated asymptotically—uniformly
in k—through the local limit theorem (see, e.g., [Dur19, Theorem 3.5.2]), which yields

P

 ∑
j≤(α+1)n

X̄j = 0

 ∼ 2

σ
√
2π(α+ 1)n

;

P

 ∑
i<j≤(α+1)n

X̄j = −k

 =
2e−k2/2((α+1)n−i)σ2

σ
√
2π((α+ 1)n− i)

+ o(n−1/2) ≤ 2 + o(1)

σ
√
π(α+ 1)n

.

In particular, the quotient is bounded by 2 for n large enough, uniformly in k. Bringing everything
together, we obtain that for n large enough and i ≤ (α+ 1)n/2,

E
[
|p̄ni |s] ≤

∑
k

|k|s · 2P
[∑

j≤i X̄j = k
]
= 2E

∣∣∣∣∑
j≤i

X̄j

∣∣∣∣s
 .

Since the X̄j are i.i.d. centered random variables with finite moments, we have (see, e.g., [Pet89])

E

∣∣∣∣∑
j≤i

X̄j

∣∣∣∣s
 ≤ C(s)is/2E

[
|X1|s

]
,

where C(s) is a constant depending only on s (and α in the sequel), which may change from line
to line. Therefore, for n large enough and i ≤ (α+ 1)n/2, we have

E
[
|p̄ni |s] ≤ C(s)ns/2.

By symmetry, this holds also for i ≥ (α + 1)n/2 (we have pni
d
= pn(α+1)n−i for all i ≤ (α + 1)n).

Going back to (7.2), we get
n−sE

[
Ds

α,n

]
≤ (α+ 1)C(s)ns/2.

Thus n−3/2Dα,n has bounded moments, and the convergence to
√
2α(α+ 1)

∫ 1

0
|B0(t)|dt holds also

in moments. Proposition 1.9 is proved. □

8. Higher moments

Given a finite graph G = (V,E) and a positive integer r, let dr(G) denote the moment dr(G) =∑
(p,q)∈V×V d(p, q)r. The convergence of the distance between two random elements in distribution

and in moments established in the previous section yields some asymptotic estimates for dr(Pαn,n)
and dr(Qn). In this section, we give an exact expression of d2(Pk,n−k). The same method can,
in principle, be used to compute the moments dr(Pk,n−k) one by one. Similarly, one could use a
similar method, drawing from the ideas in Sections 5 and 6, to compute the moments dr(Qn). For
the sake of brevity, we merely state the explicit formula for d2(Qn) and omit the computation.

Proposition 8.1. We have

d2(Pm,k) =
1

30

m+ k + 1

m+ k

(
m+ k

m− 1

)(
m+ k

k − 1

)(
7mk2 + 7m2k + 3m2 + 10mk + 3k2 + 3m+ 3k + 4

)
and

d2(Qn) = 22n−4n
(
20 + 15(n− 2) + 3(n− 2)2

)
.
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Proof. As mentioned above, we will only prove the first formula. Given a bilateral Motzkin path
p, let len(p) denote the length of p, and let U(p) be the number of steps in p of the form U or O1.
Recall that

W(x, u) =
∑
p∈W

xlen(p)uU(p), W(x, u) =
∑
p∈W

xlen(p)uU(p)d(p),

M(x, u) =
∑
p∈M

xlen(p)uU(p), M(x, u) =
∑
p∈M

xlen(p)uU(p)d(p).

Let

W(x, u) =
∑
p∈W

xlen(p)uU(p)d(p)2 and M(x, u) =
∑
p∈M

xlen(p)uU(p)d(p)2.

It follows from Proposition 2.2 that W(x, u) =
∑

n≥0

∑
k≥0 d

2(Pk,n−k)x
nuk.

The contribution to M(x, u) coming from paths that start with O1 or O2 is x(u+1)M(x, u). The
other paths that contribute to M(x, u) begin with U and have the form UpDq for some p, q ∈ M.
We find that

(8.1) M(x, u) = x(u+ 1)M(x, u) + ux2Σ,

where

Σ =
∑

p,q∈M
xlen(p)+len(q)uU(p)+U(q)(d(p) + d(q) + len(p) + 1)2.

We can write

(d(p) + d(q) + len(p) + 1)2 = (d(p)2 + d(q)2) + (len(p) + 1)2 + 2d(p)(len(p) + 1)

+ 2d(q)(len(p) + 1) + 2d(p)d(q)

to find that

Σ = 2M(x, u)M(x, u) +M(x, u)
∂

∂x

(
x
∂

∂x
(xM(x, u))

)
+ 2M(x, u)

∂

∂x
(xM(x, u))

+ 2M(x, u)
∂

∂x
(xM(x, u)) + 2M(x, u)2.(8.2)

A similar argument yields the functional equation

(8.3) W(x, u) = x(u+ 1)W(x, u) + 2ux2Σ′,

where

Σ′ =
∑
p∈M
q∈W

xlen(p)+len(q)uU(p)+U(q)(d(p) + d(q) + len(p) + 1)2

= M(x, u)W(x, u) +W(x, u)M(x, u) +W(x, u)
∂

∂x

(
x
∂

∂x
(xM(x, u))

)
+ 2W(x, u)

∂

∂x
(xM(x, u)) + 2W(x, u)

∂

∂x
(xM(x, u)) + 2M(x, u)W(x, u).(8.4)

We already computed explicit formulas for M(x, u), M(x, u), W(x, u), and W(x, u) in Propo-
sitions 3.1 to 3.3 and 3.5. Combining those formulas with Equations (8.1) to (8.4), we can derive
the explicit formula

W(x, u) =
2ux2

(
(u− 1)2(u+ 1)x3 − ((u− 8)u+ 1)x2 − (u+ 1)x+ 1

)
((ux+ x− 1)2 − 4ux2)

7/2
.

Setting u = y/x and extracting coefficients yields the desired explicit formula for d2(Pm,k). □
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9. Open problems

Comparing the results of Proposition 3.3 and 3.5, we get the intriguing equation

(9.1) W = 2ux2 W4.

A direct proof of this would be interesting in itself and could lead to a bijective proof of Corol-
lary 1.3 via the explicit formula (3.1). Recall that W counts pairs of paths where a cell in the
symmetric difference is marked. The connected component where this cell occurs corresponds to
a part where the two paths only meet at their beginning and end (this forms a parallelogram poly-
omino), and the generating function W2 naturally enumerates the rest of the paths. It follows
that a bijective proof of (9.1) reduces to a bijective proof that W2 enumerates the total area of
parallelogram polyominoes. The specialization u = 1 is known [DLNPR04].

As minuscule lattices arise as the weak order on certain maximal parabolic quotients of finite
Coxeter groups, it would be interesting to extend our results to other parabolic quotients. Minus-
cule lattices also appear as certain crystal graphs; one could also ask about the Wiener indices of
more general crystals.

Acknowledgements

V.F., P.N., and N.W. thank the organizers of the 2022 Oberwolfach conference in Enumerative
Combinatorics for inviting them to a wonderful conference. P.N. was partially supported by the
project ANR19-CE48-011-01 (COMBINÉ). N.W. was partially supported by the National Science
Foundation under Award No. 2246877. V.F. is partially supported by the Program “Future Leader”
of the Initiative “Lorraine Université d’Excellence” (LUE), and by the ANR project CORTIPOM
(ANR-21-CE40-0019). C.D. was supported by the National Science Foundation under Award No.
2201907 and by a Benjamin Peirce Fellowship at Harvard University.

Computer exploration to discover the simple exact formulas established in this paper have been
carried out with the computer algebra software SageMath [The23], and we are grateful to its
developers for their work.

References

[BE23] R. Bourn and W. Q. Erickson. Proof of a conjecture of bourn and willenbring con-
cerning a family of palindromic polynomials, 2023.

[Bil99] P. Billingsley. Convergence of probability measures. Wiley Ser. Probab. Stat. Chich-
ester: Wiley, 2nd ed. edition, 1999.

[Bil12] P. Billingsley. Probability and measure. Anniversary edition. Hoboken, NJ: John Wiley
& Sons, 2012.

[DLNPR04] A. Del Lungo, M. Nivat, R. Pinzani, and S. Rinaldi. A bijection for the total area of
parallelogram polyominoes. Discrete Appl. Math., 144(3):291–302, 2004.

[Dur19] R. Durrett. Probability. Theory and examples, volume 49 of Camb. Ser. Stat. Probab.
Math. Cambridge University Press, 5th edition, 2019.

[EJS76] R. C. Entringer, D. E. Jackson, and D. Snyder. Distance in graphs. Czechoslovak
Math. J., 26(2):283–296, 1976.

[FT22] V. Féray and P. Thévenin. Components in meandric systems and the infinite noodle.
Int. Math. Res. Not. IMRN, 2022. doi:10.1093/imrn/rnac156.

[GNP20] I. Goulden, A. Nica, and D. Puder. Asymptotics for a class of meandric systems, via
the Hasse diagram of NC(n). Int. Math. Res. Not. IMRN, 2020(4):983–1034, 2020.

[Hop20] S. Hopkins. Order polynomial product formulas and poset dynamics. arXiv preprint
arXiv:2006.01568, 2020.

[Jan07] S. Janson. Brownian excursion area, wright’s constants in graph enumeration, and
other Brownian areas. Probab. Surv., 4:80–145, 2007.

[Lig68] T. M. Liggett. An invariance principle for conditioned sums of independent random
variables. J. Math. Mech., 18:559–570, 1968.

[Pet89] V. V. Petrov. Moments of sums of independent random variables. J. Sov. Math.,
61(1):1, 1989.

[Pro84] R. A. Proctor. Bruhat lattices, plane partition generating functions, and minuscule
representations. European J. Combin., 5(4):331–350, 1984.

https://www.mfo.de/occasion/2250/www_view
https://www.mfo.de/occasion/2250/www_view


WIENER INDICES OF MINUSCULE LATTICES 17

[Rou02] D. H. Rouvray. The rich legacy of half a century of the Wiener index. In Topology in
Chemistry, pages 16–37. Elsevier, 2002.

[Sta80] R. P. Stanley. Weyl groups, the hard Lefschetz theorem, and the Sperner property.
SIAM J. Alg. Disc. Meth., 1(2):168–184, 1980.

[SW12] J. Striker and N. Williams. Promotion and rowmotion. European J. Combin.,
33(8):1919–1942, 2012.

[The23] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.8), 2023. https://www.sagemath.org.

[Wei21] E. W. Weisstein. Wiener index. MathWorld–A Wolfram Web Resource, accessed 2021.
[Wie47] H. Wiener. Structural determination of paraffin boiling points. J. Am. Chem. Soc.,

69(1):17–20, 1947.
[Wik22] Wikipedia contributors. Wiener index — Wikipedia, the free encyclopedia, 2022. [On-

line; accessed 22-December-2022].
[Wil22] N. Williams. Oberwolfach problem session: Enumerative combinatorics 2022.

https://personal.utdallas.edu/~nxw170830/docs/Papers/Misc/Oberwolfach_
EC_2022_problem_session.pdf, 2022. Accessed: December 20, 2022.

(C. Defant) Department of Mathematics, Harvard University, Cambridge, MA 02139, USA
Email address: colindefant@gmail.com

(V. Féray) Université de Lorraine, CNRS, IECL, F-54000, Nancy, France
Email address: valentin.feray@univ-lorraine.fr

(P. Nadeau) Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Camille Jordan, F-
69622 Villeurbanne Cedex, France

Email address: nadeau@math.univ-lyon1.fr

(N. Williams) University of Texas at Dallas
Email address: nathan.williams1@utdallas.edu

https://personal.utdallas.edu/~nxw170830/docs/Papers/Misc/Oberwolfach_EC_2022_problem_session.pdf
https://personal.utdallas.edu/~nxw170830/docs/Papers/Misc/Oberwolfach_EC_2022_problem_session.pdf

	1. Introduction
	1.1. Background: the Wiener index of the noncrossing partition lattice
	1.2. Wiener indices of other lattices
	1.3. Rectangles
	1.4. Shifted staircases
	1.5. The remaining minuscule lattices

	2. Lattice path bijections
	3. Proof of thm:gf
	3.1. Bicolored Motzkin paths
	3.2. Bilateral Motzkin paths

	4. Proofs of cor:coeff,cor:asymptotic
	5. Shifted staircases
	6. Proof of thm:gfSS and cor:WienerJSn
	6.1. Bicolored Motzkin prefixes

	7. Asymptotic distributions
	7.1. 2-point distance in Qn
	7.2. 2-point distance in Pn,n

	8. Higher moments
	9. Open problems
	Acknowledgements
	References

