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Abstract
Nitrification is an important control on the form and distribution of nitrogen in
freshwater ecosystems. However, the seasonality of nitrogen pools and the
diversity of organisms catalyzing this process have not been well documented
in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organ-
isms in Flathead Lake are temporally and vertically dynamic, with nitrifiers dis-
playing specific preferences depending on the season. While the ammonia‐
oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite‐oxidizing bacteria
(NOB) Nitrotoga dominate at depth in the summer, the ammonia‐oxidizing
archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in
the winter. Given clear seasonality in ammonium, with higher concentrations
during the summer, we hypothesize that the succession between these two
nitrifying groups may be due to nitrogen affinity, with AOB more competitive
when ammonia concentrations are higher and AOA when they are lower. Nitri-
fiers in Flathead Lake share more than 99% average nucleotide identity with
those reported in other North American lakes but are distinct from those in
Europe and Asia, indicating a role for geographic isolation as a factor control-
ling speciation among nitrifiers. Our study shows there are seasonal shifts in
nitrogen pools and nitrifying populations, highlighting the dynamic spatial and
temporal nature of nitrogen cycling in freshwater ecosystems.

INTRODUCTION

Nitrification, the biological oxidation of ammonia (NH3) to
nitrate (NO3

�), is a key component of the nitrogen
(N) cycle (Kowalchuk & Stephen, 2001; Prosser, 1990).
Nitrification is a major control of the form, distribution,
and abundance of nitrogen in lakes (Finlay et al., 2007;
Small et al., 2013; Sterner et al., 2007). While some bac-
teria can perform complete oxidation of ammonia
(Daims et al., 2015; van Kessel et al., 2015), this pro-
cess is typically completed in two steps by chemo-
lithoautotrophic microorganisms: ammonia-oxidizing
archaea (AOA) or bacteria (AOB) first oxidize NH3 to
nitrite (NO2

�), followed by the oxidation of NO2
�

to NO3
� by nitrite-oxidizing bacteria (NOB;

e.g., Dworkin & Gutnick, 2012; Könneke et al., 2005).
Nitrifiers present in freshwater habitats can include the
AOA Nitrososphaerota (commonly known as Thau-
marchaeota), AOB of the genera Nitrosomonas and
Nitrosospira within the Nitrosomonadaceae, and NOB of
the phylum Nitrospirota, genus Nitrobacter, and genus
Nitrotoga (e.g., Alfreider et al., 2018; Boddicker &
Mosier, 2018; Cabello-Yeves et al., 2018, 2020;
Hayden & Beman, 2014; Herber et al., 2019; Klotz
et al., 2022; Lantz et al., 2021; Podowski et al., 2022;
Ngugi et al., 2023). These lineages can represent large
(>30%) proportions of lake and ocean prokaryotic com-
munities (e.g., Francis et al., 2005; Karner et al., 2001;
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Ngugi et al., 2023), highlighting the importance of these
organisms to both N and carbon cycles.

Nitrifying organisms are subject to control by physi-
cal, chemical, and biological factors (Daims
et al., 2016; Hatzenpichler, 2012). In both lakes and
oceans, rates of nitrification and abundances of nitri-
fiers tend to be greatest in the lower euphotic zone and
dark hypolimnetic waters (e.g., Karner et al., 2001;
Klotz et al., 2022; Ngugi et al., 2023; Small
et al., 2013), in part owing to the photosensitive nature
of these microorganisms (e.g., French et al., 2012;
Horak et al., 2018; Merbt et al., 2012; Olson, 1981).
AOA and AOB communities coexist, but they often
exhibit niche separation in natural environments. Prior
studies examining whether AOA or AOB predominate
in a given environment have documented trophic sta-
tus, ammonium (NH4

+) concentration, temperature,
light, and pH as correlating with AOA or AOB abun-
dances (e.g., Bollmann et al., 2014; Bouskill
et al., 2011, 2012; Fernàndez-Guerra &
Casamayor, 2012; Herrmann et al., 2009; Mosier &
Francis, 2008; Mukherjee et al., 2016; Nicol
et al., 2008; Podowski et al., 2022; Prosser & Nicol,
2012; Vissers et al., 2013a). One of the major controls
on the distribution of different clades of nitrifiers is
NH4

+ availability. AOA are typically thought to outcom-
pete AOB in oligotrophic conditions because of their
higher affinity for ammonia (e.g., French et al., 2012,
2021; Hink et al., 2018; Jung et al., 2022; Martens-
Habbena et al., 2009). Geographic separation can also
impact nitrifier diversity, as recent studies have shown
high abundances and similar ecotypes of AOA within
widespread European lakes (Ngugi et al., 2023) while
different nitrifier populations are present in the Great
Lakes of North America (Podowski et al., 2022). How-
ever, the diversity of nitrifiers in lakes and their distribu-
tions across depths and seasons are not well
described.

Here, we explored the temporal dynamics of major
fixed N pools and the organisms catalysing nitrification
in Flathead Lake, Montana, USA, one of the largest
natural freshwater lakes in the western United States.
Flathead Lake is oligotrophic and persistently oxic (nor-
mally >8 mg L�1) with a short hydrologic residence time
(�2.2 years; Ellis et al., 2011). Total N concentrations
are typically �8 μM while total phosphorus (P) levels
are �0.1 μM, leading to elevated N:P stoichiometric
ratios (Elser et al., 2022). The microorganisms in Flat-
head Lake appear highly seasonal, with the onset of
stratification leading to clear changes in community
composition and diversity (Evans et al., 2024). Here,
we describe the seasonality and distribution of inor-
ganic N pools and nitrifying organisms in this largely
pristine, oligotrophic lake. We find that N and nitrifying
organisms are temporally and vertically dynamic, with
diverse bacteria and archaea displaying specific prefer-
ences depending on the time of year.

EXPERIMENTAL PROCEDURES

Sampling was conducted at the long-term monitoring
site Midlake Deep (MLD; 47.867 N, 114.067 W; maxi-
mum lake depth, 113 m) in Flathead Lake from aboard
the research vessel Jessie B. Sampling was performed
15� per year at near-monthly intervals over five years
(2014–2019) as part of the Flathead Monitoring Program
(FMP). Vertically resolved temperature and oxygen mea-
surements were obtained with a Hydrolab DS5 (OTT
HydroMet, Sheffield, UK). The R (R Core Team, 2020)
package akima (v0.6-2.3; Akima et al., 2016) was used
to interpolate temperature between depths and time
points. The mixed layer depth was calculated as the
depth where temperature differed by 0.5�C from the
average temperature between 0.5 and 3.5 m (Evans
et al., 2024). Photosynthetically active radiation (PAR;
400–700 nm) was measured using an underwater
spherical quantum sensor (LI-193). Water samples were
collected via electric winch using an opaque 3.2 L Van
Dorn water sampler affixed to a stainless steel wire
cable. Samples were stored on ice in dark coolers during
transport back to the laboratory.

Nutrients

NH4
+ and nitrate + nitrite (NO3

� and NO2
�; here

referred to as NOx
�) concentrations were measured at

three depths (5, 50, and 90 m) between 2014 and
2019 at MLD. During 2018 and 2019, NOx

� concentra-
tions were measured at higher vertical resolution in the
upper 30 m from 12 depth profiles. Samples were filtered
through MilliQ- and lake water-rinsed, 47 mm diameter,
0.45 μm pore size mixed cellulose ester filters and fro-
zen at �20�C until analysis on an Astoria A2 segmented
flow analyser (Astoria-Pacific, OR, USA). NH4

+ concen-
trations were quantified colorimetrically as indophenol
blue via reaction with alkaline phenol and hypochlorite
(Standard Methods 4500-NH3 G, Baird et al., 2017). For
NOₓ determinations, NO3

� was converted to NO2
� via

cadmium reduction, and total NO3
� + NO2

� quantified
colorimetrically via Greiss chemistry azo dye formation
(Standard Methods 4500-NO3 E, Baird et al., 2017;
Strickland & Parsons, 1968). The lower detection limit
for NOx

� and NH₄+ was 0.11 μM N. N concentrations
below this value are reported as the limit of detection.

Estimates of NH4
+ and NOx

� entering Flathead
Lake from the Flathead River, the major source of water
to the lake, were obtained at Sportsman’s Bridge at
near-monthly intervals during 2014–2019. This location
sits �4 km from where the mouth of the river enters the
lake. Water was collected from �1m depth upstream of
the bridge using a 3.2 L Van Dorn water sampler. Sam-
ple processing and N concentration measurements
were performed as described above. To estimate the
flux of NH4

+ and NOx
� entering the lake, we used the
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R packages rloadest and loadflex (Appling et al., 2015;
Runkel et al., 2004). Daily mean discharge was esti-
mated based on measurements in Columbia Falls by
the US Geological Survey (USGS 12363000; https://
waterdata.usgs.gov/nwis). A regression model and the
composite method were used with the commands loa-
dReg2, loadComp, and predictSolute.

Sample collection and extraction for DNA
analyses

Water collection and DNA extraction of samples from
MLD during 2017–2018 were performed as previously
described (Evans et al., 2024; Peoples et al., 2023).
Briefly, approximately 1 L was serially filtered through
both a 25 mm diameter, 3 μm pore size GTTP polycar-
bonate filter (EMD Millipore, MA, USA) and a 25 mm
diameter, 0.2 μm pore size polyethersulphone filter
(SUPOR, Pall Co., NY, USA). DNA from the <3.0 to
>0.2 μm fraction was extracted using a MasterPure
DNA purification kit (Lucigen, WI, USA). Samples were
stored at �80�C prior to subsequent analysis.

16S rRNA gene amplicon sequencing

PCR amplification and sequencing of 16S rRNA gene
amplicons were performed as previously described
(Evans et al., 2024). Briefly, the 16S rRNA gene V4–V5
region was amplified using the primers 515F-Y
(50-GTGYCAGCMGCCGCGGTAA) and 926R (50-CCGY
CAATTYMTTTRAGTTT) using reaction conditions previ-
ously recommended (Parada et al., 2016). Triplicate PCR
reactions were pooled and sequenced at the University of
Montana Genomics Core on an Illumina MiSeq.
Sequence data were processed using the QIIME2 plat-
form (Bolyen et al., 2019). Sequences were denoised,
chimeras were removed, and amplified sequence variants
(ASVs) were identified using DADA2 (Callahan
et al., 2016). Sequences were classified against the
SILVA 138 database (Quast et al., 2013). Further proces-
sing was performed using phyloseq (McMurdie &
Holmes, 2013) in R. Sequences related to chloroplasts
and eukaryotes were removed. Lineages known to per-
form nitrification were specifically identified, including
those related to the phylum Nitrososphaerota (named
Crenarchaeota in this version of SILVA), phylum Nitrospir-
ota, family Nitrosomonadaceae, and family Gallionella-
ceae. Relative abundance pie charts were created using
the R package scatterpie v0.2.1 (Yu & Xu, 2023).

Shotgun metagenomic sequencing

To document the microbial diversity and potential for nitri-
fication in Flathead Lake, metagenomic sequencing was
conducted from samples collected at MLD during the year

2018 at depths ranging from 5 to 90 m. Sequencing, pro-
cessing, and annotation were performed as previously
described (Peoples et al., 2023). Briefly, raw reads were
quality trimmed using Trimmomatic v0.39 (Bolger
et al., 2014) and assembled with MEGAHIT v1.2.9 (Li
et al., 2015). Open reading frames were identified with
Prodigal V2.6.3 (Hyatt et al., 2010) and functional annota-
tion was performed using GhostKOALA (Kanehisa
et al., 2016). Ammonia monooxygenase alpha subunit
(amoA) gene phylogenetic trees were created by
sequence alignment using muscle (Edgar, 2004), con-
structed using FastTree (Price et al., 2010), and visual-
ized using iTOL (Letunic & Bork, 2021). Metagenome-
assembled genomes were obtained using MetaBAT
2 v2.11.1 (Kang et al., 2019) and the size and quality of
each genome bin were evaluated using CheckM v1.0.13
(Parks et al., 2015). Genomes were taxonomically classi-
fied with GTDB-tk v1.6.0 (Chaumeil et al., 2019) using
KBase (Arkin et al., 2018). Whole-genome trees were
created using concatenated single-copy marker genes
identified and aligned using CheckM, constructed using
FastTree, and displayed using iTOL. Average nucleotide
identity (ANI) comparisons were performed using
OrthoANI (Yoon et al., 2017). The relative representation
of each bin within each metagenome was estimated by
read recruitment using Bowtie 2 v2.3.5.1 (Langmead &
Salzberg, 2012) and SAMtools v1.10 (Li et al., 2009) to
obtain the number of reads mapped per kilobase million
reads (RPKM). Clinker was used to compare gene
operons (Gilchrist & Chooi, 2021).

Droplet digital PCR

To quantify the abundances of ammonia-oxidizing
organisms in Flathead Lake, we performed droplet digi-
tal PCR (ddPCR) to amplify the amoA gene using the
QX200 Droplet Digital PCR System (Bio-Rad Laborato-
ries, Inc., CA, USA). Using shotgun metagenomics, we
identified three abundant amoA gene sequences that
clustered into three separate clades: one member of
the archaeal phylum Nitrososphaerota and two mem-
bers of the bacterial family Nitrosomonadaceae.
ddPCR assays were run using the EvaGreen Digital
PCR Supermix with Droplet Generation Oil for Eva-
Green (Bio-Rad Laboratories). PCR reactions (20 μL
final volume) consisted of 1� Supermix, 0.5 μM forward
primer, 0.5 μM reverse primer, and 2 μL DNA. Droplets
were generated using a QX200™ Bio-Rad Droplet
Generator and the droplet-PCR mixture cycled on a
Bio-Rad 1000 Touch™ Thermal Cycler. The
Arch-amoAFA and Arch-amoAR primer set described
by Beman et al. (2008) was used to amplify archaeal
amoA genes. Reaction cycling conditions included
95�C for 4 min followed by 35 cycles at 95�C for 30 s,
56�C for 45 s, and 72�C for 60 s. For AOB amoA
sequences, primers were designed based on metage-
nomic lake sequences modified from those described
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in Rotthauwe et al. (1997). Primers were named based
on the genus-level clades they amplified: clade VFJL01
(F 50-GGGTTTCTACTGGTGGT-30, R 50-CCCCTCA
GCAAATCCTTCCTC-30) and BJGV01 (F 50-GGGCTT
CTACTGGTGGT-30, R 50-CCCCTCTGGAAAGCCTT
CTTC-30). Primer specificity was checked in silico using
Primer-BLAST (Ye et al., 2012) against representative
sequences related to the Nitrosomonadaceae. While
the VFJL01 primer pair appears highly specific to this
clade, the BJGV01 primer pair is also identical to
sequences belonging to other divergent members of
the Nitrosomonadaceae (Figure A1). Therefore, we
urge caution in applying these primers to lakes without
first evaluating amoA gene diversity. PCR conditions
were 94�C for 5 min followed by 35 cycles of 94�C for
1 min, 54�C for 1 min, and 72�C for 1 min, with one final
hold at 72�C for 7 min. No template control (NTC) reac-
tions were included for each set of reactions. Results
were analysed in QuantaSoft Analysis Pro v1.0.596.

RESULTS

NH4
+ and NOx

� concentrations were measured
monthly at three depths (5, 50, and 90 m) over 5 years
(2014–2019) in Flathead Lake. N pools varied season-
ally (Figure 1). NH4

+ concentrations began to increase
at all depths in May, reaching maximum concentrations
in June and July. Concentrations were greatest at
50 and 90 m, peaking near 0.75 μM. The timing and
concentrations of NH4

+ and NOx
� are consistent with

riverine input being a major source of N to the lake
(Figure A2). By August, NH4

+ had declined to
<0.15 μM at all depths. Concentrations of NOx

� were
�3.5 μM throughout the water column during the winter
when the lake was mixed. As the lake stratified, NOx

�

decreased in the epilimnion (5 m), falling below detec-
tion in August, September, and October. High-
resolution sampling in the upper 30 m showed that
NOx

� rapidly accumulated below the mixed layer
(Figure A3). In the hypolimnetic waters (50 and 90 m),
NOx

� accumulated throughout the summer and fall
(July–October), reaching concentrations as high as
7.5 μM. As the mixed layer deepened in the winter,
NOx

� concentrations subsequently increased at the
surface and decreased at depth, consistent with
mixing-driven homogenisation of the water column.

To identify the distributions and abundances of nitri-
fiers across water depths and seasons, we used shot-
gun metagenomics, 16S rRNA gene amplicon
sequencing, ddPCR amplification of amoA genes, and
binning of metagenome-assembled genomes (MAGs)
from samples obtained in the year 2018. To initially
identify lineages capable of performing ammonia oxida-
tion, the first step in nitrification, metagenomes were
searched for amoA genes. We identified three domi-
nant, unique amoA genes; two related to the bacterial

family Nitrosomonadaceae (similar to Nitrosospira) and
one related to the archaeal phylum Nitrososphaerota
(alternatively called Thaumarchaeota). These
sequences are identical to (Nitrososphaerota, VJFL01
Nitrosomonadaceae) or share >99.8% identity
(BJGV01 Nitrosomonadaceae) with those from the
Great Lakes (Figure A1; Podowski et al., 2022). Identifi-
cation of these lineages in the amplicon 16S rRNA
gene dataset revealed both groups showed clear sea-
sonal and vertical dynamics. Generally, the family
Nitrosomonadaceae represented �2% of the Flathead
Lake prokaryotic community while the Nitrososphaerota
composed less than 1% (Figure 2). Relative abun-
dances of both the AOB and AOA were greatest in the
hypolimnion; however, deep winter mixing appeared to
vertically homogenize the relative abundances of both
AOB and AOA. At depth (50 and 90 m), Nitrosomona-
daceae increased in relative abundance in July and
remained elevated throughout the summer before
decreasing in December and January, at least in part
due to dilution by mixing with shallower waters. Nitroso-
monadaceae remained present in the shallower lake
waters prior to the onset of stratification in May and
June. In contrast, Nitrososphaerota represented a
lower fraction of the summer community but increased
in relative abundance in the winter (November–March).
While the Nitrososphaerota was represented by only
one dominant ASV, the family Nitrosomonadaceae was
composed primarily of two ASVs but also included
others at lower percentages (Figure A4). This suggests
there could be other, low-abundance members of the
Nitrosomonadaceae within Flathead Lake.

For additional insight into the diversity of
ammonia-oxidizing organisms, we performed
metagenome-assembled genome binning. Because of
the high similarity between distinct ecotypes of nitrifiers
and the apparent importance of auxiliary genes, we did
not dereplicate genomes between samples
(e.g., Evans & Denef, 2020). Average nucleotide iden-
tity comparisons and genome phylogenies revealed
multiple near-identical MAGs (suggesting they are the
same organism at different depths and time points)
from three apparent ammonia-oxidizing organisms in
Flathead Lake: two related to the Nitrosomonadaceae
and one related to the Nitrosarchaeum within the Nitro-
sosphaerota (Figure 3; Table S1). The two Nitrosomo-
nadaceae species were identified as members of the
genus-level clades VFJL01 (five representative MAGs)
and BJGV01 (four representative MAGs) based on
whole-genome GTDB-tk annotation. These clades
were previously designated as NspGL2b and NspGL1,
respectively, in the Great Lakes (Podowski
et al., 2022). We continue to use these labels here as
ecotype designations where applicable. No amoA
genes were binned within the VFJL01 genomes
(Figure A5). Podowski et al. (2022) also reported diffi-
culty binning amo and other nitrification-related genes,
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F I GURE 1 Concentrations of NH4
+, NOx

� (nitrate + nitrite), and temperature show seasonal variability in Flathead Lake (2014–2019). (A,
B) NH4

+ and NOx
� concentrations binned monthly (January = 1 to December = 12). (C, D) NH4

+ (90 m) and NOx
� (5 m, blue; 90 m, black)

concentrations at discrete depths over time. (E) Vertically-resolved temperature profiles over time. The black line represents the depth of the
mixed layer.
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likely due to assembly issues of nearby genes or multi-
ple closely related gene copies. Metagenomic read
recruitment against representative Flathead Lake
genomes revealed the same temporal and depth-
dependent patterns as that obtained using 16S rRNA
gene amplicon sequencing (Figure 2). Flathead Lake
MAGs of all three ammonia-oxidizing organisms were
similar to those reported from other oligotrophic lakes,
especially those within the Great Lakes, sharing
>99.5% ANI. Comparative genomics revealed that the
Flathead BJGV01 Nitrosomonadaceae have a number
of genes that are missing in the more-abundant VFJL01
clade, including those involved in (1) the use of alterna-
tive nitrogen sources, such as ureABCDEFG and
eutMN for urea and ethanolamine, respectively,
and (2) light harvesting and light damage, including a
proteorhodopsin for ATP generation and DNA

photolyase for repairing UV-induced DNA damage
(Figure A5). Proteorhodopsin operon comparisons
showed this gene cluster is similar to that present in
genomes from the Great Lakes (Figure A6).

We next used ddPCR to amplify amoA genes and
quantitatively estimate the abundances of nitrifier popu-
lations in the lake. Ammonia monooxygenase gene
sequences obtained from the metagenomes related to
the Nitrosomonadaceae clustered into two distinct
clades, consistent with MAG analysis (Figure A1). In
Flathead Lake, the amoA gene representing clade
VFJL01 (ecotype NspGL2b) within the Nitrosomonada-
ceae was the most abundant, with peak abundances
exceeding 21,000 copies mL�1, while amoA gene
abundances of BJGV01 (NspGL1) were nearly 2-fold
lower (�12,800 copies mL�1; Figure 2). Although some
AOB have multiple copies of the amoA gene

F I GURE 2 Ammonia-oxidizing organisms show seasonal succession in Flathead Lake. Amplicon 16S rRNA gene relative abundances (A,
D), droplet digital PCR abundances of the ammonia monooxygenase subunit A (amoA) gene (B, E), and read recruitment against representative
metagenome-assembled genomes (C, F) of members of the Nitrosomonadaceae (A–C) and Nitrososphaerota (D–F). Genomes in C reflect
members of the BJGV01 and VFJL01 clades, respectively. Note that the scales are different between plots. MAG, metagenome-assembled
genome; RPKM, reads per kilobase million reads.
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(Klotz, 1998; Norton et al., 1996), assuming a single
gene copy per cell and using total cell abundances pre-
viously reported (Evans et al., 2024), maximum abun-
dances of each clade represent 3.4%, and 2.9% of the
total cellular community, with a maximum total com-
bined abundance of �6.0% in September at 90 m.
Ammonium monooxygenase genes deriving from the
archaeal Nitrososphaerota were the least abundant of
the targeted groups (peak of �5000 copies mL�1; 1%
of all cells with maxima December–March). Overall, the
amoA gene distributions showed similar seasonal and
depth-specific patterns as that obtained based on 16S
rRNA gene amplicon sequencing, with the Nitrosomo-
nadaceae most abundant in the hypolimnion during the
summer, while Nitrososphaerota peaked in the fall and
winter.

We also investigated the dynamics of organisms
responsible for the second step of nitrification, nitrite

oxidation. Based on 16S rRNA gene amplicon
sequencing and genome binning, two nitrite-oxidizing
organisms were identified that were related to members
of the phylum Nitrospirota and the genus Nitrotoga
(family Gallionellaceae; Figure 3; Table S1). Amplicon
16S rRNA gene sequencing and metagenomic read
recruitment revealed similar seasonal and depth pat-
terns for these lineages as observed for the ammonia
oxidizers (Figures 4 and 5). Both groups demonstrated
peak relative abundances in the hypolimnion, with the
Gallionellaceae most abundant throughout the summer
(relative abundances up to �1.4%), and Nitrospirota
elevated in the fall. Analysis of 16S rRNA amplicons
indicated that both the phylum Nitrospirota and the fam-
ily Gallionellaceae were dominated by only one ASV
each (Figure A4). The Flathead Lake Nitrospirota (two
representative MAGs) shared >99% ANI with Great
Lakes MAGs (Figure 3). In contrast, the Flathead Lake

F I GURE 3 Flathead Lake nitrifiers appear near-identical to those found in other lakes, sharing more than 99% ANI. Whole genome marker
gene phylogenetic trees and average nucleotide identity (ANI) comparisons of bacterial (A) and archaeal (B) nitrifiers, including ammonia
oxidizers (Nitrosomonadaceae, Nitrosopumilaceae) and nitrite oxidizers (Nitrospiraceae, Gallionellaceae). ANI comparison numbers correspond
to numbers in the phylogenetic tree labels. ANI colours are the same in both A and B. White (empty) boxes reflect same-genome comparisons or
ANI lower than 94%. Putative subspecies ecotype delineations (Nsp##, FL##) and taxonomic names at the family (f) and genus (g) levels are
listed next to their respective clades.
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Nitrotoga (four representative MAGs) were more dis-
tinct, sharing �97.8% ANI to other genomes, consistent
with a new subspecies ecotype. While Flathead Lake is
a great lake, it is not a Great Lake, and therefore we
designate this ecotype as FLisaGL1. Comparative
genomics revealed the phr gene encoding a DNA

photolyase was present in both the Nitrospirota and
Nitrotoga genomes (Figure A5). While members of the
Nitrospirota can be capable of complete ammonia oxi-
dation (commamox; Daims et al., 2015; van Kessel
et al., 2015) in some rivers and lakes (e.g., Harringer &
Alfreider, 2021; Liu et al., 2020; Lu et al., 2020), we did

F I GURE 4 Nitrite-oxidizing organisms show seasonal succession at depth in Flathead Lake. Amplicon 16S rRNA gene relative abundances
(A, C) and read recruitment against representative metagenome-assembled genomes (B, D) of members of the family Gallionellaceae (genus
Nitrotoga; A, B) and the phylum Nitrospirota (C, D). Note that the scales are different between plots. MAG, metagenome-assembled genome;
RPKM, reads per kilobase million reads.

F I GURE 5 Ammonium (NH4
+) and nitrifier dynamics at 90 m depth in Flathead Lake during the year 2018. The line graph shows NH4

+ over
time. Circle sizes reflect relative abundances of ammonia oxidizers (top) or nitrite oxidizers (bottom) based on 16S rRNA gene amplicon
community sequencing at 90 m depth throughout 2018. The colours within each pie chart reflect the relative taxonomic composition of ammonia
or nitrite oxidizers.
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not identify amoABC or hao genes related to the Nitros-
pirota in the metagenomes or in our MAGs. This sug-
gests the Nitrospirota detected here in Flathead Lake
are likely not capable of commamox.

DISCUSSION

In this study, we show that NH4
+, NOx

�, and the organ-
isms catalysing nitrification in Flathead Lake vary sea-
sonally with strong depth-dependent patterns through
the water column. Maximum NH4

+ concentrations in
Flathead Lake (�0.7 μM) are low but similar to those
reported in other oligotrophic lakes where nitrification
has been studied, including Lake Superior (mean-
� 0.2 μM, maximum � 1.1 μM; Kumar et al., 2007;
Small et al., 2013) and Lake Constance (maximum
�1 μM; Herber et al., 2019; Klotz et al., 2022). In con-
trast, maximum NOx

� concentrations in Flathead Lake
(7 μM) appear substantially lower than other lakes,
where concentrations exceed 20 μM and can reach
70 μM (e.g., Finlay et al., 2007; Herber et al., 2019;
Klotz et al., 2022; Sterner et al., 2007). The observed
seasonal oscillations of NH4

+ and NOx
� provide insight

into the timing between key aspects of N cycling. The
near complete drawdown of both NH4

+ and NOx
�

between August and October in the epilimnion of Flat-
head Lake suggests microbial growth could become N
limited during periods of the summer and fall (Dodds
et al., 1989, 1991). Interestingly, peak NOx

� concentra-
tions in the hypolimnion appeared offset in time relative
to the drawdown of NH4

+; specifically, NH4
+ appeared

largely consumed throughout the water column by
August, while NOx

� concentrations in the hypolimnion
peaked in October or November. Furthermore, the sea-
sonal maximum NOx

� concentrations in the hypolim-
nion were greater than concentrations of NH4

+. We
suspect these patterns provide insight into the time
scales of nitrogen assimilation into organic nitrogen
(as biomass), recycling to NH4

+, and eventual oxidation
by nitrifiers to NO2

� and NO3
�. Specifically, these find-

ings may point to the rapid coupling between the pro-
duction and consumption of NH4

+ such that it may be
produced throughout the summer and fall but that it is
consumed faster than it can accumulate. Such dynam-
ics would be “invisible” when tracking pools of these
substrates (as performed here) but not when tracking
rates. The overall strong seasonality and low concen-
trations of N species in Flathead Lake are consistent
with the lakes oligotrophic character, short residence
time, and undeveloped surrounding watershed.

Using three distinct but complementary techniques,
our findings indicate nitrifying microorganisms in Flat-
head Lake demonstrate unique seasonal dynamics.
We identified three ammonia oxidizers—two members
of the Nitrosomonadaceae and one archaeal Nitro-
sarchaeum species—and two nitrite oxidizers—

members of the genus Nitrotoga and phylum
Nitrospirota—in Flathead Lake. These organisms
showed distinct seasonal cycles consistent with linked
dynamics among the two groups; the AOB
Nitrosomonadaceae and NOB Nitrotoga are present in
the summer when NH4

+ concentrations are highest,
while AOA Nitrosarchaeum and NOB Nitrospirota
appear in the fall and winter. Previous studies describe
apparent seasonality among nitrifying organisms in
lakes, including changes in diversity (e.g., Auguet
et al., 2011; Fujimoto et al., 2016; Hampel et al., 2018;
Okazaki & Nakano, 2016; Vissers et al., 2013a, 2013b)
and the importance of nitrification in the winter, espe-
cially under ice (e.g., Cavaliere & Baulch, 2019; Massé
et al., 2019; Powers et al., 2017a, 2017b). In the hypo-
limnion of Flathead Lake, seasonal changes can
include differences in oxygen content (�9.5–
12 mg L�1), temperature (�2–6�C), and pH (�7–8), all
of which may contribute to shifts in community compo-
sition. We hypothesize that changes in nitrifier distribu-
tions in part reflect differences in the affinity for N
between these two seasonal groups. Previous studies
point to AOB generally having a lower affinity for
ammonia, preferring higher concentrations, compared
to AOA which tend to have higher substrate affinities
and are often more abundant when ammonia concen-
trations are low (French et al., 2012, 2021; Martens-
Habbena et al., 2009). The lower end of AOB ammonia
affinities is �0.1–1 μM, consistent with the highest con-
centrations seen in Flathead Lake in the summer and
fall, while AOA substrate affinities are typically 2–3
orders of magnitude lower (Jung et al., 2022). Similar
observations have been made between NOB Nitrotoga
and Nitrospirota species, which show preferences for
higher and lower concentrations of nitrite, respectively
(e.g., Boddicker & Mosier, 2018; Keuter et al., 2022;
Kinnunen et al., 2017; Kitzinger et al., 2018; Nowka
et al., 2015; Wegen et al., 2019). Given that ammonia-
oxidizing and nitrite-oxidizing organisms can show
tightly coupled metabolic cross-feeding (e.g., Daims
et al., 2016; Graham et al., 2007; Juretschko
et al., 1998; Knapp & Graham, 2007; Koch et al., 2015;
Maixner et al., 2006), our work provides evidence that
species-specific temporal and spatial coupling between
nitrifiers may be present in lakes.

Our findings suggest that highly-similar, low-
diversity nitrifier populations may exist across North
American lakes. Quasi-clonal, low-diversity nitrifying
Nitrosopumilus archaeal populations are present
throughout Europe, suggesting low rates of diversifica-
tion despite geographic isolation and differences in lake
age and ecology (Ngugi et al., 2023). Flathead
Lake genomes, including members of the Nitrosarch-
aeum, Nitrosomonadaceae, and Nitrospirota, share
>99.5% ANI with ecotypes from the oligotrophic Great
Lakes, well beyond the typical 95% species threshold
(Kim et al., 2014; Olm et al., 2020). Indeed, a putatively

OUT OF SIGHT, BUT NOT OUT OF SEASON: NITRIFIER DISTRIBUTIONS
AND POPULATION DYNAMICS IN A LARGE OLIGOTROPHIC LAKE

9 of 20ENVIRONMENTAL MICROBIOLOGY

 14622920, 2024, 3, D
ow

nloaded from
 https://envirom

icro-journals.onlinelibrary.w
iley.com

/doi/10.1111/1462-2920.16616, W
iley O

nline Library on [22/03/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



horizontally transferred rhodopsin gene in North Ameri-
can Nitrosomonadaceae BJGV01 genomes (Podowski
et al., 2022), including MAGs from Flathead Lake, is
absent in Eurasian genomes despite sharing 99% ANI.
This gene transfer event therefore likely occurred
before the geographic isolation of Flathead Lake and
Great Lakes species but after their divergence from
those in Europe and Asia. These populations may have
been seeded with similar subglacial nitrifiers following
the retreat of North American ice sheets �20 kya. We
note exceptions to these shared populations exist. One
notable example is Lake Erie, which has distinct nitri-
fiers likely due to significantly higher NH4

+ and nutrient
content than the other Great Lakes (e.g., Hampel
et al., 2019; Podowski et al., 2022). Another exception
appears to be the Nitrotoga, as Flathead Lake
genomes share only �98% ANI to other published
genomes and therefore likely represent a distinct eco-
type. Further, the presence of multiple Nitrosomonada-
ceae species within the same lakes suggests discrete
niches for similar organisms. While both ammonia and
nitrite oxidizers peaked in abundance in the dark
waters of the hypolimnion during the summer, consis-
tent with previously reported distributions of these
organisms (e.g., Auguet et al., 2012; Herber
et al., 2019; Mincer et al., 2007; Ngugi et al., 2023), the
apparent ecotype-specific distributions of genes associ-
ated with light exposure or urea use suggest this may
be a potential avenue for niche speciation (Podowski
et al., 2022; Qin et al., 2024). While we did not observe
clear depth or temporal differences in the distributions
of the two Nitrosomonadaceae clades in the summer,
BJGV01 is equally or more abundant than VFJL01 dur-
ing the winter when nitrifier distributions are homoge-
nous at all depths. Rhodopsins and photolyases for
fixing light-induced DNA damage may therefore provide
BJGV01 a competitive advantage when the lake is fully
mixed and these organisms are exposed to light, as
has been suggested for deep-adapted Chloroflexi
(Denef et al., 2016). Therefore, while nitrifiers appear
highly similar in many lakes and reflect continental-
scale geographic isolation, different groups may be
undergoing speciation at different rates, driven perhaps
by differences in N concentrations and seasonal
dynamics.

One observation from our study that appears con-
trary to reports from other relatively deep, temperate
lakes is that AOA represented a relatively small propor-
tion of the Flathead Lake prokaryotic community. While
our findings are consistent with abundances reported in
the Great Lakes, in various lakes across Europe AOA
can reach >30% of communities (e.g., Cabello-Yeves
et al., 2020; Callieri et al., 2016; Klotz et al., 2022;
Ngugi et al., 2023), similar to proportions of AOA
reported at depth in the open ocean (Karner
et al., 2001). While nitrifiers can show patchy dynamics

(Paver et al., 2020), our evidence suggests that the
2018 community was likely representative of other
years, with N concentrations and temperature showing
reproducible patterns across our time series. If NH4

+

concentrations and affinities underlie the temporal pat-
terns in AOB and AOA in Flathead Lake, we might have
expected higher abundances of the presumably oligo-
trophic AOA given the relatively low concentrations of
NH4

+. However, some eutrophic lakes can show high
abundances of AOA (Hampel et al., 2020), and not all
AOA have high affinities for ammonia (Jung
et al., 2022). Furthermore, it was recently reported that
some ammonia oxidizers prefer urea to ammonia (Qin
et al., 2024), suggesting changes in N substrate type
may control nitrifier distributions. Therefore, while we
hypothesize that ammonia concentrations may be in
part responsible for seasonal dynamics, future work will
be needed to understand the variables that control the
distributions and abundances of these organisms in
freshwater ecosystems.
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APPENDIX A

F I GURE A 1 Ammonia monooxygenase subunit A (amoA) gene diversity within Flathead Lake and select comparison sequences. There
are three abundant ammonia-oxidizing organisms in Flathead Lake: two Nitrosomonadaceae bacteria that belong to the BJGV01 and VFJL01
clades and one archaeon related to the Nitrososphaerota (Thaumarchaeota). Sequences that have identical matches to the BJGV01 (blue) and
VFJL01 (red) primers used in this study are shown in colour.
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F I GURE A 2 Measured riverine concentrations and flux of NH4
+ and NOx

� (nitrate + nitrite) entering Flathead Lake from the Flathead River.
(A, B) Measured concentrations of NH4

+ (A) and NOx
� (B) in the Flathead River. (C, D) Daily discharge of NH4

+ (C) and NOx
� (D) from the

Flathead River into Flathead Lake. Points in black were modelled using loadflex (Appling et al., 2015) while those in red were calculated using
known concentrations in A and B and average discharge on the day of collection. (E, F) Modelled daily discharge binned by month.
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F I GURE A 3 (A) NOx
� (nitrate + nitrite) concentrations, (B,C) photosynthetically active radiation (PAR), and (D) O2 saturation (2018–2019)

in Flathead Lake.
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F I GURE A 4 Abundances of amplified sequence variants (ASVs) within the phylum Nitrososphaerota (A; named Crenarchaeota in this
version of SILVA), the family Nitrosomonadaceae (B), the phylum Nitrospirota (C), and the family Gallionellaceae (D) based on 16S rRNA gene
amplicon sequencing. Note that the axes are different. Because the ASVs represent sub-species level classifications with no taxonomy, they are
represented by a letter.
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F I GURE A 5 Distribution of specific genes of interest within Flathead Lake nitrifier metagenome-assembled genomes. Colours reflect the
frequency of that gene within the genome. K numbers are KEGG identifiers. Further genome information can be found in Table S1. amoA,
ammonia monooxygenase subunit A; blh, beta-carotene 15,150-dioxygenase; nirK, nitrite reductase; nxrA, nitrite oxidoreductase alpha subunit;
nxrB, nitrite oxidoreductase beta subunit; phr, deoxyribodipyrimidine photolyase; rbcL, ribulose-bisphosphate carboxylase large chain; rbcS,
ribulose-bisphosphate carboxylase small chain.

F I GURE A 6 Rhodopsin gene operon within a Nitrosomonadaceae clade BJGV01 Flathead Lake MAG compared against other closely
related genomes.
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