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Abstract—This paper proposes a novel learning-based control
policy with strong generalizability to new environments that
enables a mobile robot to navigate autonomously through spaces
filled with both static obstacles and dense crowds of pedestrians.
The policy uses a unique combination of input data to generate
the desired steering angle and forward velocity: a short history
of lidar data, kinematic data about nearby pedestrians, and
a sub-goal point. The policy is trained in a reinforcement
learning setting using a reward function that contains a novel
term based on velocity obstacles to guide the robot to actively
avoid pedestrians and move towards the goal. Through a series
of 3D simulated experiments with up to 55 pedestrians, this
control policy is able to achieve a better balance between
collision avoidance and speed (i.e., higher success rate and faster
average speed) than state-of-the-art model-based and learning-
based policies, and it also generalizes better to different crowd
sizes and unseen environments. An extensive series of hardware
experiments demonstrate the ability of this policy to directly
work in different real-world environments with different crowd
sizes with zero retraining. Furthermore, a series of simulated
and hardware experiments show that the control policy also
works in highly constrained static environments on a different
robot platform without any additional training. Lastly, we sum-
marize several important lessons that can be applied to other
robot learning systems. Multimedia demonstrations are avail-
able at https://www.youtube.com/watch?v=KneELRT8GzU &list=
PLouWbA cP4zIvPgaARrV223If2eiSR-eSS.

Index Terms—Collision Avoidance, Deep Learning in Robotics
and Automation, Field Robotics, Reactive and Sensor-Based
Planning

I. INTRODUCTION

NE common application of autonomous mobile robots

is replacing manual labor to provide last-mile delivery
services. For example, delivering sterile supplies and injection
medicines to patients in hospitals, delivering materials to
various packaging workstations in warehouses, and delivering
delicious food or groceries to customers in restaurants and
grocery stores [1]-[3]. All these tasks have time limits and
require mobile robots to navigate autonomously and quickly
to destinations through a partially known space filled with
moving people and other static obstacles, as shown in Fig. 1.
The main challenges faced by these mobile robots are perceiv-
ing complex environments, especially unknown and dynamic
pedestrians; extracting useful information; and generating a
policy that yields autonomous navigation.
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Fig. 1. Our robot navigates through crowds in a simulated indoor environment
and a real-world outdoor environment. The robot is following a nominal path
(green line) to the goal (red disk) while avoiding pedestrians (blue arrows
show current velocity).

In this paper, we use a novel deep reinforcement learning-
based (DRL) approach due to the complexity of the environ-
ments we want the robot to operate in, with 10’s of pedestrians
moving in dense crowds, which makes it difficult to design
clear rules within a traditional model-based framework or
to collect sufficiently representative training data to apply
supervised learning techniques. While the use of DRL to
generate control policies is becoming commonplace, this paper
presents eight primary contributions: 1) We create a novel
combination of data representations for the input to our
neural network-based control policy, using a short history of
pooled lidar data, the current kinematics of nearby pedestrians,
and a sub-goal point. We design these representations to
be robust to localization errors by putting all data into the
robot’s local coordinate frame and to improve generalizability
to new environments by handcrafting higher-level represen-
tations from the raw sensor data. 2) We apply the theory
of velocity obstacles to create a new reward function for
the DRL framework that encourages the robot to proactively
avoid collisions. 3) We validate the navigation performance
in multiple simulated 3D environments and demonstrate that


https://www.youtube.com/watch?v=KneELRT8GzU&list=PLouWbAcP4zIvPgaARrV223lf2eiSR-eSS
https://www.youtube.com/watch?v=KneELRT8GzU&list=PLouWbAcP4zIvPgaARrV223lf2eiSR-eSS

the proposed control policy achieves a better trade-off be-
tween collision avoidance and speed, and generalizes better
to different crowd sizes and new unseen environments than
state-of-art approaches, including a model-based controller [4],
a supervised learning-based approach [5], and two DRL-based
approaches [6]. 4) We demonstrate that our policy, trained
only within a single simulated environment with a single
crowd size, can be directly used on a real-world robot in
unseen environments, including both indoor and outdoor loca-
tions on Temple’s campus, and with different crowd densities
without any retraining. 5) We demonstrate that our proposed
control policy works effectively in highly constrained static
environments and on different robot platforms without any
retraining. To do this, we competed in the Benchmark Au-
tonomous Robot Navigation (BARN) Challenge at the 2022
IEEE International Conference on Robotics and Automation
(ICRA), where we placed Ist in the simulation competition
and 3rd in the hardware competition [7]. 6) We make our
code and our 3D human-robot interaction simulator available
open source at: https://github.com/TempleRAIL/drl_vo_nav.
7) We conduct a detailed literature review for the most closely
related works ranging from model-based to learning-based ap-
proaches. 8) We summarize several important design principles
from our work that can be applied to other robot learning
systems.

II. RELATED WORKS

In this section, we provide a detailed description of prior
work on robot navigation problems, which we divide into two
categories: model-based and learning-based. Learning-based
approaches can be further divided into supervised learning-
based and reinforcement learning-based.

A. Model-based Approaches

A typical model-based approach is the ROS [8] navigation
stack, which uses costmaps to store obstacle information
and uses the dynamic window approach (DWA) planner [4]
to do local planning. Based on the ROS navigation stack,
[9] recently add human safety and visibility costmaps into
both global and local planners to handle human-aware nav-
igation problems. Another class of model-based approaches
are velocity obstacle-based algorithms [10]-[12], which map
the dynamic environment into the robot velocity space and
generate safe control velocities from these velocity constraints.
Similarly, Arul et al. [13] combine reciprocal velocity obsta-
cles with buffered Voronoi cells to solve multi-agent naviga-
tion problems. A third class of model-based approaches uses
model predictive control [14], [15], which can integrate colli-
sion avoidance and obstacle dynamics into robot constraints.
Other model-based approaches attempt to directly model how
humans and robots interact, using social forces [16], [17],
Gaussian mixture models (GMM) [18], or a combination of
potential functions and limit cycles [19]. All those model-
based methods require knowledge of pedestrian kinematics,
utilize multi-stage procedures to process sensor data, and often
require practitioners to carefully hand-tune model parameters,
making them difficult to implement and generalize to new
scenarios.

B. Supervised Learning-based Approaches

With the success of deep learning in the computer vision
area, many researchers started to apply learning-based ap-
proaches to other problems, including robot navigation. Unlike
the traditional model-based approaches with multi-stage proce-
dures, several recent works use deep neural networks to learn
end-to-end control policies that generate steering commands
directly from raw sensor data. Pfeiffer et al. [20] create a data-
driven end-to-end motion planner that uses a convolutional
neural network (CNN) to generate a linear and angular velocity
from raw lidar data. Tai et al. [21] also use a CNN to select
from one of five discrete robot control commands using raw
depth camera data as input. Loquercio et al. [22] use a similar
approach with raw camera image data to train a control policy
that enables a drone to drive safely in the streets. Similarly,
Kahn et al. [23] also use the raw camera image data to
train an end-to-end learning-based mobile robot navigation
system that can navigate in real-world environments with
geometrically distracting obstacles. However, most of these
end-to-end approaches only focus on static environments.

For dynamic environments, Pokle et al. [24] use multi-
ple CNN networks to learn multimodal high-level features
from raw sensor data. A CNN-based local planner fuses
these features to generate velocity commands. However, their
learned feature-based policy was only tested in a relatively
open simulated environment with no more than 3 moving
pedestrians. For highly crowded dynamic environments with
up to 50 moving pedestrians, our previous work [5] proposes a
CNN-based policy that combined a short history of lidar data
with kinematic data about nearby pedestrians.! However, as we
will show, the policy trained in a supervised setting is not as
successful as the approach proposed in this work, particularly
when applied to new environments or crowd sizes.

C. Reinforcement Learning-based Approaches

Compared with supervised learning-based methods, DRL-
based approaches are more commonly used for navigation
in dynamic environments. Using the proximal policy opti-
mization (PPO) algorithm [25], Long et al. [26], [27] first
propose a fully decentralized multi-robot collision avoidance
framework using 2D raw lidar range data. Following this line
of thought, Guldenring et al. [6] investigate the different state
representations of 2D lidar data, and use the PPO training
algorithm to train a human-aware navigation policy. Arpino et
al. [28] present a multi-layout training regime that uses raw
lidar data as its input to train an indoor navigation policy.
Huang et al. [29] construct a multi-modal late fusion network
to fuse raw lidar data and raw camera image data. Although
these sensor-level approaches can quickly and easily generate
control policies, they cannot distinguish between static or
dynamic obstacles, nor can they utilize high-level information
such as the positions and velocities of obstacles.

To address the limitations of using only raw sensor data,
many other works leverage information about the pedestrian
motion to enable safe navigation in dynamic environments.

'We utilize a very similar network architecture in this current paper.
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Everett et al. [30]-[32] directly feed the relative position and
velocity of pedestrians into the neural network, and generate
socially aware collision avoidance policies for pedestrian-rich
environments. Chen et al. [33] focus on jointly modeling
human-robot and human-human interactions by a self-attention
mechanism. Immediately afterwards, they also propose a re-
lational graph learning network to infer robot-human inter-
actions and predict their trajectories [34]. Similarly, another
work [35] encodes the crowd state with a graph convolutional
network (GCN) and predicts human attention. Recently, Liu
et al. [36] use a decentralized structural-recurrent neural
network (RNN) to model the interaction between the robot
and pedestrians. One major drawback of these agent-level
approaches is that they are only suitable for solving crowded
navigation problems in open spaces and ignore static obstacles
and geometric constraints in the layout. To solve this issue, Liu
et al. [37] expand the work of [33] by adding additional static
obstacle maps, but they need two parallel network models to
handle the presence/absence of pedestrians. Sathyamoorthy et
al. [38] expand the PPO training policy of [26] by using a
late fusion network to combine raw lidar data with pedestrian
trajectory predictions. Dugas et al. [39] use unsupervised
learning architectures to predict and reconstruct future lidar
latent states. However, most of the above-described works only
focus on exploiting the sensor perception information and its
data representations, but ignore the reward function design.

Towards this, Xu et al. [40] propose a knowledge distillation
reward term to encourage the robot to learn expert behaviors.
Patel et al. [41] propose a square warning region-based reward
function to encourage the robot to navigate in the direction
opposite to the heading direction of obstacles. However, the
effect of knowledge distillation reward largely depends on the
quality of the expert dataset, and the reward function based
on the square warning region is too conservative, resulting in
slow actions.

D. Comparative Analysis

There is an abundance of studies that focus on robot naviga-
tion problems, with solutions ranging from traditional model-
based approaches to supervised learning-based approaches
to reinforcement learning-based approaches. Typical model-
based approaches compute efficient paths and the parameters
are easily interpretable, but require manually adjusting model
parameters for different scenarios [4], [9]-[19]. Supervised
learning-based approaches are purely data-driven and easy to
use, but require laboriously collecting a representative set of
expert demonstrations to train the network [5], [20]-[24]. Re-
inforcement learning-based approaches are experience-driven
and similar to human learning, but require carefully designing
a reward function [6], [26]-[41]. Although each type of
approach has its own advantages and disadvantages, we choose
the reinforcement learning-based framework because it is
difficult to manually design a general model or collect effective
training data in uncontrolled and human-filled environments.

With any of the different approaches to autonomous nav-
igation, one key set of issues is which sensor data to use,
how to process it, and which data representations to use.

Model-based approaches usually preprocess the raw sensor
data and use the extracted high-level information, such as the
obstacle costmaps [4], [9], the relative velocity of obstacles
[10]-[13], and the environment dynamics [14], [15]. On the
other hand, end-to-end learning approaches focusing on static
environments directly feed the raw sensor data, e.g., lidars [20]
or cameras [21]-[23], and goal information into CNNs. DRL-
based approaches are more varied, with some also feeding
raw lidar scans (and goal points) into CNNs [6], [26]-[29]
while others extract and utilize the position and velocity of
pedestrians [30]-[32], model robot-human interactions [33],
[35]-[37], predict pedestrian trajectories [34], [38], predict
latent states [39], or construct obstacle cost matrices [41].
The long-term success of model-based approaches and the
results of the recent DRL studies demonstrate the utility of
preprocessed data representations over raw sensor data, as
they contain more useful information about pedestrian motion
which, in turn, improves safety in dynamic environments.
Based on these trends, we will also utilize preprocessed sensor
data, namely a short history of lidar data and the current
kinematics of pedestrians, which we previously showed was
able to improve navigation safety in a supervised setting [5].
A significant advantage of this data representation is that it is
much simpler and more easily interpretable than the complex
pedestrian predictions or interactions used in other DRL-based
works [33]-[38]. Also, all of the data is represented entirely
within the robot’s local coordinate frame, making the solution
robust to errors in the localization, which can be common in
densely crowded dynamic environments.

One of the biggest challenges in using DRL is designing
an appropriate reward function. Most approaches include two
terms, one to reward progress towards the goal and one to
penalize collisions [6], [26]-[39]. Although this simple reward
function design can work well, their sparse collision avoidance
reward function only gives a large negative reward to penalize
collisions, and does not give a direct and effective reward
signal to guide the robot to actively avoid obstacles. In fact,
the passive collision avoidance reward function is a zero-order
function, meaning it assumes the risk of collision depends only
on the distance to the obstacle. We argue that the relative
motion of pedestrians (and other objects) is more important
since people often follow one another closely in dense crowds
and give more space when walking in opposite directions.
One attempt at this is the reverse reward function from [41],
which prioritizes safety but leads to slow motion and can cause
deadlock in dense crowds.

We propose a novel reward function that uses first-order
velocity obstacles to penalize headings that are likely to lead
to collisions, thereby guiding the robot to continuously tune
its heading direction to actively avoid crowds of pedestrians
while making progress towards the goal. Note that Han et
al. [42] simultaneously developed a reciprocal velocity obsta-
cle (RVO)-based reward function for distributed multi-robot
navigation. This is similar to our velocity obstacle concept but
has two main differences. First, our work and theirs solve two
distinct, albeit related, problems. We seek to prevent robot-
human collisions by using VOs, which place the burden of
collision avoidance entirely on the robot as we cannot directly
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Fig. 2. The overall system architecture of our DRL-VO control policy. Raw sensor data from the ZED camera and Hokuyo lidar, as well as the goal point,
are fed into a feature generation module to create intermediate features. Three 80 x 80 intermediate-level feature maps, one from lidar and two containing
pedestrian information, along with the relative position of the sub-goal are fed to the feature extractor network, and the resulting high-level features are fed
to the actor and critic networks separately. The critic network outputs the state value and the actor network outputs the linear and angular steering velocities.
The feature extractor module consists of bottleneck residual blocks [44], while the critic and actor modules consist of fully connected layers. “3 X 3” or
“1 x 1” denote the kernel size, and “C” and “S” denote the number of output channels and the stride length, respectively.

model or control human behavior. On the other hand, Han et
al. [42] seek to prevent robot-robot collisions by using RVOs,
which split the burden of collision avoidance between the
agents based on the assumption that both agents run similar
control policies. Second, our approach encourages the robot to
actively steer towards the goal while avoiding potential future
human-robot collisions while theirs encourages the robot to
focus only on potential robot-robot collisions, as judged by the
expected collision time, and ignore the goals. Sun et al. [43]
also use RVOs in tandem with a DRL-based control policy for
multi-robot navigation. However, instead of using RVOs in the
DRL reward function, they use it as a parallel control policy,
switching from DRL to RVO when a collision is imminent.

Inspired by the problems and approaches mentioned above,
this paper starts with two core issues of sensor data repre-
sentation and reward function design to solve the problem of
autonomous navigation in dynamic crowds. We use a unique
combination of preprocessed sensor data as the input to our
control policy. Specifically, we have information about static
obstacles and the geometric layout of the environment from
a short history of lidar data, kinematic information about
dynamic obstacles from a multi-object tracker, and information
about how to reach the destination from a sub-goal point. In
designing our novel reward function, we leverage the utility
of model-based approaches (i.e., velocity obstacles) to create
a navigation policy that does not have the same drawbacks as
velocity obstacles. Specifically, our policy does not require the
robot to have perfect information about pedestrian kinematics.
This new term will allow our robot to learn a robust navigation
policy with a good balance between collision avoidance and
speed.

III. NAVIGATION POLICY

In this section, we formulate the navigation problem, with
a focus on safety and speed through dynamic environments.
We then detail our DRL-based approach, describing the pre-

processed observation space, the DRL network architecture,
and the novel VO-based reward function design.

A. Problem Formulation

Due to the limited field of view (FOV) of sensors (e.g., lidars
and cameras), there is no complete environmental perception
for the robot in the real world. Extracting and processing
useful information from sensors to obtain the partial obser-
vation of the environment o is the first step for the robot
to autonomously and quickly navigate through complex and
human-filled environments. The robot then feeds this partial
observation ot into a control policy 7y to compute the suitable
steering action a®, which is defined as

a® ~ my(a*|o®), (1)

where 0 are our control policy parameters. This complicated
navigation decision-making process can be formulated as
a partially observable Markov decision process (POMDP),
which is denoted by a 6-tuple (S, A, T, R,Q2,O) where S is
the state space, A is the action space, 7" is the state-transition
model, R is the reward function, € is the observation space,
and O is the observation probability distribution.

One of the most well-known tools for solving large
POMDPs is deep reinforcement learning [45]. The general
objective L () of DRL is to maximize the expected discounted
return by optimizing the neural network-based policy 7y:

L(0) =Ex, | Y 'R, )
t=0

where v is the discount rate in the range of [0,1], E , [/]
denotes the expected value of a random variable assuming the
agent follows the neural network-based policy 7g. Figure 2
outlines our DRL network, which consists of four modules:
feature generation, feature extractor, actor, and critic. The
feature generation module generates our intermediate features,
i.e., the partial observation of, from the raw sensor data. The



feature extractor module then extracts high-level features from
of, the critic module generates the state value, and the actor
module generates steering action a’.

B. Observation Space

We use the same partial observation o' = [I*, pt, g] as our
previous work using supervised learning [5], which consists
of three preprocessed components: lidar history (1), pedestrian
kinematics (p*), and the sub-goal position (g). All the data in
the observation o? are expressed in the local reference frame
of the robot. This allows our method to be robust to errors
in robot localization with respect to a global reference frame,
which happens more frequently in densely-packed dynamic
environments as there are fewer stationary landmarks for the
robot to localize itself against. Additionally, relative data is
more natural for planning purposes since navigating in a dense
crowd is more about going with the flow of traffic than meeting
some absolute velocity constraints.

We will briefly summarize the process for extracting the
observation data o? from the raw sensor data below, with the
full details available in [5]. One of the key features of this
previous work was the use of handcrafted intermediate features
which allowed us to set the size of the control policy. We do
this by using a consistent data format for all input types, which
is an 80 x 80 grid in our case.

1) Pedestrian Kinematics: Unlike complex CAGE repre-
sentations for crowd flow prediction [46], which only encode
crowd location information, our proposed simple pedestrian
kinematic map representation encodes both the location and
velocity information of detected pedestrians. Specifically, we
encode the pedestrian kinematics in a pair of 80 x 80 grids
that contain information about both the relative locations and
velocities of all pedestrians in a 20 x 20m area in front of
the robot. To create these grids, we first feed the RGB image
and 3-D point cloud coming from a depth camera (i.e., ZED
camera) into the YOLOV3 [47] detector to detect pedestrians
and extract their relative locations. Once we extract these
instantaneous estimates, we use a multiple hypothesis tracker
(MHT) [48] to track the relative positions and velocities of
pedestrians. The velocity values are stored in the grid, using
the position values to determine the cell index, as the ZED
Camera track in the Feature Generation block of Fig. 2 shows.

2) Lidar History: The lidar data 1! consists of a history
of 0.5s data (i.e., 10 scans), where we apply a combination
of minimum and average pooling to each scan. The resulting
pooled data is stacked 4 times to create an 80 x 80 array, as the
Hokuyo Lidar track in the Feature Generation block of Fig. 2
shows. This data format is identical to our previous work [5],
but here we present the results of ablation studies used to select
this data format and the corresponding parameters, such as the
history length.

First, motivated by the lidar data downsampling operation
from [49], we explore the use of different lidar preprocessing
operations, including reshaping the raw lidar data, project-
ing scan points into an occupancy grid map, and pooling
(minimum, average, median, and maximum). We use each of
these different operations, and several combinations thereof,
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Fig. 3. Validation loss curves of different lidar data configurations. The loss is
the MSE between the expert velocity and the learned velocity of the resulting
control policy.

to train our navigation policy in a supervised manner using
the dataset from [5]. Figure 3(a) shows the resulting mean
square error (MSE), i.e., the loss, between the learned and
expert velocities for each resulting control policy. We found
that using a combination of minimum pooling and average
pooling to extract two separate distance measurements per scan
region, as Fig. 3(a) shows, yielded the best performance.

Once we determined the most informative way to structure
the lidar data, we then studied how long of a history of scans
to keep. We considered time windows of 0, 0.25, 0.5, 1, and
2 seconds,” using the same training and validation procedure
as we did when studying the different lidar preprocessing
operations. Figure 3(b) shows the resulting MSE loss curve
for each resulting control policy. We see that a short history
of lidar data contains more useful information than only
the current scan (i.e., 0s), while keeping data from beyond
a certain time period resulted in no improvement or even
degraded performance. We found the best time window to be
0.5s (i.e., 10 lidar scans), which we conceptually think of as
the effective time constant for pedestrian information.

3) Goal Position: Lastly, the robot needs to know the
relative position of the goal. Instead of feeding the final goal

2Note: we sample the lidar data at 20 Hz, so each time corresponds to a
different number of scans.



point to our DRL network, we use the sub-goal point along a
nominal path to the final goal as this allows the robot to tra-
verse long paths through complex, non-convex environments
and avoid issues with normalization as the distance to the sub-
goal is constant. To select the sub-goal gt, we use the pure
pursuit algorithm [50], which calculates the point along the
full path that is a specified distance (2 m in our case) ahead of
the robot. By tuning this distance, the robot can look far ahead
or right nearby. Figure 2 illustrates this process in the Goal
Point track of the Feature Generation block. We hypothesize
that this sub-goal information will enable the robot to more
accurately navigate to the final goal position.

4) Normalization: We use the Max-Abs scaling procedure
to normalize all observation data to [—1,1] before feeding
them into our control policy network:

t t
ol — ol .
of =22 Omin__ 3)
Omax — Omhin
where of __ and o! . are the maximum value and minimum

max min

value of the data (e.g., for the lidar history 1¢, they are the
minimum and maximum range value of the lidar sensor).

C. Action Space

The action a' = [v!,w!] of our DRL control policy has

two terms, the forward (v;,) and rotational (wi) velocities
in the local robot frame. Note, we use a continuous action
space as we believe this gives the robot more accurate control.
We limit the range of the forward velocity v’ to [0,0.5] m/s
and the rotational velocity w! to [—2,2]rad/s based on the
limitations of the Turtlebot2, our target hardware platform.
Note that similar to observation space, we also normalize the
action space to [-1, 1] using the Max-Abs scaling procedure.

D. Network Architecture

The feature extractor network is identical to the back-
bone CNN network of our previous work [5], which fuses
the lidar historical observation 1’ and pedestrian kinematics
observation pf. After extracting high-level features, a single
fully connected layer is used to fuse those high-level features
with the sub-goal information. Both the actor module and the
critic module are simply constructed from two fully connected
layers. Note that each convolutional layer in our feature
extractor module is followed by a batch normalization layer
and a ReLU action layer. Additionally, the last fully connected
layer in our feature extractor is followed by a ReLU action
layer while the last fully connected layers of the actor and
critic modules have no ReLU action layers.

Our architecture is an example of a middle fusion network,
as data from different input streams are fused in the middle of
the chain between raw data input and output. Feng et al. [51]
provide a detailed discussion about different fusion architec-
tures (in a general setting), which are typically categorized as
early, middle, or late fusion. They note that there is no solid
evidence to support which fusion network is the best choice,
though there is a connection between the computational load
of a neural network and its structure as the number of layers
and their sizes affect both the number of computations that

TABLE 1
ABLATION EXPERIMENT RESULTS WITH DIFFERENT FUSION STRUCTURES
Network Structures RMSE EVA # of Params FPS
Middle fusion 0.17 0.15 28.94 M 255.13
Late fusion 0.18 0.17 57.86 M 140.53

must be done to produce and output and the memory required
to store the parameters of the neural network. To examine this,
we used the same dataset and supervised training manner as
our previous work [5] to train two networks. The first, which
we call Middle, fuses the pedestrian kinematics and lidar data
at the input to the feature extractor block, as we do above, and
the second, called Late, fuses all data just before the output of
the feature extractor block. As we can see in Table I, the Early
network is about half the size of the Late network structure,
which nearly doubles the processing rate and yields slightly
better regression performance, with smaller root mean square
error (RMSE) and explained variance ratio (EVA).

Like our network, most other neural network-based control
policies [24], [28], [29], [38] also use late or middle fusion
architectures as this allows for flexible design because the
different input sources each yield some learned intermediate
representations which are all combined downstream. The key
difference between these and our architecture is that we use
handcrafted features as our intermediate representation, much
like a traditional model-based algorithm, rather than learned
features, as are typical in learning-based algorithms. One
benefit of this approach is that our data representations, i.e.,
the pedestrian map, are independent of the specific object
detection and tracking tools used. This allows us to easily
swap out YOLO and the MHT for different approaches with
no need for retraining.

E. Reward Function

An essential problem of reinforcement learning methods is
how to design a good reward function to guide the agent to
learn desired behaviors. Navigation tasks have two competing
objectives, we want the robot to move as quickly as possible
to reach the goal in minimum time but also safely to avoid
colliding with any stationary or moving objects. Thus, we
design a multi-objective reward function:

rt:r§+7‘z+rfu+ré, 4

where rg rewards making progress towards the goal, 7’ penal-
izes passively approaching or colliding with an obstacle, 7%
penalizes rapid changes in direction, and 7 rewards actively
steering to avoid obstacles and point towards the sub-goal.
Note that most previous works [6], [26]-[39] only use such
a zero-order passive collision avoidance reward r’, a position-
based heuristics, to guide robots to passively avoid obstacles.
While these standard terms are useful to learn good navi-
gation behavior, we want to allow robots to indirectly learn
from successful model-based navigation policies. To do this,
we introduce a new reward term 7, that uses velocity obstacles
[10] to set a desired navigation direction. This term allows the
robot to use first-order kinematic information (i.e., velocity) to
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Fig. 4. The pictogram for velocity obstacle VO 4 p (red cone), collision
cone CC 4 p (light blue cone), and special occupancy SO 4, (blue circle).
A represents the robot with radius r 4, position p 4, and velocities v 4. B
represents the moving pedestrian with radius r g, position p g, and velocities
VB. VA B = Va — Vp represents the relative velocity of A with respect to
B. Note that all quantities are in the robot’s local frame.

proactively avoid collisions while making progress towards the
goal.
1) Reaching the Goal: The reward is given by

it [p51) < g
7,2 —Tgonl else if ¢t > tiax 4)
rpach ([P = [lpgll)  otherwise,

where pg is the goal position (in the robot’s frame) at time ¢.
We use 7goa1 = 20, Tpath = 3.2, gm = 0.3m, and a0y =
25s.
2) Passive Collision Avoidance: The reward is given by

T'collision if HPZH < dr
Te = q Tobstacte(dm — [P5]])  else if [[ph]] < dm  (6)
0 otherwise,

where pf) is obstacle position at time t. We use Tcollision =
*207 Tobstacle = *0.2, dr =0.3 m, and dm =1.2m.
3) Path Smoothness: The reward is given by

t rrotation|wi‘ if ‘WH > Wm
Ty = . (N
0 otherwise,
where 7yotation = —0.1 and w,, = 1rad/s.
4) Active Heading Direction: The reward is given by
T(t;l = Tangle(‘gm - |9(t;l|)a ()

where 0 is the desired heading direction in the robot’s local
frame and 6,, is the maximum allowable deviation of the
heading direction. We use rangle = 0.6 and 0, = ¢ rad.

The key to this reward term is to find the desired direction
6!, that moves towards the goal while also being collision-free.
To do this, we extend the concept of velocity obstacles [10].
The velocity obstacle VO 4 p is the velocity space where the

current velocity of robot A would cause a collision with an

Algorithm 1: Search desired direction angle

Input: Sub-goal direction angle 6,, pedestrians from
MHT Bypeds, robot linear velocity v 4_, number
of samples N
Output: Optimal direction angle 6"
1 initialize: 0} < %
2 if Bpeds # () then

3 amin <— 00

4 fori=1,2,...,N do

5 6., < sample from [—, 7]

6 free < True

7 for B in Bpeqs do

8 Oy, p < atan2 (%)
9 0,3 < from (13) using B

10 iferuA,B 6[9—5,9+ﬁ} then
1 free < False

12 | break

13 if free then

- if |0, — 0,]| < Omin then

15 emin — Hﬂu — 09”

16 B g(tj <_ 9u
17 else

18 | 00,

19 return 6,

obstacle B at some future time, as Fig. 4 shows. To define the
velocity obstacle VOy4 g, we first need to define the special
occupancy region:

SOaB ={ps | d(ps,pB) <ra+rB}, )

where d(ps,pp) is the distance between pg and pp. Then,
the collision cone is defined as

CCA7B={VA7B |E|t,VA7BtﬁSOA7B7é®}. (10)
Finally, the velocity obstacle VO 4, p is defined as
VOup=CCap&®vp, (1n

where & denotes the Minkowski vector sum operator.

The physical meaning of CCy4 p is that any relative ve-
locities v4, g5 € CCa p will cause a collision at a future
time. From the perspective of the direction angle of v4 g,
the collision cone C'Cy g can also be defined as

CCapeld—p,0+0],

where 6 and [ can be easily calculated from Fig. 4 using
simple geometric relationships:

f = arctan 2 (pBy) , sin § = w.
Pz, Ip5ll

Using the collision cone CC 4, g, the robot can know which
heading direction angles will cause collisions with all of the
moving pedestrians tracked by MHT. The robot then uses these
collision cones and the direction of the sub-goal (6,) to find

12)

13)
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Fig. 5. Gazebo simulation environments. The Lobby world has two con-
figurations with 34 pedestrians and 5-55 (sampling interval 10) pedestrians
respectively. The Autolab world, Cumberland world, Freiburg world, and
Square world only have one configuration with 25-35 (sampling interval 10)
pedestrians.

the desired heading direction angle %, using Algorithm 1. This
sampling-based search algorithm is motivated by [11].

F. Deep Reinforcement Learning Algorithm

While there are many deep reinforcement learning algo-
rithms, we use the proximal policy optimization (PPO) algo-
rithm [25] to train our DRL network. A major advantage of the
PPO algorithm is that it is much simpler to implement and can
achieve comparable or better results than other state-of-the-art
algorithms (e.g., A2C [52], TRPO [53] and ACER [54]). In
addition, many other robot navigation works [6], [26], [27],
[41] use PPO and have found that it works well on navigation
problems. As suggested by [25], we use Adam optimizer [55],
a stochastic gradient descent method, to find the optimal policy
parameters 6*.

IV. CROWDED DYNAMIC ENVIRONMENTS

To demonstrate the efficacy and performance of our pro-
posed control policy, we first use a Gazebo simulator [56] and
the PEDSIM library [57] to conduct a set of 3D simulated
experiments, and then use a Turtlebot2 robot to conduct the
real-world experiments. This section describes the experimen-
tal setup, training procedure, and results.

A. Experimental Setup

1) Robot Configuration: For the simulated and hardware
tests, we use a Turtlebot2 robot with a ZED stereo camera and
a Hokuyo UTM-30LX lidar, as shown in Fig. 1. The maximum
velocity of the Turtlebot?2 is limited to 0.5 m/s. The depth range
of the ZED camera is set to [0.3,20] m, and its FOV is 90°.
The measurement range of Hokuyo lidar is set to [0.1, 30] m,
its FOV is 270°, and its angular resolution is 0.25°.

2) Pedestrian Configuration: PEDSIM is a microscopic
pedestrian crowd simulation library, which uses the social
forces model [16], [58] to guide the motion of individual
pedestrians:

Fp _ Fges + F;bs + Fger + F;Ob, (14)

where F, is the resultant force that determines the motion
of a pedestrian p; Fges pulls a pedestrian towards a desti-
nation; ngs pushes a pedestrian away from static obstacles;
FP¢" models interactions with other pedestrians (e.g., collision
avoidance or grouping); and F;Ob pushes pedestrians away
from the robot, modeling the way people would naturally avoid
collisions and thereby allowing our control policy to learn this
behavior. The first three terms are part of the standard model
while the last term is new.

3) Simulation Configuration: Figure 5(a) shows the main
Gazebo simulation environment, a replica of the lobby in the
College of Engineering building at Temple University, that we
used to train and test our control policies. This environment
is roughly 25 x 10m in size and is filled with a number of
static obstacles (e.g., chairs, tables, a security desk, waste bins,
and pillars). The second environment, shown in Fig. 5(b), is a
replica of the Autolab building that is about 20 x 10 m in size.
The third environment, shown in Fig. 5(c), is a replica of the
Cumberland building that is about 20 x 10 m in size. The fourth
environment, shown in Fig. 5(c), is a replica of the Freiburg
building that is about 20 x 10 m in size. The fifth environment,
shown in Fig. 5(e), is an artificially created environment that
is about 20 x 20m in size. Using these five worlds, we set up
six types of scenarios:

1) Lobby world with 34 pedestrians: train our DRL control
policies

2) Lobby world with 5-55 pedestrians: test generalization
across different crowd densities

3) Autolab world with 25-35 pedestrians: test generaliza-
tion to unseen environments/crowd densities

4) Cumberland world with 25-35 pedestrians: test gener-
alization to unseen environments/crowd densities

5) Square world with 25-35 pedestrians: test generaliza-
tion to unseen environments/crowd densities

6) Freiburg world with 25-35 pedestrians: test generaliza-
tion to unseen environments/crowd densities

We use an Nvidia DGX-1 server with 40 CPU cores, 8x
Tesla V100 GPUs with 16 GB memory, and 512 GB of RAM
to train our DRL networks. We use a desktop computer with
an Intel 17-6800K CPU, a GeForce GTX 1080 GPU with 8 GB
memory, and 16 GB of RAM to run all the simulations. Both
the training server and desktop computer run Ubuntu 20.04,
ROS Noetic Ninjemys, and Gazebo 11.5.1.
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Fig. 6. Floorplans of real-world environments. All of these three environments
are at Temple University.

4) Hardware Configuration: In the hardware tests, the
Turtlebot2 is equipped with an NVIDIA Jetson AVG Xavier
embedded computer containing a cluster of 8 Carmel ARM
cores, a 512 Core Volta GPU, and 16 GB RAM memory. The
Xavier runs Ubuntu 18.04 system and ROS Melodic Morenia,
and we use the 30 W power mode.

We test our robot in three environments, shown in Fig. 6.
Figure 6(a) is the indoor hallway connecting the Engineering
building and Science building, which is about 66 x 5 m in size.
Figure 6(b) is the indoor structured lobby in the Engineering
building, which is about 20 x 10 m in size. This is the same
environment that we replicated in Gazebo to use for training
our policy. Figure 6(c) is the outdoor hallway outside of the
Science building, which is about 60 x 8 m in size.

We conduct two sets of hardware experiments. First, we
test the real-world applicability in different crowd sizes using
the indoor hallway environment (Fig. 6(a)). Second, we test
the applicability in different environments using all three test
environments.

B. Training Procedure

We use the stable-baselines3 framework [59] to implement
the PPO algorithm and train our DRL networks. We use the
step decay with an initial learning rate of 1073 as the learning
rate schedule and set the mini-batch size to 512 during the
training process. To train our control policies, we use the
Lobby environment (Fig. 5(a)) with 34 pedestrians in it. The
robot is then repeatedly assigned to reach a random goal from
a random start position within the free space of the map. We
used this procedure to train two different DRL-based control
policies, one using the full reward (4) (DRL-VO) and one that
does not use the heading direction reward r!, (DRL).

C. Simulation Results

We test these two DRL-based policies (i.e., DRL and DRL-
VO), along with other’s DRL-based policies [6] (i.e., Al-
RD and A1-RC), the CNN-based policy [5], and the DWA
planner [4], in each of the last five types of scenarios from

Sec. IV-A3. Note that we use these baseline policies directly
from their papers [4]-[6] without any retraining or parameter
tuning. We compare our algorithms to these baselines using
four commonly used metrics from the navigation literature:

1) Success rate: the fraction of collision-free trials

2) Average time: the average travel time
3) Average length: the average distance traveled
4) Average speed: the average travel speed

We run four trials for each experimental configuration and
control policy, where each trial consists of the robot navigating
through a predefined series of 25 goal points around the
corresponding test environment. Note that we use the amcl
ROS package to provide the robot localization service in
known maps. All of these four trials use the same initial
conditions, however, the results vary due to randomized sensor
noise and variations in the pedestrian motion from the social
force model.

1) Different Crowd Densities: We first focus on the Lobby
environment with 5-55 (sampling interval 10) pedestrians used
for testing the generalization across different crowd sizes.
Table II presents the results obtained from these trials, where
we observe three key phenomena. First, our DRL-VO policy
has a much higher success rate than our DRL policy in
each crowd size, while having a similar average speed. This
shows that the proposed VO-based heading direction reward
is beneficial and plays a key role in enabling the robot to
maintain a good balance between collision avoidance and
speed. Second, compared with other control policies, our DRL-
VO policy has the highest success rate and the fastest average
speed in every situation, with these differences growing as
the density of pedestrians increases. This indicates that our
policy is able to better generalize than the other approaches,
especially compared to the CNN-based policy [5], which could
not even reach the goal in some situations. Third, the average
speed of the robot using our DRL-VO policy remains nearly
constant across all situations, regardless of crowd density,
allowing it to reach the goal most quickly. Compared to DWA
[4], we see that our planner takes a slightly longer route to
the goal, indicating a preference for giving a wider berth to
pedestrians.

2) Different Unseen Environments: We next consider the
navigation behavior of our DRL-VO policy in different unseen
environments, namely the Autolab, Cumberland, Freiburg, and
Square environments from Fig. 5. In each environment, we test
two different crowd densities: 25 and 35 pedestrians. Tables III
and IV summarize these results. As can be seen, our novel
DRL-VO policy still has both a higher success rate and slightly
higher average speed than our DRL policy, with the only
exception being a slightly lower speed in Square world. This
further demonstrates the utility of our VO-based reward term
to learn a more robust navigation policy and achieve a better
trade-off between collision avoidance and speed.

Our DRL-VO policy also has the highest success rate out of
all the algorithms in the lobby, Autolab, and Freiburg worlds.
Additionally, our policy yields a faster and more consistent
speed than other policies and tends to have the shortest path,
aside from the DWA planner. This indicates that our policy
has strong generalizability to different unseen environments.



TABLE II
NAVIGATION RESULTS AT DIFFERENT CROWD DENSITIES

Environment Method Success Rate Average Time (s) Average Length (m) Average Speed (m/s)
DWA [4] 0.93 12.10 5.08 0.42
CNN [5] - - - -
Lobby world, A1-RD [6] - - - -
5 pedestrians A1-RC[6] 0.91 14.11 6.14 0.44
DRL 0.84 13.22 6.08 0.46
DRL-VO 0.94 11.41 5.28 0.46
DWA [4] 0.94 12.21 5.09 0.42
CNN [5] - - - -
Lobby world,  A1-RD [6] 0.94 15.69 5.78 0.37
15 pedestrians  A1-RC[6] 0.94 14.36 6.40 0.45
DRL 0.80 13.66 6.24 0.46
DRL-VO 0.95 11.34 5.26 0.46
DWA [4] 0.82 13.49 5.12 0.38
CNN [5] 0.80 19.31 6.16 0.32
Lobby world,  A1-RD [6] 0.90 17.87 6.07 0.34
25 pedestrians  A1-RC [6] 0.88 14.18 6.26 0.44
DRL 0.81 13.73 6.24 0.45
DRL-VO 0.92 11.37 5.29 0.47
DWA [4] 0.82 14.18 5.15 0.36
CNN [5] 0.81 14.30 5.40 0.38
Lobby world,  A1-RD[6] 0.86 17.82 6.06 0.34
35 pedestrians  A1-RC[6] 0.77 16.81 6.89 0.41
DRL 0.75 14.30 6.46 0.45
DRL-VO 0.88 11.42 5.31 0.46
DWA [4] 0.77 15.39 5.16 0.34
CNN [5] 0.79 16.65 5.62 0.34
Lobby world, ~ A1-RD[6] 0.76 23.16 6.61 0.29
45 pedestrians  A1-RC[6] 0.77 14.65 6.28 0.43
DRL 0.69 13.96 6.41 0.46
DRL-VO 0.81 11.65 5.37 0.46
DWA [4] 0.67 16.05 5.22 0.33
CNN [5] 0.70 19.13 5.94 0.31
Lobby world,  A1-RD [6] 0.67 26.90 6.58 0.25
55 pedestrians  A1-RC [6] 0.66 16.36 6.73 0.41
DRL 0.60 13.39 6.13 0.46
DRL-VO 0.79 11.76 5.39 0.46

The success rate of our policy drops, however, both in
absolute and relative terms, in the Cumberland and Square
worlds. Both of these environments have larger open spaces
compared to the rest in Fig. 5. Given this, two potential
causes of this decrease in success rate are: 1) the policy was
trained in the more structured lobby and so adding in more
varied environments during training would further improve
the generalizability or 2) our DRL-VO policy with VO-based
reward function is more suitable for structured environments
rather than open spaces.

The A1-RD policy [6] has the highest success rate in the
Cumberland and Square environments. We found this to be
primarily due to its “stop and wait” strategy, where a robot
that detects an obstacle in front of it will turn to a free space,
stop, and wait for the obstacles to disappear. However, this
behavior is the same regardless of the number of obstacles
or whether these obstacles are static or dynamic. This can
cause the robot to become frozen when it encounters a “C-
shaped” obstacle because its policy only used raw lidar data
and it was trained using a typical passive collision avoidance
strategy based only on distance. This causes a robot using
A1-RD to fail to reach the goal in both the Autolab and
Freiburg environments with 35 pedestrians. In contrast to this,
our DRL-VO policy can distinguish between static obstacles
and dynamic pedestrians using the combination of lidar data

and pedestrian kinematics. Moreover, depending on the crowd
densities and velocity obstacle space, our DRL-VO policy will
always tune its heading direction to actively avoid pedestrians
and move towards the goal point. See the videos in Multimedia
Extension 1 to see these differences in the behavior of A1-RD
and DRL-VO detailed.

3) Output Velocity Distribution: We also analyze the dis-
tribution of command velocities from each tested control
policy to better understand why our DRL-VO policy has a
faster average speed than other model-based and learning-
based control policies. To do this we make histograms of
the linear and angular velocity, using bins of size 0.1 m/s
0.25 wmax, respectively. Note that we take the absolute value
and normalize the angular velocity to ignore the direction of
the turn and to account for different maximum values across
the different control policies.

We observe two interesting trends in the data in Fig. 7. First,
the majority of the linear velocities generated by all policies lie
at either extreme of the range. Our DRL and DRL-VO policies
have the highest percentage at the upper end of the range
(about 90%), which is why we achieve a consistently higher
average speed. On the other hand, the A1-RD policy has the
highest percentage in the lower end of the range (over 40%),
showing the prevalence of the “stop and wait” strategy noted
above. The only other policy with a significant percentage of



TABLE III
NAVIGATION RESULTS AT DIFFERENT UNSEEN ENVIRONMENTS WITH 25 PEDESTRIANS

Environment Method Success Rate Average Time (s) Average Length (m) Average Speed (m/s)
DWA [4] 0.82 13.49 5.12 0.38
CNN [5] 0.80 19.31 6.16 0.32
Lobby world, A1-RD [6] 0.90 17.87 6.07 0.34
25 pedestrians A1-RC[6] 0.88 14.18 6.26 0.44
DRL 0.81 13.73 6.24 0.45
DRL-VO 0.92 11.37 5.29 0.47
DWA [4] 0.88 13.50 5.47 0.41
CNN [5] 0.78 21.59 6.61 0.31
Autolab world, A1-RD [6] 0.88 18.92 6.54 0.35
25 pedestrians A1-RC[6] 0.77 15.63 7.35 0.43
DRL 0.75 15.66 7.03 0.45
DRL-VO 0.91 12.79 5.97 0.47
DWA [4] 0.78 15.16 5.53 0.37
CNN [5] 0.63 27.80 7.73 0.28
Cumberland world, A1-RD[6] 0.91 17.47 6.63 0.38
25 pedestrians A1-RC[6] 0.81 16.31 6.93 0.43
DRL 0.66 14.28 6.38 0.45
DRL-VO 0.87 12.42 5.78 0.47
DWA [4] 0.83 13.90 5.75 0.41
CNN [5] 0.48 30.38 8.30 0.27
Freiburg world, A1-RD[6] 0.81 17.95 6.61 0.37
25 pedestrians A1-RC[6] 0.74 17.06 7.35 0.43
DRL 0.53 15.68 7.06 0.45
DRL-VO 0.84 12.98 5.93 0.46
DWA [4] 0.94 19.62 8.48 0.43
CNN [5] 0.65 53.35 14.72 0.28
Square world, A1-RD [6] 0.95 21.39 9.05 0.42
25 pedestrians A1-RC[6] 0.89 21.44 9.74 0.45
DRL 0.83 22.62 10.77 0.48
DRL-VO 0.86 18.19 8.61 0.47
1.0 1.0
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Linear Velocity (m/s)

(a) Linear velocity distribution

Fig. 7.

the output near 0 is DWA, which occurs due to deadlock in
particularly crowded regions.

Second, most of the control policies have similar angular
velocity distributions, with a majority of commands being
small changes to update the heading angle of the robot
(i.e., between [0,0.25] wmax). However, there are some key
differences. First, the two outliers are the CNN policy, which
yields very few commands outside of this minimum range, and
the A1-RC policy, which generates a majority of commands
at the upper range. Our DRL and DRL-VO policies generate

Normalized Angular Velocity {w/wpmax)

(b) Angular velocity distribution

Histograms of the output velocities for different control policies. Data was collected from the lobby simulation world with 35 pedestrians.

fewer commands with high angular velocities, which is a result
of the path smoothness term in our reward function, 7.

4) Failure Cases and Solutions: Although our proposed
DRL-VO policy is robust to different crowd densities and
unseen environments, there are still some failure cases. One is
that it can become difficult to find a collision-free direction
in very high crowd densities. The other is the unexpected
sudden changes in pedestrian movement, such as a person
suddenly stepping out of a crowd. Our analysis of these
failures is caused by three reasons: 1) our simulated pedestri-



TABLE IV
NAVIGATION RESULTS AT DIFFERENT UNSEEN ENVIRONMENTS WITH 35 PEDESTRIANS

Environment Method Success Rate Average Time (s) Average Length (m) Average Speed (m/s)

DWA [4] 0.82 14.18 5.15 0.36
CNN [5] 0.81 14.30 5.40 0.38
Lobby world, A1-RD [6] 0.86 17.82 6.06 0.34
35 pedestrians A1-RC[6] 0.77 16.81 6.89 0.41
DRL 0.75 14.30 6.46 0.45
DRL-VO 0.88 11.42 5.31 0.46
DWA [4] 0.81 16.52 5.55 0.34
CNN [5] 0.68 22.73 6.65 0.29

Autolab world, A1-RD [6] - - - -
35 pedestrians A1-RC[6] 0.73 17.11 6.93 0.41
DRL 0.59 14.40 7.01 0.46
DRL-VO 0.84 12.88 5.98 0.46
DWA [4] 0.74 16.28 5.57 0.34
CNN [5] 0.60 24.25 7.08 0.29
Cumberland world, A1-RD[6] 0.88 18.04 6.69 0.37
35 pedestrians A1-RC[6] 0.77 15.37 6.66 0.43
DRL 0.56 15.79 6.97 0.44
DRL-VO 0.78 12.62 5.84 0.46
DWA [4] 0.70 18.15 5.78 0.32
CNN [5] 0.57 20.09 6.66 0.33

Freiburg world, A1-RD [6] - - - -
35 pedestrians A1-RC[6] 0.65 17.11 6.93 0.41
DRL 0.39 18.21 7.61 0.42
DRL-VO 0.76 13.37 6.16 0.46
DWA [4] 0.93 19.81 8.51 0.43
CNN [5] 0.85 23.81 9.23 0.39
Square world, A1-RD [6] 0.96 21.85 9.06 0.41
35 pedestrians A1-RC[6] 0.89 21.29 9.67 0.45
DRL 0.86 21.48 10.27 0.48
DRL-VO 0.87 18.32 8.66 0.47

ans occasionally bump into one another due to the imperfect
social force model, 2) there are occasionally missed pedestrian
tracks in the MHT due to occlusion and ambiguous data
association, and 3) the safety guarantees of VOs do not extend
to the resulting learned policy because we cannot explicitly
define collision constraints and apply them to the black box
network. There are many possible ways to alleviate these
issues in future work, including continuing to train the policies
(learned in simulation) in real-world environments, improving
the robustness of the MHT, adding probabilistic predictions of
the future state of the environment, adding a control barrier
function as a safety constraint like [60], or simply add a safety
module as a backup: when the obstacle is too close to the
robot, the safety module will override the learned policy to
stop and rotate the robot until it finds a collision-free space
(much like the “stop and wait” in the A1-RD policy).

D. Hardware Results

Besides the simulated experiments, we also conduct a series
of real-world experiments to demonstrate the applicability of
our DRL-VO policy. Instead of performing hardware experi-
ments in the laboratory under carefully controlled conditions
as [6], [32]-[34], [36], we focus on robotic navigation in real
and difficult environments by testing our system during the
peak periods of pedestrian traffic in the intervals between
classes. We test in three different parts of campus, an indoor
hallway, an indoor lobby, and an outdoor hallway environment,
shown in Fig. 6. In each environment, the robot passes through
a predefined series of goal points with students of different

crowd sizes naturally walking around and causing the robot to
adjust its path, as Fig. 8-12 shows.

The real Turtlebot2 robot directly uses our DRL-VO policy
trained from our Gazebo simulation platform without any fine-
tuning. The computational complexity of our DRL-VO policy
is relatively low, with up to 60 FPS inference speed on the
Jetson AVG Xavier embedded computer, far above the 40 Hz
of the sensors. The space complexity of our DRL-VO policy
is also low, with only 32.137M parameters. This means our
DRL-VO policy is clearly capable of real-time processing and
is suitable for robots with limited resources.

1) Different Crowd Densities: To test the real-world gener-
alization across different crowd sizes, we let the robot navigate
through a sequence of 15 goal points in the indoor hallway
shown in Fig. 6(a). We tested the robot at different times,
getting results with different crowd densities. Figure 8-10 and
Multimedia Extension 2 shows the schematic diagrams of
robot navigation behavior and experimental videos for low,
medium, and high crowd density.

In the low density crowd, Multimedia Extension 2 and Fig. 8
show how our robot safely drives a total of 131.24 m in the
nearly empty hallway at an average speed of 0.41m/s. It is
apparent that in this case, our robot can easily navigate to
its goals safely and quickly by tuning its heading direction
towards sub-goal points and following the nominal path.
Similarly, our robot is also able to safely and quickly navigate
to its goal points through the medium-density crowds, traveling
a total of 137.28 m at an average speed of 0.43 m/s without
any collisions, as shown in Multimedia Extension 2 and Fig. 9.
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Fig. 8. Robot reactions to moving pedestrians in the indoor hallway with the low crowd density at different times.
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Fig. 9. Robot reactions to moving pedestrians in the indoor hallway with the medium crowd density at different times.
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Fig. 10. Robot reactions to moving pedestrians in the indoor hallway with the high crowd density at different times.
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Fig. 11. Robot reactions to moving pedestrians in the indoor lobby with the high crowd density at different times.

The high density crowd, shown in Multimedia Extension 2
and Fig. 10, is more complex than the first two cases as there
are stationary pedestrians in addition to the groups of moving
pedestrians. Even in such a complex dynamic environment,
our robot is still able to actively avoid collisions with moving
students going in or going out of classes, safely avoid static
students standing or sitting in the hallway, and quickly reach
predefined goals, traveling a total length of 133.40m and an
average speed of 0.41 m/s.

These results demonstrate that our navigation policy is able
to generalize to yet another new environment with varying
crowd densities and, more importantly, is able to seamlessly
transition from simulation to the real world. Furthermore, we
see that the trend of maintaining a high irrespective of the
crowd density is consistent with the simulations in Sec. IV-C1.

2) Different Environments: We also investigate the ability
of our DRL-VO control policy to generalize across different

real-world environments. Aside from the indoor hallway en-
vironment, we also let the robot navigate through different
sequences of 10 goal points in both the indoor lobby and out-
door hallway environments, shown in Fig. 6(b) and Fig. 6(c),
respectively. Note that all these three environments are tested
under high crowd density, forming two sets of comparative
experiments. One is the comparison of the structured indoor
lobby and the relatively open indoor hallway. Another is the
comparison of the indoor hallway and the outdoor hallway.

Multimedia Extension 3 video and Fig. 11 show the navi-
gation behavior of our robot in the indoor lobby environment,
where the robot successfully navigates through 10 goal points
and travels a total of 68.96 m at an average speed of 0.37 m/s.
Compared with the relatively open indoor hallway environ-
ment, this structured lobby environment is more complex and
unpredictable, with static chairs, tables, bicycles and trash
bins as well as many dynamic pedestrians, resulting in a
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Fig. 12. Robot reactions to moving pedestrians in the outdoor hallway with the high crowd density at different times.

narrow and crowded free space. This structure yielded a more
winding nominal path for the robot to follow, which frequently
changed as pedestrians cut of different narrow passageways.
Despite these complexities, we found no significant navigation
differences between these two environments, and our robot
was still able to safely and quickly reach its goals. This
qualitative comparison demonstrates that our DRL-VO policy
is able to generalize to relatively open environments and
structured environments in the real world.

We next analyze robot navigation in the outdoor hallway
environment. As can be seen from Multimedia Extension 3 and
Fig. 12, our robot navigates smoothly in the dense crowds and
goes to its predefined goals without any collisions. It travels
a total of 102.73 m at an average speed of 0.43 m/s through
this open space environment. Note that our outdoor hallway is
more open than that indoor hallway, with no static obstacles
but many more pedestrians walking around. Compared with
navigating in the indoor hallway, the navigation behavior of
our robot again shows no significant observable difference.
This outdoor experiment indicates that our DRL-VO policy
can also work reliably in outdoor environments and it is robust
to both indoor and outdoor environments.

One interesting observation from these real-world exper-
iments is the curiosity of the pedestrians, who frequently
stopped to observe the robot’s behavior, a phenomenon that
we did not include in the training data but which the robot
was able to easily handle. We also observed that most people
actively avoided the robot when they noticed it, giving it a
wide berth. Recall we did model this behavior by adding an
additional social force component to push people away from
the robot and that this repulsion force was stronger than that
between two pedestrians.

In summary, these real-world experiments and results
demonstrate that our DRL-VO policy can smoothly transfer
from simulation to reality and be applied to real-world tasks.
We believe there are three main reasons for this. First, different
from other works using 2D simulators [6], [26], [30]-[34],
[36], [37], [39], [40], we use a 3D simulator to train our
control policy, which shrinks the sim-to-real gap by modeling
anthropomorphic 3D pedestrian and precise robot kinematics
to give more realistic information than the point pedestrian
and robot models. Second, we preprocessed the sensor data
before inputting it into our navigation policy, turning the
raw sensor data into the kinematic and lidar grids. These
data structures are less sensitive to the differences between
simulation and reality than raw data is (e.g., simulated camera
images are much different than real images due to the lack

of detailed texture in the environment). Third, the VO-based
heading direction reward function is a dense reward and always
motivates the robot to actively move both towards goal points
and away from potential collisions. All of these factors reduce
the gap between simulation and reality, allowing our policy
learned entirely in simulation to work in the real world without
any retraining or fine-tuning.

V. HIGHLY CONSTRAINED ENVIRONMENTS

We further test our policy’s ability to generalize to other
environments and robot models. To do this, we entered our
DRL-VO control policy in the ICRA 2022 BARN Challenge
[7], where the goal is to navigate through unknown and
highly constrained static environments, such as those shown in
Fig. 13. The competition consisted of two phases, simulation
and hardware.

A. Experimental Setup

1) Robot Platform: The BARN challenge uses a Jackal
robot equipped with a Hokuyo UTM-10LX lidar. Compared
to the Turtlebot2 platform used in Sec. IV, the maximum
velocity of the Jackal is much greater (2m/s vs. 0.5 m/s) and
the sensing range and angular resolution of the UTM-10LX
are both smaller (10m and 0.375° per beam vs. 30m and
0.25° per beam, respectively).

2) Simulation: The simulation portion of the challenge used
300 publicly available training Gazebo environments and 50
test environments known only to the competition managers.
Each map is filled with cylindrical obstacles generated by
the BARN environment generator [61], and the object density
varies greatly across environments. The competition evaluated
all policies on a desktop computer with an Intel Xeon Gold
6342 CPU @ 2.80 GHz (without GPU support).

3) Hardware: There were three different test environments,
each about 10 x 10m in size: wide “S”, pointed “S”, and
narrow “S”. Unlike the semi-closed BARN simulation envi-
ronments, these three physical test environments are complex
mazes with only one reasonable path, many sharp turns, gap
traps, and narrow passages, as Fig. 14 shows. The physical
Jackal robot was equipped with an onboard computer with
an Intel i3-9100TE CPU and 16 GB RAM memory (with no
GPU) running Ubuntu 18.04 and ROS Melodic Morenia.

B. Deployment Adjustment

We utilized the same DRL-VO policy from Sec. IV-B
(trained using the Turtlebot2) in the BARN Challenge. How-
ever, to successfully deploy policy on the Jackal robot and
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(a) World 62

Fig. 13. Example BARN simulated environments.

(a) Wide “S” shaped environment

Fig. 14. Real-world BARN test environments.

meet the requirements of the BARN challenge, we needed to
adjust several settings of our overall system.

First, the BARN challenge maps are all unknown to the
robot. Therefore, we removed the localization module (i.e.,
AMCL) and adapted our navigation system to operate using
only odometry (i.e., without a map).

Second, we need to adjust the input observation data of =
[1¥, p’, g'] of the DRL-VO network. For the lidar data 1’, since
the UTM-10LX has only 720 scan points instead of 1080 scan
points, we use the full 270° FOV (instead of the 180° FOV for
the Turtlebot2) to construct the 80 x 80 lidar historical map
1*. We set the pedestrian data p* = 0 since the maps only
contain stationary obstacles. Lastly, we use a sub-goal point
with a look-ahead distance of 1 m instead of 2m to generate
the goal gt as this allows the robots to better avoid obstacles
in the highly constrained environments.

Finally, we found that directly mapping the normalized
velocity from the control policy to the speed range of the
Jackal led to very aggressive behavior. We hypothesize that
this is an artifact of the Turtlebot2 being slower than many
pedestrians so it nearly always moves at (close to) maximum
speed. However, this caused the Jackal to frequently bump
into obstacles. To solve this problem, we designed a simple
maximum velocity switching mechanism:

2m/s
Umax =
e 0.5m/s

i Ly, > dg

15
otherwise, (15)

where vy ax 1S the maximum velocity limit of the robot, débs

is the distance to the obstacle closest to the robot at time ¢,
and dy(= 2.2m) is a threshold value. Intuitively, this equation
sets the maximum velocity to 2m/s only when there are no
obstacles in front of the robot and uses a slower velocity near
obstacles (matching the training velocity). We open-sourced

(b) World 120

(b) Pointed “S” shaped environment

(c) World 285

(c) Narrow “S” shaped environment

the DRL-VO policy code with these adjustments at https:/
github.com/TempleR AIL/nav-competition-icra2022-drl-vo.

C. Results

We competed in both the simulation and hardware phases
of the BARN competition.

1) Simulation: The BARN challenge simulation competi-
tion uses 50 unseen Gazebo environments to test navigation
policies, running 10 trials for each environment. All trials use
the same start and goal points, with the goal 10 m in front of
the start, which allows the robot to plan a reasonable nominal
path in the absence of an environmental map. Policies were
scored using a metric s that considers the success rate, travel
time, and environment difficulty and yields a value in the range
[0,0.25] (where 0.25 is best) [61].

A total of 11 policies (e.g., model-based, learning-based,
and hybrid) participated in the BARN challenge simulation
competition. Our DRL-VO policy has the average highest
navigation score among all policies at 0.2415, and achieved
a score of 0.25 on all maps that it successfully completed
(meaning the average speed was at least 0.5 m/s). The other
competitors’ scores ranged from 0.1627 to 0.2334. See Multi-
media Extension 4 to see our policy in these highly constrained
environments. We did not receive full data about the test
environments, but based on our experience in the training
environments we saw that failures happened when the robot
would just barely bump into an obstacle near very small gaps
and sharp turns. We believe that this is because the Jackal has
a larger physical size than the Turtlebot2, so the policy likely
would have been safe with a Turtlebot2.

2) Hardware: Due to the excellent navigation performance
achieved by our DRL-VO policy in the BARN simulation
competition, we were invited to participate in the physi-
cal competition (along with two other teams, ARML and
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Fig. 15. Successful navigation behavior of the Jackal robot in the wide “S” shaped environment at different times.

(c) Narrow passages

(a) Sharp turns (b) Gap traps

Fig. 16. Typical failure cases in the pointed/narrow “S” shaped environment.
The yellow dotted lines are the unreasonable nominal paths given by the
odometry-based global planner due to the limited FOV of the robot. The red
crosses indicate potential collision areas.

DRAGON). The structure of the physical competition was
to conduct three runs in each of the three test environments
shown in Fig. 14. The team that completed the most runs (out
of 9 total) won, with the average time used a tiebreaker. The
test environments were generated by the competition managers
that day and were not known to competitors beforehand. As
we can see, these environments are more challenging than
the simulation test environments, with many sharp turns and
gap traps where the robot’s field of view is highly occluded.
Additionally, some of the passageways were so narrow that
the Jackal robot could not turn around without hitting a wall.

We placed third in the physical competition, completing
2 out of 9 runs successfully (both in the first environment,
Fig. 14(a)). Multimedia Extension 5 and Fig. 15 show one
of these successful runs through the first test environment
(Fig. 14(a)), which had relatively wide passages. However,
we were not able to complete a full run in either of the other
two environments due to two primary reasons: 1) there were
no reasonable nominal paths to guide the robot through sharp
turns or gap traps due to unpredictable obstacles limiting the
robot’s view, and 2) our DRL-VO policy is a bit aggressive
and lacks precise control directives in the narrow passages,
as it is trained in an environment without narrow passages
and on a robot with a smaller physical size. See Extension 5
and Fig. 16 for examples of these failures. In the future, we
plan to alleviate these issues by using a map-based navigation
system to give a better nominal global path to the robot and
by training our DRL-VO policy in multiple different environ-
ments. Additionally, relative to the model-based approaches

used by our competition, we could quickly retrain or fine-tune
our learning-based model to work in each new environment.

D. Discussion

Participating in the simulated and hardware BARN compe-
tition showed that our DRL-VO control policy, which was
trained in a single crowded dynamic Lobby environment
with 34 pedestrians using a Turtlebot2 robot, was able to
generalize to a new navigation task (i.e., highly constrained
static environments) and work with different robot platforms
and sensor configurations. We believe that this generalizabil-
ity can be explained by the fact that we use preprocessed
data representations (Sec. III-B) rather than the raw sensor
data. This creates a level of abstraction between the hard-
ware/environment and the policy that allows it to be highly
flexible. We will continue to explore the transferability of our
policy in future work, particularly looking at how to account
for changes in the physical properties of a robot. Two examples
that we encountered in this work were the differences in the
physical size of a robot (which we believe led to many of
the collisions in the narrow passageways) and in the speed of
the robot (since a Jackal robot moving in a crowd of people
should vary its speed based on the people rather than going
full speed).

VI. LESSONS LEARNED

Neural networks are, in essence, complicated tools to ap-
proximate functions. As such, they are particularly well suited
to solve problems that are too complex for traditional rule-
based methods, such as control policies to enable robots
to navigate through dense crowds of pedestrians. There are
three primary aspects to a neural network: the input data,
the network structure, and the training methodology. In this
section, we will discuss some of the broad lessons we have
learned from our work in each of the above aspects.

A. Data Representations

We argue that creating intermediate data representations
(i.e., hand-crafted features or learned features) from the raw
sensor data allows us to learn navigation policies that better
generalize to new scenarios than policies that directly use
raw sensor data alone. As we conclude in Sec. II-D, most
robot navigation methods (i.e., model-based [4], [9]-[15] and
learning-based [30]-[39], [41]) utilize the preprocessed inter-
mediate data as the input to their control policies, with most
of the learning-based control policies also utilizing learned



intermediate features. However, learning useful intermediate
features from raw sensor data requires the use of photorealistic
simulators and/or real data, both of which present significant
challenges during the learning phase. Additionally, even pho-
torealistic simulators differ (subtly) from reality, which can
create a sim-to-real gap as the learned intermediate features
depend on the data used to train the network.

Instead, we carefully handcrafted features in an attempt
to concisely summarize the salient information needed for
navigation while abstracting away the complexities of the
real world. In our case, we choose two inputs to encode
relevant data about the structure of the environment and the
relative kinematics of pedestrians (or other moving objects).
Specifically, we compress the lidar data by using minimum
and average pooling to encode information about the basic
structure of the space. This step allows our policy to avoid
overfitting to the specific training environment, based on the
findings of [49]. Similarly, we encode the RGB-D camera
data by detecting objects from the RGB value, measuring
positions using the depth data, and fusing these in the MHT
to get information about pedestrian kinematics. Overall, these
preprocessing steps form a compact and useful representation
that is far less sensitive to pixel-level differences between
individual images than policies that use raw sensor data as
input. This choice also affects the network design and training
methodology, as we will discuss below.

B. Computational Constraints

The goal of much machine learning research is simply to im-
prove accuracy and/or reward. However, when using machine
learning in the context of robotics it is critical to remember
that the resulting algorithm will be deployed on a mobile robot
with limited computational resources. Therefore, in practice,
one must often make a trade-off between accuracy/reward
and computational efficiency. Based on our experience, we
believe that having a short reaction time is more important
than using a policy that is incrementally better (in the sense
of lower training loss or higher reward in a simulator that
runs slower than real-time) but that runs much slower and
cannot be processed in real-time. In other words, we believe
one should attempt to maximize reward subject to a constraint
on processing time rather than the other way around. Future
work will study this hypothesis in greater detail.

C. Training Methodology

In a deep reinforcement learning setting, there are two key
aspects to training: the environment and the reward design.

1) Training Environment: In general, reinforcement learn-
ing must take place in simulation due to the large number of
iterations needed for the policy to converge and the need to
explore potentially unsafe regions of the control space before
convergence. One direction of work in the navigation research
community is to develop photorealistic simulators [62]. We
agree that these are necessary to learn control policies that use
raw images as their input. However, our input data structures
provide a level of abstraction between the visual scene and the
control policy by encoding the detail (or lack thereof) in the

world in a consistent set of representations. This allows us to
avoid using a computationally complex simulator and instead
have an environment with flat visual textures and identical
people-shaped rigid bodies that float along the ground. As
a result, each iteration takes less time while still effectively
learning a policy that generalizes well to new environments,
including going from a simulated world to the real world
without the need for any modifications.

Another important aspect of the training environment is the
realism of human behavior. There are three types of pedestrian
crowd models used by navigation-related researchers: social
force-based model [5], [6], [9], [17], velocity obstacle-based
model [28], [30]-[34], [36]-[39], and pedestrian dataset-based
model [18], [35], [40]. These works, especially those driven
by pedestrian datasets, only modeled pedestrian dynamics and
completely ignore any human-robot interactions.

However, during our real-world experiments, we observed
three distinct types of human reactions to the robot, each of
which affect the robot in a different way. The first, and most
common, was for pedestrians to slightly adjust their path to
avoid the robot but to continue on their way. Second, some
pedestrians were curious about our robot and would often stop
and watch or follow the robot to observe its behavior. Third,
and least commonly, some pedestrians were afraid of the robot
and would try to get away from the robot quickly. This list
is by no means exhaustive, and there are likely many more
human-robot interactions that affect navigation. Instead, this
list is meant to demonstrate that approaches that completely
ignore human reactions to robots will be less successful
and have a larger gap between simulation and reality. Our
approach, also used by several other groups [6], [17], is a
simplistic one: add an additional social force to repel people
and robots away from one another. We believe that one fruitful
direction for future work will be to explore the range of human
behaviors, determine what effect they have on the robot, and
develop methods to (approximately) reconstruct this behavior
in a simulated setting.

2) Reward Design: The question of how to design an
effective reward function for a specific application is still an
open problem. For our robot navigation application, we want
the prioritize collision avoidance while still reaching the goal
in the shortest time possible. As we previously discussed, most
DRL-based navigation policies use sparse reward functions,
including a zeroth-order (i.e., distance-based) collision avoid-
ance term and a goal-attainment term, which guide the robot
to avoid collisions and reach the goal, respectively. However,
these zeroth-order collision avoidance terms force the robot to
reactively avoid collisions instead of proactively taking evasive
action. This was the main motivating factor in using velocity
obstacles to create a first-order collision avoidance term, as
the velocity information guides the robot to pick actions that
will be safe both now and in the future. Our experiments on
different crowd densities and unseen environments show that
our novel first-order active reward function greatly improves
the safety and speed of robot navigation compared to the zero-
order passive reward function (DRL-VO vs. DRL in Tables II-
IV). Based on these results, another avenue for future explo-
ration will be designing other higher-order reward functions



to improve robots’ ability to proactively avoid collisions in
highly dynamic scenes.

A secondary motivation for using velocity obstacles was to
allow the robot to indirectly learn from successful model-based
approaches. For example, controllers based on velocity obsta-
cles can guarantee collision avoidance under the assumption of
perfect knowledge of the environment. However, in practice,
that assumption is never valid. Therefore, instead of directly
applying velocity obstacles to generate control actions, we use
it as a reward term to guide behavior that is (at least close to)
safe. Another avenue of future work will be to examine the
effectiveness of using other model-based control approaches to
guide the design of similar reward terms that combine safety
and progress towards the goal into a single term.

VII. CONCLUSION

In this paper, we proposed the DRL-VO control policy
to enable autonomous robot navigation in crowded dynamic
environments with both static obstacles and dynamic pedes-
trians, as well as in highly constrained static environments.
From the detailed background material analysis, our DRL-
VO control policy has two key novelties. First, we propose a
new combination of preprocessed data representations, which
can work well in crowded dynamic environments with up
to 55 pedestrians and bridge the appearance gap between an
imperfect simulation and reality. Specifically, the robot fuses
a short history of lidar data, current pedestrian kinematics
(i.e., position and velocity stored in the two grids), and a
sub-goal point. All of this data is represented within the
robot’s local coordinate frame, making our navigation policy
robust to errors in localization that are common in crowded,
dynamic environments. Second, we design a novel velocity
obstacle-based reward function used to train the policy, which
can be easily applied to multi-robot navigation policies. This
reward uses first-order information about pedestrians to guide
the robot to actively steer towards the goal while avoiding
potential future collisions.

We demonstrate that our DRL-VO policy generalizes better
and maintains a better balance between collision avoidance
and speed to different crowd sizes and different unseen envi-
ronments than other state-of-the-art model-based, supervised
learning-based, and DRL-based policies, achieving an almost
constant average speed but with a higher success rate over
a series of 3D simulation experiments. We also demonstrate
through extensive hardware experiments that our DRL-VO
policy overcomes the sim-to-real gap and works reliably in
real-world indoor and outdoor environments with different
crowd sizes, and that it is able to do so without any fine-tuning
or modification. Furthermore, by participating in the ICRA
2022 BARN simulation and real-world challenge competitions
and placing 1st and 3rd respectively, we demonstrated that our
DRL-VO policy can also generalize well to highly constrained
environments, different input sensors, and different types of
robots. Finally, we summarize several lessons learned from
our work to help other researchers improve the generalizability
of learning-based algorithms, choose network architectures for
use on mobile robot platforms, bridge the gap between simu-
lation and reality, and design appropriate reward functions.
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