
Springer Nature 2021 LATEX template

The Convex Uncertain Voronoi Diagram for Safe Multi-Robot

Multi-Target Tracking Under Localization Uncertainty

Jun Chen1 and Philip Dames2*

1 School of Electrical and Automation Engineering, Nanjing Normal University, No.2
Xuelin Road Nanjing, 210023, Jiangsu, China.

2* College of Engineering, Temple University, 1947 North 12th Street, Philadelphia,
19122, Pennsylvania, USA.

*Corresponding author(s). E-mail(s): pdames@temple.edu;
Contributing authors: jun.chen@nnu.edu.cn;

Abstract

Accurately detecting, localizing, and tracking an unknown and time-varying number of dynamic tar-
gets using a team of mobile robots is a challenging problem that requires robots to reason about
the uncertainties in their collected measurements. The problem is made more challenging when
robots are uncertain about their own states, as this makes it difficult to both collectively local-
ize targets and avoid collisions with one another. In this paper, we introduce the convex uncertain
Voronoi (CUV) diagram, a generalization of the standard Voronoi diagram that accounts for the
uncertain pose of each individual robot. We then use the CUV diagram to develop distributed
multi-target tracking and coverage control algorithms that enable teams of mobile robots to account
for bounded uncertainty in the location of each robot. Our algorithms are capable of safely driv-
ing mobile robots towards areas of high information distribution while maintaining coverage of the
whole area of interest. We demonstrate the efficacy of these algorithms via a series of simulated and
hardware tests, and compare the results to our previous work which assumes perfect localization.

Keywords: Multi-robot Systems; Multi-target Tracking; Distributed Sensing Networks; Coverage Control;
Sensor-based Control

1 Introduction

Multi-robot multi-target tracking (MR-MTT) has
been studied for decades due to its broad applica-
tions to problems in surveillance, security, smart
cities, and more. There are two parts to the MR-
MTT problem: estimation and control. On the one
hand, robots must be able to estimate multiple
target states online overtime using noisy sensor
measurements. On the other hand, a team of
robots must be controlled to simultaneously search
for new targets and track existing ones. In this

paper, we link the control to the estimation so that
the robots are able to move to acquire the best
detection of targets based on the instant estimated
target states.

1.1 Multi-Target Tracking

Multi-target tracking (MTT) is the problem of
simultaneously estimating both the number of
objects within an area of interest as well as the
state of each individual object. Here the state of
an object can consist of its pose, velocity, semantic

1

Springer Nature 2021 LATEX template

2 Convex Uncertain Voronoi

label, or any other state of interest. One signifi-
cant challenge of multiple target tracking (MTT),
compared with single-target tracking, is data asso-
ciation, i.e., matching multiple measurements to
target tracks.

Many MTT techniques have been introduced
over the years, each of which addresses the data
association problem in a different manner. Global
nearest neighbor (GNN) [1] attempts to find and
to propagate the single most likely hypothesis at
each time step. Joint probabilistic data associa-
tion (JPDA) [2] associates the measurements in
each time frame with existing targets using a joint
probabilistic score. Multiple hypothesis tracking
(MHT) [3] associates each measurement with one
of the existing tracks, or forms a new track from
the measurement. Sequential Monte Carlo (SMC)
based multiple target tracking methods, such as
particle filtering [4], jointly solve the tracking and
data association problems by estimating the pos-
terior distribution using SMC methods. In this
paper we use another method, the probability
hypothesis density (PHD) filter [5], which requires
no explicit data association. The PHD filter recur-
sively propagates the first order moment of target
distribution density instead of the full posterior to
account for target birth and disappearance, and
measurement false alarm. As a result, this is best
suited to situations where it is not required for
each target to have a unique identity, e.g., a rescue
robot only needs to know where all of the people
are located but does not need to know the unique
identity of each person.

1.2 Coverage Control

Once we have an algorithm to effectively estimate
the locations of targets, the next problem is how to
control a team of robots to simultaneously search
for new targets and track existing ones. One com-
mon approach is to utilize coverage control, which
is the problem of a sensing network moving to
acquire an optimal total sensing capability over
the entire area of interest [6]. In a dynamic setting,
this involves reactively adjusting the distribution
of sensors over the mission space as new informa-
tion is collected. This problem has been widely
studied by roboticists in robot surveillance [7],
deployment [8], multi-target search and tracking
[9, 10], and other contexts. For example, consider
a team of drones tasked with tracking the spread

of a forest fire in a mountainous area. Here the
team must trade off between remaining in areas
with known fires to collect information about the
current conditions and maintaining surveillance of
the whole area to detect the birth of new fires.
While they do this, the robots must simultane-
ously account for the uncertainty in their positions
to properly track the fire and to maintain a safe
distance between robots at all times to avoid
collisions.

Both centralized and distributed methods have
been considered to solve such problems. A number
of authors have studied coverage control strate-
gies. Hussein et al. [11] proposed a centralized
cooperative coverage control strategy with guar-
anteed collision avoidance to achieve a desired
effective coverage level of each point in the search
domain. While events happening at each point
may be detected with some level of confidence,
they assume that the probability density of events
happening is known a priori instead of being
detected online by sensors. Distributed algorithms
often scale better to large networks and over large
geographic regions than centralized approaches,
leading to a rising amount of research interest.
Others have proposed gradient-based distributed
coverage control schemes to maximize the prob-
ability of detecting randomly occurring events in
a mission space using a team of mobile sensors
[8, 12]. However there is no guarantee of collision
avoidance since sensor dimension were not taken
into consideration.

Voronoi-based methods [13] are among the
most popular choices to solve distributed coverage
control problems in recent years. Lloyd’s algo-
rithm iteratively drives each sensor in a convex
environment towards the weighted centroid of its
local Voronoi cell where the sensor detection prob-
ability is optimal [6, 14]. Collision avoidance is
guaranteed for point sensors since cells never over-
lap, and each sensor only moves in its own cell.
This can be extended to sensors with finite size
using buffered Voronoi cells, which shrink each
cell to ensure collision avoidance [15]. Heterogene-
ity of agents can be taken into account through
variants of Voronoi diagrams such as the weighted
Voronoi diagram [16]. In this paper, we assume
that each robot is able to communicate with
all neighbors, though coverage control problem
with limited communication ranges is addressed

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 3

in recent works [17–19]. By encoding the informa-
tion distribution, which is a time-varying density
function, as the importance weighting function
in Lloyd’s algorithm, sensors are able to reach
their optimized location for detection. One exam-
ple of an information density function could be
the probability density function of target posi-
tions the sensors aimed at tracking over the area
of interest. Schwager et al. [20] extended Lloyd’s
algorithm and derived a control law enabling
sensors to approximate the information density
function from measurements while maintaining
or seeking a near-optimal sensing configuration.
Schwager et al. [21] later proposed a controller
using an adaptive control architecture for sensors
to learn a parameterized model of that measured
distribution in the environment. Dames [9] used
the probability hypothesis density (PHD) as the
weighting function in Lloyd’s algorithm to guide
a team of sensors towards areas of high target
density detected by on board sensors.

All of the above-mentioned coverage control
strategies assume that the locations of the mobile
sensors are perfectly known. This is a strong
assumption which is not true in practice. To
account for uncertainty in the positions of points,
researchers have recently proposed the uncer-
tain Voronoi (UV) diagram, or fuzzy Voronoi
diagram, an extended Voronoi partitioning strat-
egy that divides uncertain spatial databases by
using a Gaussian distribution to model the uncer-
tainty [22–24]. However, none of these works have
been applied to the task of collision avoidance or
decentralized control. Most recently, two variants
of the buffered Voronoi diagram were proposed
for multi-agent collision avoidance with localiza-
tion uncertainty, the buffered uncertainty-aware
Voronoi cell (B-UAVC) [25] and the probabilis-
tic buffered Voronoi cell (PBVC) [26]. Neither of
these methods makes any guarantees for coverage
during a search task.

1.3 Contributions

This paper presents the first end-to-end solu-
tion for multi-robot target search and tracking
that accounts for uncertainty in the localization
of each robot. To accomplish this we create the
convex uncertain Voronoi (CUV) diagram, a new
decomposition of the environment that serves as

Fig. 1 Diagram of actions robots take recursively for dis-
tributed estimation and tracking.

the basis for our distributed estimation and con-
trol algorithms and allows us to guarantee both
collision avoidance and full coverage of the envi-
ronment. Figure 1 outlines our overall strategy
and shows how the algorithms we present in the
remainder of the paper interconnect.

The work presented in this paper builds upon
two previous conference papers [27, 28]. In [27],
we introduced the concept of the CUV diagram
and used it to develop a collision avoidance algo-
rithm during MR-MTT (we summarize this work
in Section 3). We validated these ideas through
a series of simulated experiments (summarized in
Section 5.1). In [28], we use the CUV diagram to
create a new formulation of the distributed PHD
filter [9], which originally assumed perfect knowl-
edge of robot pose (summarized in Section 4). We
validated the performance of this new distributed
PHD filter through a series of simulated experi-
ments (summarized in Section 5.2). In this submis-
sion we have added new comparisons against our
original algorithm [9] to the results in Sections 5.1
and 5.2.

In addition to summarizing our previous work,
this paper presents new hardware experiments to
validate the efficacy of our distributed MR-MTT
solution. In these tests the robots navigate with-
out a global navigation satellite system (GNSS),
i.e., in a GNSS-denied environment, and rely
only on onboard sensors for localization, which
introduces non-negligible localization errors. This
differs from most recent distributed multi-robot
hardware tests [16, 17, 20, 25, 29–34], which rely
on external positioning systems, such as motion
capture systems and GNSS, to provide global
information about robot poses. Additionally, we

Springer Nature 2021 LATEX template

4 Convex Uncertain Voronoi

Table 1 List of Important Variables

Variables Description

E Task Environment
x Location in Environment
Y Target Set
y Target
m Number of Targets
R Robot Set
r Robot
n Number of Robots
Q Set of True Robot Poses
q True Robot Pose

Q̂ Set of Estimated Robot Poses
q̂ Estimated Robot Pose
q∗ Robot Temporary Goal
N Set of Neighbors
Zr Measurement Set of Robot r
W Set of Environment Partitions
W Environment Partition
V Voronoi Cell
U UV Cell
C CUV Cell

develop a fully distributed communication strat-
egy based on Robot Operating System (ROS) [35]
that allows the team to cooperatively handle data
exchange and decision-making. This also differs
from the hardware tests in the literature, which
mostly rely on a central station (e.g., desktop)
to handle local communication between robots.
These two modifications close the gap between
theory and real-world applications by allowing
robots to operate without any external hardware.
Our proof-of-concept experiments demonstrate
that our MR-MTT solution can be used for real-
world applications. A list of important variables
in this paper is summarized in Table 1.

2 Background

We assume a task environment E ⊂ R2 is convex
and is composed of a infinite set of locations {x |
x ∈ E}. There is set of m targets, denoted Y =
{y1, . . . , ym} in E (i.e., y ∈ E, ∀y ∈ Y). This
target set encodes both the number of targets (i.e.,
the cardinality of the set |Y |) and the state of each
target (i.e., the elements yi of the set). Note that
Y is completely unknown to the robots, so they do
not even know the true number of targets within
the environment.

A team of n robots R = {r1, . . . , rn} explores
E in search of these targets. Each robot is
equipped with sensors such that it can localize
itself (with bounded uncertainty) with respect

to a shared global reference frame. Let Q =
{q1, . . . , qn} ⊂ R2 and Q̂ = {q̂1, . . . , q̂n} ⊂ R2

denote the true and estimated poses of robots
at each time step, respectively.1 The dynamics of
each robot are modeled by the first order equation
q̇i = ui, where ui is the control input. As robot
r moves, at each time step it receives a set of
measurements Zr = {zr1, zr2, . . .} of a subset of
the targets within its limited-ranged field of view
(FoV). Examples of zr include the bearing angles,
and both the bearing and the range information
of detected targets in r’s local frame. Note that
the size of the measurement set Zr varies over
time due to false positive and false negative detec-
tions and due to the motion of both targets and
robots causing targets to enter and leave the sen-
sor field of view (FoV). These measurements are in
the robots’ local reference frames and are used to
track the targets. Our approach to coverage con-
trol will use the current estimate of the target set
to create a time-varying information density func-
tion ϕ(x), which indicates the information content
at each point x ∈ E [9].

2.1 Lloyd’s Algorithm

From the work of [6], at each time step, the team
attempts to minimize the following functional:

H(Q,W) =

∫
E

min
i
f
(
∥x− qi∥

)
ϕ(x)dx

=

n∑
i=1

∫
Wi

f
(
∥x− qi∥

)
ϕ(x)dx,

(1)

where ∥x − qi∥ denotes the Euclidean distance
between a point x ∈ E and the location qi of robot
ri, f(·) is a monotonically increasing function
(which quantify the degradation of a sensor’s abil-
ity to measure events with increasing distance),
ϕ(x) ≥ 0 denotes the importance of each point x,
and W = {W1, . . . ,Wn} ⊂ R2 is a partition of E,
meaning that ∪iWi = E and int(Wi) ∩ int(Wj) =
∅, ∀i ̸= j (where int(W) denotes the interior of
region W). The region Wi is sometimes called the
dominance region of robot ri, e.g., the region that
robot ri is responsible for.

Minimizing H with respect to W induces the
partition Vi = {x | i = argmink=1,...,n ∥x − qk∥}.

1We use robot poses in R2, but they can also be in SE(2).

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 5

(a) Voronoi diagram (b) CUV diagram

Fig. 2 A Voronoi diagram and a CUV diagram with 15
cells. Green markers are estimated sensor locations. Note
that CUV cells are a superset of the original Voronoi cells
and that CUV cells overlap with one another.

This is the Voronoi partition, as Fig. 2a shows, and
these Vi are the Voronoi cells, which are convex
by construction and contain the set of points that
are closest to robot i.

MinimizingH with respect toQ leads each sen-
sor to the weighted centroid of its Voronoi cell [6],
that is

q∗i =

∫
Vi
xϕ(x) dx∫

Vi
ϕ(x) dx

, (2)

Robots then follow the control input

ui = −kprop(qi − q∗i), (3)

where kprop > 0 is a positive gain. Following this
control input will cause the team to asymptot-
ically reach a local minimum of (1), with each
robot stopping at the weighted centroid of its
Voronoi cell. This process is known as Lloyd’s
algorithm. Like in our previous work [9], we set
ϕ(x) to be the PHD v(x) (see Section 2.4), which
is an online estimate of the density of targets in
the search space. This encourages robots to move
towards areas that are likely to contain targets,
allowing us to repurpose the coverage controller
into a search and tracking controller.

2.2 Localization Uncertainty
Regions

We assume that each robot ri knows its state with
bounded uncertainty. However, this is rarely true
in practice. Instead, robots typically track their
state using a recursive Bayesian filter, such as a
Kalman filter. In this case, each robot knows its
estimated position q̂i and the associated covari-
ance matrix Σi. We find the eigendecomposition

of Σi:
Σi = PΛP−1, (4)

where P is an orthonormal 2 × 2 matrix and
Λ = diag(λ1, λ2) is a diagonal matrix of eigenval-
ues. We define the localization uncertainty region
of robot ri to be Bi = B(q̂i, ρi), which is a ball
centered at q̂i with radius

ρi = c max
j
λj (5)

where c is a positive constant. While level sets
of Gaussians are typically elliptical, we utilize
a spherical uncertainty region because they are
necessary to yield analytic expressions for the
dividing lines between CUV cells (Section 2.3).

The probability of robot ri being located
within this region is then

p(qi ∈ Bi) =∫
Bi

exp
{
− 1

2 (x− q̂i)
TΣ−1

i (x− q̂i)
}

2π det(Σi)
1
2

dx, (6)

We use c = 3 so that the region covers at
least 99.73% (minimum achieved when λ1 = λ2)
of all possible locations of ri, though any other
level set of the covariance matrix could be used
to guarantee a desired level of confidence. This
same approach can also be used with other non-
Gaussian distributions so long as one can define a
bounded, circular region which, as we will see in
Section 2.3, is required to efficiently construct the
CUV diagram.

2.3 Uncertain Voronoi Diagram

Xie et al. [22] defined the uncertain Voronoi (UV)
diagram and proposed a centralized method to
construct the UV diagram over a convex region.
In this paper, we define a UV cell in a similar way
as follows:

Definition 1 (UV Cells) The UV cell of a robot ri is
Ui ≜ {x | p(i = argmink=1,...,n ∥x − qk∥) > 0}, the
collection of points in E such that ri has a nonzero
probability to be the nearest sensor to each point x ∈
Ui.

A UV cell Ui contains all possible Voronoi cells
generated from all possible combinations of the

Springer Nature 2021 LATEX template

6 Convex Uncertain Voronoi

positions of robot ri and each of its neighbors.
Therefore, by assigning each robot to be responsi-
ble for all information in its UV cell, the coverage
of the whole environment is guaranteed even with
the localization uncertainty of robots. In other
words, no matter where each robot is actually
located within an uncertainty region Bi, the union
of all of the UV cells will be equal to the entire
environment, ∪iUi = E.

Let distmax(q̂i, x) and distmin(q̂i, x) denote the
distances from a point x to the farthest or near-
est points within robot ri’s bounded uncertainty
region Bi, respectively. Using these distances, one
can construct the boundaries for the UV cell of
robot ri with respect to robot j(̸= i) as:

distmax(q̂i, x) = distmin(q̂j , x). (7)

These dividing lines, denoted by Ei(j), are called
the UV-edges of ri with respect to rj . For circu-
lar uncertainty regions, Ei(j) take the form of a
hyperbola [22], as Fig. 3 shows. Without loss of
generality, for a point x = (x1, x2) ∈ E, let the
center of the hyperbola be at the midpoint of the
line segment connecting q̂i to q̂j and that this line
segment is parallel with the x1 axis. The hyperbola
is then given by

x1
2

a2
− x2

2

b2
= 1 (8)

where

a =
ρi + ρj

2
c =
∥q̂i − q̂j∥

2
b =

√
c2 − a2 (9)

where ρi, ρj are from (5) and q̂i, q̂j are the esti-
mated locations of robots i and j. Note that in
this coordinate frame the sensors are located at
the foci of the hyperbola.

2.4 PHD Filter

The target and measurement sets, Y and Z, from
above contain a random number of random ele-
ments, and thus are realization of random finite
sets (RFSs) [36]. The first order moment of a
distribution over RFSs is known as the Proba-
bility Hypothesis Density (PHD), denoted v(x),
which takes the form of a density function over the
state space of a single target or measurement. The

Fig. 3 Figure shows the UV edge Eright(left) of robot
rright with respect to robot rleft (red curve). The X’s at
(1, 0) and (−1, 0) are the estimated locations of rright and
rleft, respectively. Dashed circles represent the localization
uncertainty regions of the robots. The black area contains
all of the points whose nearest robot is uncertain. The UV
edge Eright(left) is a collection of points whose shortest
distance to the right circle is equal to the longest distance
to the left circle, indicated by blue line segments.

PHD filter recursively updates this target density
function in order to estimate the target set [5].

The PHD filter uses three models to describe
the motion of the targets: 1) The motion model,
f(x | ξ), describes the likelihood of an individual
target transitioning from an initial state ξ to a new
state x. 2) The survival probability model, ps(x),
describes the likelihood that a target with state
x will continue to exist from one time step to the
next. 3) The birth PHD, b(x), encodes both the
number and locations of the new targets that may
appear in the environment.

The PHD filter also uses three models to
describe the ability of robots to detect targets: 1)
The detection model, pd(x | q), gives the probabil-
ity of a robot with state q successfully detecting
a target with state x. Note that the probability
of detection is identically zero for all x outside
the sensor FoV. 2) The measurement model, g(z |
x, q), gives the likelihood of a robot with state
q receiving a measurement z from a target with
state x. 3) The false positive (i.e., clutter) PHD,
c(z | q), describes both the number and locations
of the clutter measurements in the measurement
space.2 See our previous works [37, 38] for concrete
examples of these sensor models and how one can
experimentally derive the models from data.

2The integral
∫
c(z | q) dz gives the expected number of false

positive measurements (i.e., measurements not generated by
true targets) in each measurement set Zr and the values of
c(z | q) give the relative likelihood of a measurement z being
a false positive measurement.

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 7

Using these target and sensor models, the PHD
filter prediction and update equations are:

v̄t(x) = b(x) +

∫
E

f(x | ξ)ps(ξ)vt−1(ξ) dξ

(10a)

vt(x) = (1− pd(x | q))v̄t(x) +
∑
z∈Zt

ψz,q(x)v̄
t(x)

ηz(v̄t)

(10b)

ηz(v) = c(z | q) +
∫
E

ψz,q(x)v(x) dx (10c)

ψz,q(x) = g(z | x, q)pd(x | q), (10d)

where ψz,q(x) is the probability of a sensor at q
receiving measurement z from a target with state
x. Eq. (10a) predicts the multi-target state using
the targets models, and the predicted state is then
updated with sensor measurements by Eq. (10b)
using the sensor models. In this work we represent
the PHD using a set of weighted particles [39].

3 Distributed Control with
Localization Uncertainty

In this section, we introduce three distributed
algorithms to construct the convex uncertain
Voronoi (CUV) diagram over the mission space
and use this to ensure collision avoidance as well
as perform coverage control. These algorithms all
account for uncertainty in the locations of robots
and their combination iteratively drive each robot
to the weighted centroid of its CUV cell while
guaranteeing safety and avoiding “deadlock,” the
phenomenon where robots block each other from
moving to their respective goals.

3.1 The CUV Diagram and Its
Construction

A CUV diagram, shown Fig. 2b, is composed of
the collection of CUV cells of all robots.

Definition 2 (CUV cell) The convex uncertain
Voronoi (CUV) cell Ci of robot ri is the convex hull
of its UV cell Ui.

To construct the CUV diagram, a robot must
know the locations of all of its CUV neighbors.

Fig. 4 Figure showing a robot’s estimated location (green
square) along with its localization uncertainty region (green
circle), Voronoi cell, uncertain Voronoi (UV) cell (Defini-
tion 1), convex UV (CUV) cell (Definition 2), and collision
avoidance region (CAR) (Definition 4).

Definition 3 (CUV neighbors) The CUV neighbor
set for robot ri is Ni ≜ {j | j ̸= i, Ei(j) ∈ ∂Ui}, where
∂Ui is the boundary of the UV cell Ui.

Proposition 1 The CUV neighbors and the Voronoi
neighbors of a robot are identical.

Proof Since Ui is the union of all possible Voronoi cells
of ri, UV edges Ei(j) and Ej(i) are contours of the
union of all possible Voronoi edges between ri and rj .
Thus, the UV neighbors and the Voronoi neighbors
of a robot are identical. Since the CUV cells are con-
vex hulls of the UV cells, the CUV neighbors and the
Voronoi neighbors of a robot are also identical. □

We assume that each robot is able to com-
munication with all its CUV neighbors, a stan-
dard assumption in distributed multi-agent con-
trol algorithms [9], in order to exchange estimated
locations and uncertainty region radii. Using this
information, each robot can use Algorithm 1 to
construct its CUV cell using only local informa-
tion. The basic idea for a robot ri is to sequentially
divide the original mission space using the UV
edges Ei(j) and discard the portion not containing
ri after each division. Finally, the robot constructs
the CUV cell by computing the convex hull of the
remaining area.

3.2 Collision Avoidance

By construction, Voronoi cells have disjoint inte-
riors and are convex. Thus, if point robots have
perfect knowledge of their locations and never
move outside their responding cell, it is naturally
guaranteed that they move without collision (e.g.,
being at the same location). However, this is not
the case for CUV-based control with localization
uncertainty. In fact, CUV cells always overlap with
their neighbors as long as the uncertainty region

Springer Nature 2021 LATEX template

8 Convex Uncertain Voronoi

Algorithm 1 Distributed Construction of CUV
Cells
1: parfor Each robot ri do
2: Get estimated location q̂i
3: Find the neighbor set Ni

4: Initialize Ai = A
5: for rj in Ni do
6: Receive q̂j and bj from rj
7: Compute UV edge Ei(j) using (8)
8: Ai ← {x ∈ Ai | x, q̂i on the same side

of Ei(j)}
9: end for

10: Ci ← convex hull(Ai)
11: end parfor

for any robot is non-empty. Thus, we want each
robot to perform motion only within a region that
ensures no collisions with other robots, which we
call a collision avoidance region (CAR) (see Fig. 4
for an example).

Definition 4 (CAR) The collision avoidance region
(CAR) for robot ri is Mi ≜ {x | x ∈ Vi, d(x, ∂Vi) ≥
bi+bbuffer}, where Vi is the Voronoi cell Vi constructed
using the estimated positions of ri and each neighbor
in Ni and bbuffer is a small buffered distance.

Note that bbuffer can be used to account for
effects such as the size of mobile robots, a stopping
distance for robots with higher-order dynamics,
or the maximum distance a robot can traverse in-
between location updates. Also, Mi exists if and
only if all CUV neighbors are initially outside of
ri’s localization uncertainty region Bi.

Proposition 2 (CAR safety) Each robot ri may
go anywhere within its CAR and be guaranteed to
avoid collisions with all other robots with any desired
probability p.

Proof From (6) we can construct a localization uncer-
tainty region for robot ri that meets the desired
probability threshold p by selecting an appropriate
radius bi, i.e., p(dist(qi, q̂i) ≤ bi) ≥ p. Therefore, Def-
inition 4 guarantees that qi ∈ Mi with probability p.
Since Mi has disjoint interiors with its neighbors, it is
guaranteed that ri will not collide with any neighbors
with probability p. □

Algorithm 2 Distributed Coverage Control

1: parfor each robot ri do
2: Compute Voronoi cell Vi
3: Compute CAR Mi using Vi, bi, bbuffer
4: Compute CUV cell Ci using Algorithm 1
5: Find weighted centroid c of Ci

6: Find goal q∗i = argminx∈Mi
∥x− c∥

7: if c in the interior of Mi then
8: Move towards q∗i
9: else

10: Deal with deadlock using Algorithm 8
11: end if
12: end parfor

Figure 4 shows a schematic diagram of
Voronoi, UV, and CUV cells for a robot. See
Appendix A for our deadlock avoidance strategy
based on the CAR.

3.3 Distributed Coverage Control

As discussed in Section 2.3, minimizing the cost
functional H with respect to the robot dominance
regions W yields Voronoi cells Vi for i = 1, . . . , n
when the robot locations are known. However, in
our setting, this final condition is no longer true.
Instead, we will utilize the CUV cells Ci as the
dominance regions Wi. By construction, the UV
cells Ui are the smallest dominance region that
ensures that each location in E is within at least
one robot dominance region. However, the UV
cells are not convex so the weighted centroid may
be outside of the cell boundaries. Thus, we choose
to use the CUV cells as these are the smallest con-
vex regions containing the UV cells. Additionally,
it is more computationally efficient to work with
convex polygons rather than regions defined by
the intersection of conic sections.

To achieve distributed coverage control, the
mobile robots run Algorithm 2. Each robot itera-
tively finds the weighted centroid in its CUV cell
and attempts to reach it. If the centroid is outside
of its CAR, the robot goes to the point in its CAR
that is closest to the centroid. If a robot reaches
the boundary of its CAR, then it runs Algorithm 8
to avoid deadlock.

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 9

3.4 Discussion

As we note in Section 2.2, we assume the uncer-
tainty regions are spherical. If the actual covari-
ance in a robot’s pose is highly eccentric, as
might occur in a hallway where there is signif-
icantly more uncertainty along the axis of the
hall, the approximation (5) will yield a very con-
servative estimate of the uncertainty region. This
will have several practical consequences. First, it
will produce a smaller CAR for the robot, con-
straining its movement relative to computing a
CAR using the true covariance ellipse. Second, it
will produce a larger CUV for neighboring robots,
potentially resulting in an uneven distribution of
labor across the team. However, we believe the
speed up in computational time from having ana-
lytic expressions (compared to, for example, the
sampling based methods in the B-UAVC [25] and
PBVC [26]) is significant enough to be worth the
conservative behavior.

4 Distributed Estimation with
Localization Uncertainty

All the above simulations assumed robots have a
priori knowledge of where the important areas are
within the environment, an unrealistic assump-
tion. To address this, we develop a distributed
tracking algorithm that allows the robots to dis-
cover and recursively update the important areas
during exploration. The key to our approach is
to distribute the storage and maintenance of the
PHD across individual agents in a way that is
guaranteed to match the results of a central-
ized PHD filter. This distributed storage system
requires each robot to exchange information with
its neighbors in order to dynamically update its
dominance region and the PHD information in
that region. We previously proposed three algo-
rithms for distributed PHD particle exchange,
prediction, and update steps respectively, using
the Voronoi cell as the dominance region of each
robot [9]. When all robots are able to perfectly
localize themselves the dominance regions form a
perfect partition (i.e., full coverage of the environ-
ment and no overlap between regions). While the
CUV diagram guarantees full coverage of the envi-
ronment, it does this by creating overlapping cells
[27]. This greatly increases the difficulty in main-
taining the distributed PHD representation. Thus,

(a) Exchange (b) Prediction (c) Update

Fig. 5 Figures showing an example of the main robot
(central square) and its neighbors (blue square) exploring
a rectangular environment. The solid lines show the cur-
rent CUV cell of each robot. Figure 5a shows the particle
exchange process. The dashed lines show the new CUV cell
of the main robot in the next time step. Figure 5b shows the
PHD prediction step. The dashed lines show the expanded
CUV cell of the main robot, containing all possible loca-
tions that a target starting in the CUV cell of the main
robot may end up. Figure 5c shows the PHD update step.
The dashed lines show the sensor FoV of each robot.

we propose a novel distributed MTT method that
leverages the PHD filter and the CUV diagram.
We implement this using four algorithms, which
operate in discrete time with a constant time
interval.

At each discrete time step, each robot must
first run the particle exchange (Section 4.2) algo-
rithm to update its CUV cell and ownership of
particles. In order to recursively estimate the tar-
get state, each robot should then run the PHD
prediction (Section 4.3) and update (Section 4.4)
algorithms in each discrete time step. All three of
these algorithms use the exchange set algorithm
(Section 4.1) as a subroutine to determine the set
of neighbors each robot must exchange data with.
Figure 5 outlines this process.

4.1 Exchange Set

Our approach to distributed estimation requires
each robot to exchange information with its neigh-
bors in multiple contexts. To capture this range in
behavior we define the exchange set of a robot as
follows:

Definition 5 (Exchange Set) Let robot r be inside of
some convex region S. Its exchange set with respect to
S is Er(S) ≜ {i = 1, . . . , n | S ∩ Ci ̸= ∅}, where n is
the number of robots in the team.

An example of a convex region S is the CUV
cell Cr, in which case Er(S) is equivalent to the

Springer Nature 2021 LATEX template

10 Convex Uncertain Voronoi

Algorithm 3 Find Exchange Set

1: function findExgSet(id, Er(S), S)
2: Find CUV neighbor set N (id)
3: for i ∈ N (id) do
4: Send S to i
5: i compares its CUV cell Ci with S
6: if Ci ∩ S ̸= ∅ ∧ i ̸∈ Er(S) then
7: Er(S)← {Er(S), i}
8: Er(S)← findExgSet(i, Er(S), Ci)
9: end if

10: end for
11: return Er(S)
12: end function

CUV neighbor set of r, as defined in [27, Defini-
tion 3]. Note that the CUV neighbor set and the
Voronoi neighbor set of a robot are identical.

We assume that each robot is capable of
communicating with each member of its Voronoi
neighbor set for both Voronoi diagram initializa-
tion and maintenance [40, 41]. As was noted in
[21], this requirement cannot be translated into
a communication range constraint. Some authors
have recently proposed solutions to the case with
limited communication range by using multi-hop
communication [42–44]. We also assume that com-
munication is perfect, meaning there is no signal
loss or delay. While this is not realistic, it is beyond
the scope of this paper to address the problem.

We introduce Algorithm 3, which enables each
robot to find its exchange set in a completely dis-
tributed manner. A robot r first finds all of its
CUV neighbors i ∈ N (r) and compares their CUV
cells individually with S. Neighbors who meets the
condition that Ci ∩ S ̸= ∅ are added to Er(S).
Then each neighbor i recursively checks if any
robots in its neighborhood N (i) meet the condi-
tion until no more robots do, skipping any robots
that have already been added to the exchange set.

Theorem 1 Algorithm 3 is guaranteed to find the full
exchange set Er(S) for robot r.

Proof Assume that there is some robot i(̸= r) such
that Ci ∩ S ̸= ∅ and i ̸∈ Er(S). That is, Algorithm 3
terminates before checking robot i. This means that
i /∈ N (r) and that for all robots j ∈ N (i) we have
Cj∩S = ∅ so that Ci∩S = ∅. This is a contradiction,
therefore all robots i ̸∈ Er(S) must be in Er(S). □

Algorithm 4 Particle Exchange

1: Share (ℓr, q̂
t
r) with robots in N (r)

2: Compute CUV cell, Ct
r

3: Er(Ct
r) = findExgSet(r, {r}, Ct

r)
4: Initialize T = Ct

r \ Ct−1
r

5: for i ∈ Er(Ct
r) do

6: r send T with i
7: i computes ∆Cr,i = Ct−1

i ∩ T
8: i sends polygon ∆Cr,i and particles in

∆Cr,i to r
9: r updates T ← T \∆Cr,i

10: end for

4.2 Particle Exchange

As each robot moves, so to do the boundaries of
its CUV cell. Since these CUV cells are used to
distribute the PHD storage, robots must exchange
data every time a cell changes shape. Algorithm 4
outlines this process of transferring ownership of
particles between robots. Each robot r first com-
putes its new CUV cell by finding its neighbor set.
This requires r to share the radius and center of its
localization uncertainty region, ℓr and q̂tr respec-
tively, with all its neighbors. Then r determines all
other robots that it must exchange particle with
by finding the exchange set Er(Ct

r), using Algo-
rithm 3. Next, robot r must keep track of all of
the area from which it has yet to receive informa-
tion (T) so as not to double count regions shared
by more than 2 robots. The shaded area of Fig. 5a
shows the initial region T . Finally, it exchanges
data with all of the members of its exchange set.

4.3 PHD Prediction

The PHD prediction step propagates the target
distribution forward in time. This process includes
the appearance of new targets and the disappear-
ance and movement of existing targets. We assume
that targets are homogeneous, i.e., sharing iden-
tical models. However, we could use the semantic
PHD (SPHD) filter [38], a modified version of
the PHD filter, to incorporate different motion
models for different types of targets. In order to
account for the motion of targets from one CUV
cell to another, we need to run the prediction over
an area that is larger than the CUV cell. The
expanded cell of robot r should include the start-
ing locations of all the possible targets that may
enter into Cr in the next time step.

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 11

Algorithm 5 Distributed PHD Prediction Step
for Robot r

1: Compute expanded CUV cell, C̃t
r

2: Er(C̃t
r) = findExgSet(r, {r}, C̃t

r)
3: Initialize expanded area T = C̃t

r \ Ct
r

4: for i ∈ Er(C̃t
r) do

5: r sends T to i
6: i computes ∆C̃r,i = Ct−1

i ∩ T
7: i sends polygon ∆C̃r,i and particles in

∆C̃r,i to r

8: r updates T ← T \∆C̃r,i

9: end for
10: Send done signal to robots i ∈ Er(C̃t

r)
11: Wait for all robots i ∈ Er(C̃) to be done

receiving
12: Perform PHD prediction in C̃t

r using (10a)
13: Save particles only within Ct

r

14: for i ∈ Er(C̃t
r) do

15: i replace particles in ∆C̃r,i with those sent
from r

16: end for

To do this, each robot r runs Algorithm 5.
Robot r first expands its CUV cell by inflating
Ct

r using the maximum travel distance of a target
over the time step to get C̃t

r (line 1). Note that if
C̃t

r is non-convex then we take the convex hull and
that C̃t

r = Ct
r if targets are static. Then r finds its

exchange set Er(C̃t
r), by running Algorithm 3, and

receives particles from robots in Er(C̃t
r) to fill the

expanded area (lines 2–9). Note that the T func-
tions as an indicator of the finished area to avoid
receiving duplicated particles from areas where 3
or more CUV cells overlap. The robot then runs
the PHD prediction (10a) only after all robots in
Er(C̃t

r) have finished receiving particle (lines 10–
13) in order to yield an identical predicted PHD
to that of a centralized PHD filter. Finally, lines
14–16 are required to ensure that all robots agree
in overlapping regions.

4.4 PHD Update

The PHD update step uses the sensor measure-
ments to correct the prediction from the previous
step. As was the case in [9], the PHD update step
can be classified into two cases, as Algorithm 6
shows. The first case happens when the field of
view of sensor r, Fr, is fully inside its CUV cell.
In this case, we may simply apply PHD update

Algorithm 6 Distributed PHD Update Step for
Robot r
1: if Fr ⊂ int(Ct

r) then
2: Update PHD using Zt

r with (10b)
3: else
4: Er(Fr) = findExgSet(r, {r}, Fr)
5: Initialize T = Fr \ Cr

6: for i ∈ Er(Fr) do
7: if i = r then
8: ηrzr =

∫
Cr
ψzr,qr (x)v(x) dx

9: else
10: r sends Zr, qr, T to i
11: i computes P = Ci ∩ T and ηizr =∫

P
ψzr,qr (x)v(x) dx

12: i sends P, ηizr to r
13: r updates T ← T \ P
14: end if
15: end for
16: Compute ηzr = c(zr; q) +

∑
k∈EFr (r)

ηkzr
17: Update PHD using Zr with (10b)
18: Send ηzr to all i ∈ Er(Fr) who run (10b)
19: end if

(a) Robot 1 (b) Robot 2 (c) Robot 3

Fig. 6 Demonstration of PHD update procedure for the
case where r’s sensor FoV exceeds the boundary of its CUV
cell. The main robot is the green square in the middle and
its field of view, Fr, is shown by the green circle.

equation (10b) using r’s measurement set (lines
1–2).

The other case is more complicated as robot
r cannot compute the normalization term (10c)
using only local information. First, robot r must
find its exchange set Er(Fr) (line 4) and initialize
the un-updated region T (line 5), which is shown
as the gray area in Fig. 6a. Next, robot r and
all of its neighbors in the exchange set compute
the partial normalization terms, ηizr , ∀i ∈ Er(Fr)
(lines 6–14). This process is illustrated in Fig. 6,
where the central robot exchanges data with 1,
then 2, and then 3. The gray area is T and the
hashed area is P , which is the area over which the
partial normalization term is computed at each
step. Once r has all of the partial normalization

Springer Nature 2021 LATEX template

12 Convex Uncertain Voronoi

terms it can add them to compute the full term,
ηzr from (10c) (line 15). It then sends that term
back to each neighbor and all robots can use the
full normalization term to run the PHD update
equation (10b) within their CUV cell (lines 16–
17).

If desired, one can model the phenomenon of
robots occluding the observations of one another
by using the estimated pose and covariance of each
robot within the field of view. To do this, use
some sort of numerical integration technique (e.g.,
Monte Carlo integration) and use ray tracing to
determine the shape of visible field for each sam-
pled position of each neighbor to build an updated
pd that accounts for these occlusions.

As noted by [45], the final result of the multi-
sensor PHD filter update depends on the order
in which measurements are applied. We proposed
one solution to this in [9] by processing updates
starting from the lowest ID, i.e., the unique label
of a robot, and keeping track of the current robot
by using a Boolean activation variable (indicat-
ing that that robot is the one currently running
its update). Each robot pauses until it becomes
the active agent in its neighbor set (i.e., all other
robots with lower IDs have already run the update
step). The same strategy could be used here.

4.5 Discussion

In our previous work [9, Sec. 3] we discuss the
bandwidth requirements and complexity for the
distributed PHD filter. In summary, the dis-
tributed PHD filter requires a constant number
of messages to be exchanged between each robot
and those in its exchange set E and the algorithm
has constant complexity in the size of the team.
None of the modifications in this work materially
affect this analysis as this is a generalization of
the previous work. The only practical difference
is that the size of each region W is larger (i.e.,
W ⊇ V), which will slightly increase the number
of particles that each robot must maintain as well
as send to neighbors during the particle exchange
step (Section 4.2).

Fig. 7 Trajectories of each robot in collision avoidance
test. The green markers indicate the initial positions of each
robot. Each pair of antipodal robots has a pair of lines with
different colors showing the trajectories of each robot.

5 Simulations

5.1 Distributed Control Simulations

We conduct simulations using Matlab to vali-
date our proposed control methods from Section 3.
The environment is an open 100m × 100m square
mission space with no obstacles. The information
distribution function is initially the summation of
20 Gaussian probability density functions (PDFs),
each of which has a random mean and a covariance
matrix of the form σ2

envI, where I is an iden-
tity matrix and σenv = 3m. The mean of each
Gaussian PDF performs a Gaussian random walk
with maximum velocity 5m/s, and the means may
move out of the environment and re-enter. The
covariance matrices are time-invariant.

Robots are regarded as particles, occupying no
space. Robot motion is holonomic with a maxi-
mum velocity of 5m/s. Robots localize themselves
at the frequency of 10Hz and the covariance
matrix for the location of each robot is of the
form Σi = σ2

i I, where σi is time-invariant, though
it may be different for each i. Two robots are
considered in danger of collision if their localiza-
tion uncertainty regions overlap. The robots begin
each trial uniformly distributed along the edges
of the space, ensuring that they begin a safe dis-
tance from each other. We assume that each robot
is able to obtain information everywhere in their
own CUV cell. While this is a limiting assump-
tion, the goal of this work is to demonstrate
the efficacy of the control strategy. Practical con-
cerns, such as robots with a limited field of view
and imperfect measurements, have be addressed
in the Section 4. Also, note the robots use a
sampling-based integration method to calculate
the centroids.

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 13

Table 2 Number of collisions per trial

σr (m)
Robot #

10 20 50 100

0.1 3 115 85 176
0.2 7 87 95 193
0.3 25 144 118 168
0.4 3 82 132 102

5.1.1 Collision Avoidance

Before testing the target tracking performance, we
first conduct a series of tests to demonstrate the
need for collision avoidance.

Motivation

We ran trials with 10, 20, 50 and 100 robots with
localization errors ranging from 0.1m to 0.4m, in
steps of 0.1m. Each robot has a radius of 0.1m,
the same order of magnitude as the localization
uncertainty. We consider the worst case, in which
two robots collide if their localization uncertainty
regions overlap. The robots search for 20 dynamic
targets over the course of 1000 s. Note that 20
is only the initial number of targets and that
the actual number varies over time as new tar-
gets enter and existing ones leave. The robots use
the old method from [9], which assumes perfect
knowledge in the positions of the robots and only
guarantees collision avoidance in this case.

As Table 2 shows, even with a low density
of robots (only 10 in the 60m × 60m area) a
number of collisions happen over each trial, even
with very modest uncertainty in the positions of
each robot. As the density of robots increases,
so to do the number of collisions. This agrees
with the intuition that a higher robot density will
increase the chance of collisions. The number of
collisions also generally increases as the amount
of localization uncertainty increases. However, the
correlation between these two factors is less strong
than it was between robot density and number of
collisions. Note, the above trends are not always
true since the information distribution function is
stochastically generated and changes over time,
making the motion of robots highly random.

Results

Next, we demonstrate how robots plan their
paths to avoid collisions and deadlock using the
approach from Section 3.2. Eight robots are evenly
distributed at the edges of the mission space at

Fig. 8 Distribution of robots and information after 100
simulated seconds. Green markers show the true positions
of 30 robots and red crosses show their current goals, i.e.,
the weighted centroid of their CUV cells. The informa-
tion distribution is shown in grayscale in the background,
with darker indicating more information. The robots were
originaly uniformly spaced along the boundaries of the
environment.

the beginning, formulating four pairs of antipodal
robots, as Fig. 7 shows. The goal is for the robots
in each pair to exchange positions. All robots
start moving to their goals simultaneously with
the same velocity. Due to this symmetry, all robots
approach the center at the same time, blocking
the way of the other robots. As Fig. 7 shows, all
robots were able to successfully avoid collision and
eventually reach their goals.

5.1.2 Optimized Coverage

Single Trial

We first show a single trial using 30 robots. Each
robot has a localization error σi randomly dis-
tributed in the range [0.2, 0.3]m. All robots begin
uniformly distributed along the boundaries of the
environment, and the trial lasts for 100 s. The
results are shown in Fig. 8. We see that most
robots end up clustered in the areas of high infor-
mation density, while a few of others stay in low
information density areas in order to maintain
coverage of the entire mission space. Some robots
have not reached their temporary goals since the
information density changes over time, resulting
in the continuous change of the weighted centroids
in their CUV cells.

Comparison of Trials

We then conduct a large array of experiments
to show the performance of different sensing net-
works. We define dense-information regions as

Springer Nature 2021 LATEX template

14 Convex Uncertain Voronoi

(a) CAR - 20 Robots (b) CAR - 30 Robots (c) CAR - 40 Robots (d) CAR - 50 Robots

(e) Original - 20 Robots (f) Original - 30 Robots (g) Original - 40 Robots (h) Original - 50 Robots

Fig. 9 Boxplots showing the OSP (black) and the DIP (blue) percentages for networks with 20, 30, 40, and 50 robots and
different localization errors σi ranging from 0.1m to 0.5m. The first row uses the CAR for collision avoidance while the
second row uses the original method from [9]. Each boxplot contains the results from 10 trials.

regions that are within 3σenv of the means of the
Gaussian PDFs in the information distribution
function. To measure the performance of the team,
we use two metrics. First, we measure the fraction
of the total area that lies within the dense infor-
mation regions, denoted as the dense-information
proportion (DIP). Second, we measure the frac-
tion of the total number of robots believed to be
within high-density regions, i.e., q̂i in the high-
density region, denoted as the optimized robot
proportion (OSP). The difference between the
OSP and the DIP will demonstrate the ability of
our control algorithm to guide robots to areas of
high information density. Specifically, we want the
OSP to be significantly higher than the DIP, indi-
cating that the robots are gathering at locations
with high information value.

We compare sensing networks of 4 different
sizes, from 20 robots to 50 robots in steps of 10.

For each network size we test 5 different uncer-
tainty region sizes, drawing σ from uniform dis-
tributions ranging from [0.1, 0.2]m to [0.5, 0.6]m,
running 10 trials for each configuration, and plot-
ting them in Figs. 9a to 9d. We log the data for
300 s and use only the last 200 s to compute the
OSP and the DIP for each sensing network since
it takes up to 100 s for the OSP to reach steady
state. The mean and range of the DIP are nearly
identical for all tests, indicating that the total
information density over the mission space is rel-
atively stable for all tests. The results show that
for all sensing networks, the OSP is at least two
times larger than the DIP, meaning that all of the
team has optimized the robot locations.

For each network size, the OSP decreases as
the range of σ increases. This is expected, since
increasing σ also increases the minimum allow-
able distance between robots using the CAR. The
result is that fewer robots are able to gather
within high-density areas. We also see that for

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 15

this particular environment, the OSP decreases
as the network size increases. This is due to the
fact that a smaller group tends to move to high
information density areas more significantly to
optimize its total detection probability, while a
larger group explores more in low density areas
as high density areas are saturated with agents.
Additional, robots with higher localization uncer-
tainty reserve more space among each other during
moving inside the working space, causing high
density areas saturated with less amount of agents.

We also compare against the baseline approach
that assumes perfect localization [9], shown in
Figs. 9e to 9h. The value of the DIP, which is
fully determined by the environment, is essen-
tially identical to the first trials, which is expected.
On the other hand, we see that for teams using
the original search method that the OSP remains
effectively constant as a function of the uncer-
tainty, indicating that the robots closely cluster
around the high information regions. However,
this is a falsely positive result, as achieving this
is only possible with many robot-robot collisions
(see Table 2). The CARs force higher robot-robot
spacing, which will inherently decrease the OSP
as uncertainty grows.

5.2 Distributed Estimation and
Control Simulations

There are two main approaches for robots to get
their locations: relative to a global coordinate sys-
tem or to their starting location. The former is
typically done using a GNSS sensor when out-
doors or a motion capture system when indoors.
The latter is typically done using a combina-
tion of proprioceptive (e.g., inertial measurement
units (IMUs) or wheel encoders) and exterocep-
tive (e.g., camera or light detection and ranging
(ladar)) sensors. Levinson et al. [46] fuse GPS,
IMU, wheel odometry, and ladar data to achieve
an average localization error of ≤ 5 cm for vehicles
in urban environment, compared with ≥ 1m for
GPS alone. Similarly, experiments in [47], which
use Monte Carlo localization, show that when
using a sonar and lidar a robot achieve localization
error of ≤ 25 cm, which can be further decreased
to ≤ 10 cm if cell size and number of samples are
properly selected.

Using the data from the references above, we
choose to conduct our Matlab simulations in an

open 60m × 60m 2D space. Each robot i has
localization error σi ranging from 0.1m to 0.4m
in steps of 0.05m, which is representative of real-
world scenarios. We also compare these results to
the case without localization error for reference,
which is equivalent to implementing our previous
search and tracking algorithms in [9]. For each
level of localization error, we test either 10, 15, 20
ground robots tracking 10, 15, 20 targets, where
the targets can either be all static or all dynamic.
This leads to a total of 9×3×3×2 = 162 scenarios
tested, with ten trials for each combination.

The robots begin each trial uniformly dis-
tributed along the edges of the space, ensuring
that they begin a safe distance from each other.
They move with a maximum speed of 2m/s. Each
robot is equipped with an isotropic sensor with
a 6m sensing range. The other parameters of the
sensor model are identical to those from [9]. Note
that the PHD filter can easily accommodate more
realistic sensor models [48]. The target models also
match those from [9]. The PHD is represented by
a uniform grid of particles. The grid resolution is
1m, and initially the weight of each particle is set
to wj = 2.7−4, so that the total expected number
of targets is initially 1.

We use the first order Optimal SubPattern
Assignment (OSPA) metric [49], a commonly-used
approach in MTT. The error between two sets
X,Y , where |X| = m ≤ |Y | = n without loss of
generality, is

d(X,Y) =(
1

n
min
π∈Πn

(m∑
i=1

dc(xi, yπ(i))
p + cp(n−m)

))1/p

,

(11)

where c is a cutoff distance, dc(x, y) = min(c, ∥x−
y∥), and Πn is the set of all permutations of the
set {1, 2, . . . , n}. This gives the average error in
matched targets, where OSPA considers all pos-
sible assignments between elements x ∈ X and
y ∈ Y that are within distance c of each other.
This can be efficiently computed in polynomial
time using the Hungarian algorithm [50]. We use
c = 10m, p = 1, and measure the error between
the true and estimated target sets. Note that
a lower OSPA value indicates a more accurate
tracking of the target set.

Springer Nature 2021 LATEX template

16 Convex Uncertain Voronoi

5.2.1 Static Targets

We first test the case of stationary targets to get a
benchmark of performance. Note that in addition
to remaining stationary, there are no newborn tar-
gets and no existing targets disappear. Figure 11
shows the average OSPA error over the final 250 s
of 300 s runs to get the steady-state value. Over-
all, we see that for a fixed number of robots and
targets the OSPA error remains fairly consistent
over the range of localization uncertainty values
tested, with a slight increase as σi increases. This
increase is due to two main reasons. First, the total
detection probability of the team is no longer max-
imized as discussed in Section 3.1, and decreases
as the localization uncertainty level increases. Sec-
ond, the increase in localization error results in an
increase in the distances between robots for col-
lision avoidance, which prevents the robots from
tracking more accurately when targets are closely
spaced. These effects are more pronounced both
with smaller teams and when the robot-to-target
ratio is low. This is due to the decrease in redun-
dancy in the system. However, when the number
of robots exceeds the number of static targets, the
OSPA error is close to 0 within the uncertainty
range of 0.4m, indicating that all targets end up
being tracked accurately.

5.2.2 Dynamic Targets

In the case of moving targets, the number of tar-
gets indicates the initial number. Targets move
with a maximum speed of 1m/s. However, this
value varies over time as new targets enter the
search area and others leave it. To account for this
increased complexity we run the trials for a longer
time (1000 s) and we measure the average OSPA
error over the final 900 s to obtain a measure of
steady-state behavior.

Figure 10 shows the trajectories of robots and
targets over 300 s during one test. We see that the
robot team covers a majority of areas during the
period of time, with most of the robots clustering
near the boundaries due to the higher target birth
rate. Each target is tracked by at least one robot
for a majority of the time, illustrating the efficacy
of target tracking despite the presence of robot
localization error.

We then conduct a batch of trials for further
quantitative evaluation. In Figs. 11b, 11e and 11h,
we see that the OSPA error increases roughly by

Fig. 10 An exemplary plot showing the trajectories of 20
robots, plot with colored curves, tracking a varying num-
ber of moving targets, plot with yellow curves, over 300 s.
The maximum number of targets is 20. Robot’s localiza-
tion uncertainty is 0.1m.

1–2m as the uncertainty range increases from 0m
to 0.4m. This is primarily due to an increase in
the number of untracked targets (each of which
increases the OSPA by a value of 1/n), with a
minor effect due to an increase in the error of
tracked targets. The number of untracked tar-
gets is considerably higher in the dynamic target
case because new targets enter the area along
the boundaries and there are simply not enough
robots to ensure that each is detected early on.
This is also why the OSPA error is effectively con-
stant regardless of the initial number of targets for
all team sizes and uncertainty values.

We see that as the team size increases, the
error decreases, just like in the static case. The
primary reason for this is that a greater percent-
age of the area is visible at any given time, leading
to a high fraction of new targets being detected
and tracked. We also see a more pronounced and
consistent increase in the OSPA as σ increases,
compared to the static case. This is due to the
more diffuse estimate of target locations within
the PHD making it more difficult to initiate track-
ing and the increased likelihood of losing tracking
of a target over time.

We also compare against our original method
[9], which assumes perfect localization. We see in
Figs. 11c, 11f and 11i that the OSPA increases
more slowly as a function of the uncertainty as
it does using our new algorithm. This is due to
a combination of effects. At low uncertainty, the
OSPA increase relative to the new method is
dominated by the uncertainty in self-localization

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 17

and its effect on the tracking accuracy. At high
uncertainty, the slower rate of increase is due
to the lower inter-robot spacing allowed under
using the original algorithm which, like the dis-
tributed control experiments (Section 5.1), results
in robot-robot collisions.

6 Hardware Experiments

We test our proposed estimation and control algo-
rithms using a team of TurtleBot3 platform for
both robots and moving targets. The TurtleBot3,
shown in Fig. 12, is a differential drive robot
equipped with a 2D lidar with a full 360◦ field
of view and 3.5m range. The maximum velocity
of the searching robots is 0.1m/s while the max-
imum velocity of the moving targets is 0.05m/s.
The robots operate in a 4m × 4m open portion
of an indoor space, shown by the yellow square
in Fig. 13. The robots use this full prior occu-
pancy grid map for localization using amcl from
the ROS navigation stack [35], an implementation
of adaptive Monte Carlo localization (AMCL) [51]
using only lidar data. amcl outputs the estimated
pose and covariance, which we use to compute the
radius of the localization uncertainty region of a
robot using (5). Note, these radii may change as
the robots move, which could lead to a pair of
robots getting too close, the localization uncer-
tainty suddenly increasing, and preventing the
robots from constructing their CUV cells. How-
ever, throughout our experiments, this situation
never arose since the localization uncertainty is
relatively consistent due to the static and well-
structured nature of the environment, with radii
typically around 0.1m. Since the TurtleBots are
non-holonomic agents, they cannot directly follow
the gradient descent controller from (3). Instead,
the robots use the dynamic window approach
(DWA) [52] from the ROS navigation stack to
reach the goal locations set by Algorithm 2.3

To make the targets stand out against the
background, we use strips of retroreflective tape.
The returns from the tape in the laser scan ROS
message have an intensity value around 8000 units,
while background objects are typically under
5000. To convert the lidar data to bearing and

3Another alternative would be to use the work of [53] who
develop a formulation of Lloyd’s algorithm for non-holonomic
agents.

range measurements, we discard all lidar points
below an intensity threshold of 7000, find the
centroid of each cluster of remaining points, and
compute the range and bearing to that centroid,
a technique we previously used in another target
tracking context [48]. We attach these retroflective
tape bands to water bottles (stationary targets)
or TurtleBot3s (dynamic targets). The dynamic
targets follow pre-defined trajectories, which are
unknown to the tracking robots. We also limit the
maximum detection range of the TurtleBot to 2m
as we found that beyond this range the reflec-
tive marker detections were not reliable. This also
makes the sensing problem more challenging as
the robots have a smaller field of view.

6.1 Distributed Communication

Our system is composed of a laptop with Intel
Core i7-5500U CPU and 8GB memory running
Ubuntu 16.04, and four TurtleBot3 robots run-
ning Raspbian Jessie. All computers communicate
over a local wireless network. We use ROS to han-
dle the data exchange between robots/processes,
with each robot having a set of nodes to local-
ize itself, compute its CUV cell, detect targets
from its lidar scan, run the PHD filter, compute
the goal, and send navigation commands. Dur-
ing operation, each robot asynchronously follows
the set of actions in Fig. 1, where each robot
must additionally use AMCL to localize itself after
moving and before finding the CUV and CAR
cells.

To implement Algorithms 3 to 6, robots must
exchange information locally, sharing all required
information with neighbors before running each
algorithm and sharing must be done in a spe-
cific order to ensure consistency across robots.
To achieve this, we use ROS services to send
information between pairs of nodes.

One issue that arose during implementation
was communication deadlock, where one agent
waits for a service from a second agent while that
second agent waits on a service from the first. This
is often due to a communication latency, where
one agent can call for a service before it receives
the request sent earlier from another agent. To
prevent this, we developed a sequential informa-
tion exchange algorithm, outlined in Algorithm 7.
The basic idea is to always allow only one robot

Springer Nature 2021 LATEX template

18 Convex Uncertain Voronoi

(a) 10 Robots & Static Targets (b) 10 Robots & Moving Targets (c) Original - 10 Robots & 10 Moving
Targets

(d) 15 Robots & Static Targets (e) 15 Robots & Moving Targets (f) Original - 15 Robots & 10 Moving
Targets

(g) 20 Robots & Static Targets (h) 20 Robots & Moving Targets (i) Original - 20 Robots & 10 Moving
Targets

Fig. 11 OSPA error of different teams of robots tracking different numbers of targets under different localization uncertainty
levels. Red, blue and black boxplots represent target set of 10, 15 and 20 targets respectively.

Fig. 12 TurtleBot3 Burger robot from ROBOTIS.

to request information from others within a neigh-
borhood at one time and to ensure that each
robot receives information sequentially instead of
simultaneously. For the robot r with exchange set
Er(S), we use a set L (line 2) to store all robots
in Er(S) which robot r has received information

from it. rmin is the smallest ID of robots not hav-
ing received information from robot r (line 5),
and robot r uses this to decide whether to request
information from its neighbors or to respond to
requests (lines 6-9). Finally, r adds rmin to L
(line 10) and the cycle repeats until r has sent
information to all robots in its exchange set (line
4).

6.2 Results

The robots begin exploration from the boundary
of the environment, as shown in Fig. 14a, with suf-
ficient separation to ensure that their localization

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 19

Fig. 13 The occupancy grid map of the living room envi-
ronment built via SLAM. The yellow square shows the 4m
× 4m open search space inside the map.

Algorithm 7 Sequential Information Exchange

1: function seqInfoExg(r, Er(S))
2: Initialize L = ∅
3: while L ̸= Er(S) do
4: rmin = min(Er(S) \ L)
5: if r = rmin then
6: Send request to all robots in Er(S)
7: else
8: Wait for request from robot rmin

9: end if
10: L ← L ∪ {rmin}
11: end while
12: end function

uncertainty regions do not overlap so the CUV
diagram can be successfully initialized. In gen-
eral, we found that the localization uncertainty
regions shrink after robots begin to move since
more environment information is collected.

There are three phases along the process of
multi-target search and tracking. Initially, all
robots move towards the targets with each of them
tracking a unique target, as Fig. 14b shows. In the
second and third phases, targets 3 and 4 begin
to move, respectively. We can see in Figs. 14c
and 14d that robots 3 and 4 effectively follow these
moving targets while the other robots continue
to track the stationary targets. This trial demon-
strates the efficacy the our proposed estimation
and control algorithms to track mixed static and
dynamic targets under localization uncertainty.

7 Conclusions

In this paper, we first propose a distributed control
algorithm for a mobile sensing network that opti-
mizes the robot locations to improve detections
while maintaining coverage of the entire mission
space, accounting for uncertainty in the loca-
tion of each robot, and guaranteeing safety. This
approach uses two novel variants of the Voronoi
cell: the convex uncertainty Voronoi (CUV) dia-
gram and the collision avoidance region (CAR).
Robots are able to construct both the CUV and
the CAR in a distributed fashion, using only local
information about robots’ estimated locations and
the associated uncertainty of these estimates. The
robots then recursively drive to the weighted cen-
troid of their CUV cells, using the information
density function to determine the relative weights
of each location in the environment. This enables
robots to move to regions with high information
density. The CARs then restrict the motion of
each robot to avoid collision with others and to
avoid becoming stuck in any deadlock configu-
ration. We then introduce four distributed algo-
rithms to enable a team of robots to safely search
for and track a time-varying number of targets.
This offers a significant improvement over our
previous work that assumed that all robots had
perfect knowledge of their own positions, which
is an unrealistic assumption in practice. These
algorithms enable the team of robots to exchange
data and maintain a distributed multi-target fil-
ter in a consistent and efficient manner that yields
an identical result to a centralized approach. To
do this, we leverage our recent results where we
introduced the convex uncertainty Voronoi (CUV)
diagram, using this to distribute the PHD across
the team and to ensure collision avoidance. The
complication lies in that robots are possible to
maintain the PHD in a common region due to the
ambiguity of their true locations. Thus, the PHD
should be carefully maintained by each individual
robot to avoid the loss or over maintaining.

We validate our approach using a series of sim-
ulated and hardware experiments. We first show
that the proposed distributed control law func-
tions as desired, and that the effects of changing
the size of the network and the scale of the local-
ization error on the performance of the team.
We see that increasing localization error results
in larger spacing between robots. To validate

Springer Nature 2021 LATEX template

20 Convex Uncertain Voronoi

(a) Initial Poses of Robots and Targets (b) Tracking Phase 1

(c) Tracking Phase 2 (d) Tracking Phase 3

Fig. 14 Figures show initial states of robots and targets, and three phases during distributed search and tracking. In
Fig. 14a, yellow lines indicate the boundaries of the open search space in the map. In Figs. 14b to 14d, white and blue
arrows show trajectories of robots and targets, respectively.

the tracking performance of our estimation and
control scheme, we then show that the tracking
accuracy decreases only slightly as the localiza-
tion uncertainty level increases, compared with
the case where robots have perfect knowledge of
their locations. Meanwhile, our proposed method
guarantees collision avoidance, which can be a sig-
nificant issue when applying Voronoi-based con-
trol algorithms in practice. Future work will aim to
remove the assumption of perfect communication
between robots to further increase the real-world
applicability of our proposed algorithms.

Declarations

Funding

This work was supported by the National Science
Foundation (Grant number IIS-1830419).

Competing Interests

The authors have no relevant financial or non-
financial interests to disclose.

Authors’ Contributions

Conceptualization: Jun Chen and Philip Dames;
Data curation: Jun Chen; Formal analysis : Jun
Chen; Funding acquisition : Philip Dames; Inves-
tigation: Jun Chen; Methodology : Jun Chen
and Philip Dames; Project administration : Philip

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 21

Dames; Resources: Philip Dames ; Software: Jun
Chen; Supervision: Philip Dames; Validation: Jun
Chen; Visualization: Jun Chen; Writing - origi-
nal draft : Jun Chen; Writing - review and editing :
Philip Dames.

Appendix A Deadlock
Avoidance

Algorithm 8 Deadlock Avoidance

1: if q̂i reaches a vertex of Mi then
2: Move along either of the adjacent edges by
bbuffer

3: else if q̂i reaches an edge Ek of Mi then
4: Compute distance to the right-hand vertex
bv

5: Move along Ek to the right by
min(bv, bbuffer)

6: end if

Deadlock is the problem that robots mutually
block each other from reaching their goals. While
using the CUV-based method, this can occur when
the goal is located in the intersection of CUV cells.
Zhou et al. [15] proved that a deadlock can only
happen under the condition that a robot is at a
vertex or on an edge of its safe moving region, the
buffered Voronoi cell in their paper or the CAR
in our case. They proposed two heuristic solutions
that perform well in practice to alleviate deadlock
phenomena, the second of which we utilize in our
implementation. This basic idea, outlined in Algo-
rithm 8, is to continuously break this deadlock
condition.

References

[1] Konstantinova, P., Udvarev, A., Semerdjiev,
T.: A study of a target tracking algorithm
using global nearest neighbor approach. In:
Proceedings of the International Confer-
ence on Computer Systems and Technologies
(CompSysTech’03), pp. 290–295 (2003)

[2] Rezatofighi, S.H., Milan, A., Zhang, Z., Shi,
Q., Dick, A., Reid, I.: Joint probabilistic data
association revisited. In: Proceedings of the
IEEE International Conference on Computer

Vision, pp. 3047–3055 (2015). https://doi.
org/10.1109/ICCV.2015.349

[3] Blackman, S.S.: Multiple hypothesis tracking
for multiple target tracking. IEEE Aerospace
and Electronic Systems Magazine 19(1), 5–18
(2004). https://doi.org/10.1109/MAES.2004.
1263228

[4] Särkkä, S., Vehtari, A., Lampinen, J.: Rao-
blackwellized particle filter for multiple tar-
get tracking. Information Fusion 8(1), 2–
15 (2007). https://doi.org/10.1016/j.inffus.
2005.09.009

[5] Mahler, R.P.: Multitarget bayes filtering
via first-order multitarget moments. IEEE
Transactions on Aerospace and Electronic
systems 39(4), 1152–1178 (2003). https://
doi.org/10.1109/TAES.2003.1261119

[6] Cortes, J., Martinez, S., Karatas, T., Bullo,
F.: Coverage control for mobile sensing net-
works. IEEE Transactions on Robotics and
Automation 20(2), 243–255 (2004). https://
doi.org/10.1109/TRA.2004.824698

[7] Adaldo, A., Mansouri, S.S., Kanellakis,
C., Dimarogonas, D.V., Johansson, K.H.,
Nikolakopoulos, G.: Cooperative coverage
for surveillance of 3d structures. In: 2017
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 1838–
1845 (2017). https://doi.org/10.1109/IROS.
2017.8205999. IEEE

[8] Zhong, M., Cassandras, C.G.: Distributed
coverage control and data collection with
mobile sensor networks. IEEE Transac-
tions on Automatic Control 56(10), 2445–
2455 (2011). https://doi.org/10.1109/TAC.
2011.2163860

[9] Dames, P.M.: Distributed multi-target
search and tracking using the PHD
filter. Autonomous Robots 44, 673–
689 (2020). https://doi.org/10.1007/
s10514-019-09840-9

[10] Chen, J., Dames, P.: Distributed multi-target
tracking for heterogeneous mobile sensing
networks with limited field of views. In: 2021

https://doi.org/10.1109/ICCV.2015.349
https://doi.org/10.1109/ICCV.2015.349
https://doi.org/10.1109/MAES.2004.1263228
https://doi.org/10.1109/MAES.2004.1263228
https://doi.org/10.1016/j.inffus.2005.09.009
https://doi.org/10.1016/j.inffus.2005.09.009
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1109/TRA.2004.824698
https://doi.org/10.1109/TRA.2004.824698
https://doi.org/10.1109/IROS.2017.8205999
https://doi.org/10.1109/IROS.2017.8205999
https://doi.org/10.1109/TAC.2011.2163860
https://doi.org/10.1109/TAC.2011.2163860
https://doi.org/10.1007/s10514-019-09840-9
https://doi.org/10.1007/s10514-019-09840-9

Springer Nature 2021 LATEX template

22 Convex Uncertain Voronoi

IEEE International Conference on Robotics
and Automation (ICRA), pp. 9058–9064
(2021). https://doi.org/10.1109/ICRA48506.
2021.9561888. IEEE

[11] Hussein, I.I., Stipanovic, D.M.: Effective cov-
erage control for mobile sensor networks
with guaranteed collision avoidance. IEEE
Transactions on Control Systems Technol-
ogy 15(4), 642–657 (2007). https://doi.org/
10.1109/TCST.2007.899155

[12] Li, W., Cassandras, C.G.: Distributed coop-
erative coverage control of sensor networks.
In: Proceedings of the 44th IEEE Confer-
ence on Decision and Control, pp. 2542–
2547 (2005). https://doi.org/10.1109/CDC.
2005.1582545. IEEE

[13] Okabe, A., Boots, B., Sugihara, K., Chiu,
S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams vol. 501.
John Wiley & Sons, Chichester (2009)

[14] Du, Q., Emelianenko, M., Ju, L.: Conver-
gence of the Lloyd algorithm for computing
centroidal Voronoi tessellations. SIAM Jour-
nal on Numerical Analysis 44(1), 102–119
(2006). https://doi.org/10.1137/040617364

[15] Zhou, D., Wang, Z., Bandyopadhyay, S.,
Schwager, M.: Fast, on-line collision avoid-
ance for dynamic vehicles using buffered
Voronoi cells. IEEE Robotics and Automa-
tion Letters 2(2), 1047–1054 (2017). https:
//doi.org/10.1109/LRA.2017.2656241

[16] Kim, S., Santos, M., Guerrero-Bonilla, L.,
Yezzi, A., Egerstedt, M.: Coverage control
of mobile robots with different maximum
speeds for time-sensitive applications. IEEE
Robotics and Automation Letters (2022).
https://doi.org/10.1109/LRA.2022.3146593

[17] Rudolph, M., Wilson, S., Egerstedt, M.:
Range limited coverage control using air-
ground multi-robot teams. In: 2021 IEEE
International Conference on Robotics and
Automation (ICRA), pp. 3525–3530 (2021).
https://doi.org/10.1109/ICRA48506.2021.
9561706. IEEE

[18] Luo, W., Sycara, K.: Voronoi-based cover-
age control with connectivity maintenance
for robotic sensor networks. In: 2019 Inter-
national Symposium on Multi-Robot and
Multi-Agent Systems (MRS), pp. 148–154
(2019). https://doi.org/10.1109/MRS.2019.
8901078. IEEE

[19] Kantaros, Y., Thanou, M., Tzes, A.: Dis-
tributed coverage control for concave areas
by a heterogeneous robot–swarm with vis-
ibility sensing constraints. Automatica 53,
195–207 (2015). https://doi.org/10.1016/j.
automatica.2014.12.034

[20] Schwager, M., McLurkin, J., Rus, D.: Dis-
tributed coverage control with sensory feed-
back for networked robots. In: Robotics:
Science and Systems, pp. 49–56 (2006)

[21] Schwager, M., Rus, D., Slotine, J.-J.: Decen-
tralized, adaptive coverage control for net-
worked robots. The International Journal of
Robotics Research 28(3), 357–375 (2009).
https://doi.org/10.1177/0278364908100177

[22] Xie, X., Cheng, R., Yiu, M.L., Sun, L.,
Chen, J.: UV-diagram: a Voronoi diagram
for uncertain spatial databases. The VLDB
Journal—The International Journal on Very
Large Data Bases 22(3), 319–344 (2013)

[23] Jooyandeh, M., Mohades, A., Mirzakhah,
M.: Uncertain Voronoi diagram. Information
Processing Letters 109(13), 709–712 (2009).
https://doi.org/10.1016/j.ipl.2009.03.007

[24] Evans, W., Sember, J.: Guaranteed Voronoi
diagrams of uncertain sites. In: 20th Cana-
dian Conference on Computational Geome-
try, pp. 207–210 (2008)

[25] Zhu, H., Brito, B., Alonso-Mora, J.: Decen-
tralized probabilistic multi-robot collision
avoidance using buffered uncertainty-
aware voronoi cells. Autonomous Robots,
1–20 (2022). https://doi.org/10.1007/
s10514-021-10029-2

[26] Wang, M., Schwager, M.: Distributed col-
lision avoidance of multiple robots with
probabilistic buffered voronoi cells. In: 2019

https://doi.org/10.1109/ICRA48506.2021.9561888
https://doi.org/10.1109/ICRA48506.2021.9561888
https://doi.org/10.1109/TCST.2007.899155
https://doi.org/10.1109/TCST.2007.899155
https://doi.org/10.1109/CDC.2005.1582545
https://doi.org/10.1109/CDC.2005.1582545
https://doi.org/10.1137/040617364
https://doi.org/10.1109/LRA.2017.2656241
https://doi.org/10.1109/LRA.2017.2656241
https://doi.org/10.1109/LRA.2022.3146593
https://doi.org/10.1109/ICRA48506.2021.9561706
https://doi.org/10.1109/ICRA48506.2021.9561706
https://doi.org/10.1109/MRS.2019.8901078
https://doi.org/10.1109/MRS.2019.8901078
https://doi.org/10.1016/j.automatica.2014.12.034
https://doi.org/10.1016/j.automatica.2014.12.034
https://doi.org/10.1177/0278364908100177
https://doi.org/10.1016/j.ipl.2009.03.007
https://doi.org/10.1007/s10514-021-10029-2
https://doi.org/10.1007/s10514-021-10029-2

Springer Nature 2021 LATEX template

Convex Uncertain Voronoi 23

International Symposium on Multi-Robot
and Multi-Agent Systems (MRS), pp. 169–
175 (2019). https://doi.org/10.1109/MRS.
2019.8901101. IEEE

[27] Chen, J., Dames, P.: Distributed and
collision-free coverage control of a team
of mobile sensors using the convex uncer-
tain voronoi diagram. In: 2020 American
Control Conference (ACC), pp. 5307–5313
(2020). https://doi.org/10.23919/ACC45564.
2020.9147359. IEEE

[28] Chen, J., Dames, P.: Collision-free dis-
tributed multi-target tracking using teams of
mobile robots with localization uncertainty.
In: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS),
pp. 6968–6974 (2020). https://doi.org/10.
1109/IROS45743.2020.9341126. IEEE

[29] Wang, L., Ames, A.D., Egerstedt, M.: Multi-
objective compositions for collision-free con-
nectivity maintenance in teams of mobile
robots. In: 2016 IEEE 55th Conference on
Decision and Control (CDC), pp. 2659–
2664 (2016). https://doi.org/10.1109/CDC.
2016.7798663. IEEE

[30] Pierson, A., Figueiredo, L.C., Pimenta, L.C.,
Schwager, M.: Adapting to sensing and actu-
ation variations in multi-robot coverage. The
International Journal of Robotics Research
36(3), 337–354 (2017). https://doi.org/10.
1177/0278364916688103

[31] Benevento, A., Santos, M., Notarstefano, G.,
Paynabar, K., Bloch, M., Egerstedt, M.:
Multi-robot coordination for estimation and
coverage of unknown spatial fields. In: 2020
IEEE International Conference on Robotics
and Automation (ICRA), pp. 7740–7746
(2020). https://doi.org/10.1109/ICRA40945.
2020.9197487. IEEE

[32] Breitenmoser, A., Metzger, J.-C., Siegwart,
R., Rus, D.: Distributed coverage con-
trol on surfaces in 3d space. In: 2010
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 5569–5576
(2010). https://doi.org/10.1109/IROS.2010.
5652851. IEEE

[33] Shi, Y., Wang, N., Zheng, J., Zhang, Y.,
Yi, S., Luo, W., Sycara, K.: Adaptive infor-
mative sampling with environment partition-
ing for heterogeneous multi-robot systems.
In: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS),
pp. 11718–11723 (2020). https://doi.org/10.
1109/IROS45743.2020.9341711. IEEE

[34] Santos, M., Diaz-Mercado, Y., Egerstedt, M.:
Coverage control for multirobot teams with
heterogeneous sensing capabilities. IEEE
Robotics and Automation Letters 3(2), 919–
925 (2018). https://doi.org/10.1109/LRA.
2018.2792698

[35] Quigley, M., Conley, K., Gerkey, B., Faust,
J., Foote, T., Leibs, J., Berger, E., Wheeler,
R., Ng, A.Y.: Ros: an open-source robot oper-
ating system. In: ICRA Workshop on Open
Source Software, vol. 3, p. 5 (2009). Kobe,
Japan

[36] Mahler, R.P.: Statistical Multisource-
multitarget Information Fusion vol. 685.
Artech House, Norwood, MA (2007)

[37] Dames, P., Kumar, V.: Experimental char-
acterization of a bearing-only sensor for
use with the phd filter. arXiv preprint
arXiv:1502.04661 (2015)

[38] Chen, J., Xie, Z., Dames, P.: The seman-
tic phd filter for multi-class target track-
ing: From theory to practice. Robotics and
Autonomous Systems 149, 103947 (2022).
https://doi.org/10.1016/j.robot.2021.103947

[39] Vo, B.-N., Singh, S., Doucet, A.: Sequential
monte carlo methods for multitarget filtering
with random finite sets. IEEE Transactions
on Aerospace and Electronic Systems 41(4),
1224–1245 (2005). https://doi.org/10.1109/
TAES.2005.1561884

[40] Carbunar, B., Grama, A., Vitek, J.: Dis-
tributed and dynamic voronoi overlays for
coverage detection and distributed hash
tables in ad-hoc networks. In: Proceedings.
Tenth International Conference on Paral-
lel and Distributed Systems, 2004. ICPADS
2004., pp. 549–556 (2004). https://doi.org/

https://doi.org/10.1109/MRS.2019.8901101
https://doi.org/10.1109/MRS.2019.8901101
https://doi.org/10.23919/ACC45564.2020.9147359
https://doi.org/10.23919/ACC45564.2020.9147359
https://doi.org/10.1109/IROS45743.2020.9341126
https://doi.org/10.1109/IROS45743.2020.9341126
https://doi.org/10.1109/CDC.2016.7798663
https://doi.org/10.1109/CDC.2016.7798663
https://doi.org/10.1177/0278364916688103
https://doi.org/10.1177/0278364916688103
https://doi.org/10.1109/ICRA40945.2020.9197487
https://doi.org/10.1109/ICRA40945.2020.9197487
https://doi.org/10.1109/IROS.2010.5652851
https://doi.org/10.1109/IROS.2010.5652851
https://doi.org/10.1109/IROS45743.2020.9341711
https://doi.org/10.1109/IROS45743.2020.9341711
https://doi.org/10.1109/LRA.2018.2792698
https://doi.org/10.1109/LRA.2018.2792698
https://doi.org/10.1016/j.robot.2021.103947
https://doi.org/10.1109/TAES.2005.1561884
https://doi.org/10.1109/TAES.2005.1561884
https://doi.org/10.1109/ICPADS.2004.1316137

Springer Nature 2021 LATEX template

24 Convex Uncertain Voronoi

10.1109/ICPADS.2004.1316137. IEEE

[41] Bash, B.A., Desnoyers, P.J.: Exact dis-
tributed voronoi cell computation in sensor
networks. In: Proceedings of the 6th Inter-
national Conference on Information Process-
ing in Sensor Networks, pp. 236–243 (2007).
https://doi.org/10.1145/1236360.1236393

[42] Cortes, J., Martinez, S., Bullo, F.: Spatially-
distributed coverage optimization and con-
trol with limited-range interactions. ESAIM:
Control, Optimisation and Calculus of Varia-
tions 11(4), 691–719 (2005). https://doi.org/
10.1051/cocv:2005024

[43] Mahboubi, H., Aghdam, A.G.: Self-
deployment algorithms for coverage
improvement in a network of nonidentical
mobile sensors with limited commu-
nication ranges. In: 2013 American
Control Conference, pp. 6882–6887 (2013).
https://doi.org/10.1109/ACC.2013.6580920.
IEEE

[44] Guo, J., Jafarkhani, H.: Sensor deployment
with limited communication range in homo-
geneous and heterogeneous wireless sensor
networks. IEEE Transactions on Wireless
Communications 15(10), 6771–6784 (2016).
https://doi.org/10.1109/TWC.2016.2590541

[45] Mahler, R.: The multisensor phd filter:
I. general solution via multitarget calcu-
lus. In: Signal Processing, Sensor Fusion,
and Target Recognition XVIII, vol. 7336,
p. 73360 (2009). https://doi.org/10.1117/12.
818024. International Society for Optics and
Photonics

[46] Levinson, J., Montemerlo, M., Thrun, S.:
Map-based precision vehicle localization in
urban environments. In: Robotics: Science
and Systems, vol. 4, p. 1 (2007). Citeseer

[47] Dellaert, F., Fox, D., Burgard, W., Thrun, S.:
Monte carlo localization for mobile robots. In:
Proceedings 1999 IEEE International Confer-
ence on Robotics and Automation, vol. 2, pp.
1322–1328 (1999). https://doi.org/10.1109/
ROBOT.1999.772544. IEEE

[48] Dames, P., Kumar, V.: Autonomous localiza-
tion of an unknown number of targets with-
out data association using teams of mobile
sensors. IEEE Transactions on Automa-
tion Science and Engineering 12(3), 850–864
(2015). https://doi.org/10.1109/TASE.2015.
2425212

[49] Schuhmacher, D., Vo, B.-T., Vo, B.-N.: A
consistent metric for performance evaluation
of multi-object filters. IEEE transactions on
signal processing 56(8), 3447–3457 (2008).
https://doi.org/10.1109/TSP.2008.920469

[50] Kuhn, H.W.: The Hungarian method for the
assignment problem. Naval Research Logis-
tics Quarterly 2(1-2), 83–97 (1955). https:
//doi.org/10.1002/nav.3800020109

[51] Pfaff, P., Burgard, W., Fox, D.: Robust
monte-carlo localization using adaptive likeli-
hood models. In: European Robotics Sympo-
sium 2006, pp. 181–194 (2006). https://doi.
org/10.1007/11681120 15. Springer

[52] Fox, D., Burgard, W., Thrun, S.: The
dynamic window approach to collision avoid-
ance. IEEE Robotics & Automation Maga-
zine 4(1), 23–33 (1997). https://doi.org/10.
1109/100.580977

[53] Arslan, O., Koditschek, D.E.: Voronoi-based
coverage control of heterogeneous disk-
shaped robots. In: 2016 IEEE International
Conference on Robotics and Automation
(ICRA), pp. 4259–4266 (2016). https://doi.
org/10.1109/ICRA.2016.7487622. IEEE

https://doi.org/10.1109/ICPADS.2004.1316137
https://doi.org/10.1109/ICPADS.2004.1316137
https://doi.org/10.1145/1236360.1236393
https://doi.org/10.1051/cocv:2005024
https://doi.org/10.1051/cocv:2005024
https://doi.org/10.1109/ACC.2013.6580920
https://doi.org/10.1109/TWC.2016.2590541
https://doi.org/10.1117/12.818024
https://doi.org/10.1117/12.818024
https://doi.org/10.1109/ROBOT.1999.772544
https://doi.org/10.1109/ROBOT.1999.772544
https://doi.org/10.1109/TASE.2015.2425212
https://doi.org/10.1109/TASE.2015.2425212
https://doi.org/10.1109/TSP.2008.920469
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1007/11681120_15
https://doi.org/10.1007/11681120_15
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/ICRA.2016.7487622
https://doi.org/10.1109/ICRA.2016.7487622

	Introduction
	Multi-Target Tracking
	Coverage Control
	Contributions

	Background
	Lloyd's Algorithm
	Localization Uncertainty Regions
	Uncertain Voronoi Diagram
	PHD Filter

	Distributed Control with Localization Uncertainty
	The CUV Diagram and Its Construction
	Collision Avoidance
	Distributed Coverage Control
	Discussion

	Distributed Estimation with Localization Uncertainty
	Exchange Set
	Particle Exchange
	PHD Prediction
	PHD Update
	Discussion

	Simulations
	Distributed Control Simulations
	Collision Avoidance
	Motivation
	Results

	Optimized Coverage
	Single Trial
	Comparison of Trials

	Distributed Estimation and Control Simulations
	Static Targets
	Dynamic Targets

	Hardware Experiments
	Distributed Communication
	Results

	Conclusions
	Deadlock Avoidance

