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ON BENFORD’S LAW FOR MULTIPLICATIVE FUNCTIONS

VORRAPAN CHANDEE, XIANNAN LI, PAUL POLLACK, AND AKASH SINGHA ROY

(Communicated by Amanda Folsom)

Abstract. We provide a criterion to determine whether a real multiplicative
function is a strong Benford sequence. The criterion implies that the k-divisor

functions, where k 6= 10j , and Hecke eigenvalues of newforms, such as Ra-

manujan tau function, are strong Benford. In contrast to some earlier work,
our approach is based on Halász’s Theorem.

1. Introduction

Benford’s law is a phenomenon about the first digits of the numbers in data sets.
In particular, the leading digits do not exhibit uniform distribution as might be
naively expected, but rather, the digit 1 appears the most, followed by 2, 3, and
so on until 9. More precisely, we define Benford’s law for a sequence of numbers
below.

Definition 1.1. Let {ak} be a sequence of positive real numbers. Suppose that

ak = 10Mk

∞∑
j=0

d
(k)
j 10−j ,

where Mk ∈ Z, 1 ≤ d
(k)
0 ≤ 9, and 0 ≤ d

(k)
j ≤ 9 for all j ≥ 1. {ak} satisfies strong

Benford’s law and is called a strong Benford sequence or strong Benford, if for all
strings S = d0d1...dK−1, where d0 6= 0, and for all positive integers K,

lim
N→∞

#
{
k ≤ N | d(k)

0 d
(k)
1 d

(k)
2 ....d

(k)
K−1 = d0d1d2...dK−1

}
N

= log10

(
r + 10−K+1

)
− log10 r

= log10

(
1 +

1

S

)
,

where r =
∑K−1
j=0 dj10−j .

Definition 1.2. Let {bk} be a sequence of non-negative real numbers. Let {b′j} be
the subsequence of {bk} obtained by removing all zero terms. We say that {bk} is
strong Benford if {b′j} is strong Benford.
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Remark 1.3. When K = 1, the condition above becomes that for d = 1, 2, ..., 9,

lim
N→∞

#
{
k ≤ N | d(k)

0 = d
}

N
= log10(d+ 1)− log10 d = log10

(
1 +

1

d

)
.

From now on, we will refer to strong Benford’s law simply as “Benford’s law.”

If a sequence of numbers is Benford, then the probability that its leading digit is
1 is log 2 ≈ 30.1% while that of 9 as a leading digit is only log(1+1/9) ≈ 4.6%. The
Benford’s law phenomena was first observed by the astronomer Simon Newcomb in
1881 [15] when he noticed that the first pages of a book of logarithm tables were
the most worn. Later, in 1938, Frank Benford [4] discovered similar patterns and
found numerical evidence from a multitude of data sets, e.g. population numbers,
areas of rivers, and physical constants.

A number of familiar sequences in mathematics such as Fibonacci sequences,
exponential functions, and factorial functions have been proven to follow Benford’s
law. Sequences in number theory appear as well. For instance, Kontorovich and
Miller [11] showed that the distribution of values of L-functions and certain statistics
concerning the iterates of the 3x + 1 problem follow Benford’s law. A refinement
of Lagarias and Soundararajan [12] proved that iterates of 3x + 1 problem follow
Benford’s law for most initial seeds. Recently, the first author and Aursukaree [2]
proved that the divisor function, which counts the number of positive divisors of n,
is Benford.

The divisor function is an example of the wider class of real multiplicative func-
tions. We say that h is a real multiplicative function if h : N→ R satisfies that for
all natural numbers m and n with (m,n) = 1,

h(mn) = h(m)h(n).

In this article, we will give a criterion for when real multiplicative functions follow
Benford’s law. Then we will apply the criterion to a number of interesting examples,
including the k-divisor functions, Euler’s Phi function and Hecke eigenvalues of new
forms.

The proof of our criterion is a nice application of Halász’s theorem on the sum of
multiplicative functions. Roughly speaking, we find that {h(n)} is a strong Benford
sequence if and only if e2πi` log10 |h(n)| is not “close to” niα for all nonzero integers `
and all real α. Another important feature of the criterion is that we can determine
if {h(n)} is Benford as soon as information at prime numbers is known.

After completing this work, we noticed that our criterion stated in Theorems 2.3
and 2.2 is essentially equivalent to the result of Delange in [5], where a criterion
is proven for values of a real additive function to be uniformly distributed mod
1. The connection here is that for positive valued multiplicative functions f(n),
log f(n) is a real additive function. We have chosen to preserve our presentation
and proof of the criterion for completeness. This is contained in Section 2, where
we provide the statements of Halász’s theorem, Weyl’s criterion and then explicitly
state and prove our main criterion (Theorem 2.3). Before that, we illustrate our
criterion with some applications below.

1.1. Applications of the criterion - Theorem 2.3. We start with the sequence
{na} where a is fixed. Previously, this sequence has been proven to be not strong
Benford by other methods, e.g. Fejér’s Theorem (see [21]). Applying Theorem 2.3,
we have an alternative simple proof of the same result.
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Corollary 1.4. Let a be a fixed real constant. Then {na} is not a strong Benford
sequence.

Next, we will consider the k-divisor function, which counts the number of ways
to write n as the product of k natural numbers, i.e.

dk(n) =
∑

n1n2....nk=n

1.

As previously mentioned, {d2(n)} = {d(n)} is a strong Benford sequence. The first
author and Aursukaree [2] used Selberg-Delange’s method [13, Chapter 7], which
involves analysis with contour integrals. Theorem 2.3 applies to dk(n) for general
k to give an alternate simpler proof.

Corollary 1.5. Let k ≥ 2, and dk(n) be the k-divisor function. Then {dk(n)} is a
strong Benford sequence if and only if k 6= 10j for all positive integers j.

Note that when k is a power of 10, so is dk(p) for all primes p, and hence dk(n)
is also a power of 10 for all squarefree integers n. Since the number of squarefree
integers up to x is about 6

π2x, the probability of the first digit of dk(n) being 1
exceeds 60.8% > 30.1%.

Another important multiplicative function is Euler’s phi function ϕ(n), which
counts the number of positive integers up to n that are relatively prime to n. The
formula is

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Corollary 1.6. Let ϕ(n) be Euler’s phi function. Then {ϕ(n)} is not a strong
Benford sequence.

Finally, let f(z) =
∑∞
n=1 λf (n)qn ∈ Snewk (Γ0(N)) where q = e2πiz, be a newform

(i.e., a holomorphic cuspidal normalized Hecke eigenform) of even weight k and
trivial nebentypus on Γ0(N) that does not have complex multiplication. We will
investigate the sequence of Fourier coefficients {λf (n)}. A classic example of this
type of sequence is the Ramanujan tau function τ(n). Previously, Jameson, Thorner
and Ye [10] showed that the sequence {λf (p)}, where p is prime, does not satisfy
Benford’s law, but it does follow Benford’s law with logarithmic density, which is 1

lim
n→∞

∑
p≤n

the first K-digits of λf (p) = S

1
p∑

p≤n
1
p

= log10

(
1 +

1

S

)
.

Our Theorem 2.3 allows us to consider the sequence over natural numbers n, not
restricted to primes.

Corollary 1.7. Let f(z) =
∑∞
n=1 λf (n)qn ∈ Snewk (Γ0(N)) where q = e2πiz, be

a newform of even weight k and trivial nebentypus on Γ0(N) that does not have
complex multiplication. Then {λf (n)} is a strong Benford sequence.

We remark that previously Anderson, Rolen and Stoehr [1] proved that the
non-zero coefficients of a special family of weakly holomorphic modular forms and
certain partition functions are Benford. We refer the reader there for more precise
statements.

1We state only a special case of [10], where the base is 10.
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As an application of Theorem 2.2 below, it is not difficult to show that the
collection of multiplicative functions f : N → R − {0} for which {f(n)} is not
a strong Benford sequence forms a group under pointwise multiplication. This
observation is equivalent to a result established in p. 51 of [5]. As an illustration,
we observe that since {d(n)} is a strong Benford sequence while {φ(n)} is not,
{d(n)φ(n)} is a strong Benford sequence.

Finally, we remark that while we prefer to work in base 10, the definitions and
results can all be ported easily to an arbitrary base g ≥ 2. No significant change is
needed to either the results or the proofs, but we must be somewhat careful when
formulating the correct analogue of Corollary 1.4: We find that dk(n) is strong
Benford in base g precisely when logg k /∈ Q.

2. The Main Theorem

Our criterion for real multiplicative functions to satisfy Benford’s law is stated in
terms of the “distance” between two multiplicative functions. We start by defining
this distance.

Definition 2.1. Let f and g be multiplicative functions taking values in the unit
disc {z ∈ C : |z| ≤ 1}. The distance up to x between f and g is defined to be

D(f, g;x) :=

∑
p≤x

1− Re(f(p)g(p))

p

1/2

.

This notion of distance comes from the work of Granville and Soundararajan
[9]. It is known (see [9, p. 364]) that the distance function satisfies the triangle
inequality, i.e. for any multiplicative function f, f ′, g, and g′,

D(ff ′, gg′;x) ≤ D(f, g;x) + D(f ′, g′;x).

If D(f, g;∞) < ∞, then we say that f pretends to be g. Let h : N → R − {0}
be a multiplicative function. It is obvious that f`(n) := e2πi` log10 |h(n)| is also
multiplicative.

We will start with the criterion for nonzero multiplicative functions. The crite-
rion for {h(n)} to be a strong Benford sequence is that f` does not pretend to be
niα for all α ∈ R and all nonzero integers `. More precisely, we have the following.

Theorem 2.2. Let h : N → R − {0} be a multiplicative function. Let f`(n) =
e2πi` log10 |h(n)|. {h(n)} is a strong Benford sequence if and only if D(f`, n

iα;∞) =
∞ for all α ∈ R and all ` 6= 0.

For multiplicative functions which are possibly zero for some n, we need an
additional condition on the frequency of nonzero terms.

Theorem 2.3. Let h : N→ R be a multiplicative function. Define

TN = |{n ≤ N | h(n) 6= 0}|.

Suppose N
TN � 1. Let f`(n) be defined as in Theorem 2.2, and g`(n) = f`(n) if

h(n) 6= 0 and is 0 otherwise. Then {h(n)} is a strong Benford sequence if and only
if D(g`, n

iα;∞) =∞ for all α ∈ R and all ` 6= 0.
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Remark 2.4. g`(n) is also multiplicative. For (m,n) = 1, if both h(m) and h(n) are
not zero, we have

g`(mn) = f`(mn) = f`(m)f`(n) = g`(m)g`(n).

Otherwise

g`(m)g`(n) = 0 = g`(mn).

Remark 2.5. Theorem 2.2 is a corollary of Theorem 2.3, where TN = N and g`(n) =
f`(n). We state Theorem 2.2 for clarity.

The notion of being strong Benford is closely connected to the notion of being
uniformly distributed modulo 1, which we define formally below.

Definition 2.6. A sequence {ak} is uniformly distributed modulo 1 if and only
if the fractional parts of all numbers in the sequence distribute uniformly on the
interval [0, 1], i.e.,

lim
n→∞

|{k ≤ n : ak (mod 1) ∈ (a, b)}|
n

= b− a,

where (a, b) ⊂ [0, 1].

Diaconis [7] showed that being strong Benford is equivalent to having a base 10
logarithm that is uniformly distributed mod 1; the following result is Theorem 1 of
[7].

Lemma 2.7. A nonzero sequence {ak} is a strong Benford sequence if and only if
the sequence {log10 |ak|} is uniformly distributed modulo 1.

A classic result of Weyl gives a necessary and sufficient condition for a sequence
to be uniformly distributed mod 1.

Theorem 2.8 (Weyl’s criterion). The sequence {ak} is uniformly distributed mod-
ulo 1 if and only if

lim
N→∞

1

N

N∑
k=1

e2πi`ak = 0

for all integers ` 6= 0.

We recommend Travaglini’s text [19] (see in particular Chapter 6) for a very read-
able exposition of Weyl’s criterion as well as an account of its connection with
Benford’s law.

Finally, Halász’s Theorem enables us to understand the averages of multiplicative
functions by comparing them to niα.

Theorem 2.9 (Halász’s Theorem). Let f be a multiplicative function with |f(n)| ≤
1 for all integers n. If D(f, niα;∞) =∞ for all α ∈ R, then f has mean value zero,
in the sense that

lim
x→∞

1

x

∑
n≤x

f(n) = 0.

Otherwise there is a unique α ∈ R with D(f, niα;∞) < ∞. In that case, f has
mean value 0 if and only if

(2.1) f(2k) = −2ikα for every positive integer k.
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Theorem 2.9 is essentially contained in Theorem 6.3 on pp. 226–227 of Elliott’s
monograph [8]. The uniqueness of α with D(f, niα;∞) <∞ is not explicit in that
statement but is proved on p. 248 of that reference.

By Weyl’s criterion, it suffices to apply Halász’s Theorem to g`(n). As mentioned
earlier, Theorem 2.2 is a simple corollary of 2.3. Hence, we focus on Theorem 2.3.

2.1. Proof of Theorem 2.3. Let {h∗(k)} be the subsequence of {h(n)} where all
zero terms are removed. By Weyl’s criterion, {h∗(k)} is a strong Benford sequence
if and only if

lim
TN→∞

1

TN

TN∑
k=1

e2πi` log10 |h
∗(k)| = 0

for all nonzero integers `. However, the function e2πi` log10 |h
∗(k)| is not necessarily

multiplicative so we cannot apply Halász’s Theorem. Therefore we add back some
zero terms, expressed in terms of the function g` from Theorem 2.3. Recall that
g`(n) = e2πi` log10 |h(n)| if h(n) 6= 0 and g`(n) = 0 otherwise. Thus,

1

TN

TN∑
k=1

e2πi` log10 |h
∗(k)| =

N

TN
1

N

N∑
n=1

g`(n).

Since N
TN � 1, {h∗(k)} is a strong Benford sequence if and only if

lim
N→∞

1

N

N∑
n=1

g`(n) = 0

for all integers ` 6= 0. The “if” direction of Theorem 2.3 now follows immediately
from applying Halász’s Theorem (Theorem 2.9) to the functions g`.

For the “only if” direction, suppose that {h∗(k)} is strong Benford, so that each
g`, with ` 6= 0, has mean value 0. By Theorem 2.9, it is enough to show that
there is no nonzero integer ` and real number α for which D(g`, n

iα;∞) < ∞ and
g`(2

k) = −2ikα for all positive integers k. If such ` and α exist, consider g2` = g2
` .

By the triangle inequality,

D(g2`, n
2iα;∞) ≤ 2 · D(g`, n

iα;∞) <∞.

Also, g2`(2) = (g`(2))2 = 2i(2α) 6= −2i(2α). Invoking Halász’s theorem again, we see
that g2` does not have mean value 0, a contradiction.

3. Proof of Corollary 1.4 – the function na

Here, f`(p) = e2πi` log10 p
a

= p
2πi`a
ln 10 . Let α` = 2π`a

ln 10 . It is easy to see that

D(f`, n
iα` ;∞)2 =

∑
p

1− Re(f`(p)p
−iα`)

p
= 0.

By Theorem 2.2, {na} is not Benford.

4. Proof of Corollary 1.5 – k-divisor functions

For this case, f`(n) = e2πi` log10 dk(n) so f`(p) = e2πi` log10 k. The corollary will
follow if we show the following.
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(1) For k 6= 10j ,

(4.1) D(f`, n
iα;∞)2 =

∑
p

1− Re(e2πi` log10 kp−iα)

p
=∞

for all α ∈ R.
(2) For k = 10j , D(f`, 1;∞) <∞ for some ` 6= 0.

First, we consider the case k = 10j , and we chose ` = 1.

D(f1, 1;∞)2 =
∑
p

1− Re(e2πi log10 10j )

p
=
∑
p

1− 1

p
= 0.

Thus by Theorem 2.3, {dk(n)} is not a Benford sequence.

Now we consider the case k 6= 10j . Here, we will use some classical results. The
proof of the Lemma below can be found in [13, Theorem 2.7].

Lemma 4.1 (Mertens’ Theorem). For x ≥ 2, we have∑
p≤x

1

p
= ln lnx+A+ b(x), where b(x) = O

(
1

lnx

)
,

and ∑
p≤x

ln p

p
= lnx+O(1).

We also state some classical bounds on ζ(s) near the line Re(s) = 1. We refer
the reader to (3.5.1) and (3.11.8) of Titchmarsh’s book [18].

Lemma 4.2. Let s = σ + it. There exists some constant c > 0 such that for
1− c

ln(|t|+4) < σ and |t| > 2, we have

1

ln |t|
� ζ(s)� ln |t|.

On the other hand, if |t| ≤ 2,

ζ(s)� 1

|t|
+O(1).

4.1. Proof of (4.1) when k 6= 10j. Note that

Re(e2πi` log10 kp−iα) = cos(2π` log10 k) cos(α ln p) + sin(2π` log10 k) sin(α ln p).

When α = 0,

D(f`, 1;∞)2 =
∑
p

1− cos(2π` log10 k)

p
.

Since cos(2π` log10 k) < 1 when k 6= 10j , D(f`, 1;∞) =∞ by Lemma 4.1.
From now on, we focus on α 6= 0. Since

∑
p

1
p =∞, to prove (4.1), it suffices to

show that ∑
p≤x

cos(α ln p)

p
= O(1), and

∑
p≤x

sin(α ln p)

p
= O(1)

uniformly in x. Since Re(piα) = cos(α ln p) and Im(piα) = sin(α ln p), it suffices to
prove the following Lemma.
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Lemma 4.3. Let α be a fixed nonzero real number. Then∑
p≤x

1

p1+iα
= Oα(1),

where the implied constant depends on α.

Proof. We claim that for any y ≥ 2,

(4.2)
∑
p≤y

(
1

p1+iα
− 1

p1+ 1
ln y+iα

)
= O(1),

and

(4.3)
∑
p≤y

1

p1+ 1
ln y+iα

= ln ζ

(
1 +

1

ln y
+ iα

)
+O(1).

Here (4.2) follows from∣∣∣∣∣∣
∑
p≤y

(
1

p1+iα
− 1

p1+ 1
ln y+iα

)∣∣∣∣∣∣ ≤
∑
p≤y

1− e−
ln p
ln y

p
� 1

ln y

∑
p≤y

ln p

p
� 1

by Lemma 4.1. For (4.3), we start from the fact that

ζ(s) =
∏
p

(
1− 1

ps

)−1

for Re(s) > 1. Taking logarithms and making straightforward estimates,

ln ζ

(
1 +

1

ln y
+ iα

)
−
∑
p≤y

1

p1+ 1
ln y+iα

=
∑
p>y

1

p1+ 1
ln y+iα

+O(1).

Keeping in mind the first assertion of Lemma 4.1,∑
p>y

1

p1+ 1
ln y+iα

�
∑
p>y

1

p1+ 1
ln y

�
∑
j≥0

e−2j
∑

y2
j
<p≤y2j+1

1

p
�
∑
j≥0

e−2j � 1,

and (4.3) follows.
If x ≤ 2, the estimate of Lemma 4.3 is trivial. Otherwise, by (4.2) and (4.3),∑

p≤x

1

p1+iα
= ln ζ

(
1 +

1

lnx
+ iα

)
+O(1)

�α 1,

(4.4)

by Lemma 4.2. �

5. Proof of Corollary 1.6 – Euler’s phi function

For Euler’s phi function, f`(p) = e2π`i log10(p−1) = (p−1)
2πi`
ln 10 . Let α = 2π

ln 10 . The
Corollary follows from

D(f1, n
iα;∞)2 <∞.

Now,

D(f1, n
iα;∞)2 =

∑
p

1− Re((p− 1)iαp−iα)

p
=
∑
p

1− cos
(
α ln

(
1− 1

p

))
p

.
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For large prime p such that |αp | <
1
2 ,

cos

(
α ln

(
1− 1

p

))
= cos

(
α

(
−1

p
+O

(
1

p2

)))
= 1 +O

(
α2

p2

)
.

Let J = max{10, 2|α|}. Thus

∑
p

1− cos
(
α ln

(
1− 1

p

))
p

�
∑
p≤J

1

p
+
∑
p>J

α2

p3
� ln lnJ +

α2

J2
= Oα(1).

Thus, we conclude that {ϕ(n)} is not a strong Benford sequence.

6. Proof of Corollary 1.7 – Hecke eigenvalues of newforms

Contrary to the previously considered multiplicative functions, λf (n) might be
0 for some n. Our Corollary follows from Theorem 2.3 and the following lemmas.

Lemma 6.1. Let TN be defined as in Theorem 2.3. Then

N

TN
� 1.

Lemma 6.2. Let g`(n) = e2πı` log10 |λf (n)| if λf (n) 6= 0 and 0 otherwise. Then

D(g`, n
iα;∞) =∞

for all α ∈ R and ` 6= 0.

Lemma 6.1 follows immediately from the work of Serre stated in Theorem 6.4
below. We start by stating some now well known properties of λf (p).

6.1. Properties of λf (p). Weil conjectured that for all primes p,

|λf (p)| ≤ 2p
k−1
2 ,

and this is proven by Deligne [6]. Therefore for each p, there exists unique θp ∈ [0, π]
such that

λf (p) = 2p
k−1
2 cos θp.

Sato and Tate studied the distribution of cos θp, varying through p for newforms
f associated with elliptic curves. They conjectured that {cos θp} is equidistributed
in [−1, 1] with respect to a certain measure. Later Barnet-Lamb, Geraghty, Harris,
and Taylor [3] proved the conjecture, and in fact they generalized it for the larger
class of Hecke newforms, which we state below.

Theorem 6.3 (The Sato-Tate Conjecture). Let f(z) =
∑∞
n=1 λf (n)qn ∈ Snewk (Γ0(N))

be a newform of even weight k ≥ 2 without complex multiplication. Let F : [−1, 1]→
C be a Riemann-integrable function. Then

lim
x→∞

1

π(x)

∑
p≤x

F (cos(θp)) =

∫ 1

−1

F (t) dµST ,

where π(x) = #{p ≤ x} is the prime counting function, and

dµST =
2

π

√
1− t2 dt.
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The next result was proven by Serre in [16] (see Theorem 15, the accompanying
Corollary 2 and Theorem 16). Interested readers may also peruse the later works
of Wan [20] for an improvement, and of Murty [14] and Thorner and Zaman [17]
for further refinements.

Theorem 6.4. Let f(z) be defined as in Theorem 6.3. Then for any δ < 1/2,

#{p ≤ x : λf (p) = 0} �f,δ
x

log1+δ x
.

Hence ∑
p

λf (p)=0

1

p
<∞,

and

#{n ≤ x : λf (n) 6= 0} � x.

Note that Serre’s result immediately implies Lemma 6.1. We prove Lemma 6.2
below.

6.2. Proof of Lemma 6.2. From the definition of g`(n),

D(g`, n
iα;∞)2 =

∑
p

λf (p)6=0

1− Re(e2πi` log10 |λf (p)|p−iα)

p
+

∑
p

λf (p)=0

1

p
.

We will deduce Lemma 6.2 from the following Lemma. We remind the reader that
λf (p) = 2p(k−1)/2 cos θp.

Lemma 6.5. Let β = 2π`
ln 10 for ` 6= 0, and γ = k−1

2 β − α. Then∣∣∣∣∣∣∣∣
∑
p≤x

λf (p) 6=0

Re
(
|2 cos θp|iβpiγ

)
p

∣∣∣∣∣∣∣∣ = (Kγ + o(1)) ln lnx

where

Kγ =

{
4
π

∫ 1

0
cos(β ln(2y))

√
1− y2 dy if γ = 0

0 otherwise.

There is an interval of positive measure inside [0, 1] on which cos(β ln(2y)) < 1,
so by continuity,

4

π

∫ 1

0

cos(β ln(2y))
√

1− y2 dy

<
4

π

∫ 1

0

√
1− y2 dy = 1,

(6.1)

so Kγ < 1. Thus, by Lemma 6.5,

D(g`, n
iα;x)2 =

∑
p≤x

λf (p) 6=0

1− Re
(
|2 cos θp|iβpiγ

)
p

+
∑
p≤x

λf (p)=0

1

p
� ln lnx
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since
∑
p≤x

1
p ∼ ln lnx (Lemma 4.1), and so

D(g`, n
iα;∞) =∞,

as required for Lemma 6.2. We now prove Lemma 6.5.

Proof. Note that

Re
(
|2 cos θp|iβpiγ

)
= cos(β ln(2| cos θp|)) cos(γ ln p)− sin(β ln(2| cos θp|)) sin(γ ln p).

Thus, it suffices to show that∑
p≤x

λf (p)6=0

cos(β ln(2| cos θp|)) cos(γ ln p)

p
= (Kγ + o(1)) ln lnx

(6.2)

and ∑
p≤x

λf (p) 6=0

sin(β ln(2| cos θp|)) sin(γ ln p)

p
= o(ln lnx).

(6.3)

We proceed to prove (6.2), noting that (6.3) follows similarly.
By partial summation, the left-hand side of (6.2) is

 ∑
p≤x

λf (p)6=0

cos(β ln(2| cos θp|))

cos(γ lnx)

x
−
∫ x

2

 ∑
p≤t

| cos θp|>0

cos(β ln(2| cos θp|))

 d
cos(γ ln t)

t

(6.4)

Let I = [−1, 0) ∪ (0, 1] and χI(x) denote the characteristic function of I, which
is 1 if x ∈ I, and 0 otherwise. Note that cos(β ln(2|y|)) is Riemann integrable over
[−1, 1], the singularity at y = 0 being benign.

Thus, by the Sato-Tate conjecture (Theorem 6.3),

lim
x→∞

1

π(x)

∑
p≤x

λf (p) 6=0

cos(β ln(2| cos θp|)) = lim
x→∞

1

π(x)

∑
p≤x

cos(β ln(2| cos θp|))χI(cos θp)

=
4

π

∫ 1

0

cos(β ln(2y))
√

1− y2 dy = K0,

since the integrand is even. By the prime number theorem, π(x) ∼ x
ln x , we obtain

that (6.4) is

(K0π(x) + o(π(x)))
cos(γ lnx)

x
−
∫ x

2

(K0π(t) + o(π(t))) d
cos(γ ln t)

t

= K0

(
π(x)

cos(γ lnx)

x
−
∫ x

2

π(t) d
cos(γ ln t)

t

)
+ o

(
1

lnx
+

∫ x

2

1

t ln t
dt

)
= K0

∑
p≤x

cos(γ ln p)

p
+ o(ln lnx).

(6.5)

We consider two cases.
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Case 1: γ 6= 0. Here Kγ = 0. Applying Lemma 4.3 with α = −γ implies that∑
p≤x

cos(γ ln p)

p
= Oγ(1).

Thus (6.5) is o(ln lnx), so we derive the desired result when γ 6= 0.

Case 2: γ = 0. Here, Kγ = K0, and we have

∑
p≤x

λf (p)6=0

cos(β ln(2| cos θp|)) cos(γ ln p)

p
= K0

∑
p≤x

1

p
+ o(ln lnx) = K0 ln lnx+ o(ln lnx),

(6.6)

as desired. �
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