
Forming and Controlling Hitches in Midair Using Aerial Robots

Diego S. D’Antonio, Subhrajit Bhattacharya, and David Saldaña

Abstract— The use of cables for aerial manipulation has
shown to be a lightweight and versatile way to interact with
objects. However, fastening objects using cables is still a
challenge and human is required. In this work, we propose
a novel way to secure objects using hitches. The hitch can be
formed and morphed in midair using a team of aerial robots
with cables. The hitch’s shape is modeled as a convex polygon,
making it versatile and adaptable to a wide variety of objects.
We propose an algorithm to form the hitch systematically. The
steps can run in parallel, allowing hitches with a large number
of robots to be formed in constant time. We develop a set of
actions that include different actions to change the shape of
the hitch. We demonstrate our methods using a team of aerial
robots via simulation and actual experiments.

I. INTRODUCTION

From ancient times, humans have been familiar with
the use of ropes to secure and transport objects. There
is an old trace indicating that neanderthals used twisted
fiber to tie objects up [1]. So ropes have been used even
before the invention of the wheel, and nowadays, we can
see ropes, cables, and strings everywhere in all types of
applications. Although humans have widely used them, their
use in robotics has been very limited due to their high
complexity. A cable has infinite possible shapes, also known
as configurations, that offers high versatility, but at the same
time, this complicates its analysis and computation.

In aerial manipulation, external mechanisms, such as
lightweight grippers [2]–[4] and robot arms [5]–[8], have
been added to interact with objects and the environment.
However, the attachment of an external mechanism on an
aerial vehicle increases its system complexity [9], changing
inertia, the center of mass, and overall weight. In contrast to
those types of mechanisms, ropes are lightweight and low-
cost.

The use of cables in aerial manipulation has existed for
more than a decade, and there are significant contributions
to the state of the art [10], [11]. Specifically, cables attached
to quadrotors have become part of science development due
to their abilities and versatility. For instance, a quadrotor is
constrained to its maximum thrust in object transportation,
but multiple quadrotors with cables can combine forces and
increase their actual capacity [12]. Suspended load trans-
portation was studied with a single cable and multiple cables
[13]–[17]. Although there is a significant amount of existing
research in suspended load transportation, most approaches
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(a) Flying catenary robots (b) Interlacing cables

(c) Forming vertices (d) Triangular hitch

Fig. 1: Six quadrotors forming a triangular polygonal hitch.
Video available at: https://youtu.be/gBVJPY7ilzc

assume that the connection between the quadrotor and the
load is made in a previous stage. That is a bottleneck
in autonomous transportation because it requires human
intervention.

Humans interlace cables to form hitches and knots in
their daily life for multiple purposes, especially to tie, hold,
and carry objects. Cowboys use hitches to tied horses or
hold objects with multiple interconnected ropes [18]. A wide
classification of hitches can be found in [19]. We found
interesting physical hitches, such as a single diamond and a
Marline hitch. Both used multiple cable intersections to hold
objects. In this manuscript, we do not make any distinction
between ropes and cables. The seminal work that introduced
aerial robots weaving multiple cables to create hitches was
presented in [20]. The authors focused on forming tensile
structures such as bridges.

In our previous work, we introduced the catenary robot, a
pair of quadrotors that control a hanging cable that describes
a catenary curve. This vehicle is used for non-prehensile
manipulation with hook-shape objects [21] and cuboid ob-
jects [22], [23]. Since some objects require fastening for
transportation purposes, we developed an algorithm to create
knots in midair [24], While tying a knot can effectively
secure the object, the autonomous knot release is still diffi-
cult. Consequently, a fully autonomous transportation system
using cables remains an open area of research. In this work,
we propose a novel type of hitch and a set of actions to form
it and morph its shape in midair using multiple catenary

https://youtu.be/gBVJPY7ilzc


(a) Triangular hitch. (b) Square hitch. (c) Pentagon hitch.

Fig. 2: Polygonal hitches.

robots (see Fig. 1). The hitch is defined by a polygon,
making it versatile and adaptable to a wide variety of objects.
Depending on cross-sectional object shape, we can choose
a convex polygon (some polygonal hitches are illustrated in
Fig. 2). For instance, a box can be transported with a square
hitch.

The main contribution of this paper is twofold. i) We
introduce and formalize a new type of hitch that can be
formed using aerial robots. The maximum size of the hitch
is scalable by increasing the number of catenary robots that
form it. ii) We propose a new set of actions that include
an algorithm to form the hitch, and change its shape. our
algorithm to form the hitch can run in parallel, allowing
hitches with a large number of robots to be formed in
constant time. Additionally, Our solution is computationally
efficient and runs in actual robots.

II. PROBLEM STATEMENT

Consider a team of catenary robots [21], where each robot
is composed of two quadcopters attached to the ends of
a flexible non-stretchable cable (see Fig. 3a). The catenary
robots can interlace their cables by passing along each other
(see Fig. 3b). The interaction of multiple catenary robots
forming a hitch creates a manipulation tool for aerial robots
that is lightweight, versatile, and adjustable (see Fig. 3c). We
define a world frame in R3, denoted by {W}, which is fixed,
and its z-axis points upwards. Although our analysis uses a
plane as a workspace, notice that the robots can freely move
and reach the planar workspace that can be projected in the
three-dimensional space.

Polygonal-hitch: Hitches have been studied for many
years [19], [25], [26] and there are several types, but in
this paper, we focus on a specific type of hitch that can be
formed usign aerial robots, we call it polygonal hitch. Based

(a) (b) (c)

Fig. 3: Stages of forming a hitch with aerial robots, (a) Free
catenary robots, (b) Weaving a cable, and (c) Control the
hitch shape.

Fig. 4: Notations involved in describing a general polygonal-
hitch.

on a convex polygon, defined by a set of n vertices on the
Euclidean plane, i.e., P = {pk ∈ R2, k = 1, . . . , n}, we want
to use n catenary robots to interlace their cables and form
a hitch with the shape of the polygon P . The vertices in P
are numbered in an increasing order, following a clockwise
order (see Fig. 4). The kth edge of the polygon P goes
from vertex pk to vertex pk+1. The cable of each catenary
robot is used to form an edge of the polygon, and therefore,
we enumerate the robots accordingly to the edge where they
belong. Assuming that each end of the cable is attached to the
center of mass of a quadrotor, we abstract the two quadrotors
of a catenary robot as points, denoted by qk and rk. In this
way, the points (qk, rk) also represent the end points of the
cable. The length of the cable is Lk and we assume that the
polygon satisfies ∥pk+1 − pk∥ < Lk. Notice that vertex pk

has two adjacent quadrotors located at rk−1 and qk. Due to
the cyclic nature of the system, any index greater than n will
be reduced modulo n (plus 1 in order to make the indices
start at 1 rather than at 0). Thus, for notational convenience,
whenever we refer to an index k + 1, we mean the index (k
mod n) + 1.

Hitch configuration: The configuration of a polygonal-
hitch is determined by the location of the quadrotors
(qk, rk), and the vertices of the polygon pk for k = 1, . . . , n,
denoted by the set

C = {(qk, rk,pk), k = 1, . . . , n}.

Each cable is always in tension, and can be represented
by three straight lines. Assuming negligible friction at the
interaction between the cables, the uniform tension over the
entirety of each cable. We denote the tension on the k-th
cable by Tk.

The polygonal-hitch offers a new versatile way to interact
and manipulate objects since its geometric representation
allows rotation, translation and shape adaptation. In this
work, we focus on finding a class of polygonal hitches that
can be formed and controlled systematically.

Problem 1. Given a polygon P with n vertices and a team
of n catenary robots, design the strategy to form a polygonal-
hitch and a set of actions to be able to change its shape on
the fly.



III. POLYGONAL-HITCHES IN EQUILIBRIUM

In this section, we propose a class of polygonal-hitches
that can maintain their shape in midair. The key is to analyze
the configurations that lead the tension of the cables to an
equilibrium. Base on static analysis, we design a practical
solution to find a configuration for a polygonal-hitch C for
a given polygon P . Examples of this class of flying hitches
can be seen in Fig. 2.

A. Equilibrium Analysis of a Static Hitch

A vertex is formed by interlacing two cables, forming an
x-like shape with four tensions (see Fig. 5). We analyze
the tensions at the k-th vertex to be in force equilibrium.
The direction of the kth edge of the polygon, (pk,pk+1), is
denoted by the unit vector

uk =
pk+1 − pk

∥pk+1 − pk∥
. (1)

The k-th vertex at location pk is in equilibrium when all the
tensions add up to zero, meaning that the following equation
has to be satisfied,

Tkq̂k + Tkuk + Tk−1r̂k−1 − Tk−1uk−1 = 0, (2)

where the unit vectors are,

q̂k =
qk − pk

∥qk − pk∥
, and r̂k−1 =

rk−1 − pk

∥rk−1 − pk+1∥
.

In general, the whole system has 2n equations (there are n
vertices, and each vertex has to satisfy the vector equation
in (2) for x and y coordinates). The position of all vertices
are part of the input, so the vectors uk and uk−1 are known,
but the tensions, Tk, and cable orientations (q̂k, r̂k−1) are
unknown. Since each cable orientation is unitary and can
be determined by a single parameter, the total number of
unknowns is 3n. Therefore, the system is underdetermined,
and there are in general infinitely many solutions.

B. A Specific Solution for Equilibrium

In order to find a practical solution for the equilibrium
equation in (2), we consider a special case where all the
cables have the same tension T > 0, i.e., T1 = ... = Tn =

T , and the cables are aligned with the polygon edges, i.e.,

Fig. 5: Tensions at the k-th vertex of a polygonal-hitch.

r̂k−1 = −uk and q̂k = uk−1, for all k = 1, . . . , n. Then, we
can easily verify that our specific solution

q̂k =uk−1, r̂k−1=−uk and Tk =T, (3)

satisfies the equilibrium equation in (2) for any con-
stant T > 0. In the rest of the paper, we will focus on
this special class of solutions for simplicity. Now that the
orientation of the cables is defined, we only need to compute
the location of the end points to find a configuration C for a
hitch in equilibrium.

C. Determining Robot Positions

For a given polygon shape P , the length of the kth edge
is lk = ∥pk+1−pk∥. Suppose the k-th cable has a total length
of Lk > lk. Using this constraint, and the solutions for the
unit vectors q̂k and r̂k−1 in (3), we can compute appropriate
positions for the robots (qk, rk) as follows.

For each k = 1,2, . . . , n, choose a distance dk < Lk − lk
(or, ek < Lk − lk), at which to place the robots qk from
the desired polygon vertex pk (or, the robot rk from the
desired polygon vertex pk+1), and define ek = Lk − lk − dk
(or, dk = Lk − lk − ek) so that dk + ek + lk = Lk. See Fig. 6a
for illustration. Then the position vectors of the robots are
given by

qk = pk + dk uk−1,

rk = pk+1 − ek uk+1. (4)

Balanced configuration: A special case is when the cable
distances dk and ek are equal. We can compute them by,

dk = ek =
Lk − lk

2
.

This special case is useful to find an initial equilibrium
configuration for a given polygon P . Then, the balanced
configuration is denoted by the set,

C̄ = {(q̄k, r̄k,pk), k = 1, . . . , n}, (5)

where q̄k = pk +
Lk−lk

2
uk−1, and r̄k = pk+1−

Lk−lk
2

uk+1.

IV. ACTIONS FOR HITCH MANIPULATION

In this section, we present four actions that allow robots
to form a hitch and change its shape. Assuming a quasistatic
motion. We compute robot positions and trajectories, and
then use a classical position and trajectory-tracking controller
for quadrotors [27], [28].

A. Action 1: Forming a hitch

The objective of this action is to use n catenary robots,
initially disconnected as illustrated in Fig. 7a, and interlace
them to form a hitch configuration C̄: We can form a hitch
configuration C̄ in three steps:
● Step 1: For each catenary robot k = 1, . . . , n, move

the end points of the cables, (qk, rk), specified by the
configuration C̄ (see Fig. 7a).

● Step 2: Each pair of quadrotors at locations (qk, rr−1)
swap their places following a circular trajectory (or any
collision-free trajectory) as illustrated in Fig. 7b.



(a) Action 2: Moving vertex pk. (b) Action 3: Moving edge (pk−1,pk). (c) Action 4: Adjusting cables k − 1 and k.

Fig. 6: Multiple cables forming a section of a polygonal-hitch. The dashed lines represent the actions of moving a vertex,
edge, and adjusting cables.

● Step 3: The same quadrotors swap their places again,
interconnecting the cables and forming the k-th vertex
of the polygon pk (see Fig. 7c).

We highlight that the Step 1 , 2, and 3 can be performed in
parallel, so the time to create a polygonal-hitch of n vertices
is independent of n, taking the always constant time.

B. Action 2: Moving a vertex

This action is focused on changing the shape of the poly-
gon by moving a single vertex. We start with a configuration
that forms a polygon P and is transformed to a polygon P ′.
Both polygons differ in a vertex pk ∈ P that we denote
by p′k ∈ P

′. Fig. 6a illustrates the P in solid lines and the
difference with P ′ in dashed lines.

From (4), it can be noted that for a given dk, The
computation of qk depends only on the position of the
vertices pk and pk−1. Similarly, for a given ek, rk depends
only on the position of the vertices pk+1 and pk+2 (based on
(1)). As a consequence, it is easy to check that, for a given
value of ek and dk−1, pk is involved only in the expressions
of qk, rk−1,qk+1 and rk−2. Thus, in order to change the
position of a single vertex of the polygon, from pk to p′k,
while keeping the positions of all other vertices fixed, it is
sufficient to recompute the end points (using (4)) and change
the positions of the robots qk, rk−1,qk+1 and rk−2 only. We
can see in Fig. 6a that the vertex pk can be moved to p′k by
changing only qk, rk−1,qk+1 and rk−2.

(a) Step 1 (b) Step 2 (c) Step 3

Fig. 7: Action 1: Forming a hitch in three steps.

C. Action 3: Moving an edge

This action is focused on changing the shape of the poly-
gon P by moving a single edge. The k-th edge, (pk,pk+1)

from the polygon, P is moved to a new location (p′k,p
′

k+1),
forming a new polygon P ′. Both polygons share the same
vertices, except for vertices the edge, (p′k,p

′

k+1).
Similar to Action 2, only four robots need to be moved

to perform this action. In this case, we can move the edge k
by translating the two endpoints of the kth catenary robot rk
and qk along the directions r̂k and q̂k respectively. At the
same time, the end points rk−1 and qk+1 need to be moved
to maintain the vertices at the new locations p′k and p′k+1. As
illustrated in Fig. 6b, we only need to move four quadrotors,
rk−2,qk, rk−1, and qk−1, to move an edge.

D. Action 4: Adjusting the cable

In the balanced configuration C̄, the cable distances ek and
dk are the same for each edge, but this property is not always
maintained after applying Actions 2 and 3. The problem is
that small values of, ek and dk, limit the potential changes
for a new polygon P ′. For this purpose, after performing
Actions 2 and 3, we adjust the cable to create a balanced
configuration C̄ for the new polygon P ′. Fig. 6b illustrates
a configuration where ek ≠ dk, and ek−2 ≠ dk−2. Therefore,
cables k and k−2 need to be adjusted to achieve a balanced
configuration as illustrated in 6c.

In order to adjust cable k, the endpoints rk and qk will
be moved the same distance but in opposite directions along
the cable lines r̂k and −q̂k respectively. Therefore, the new
positions for the end points after the adjustment are the same
as in (5) r̄′k and q̄′k for the new polygon P ′.

V. EXPERIMENTS

We evaluate each of the four actions discussed in Section
IV. First, the catenary robots start flying and form polygonal-
hitches in mid-air. Second, we show that we can control
a simple vertex in the polygonal-hitch by manipulating the
robot’s position. Third, we demonstrate that our system can
move an edge. Finally, we show that we can adjust the cable



Fig. 8: Realistic simulation, red spheres are the desired
intersections, point robots are the white color.

during the flight. We validate our method for polygonal-
hitches in simulations and actual robots (see attached multi-
media video).

A. Simulations

Using a realistic 3D simulator, we are able to quickly
implement and test different types of maneuvers that involve
cables. We performed experiments with the Obi Rope Unity
package version 6.3, which is based on an advanced particle
physics engine. The Obi Rope is optimized to deal with
the infinite states of a rope. However, it becomes unstable
once we include more than five ropes. We implemented a
polygonal-hitch with three cables, as shown in Fig. 8. In the
simulation, we are able to analyze the effect of the friction
between cables, and the performance of our quasi-static
approach, before running experiments with actual robots. Our
simulation framework for polygonal-hitches is open-source
and publicly available1.

B. Experiments with actual robots

In our experimental testbed, we used the geometrical
controller for quadrotors [28], on the crazyswarm frame-
work [29], which allows us to control eight robots si-
multaneously. Every quadrotor has the same components
and dimensions; its weight is 132 g and, cable length of
Lk = 2 m. We use a single Crazyradio PA 2.4 GHz USB
dongle to communicate the computer with the robots. The
localization of the quadrotors is obtained using motion cap-
ture system (Optitrack) operating at 120 Hz for localization
of the quadrotors. Although we placed markers on the cables
for performance analysis, our method works open-loop and
only uses the location of the quadrotors as feedback.

To obtain the intersection of the cables, we placed three
markers in the middle of each cable. Then, we apply a linear
regression to approximate each cable section. Furthermore,
we can obtain the intersections between the lines to the
desired intersections. Our evaluation metric is based on the
error between the estimated intersection and the desired
intersection. In the following four experiments, validate each
of the four proposed actions.

Experiment 1 - Action 1, forming a hitch: We propose
a method to form a hitch by interlacing cables in mid-air

1The source code for simulations and actual robots is available at
https://github.com/swarmslab/Forming-hitches

(a) Triangular hitch

(b) Square hitch

Fig. 9: Polygonal hitches.

without human intervention. For a given polygon P , we
compute a balanced configuration following the procedure
in Section III-C, including the desired quadrotor positions
qk and rk for k = 1, . . . , n. Then, we follow the algo-
rithm in Section IV-A for a polygon P = {p1,p2,p3},
where p1 = [0.,−1.,0.5]

⊺, p2 = [−0.9,0.4,0.5]
⊺, and p3 =

[0.9,0.4,0.5]⊺. In Step 1, the quadrotors move to the starting
point as illustrated in Fig. 1a. In Step 2, they swap position
with a circular trajectory between qk and rk creating an
intersection (see Fig. 1b and 9a). In Step 3, the robots
complete the polygonal-hitch (see Fig. 1c and 1d).

We performed the experiment multiple times and found
that a convex regular polygon was a reliable polygon to form
a hitch. Otherwise, if the convex polygon has a wide angle
between the edges (pk,pk+1) and (pk,pk−1, the swapping
trajectory has a bigger radius. This is easy to check, because
the radius is half of the Euclidean distance between pk,
and qk). Here we found that our success rate for the hitch
forming experiments is 8 out of 10. The downwash can
affect the robots’ trajectory during the location swapping
step. However, it could be improved using a trajectory that
maintains a higher vertical distance between the robots [30].
We also successfully formed a hitch with four vertices as
shown in Fig. 9b.

Experiment 2 - Action 2, moving a vertex: This action is
focused on changing the shape of the polygon by moving a
single vertex. To demonstrate that a polygonal hitch is able
to control an intersection point, we perform an experiment
where the point p1 is moving along a trajectory described
by,

p1(t) = {
(0,−0.1) if t < 25s

(0,0.05t − 0.1) if t > 25s

The input is the initial polygon P = {p1,p2,p3}, where

https://github.com/swarmslab/Forming-hitches


Fig. 10: Results of Experiment 2: Action moving a vertex.
The plots are showing the error between the desired inter-
section and the actual intersection. The green line shows the
error for the moving point p1. Red and blue lines show the
error of fixed points p2 and p3 respectively.

p1 = [0.,−1.,0.5]
⊺, p2 = [−0.4,0.5,0.5]

⊺, and p3 =

[0.4,0.5,0.5]⊺. We compute the Euclidean distance between
the current intersection points and the desired intersection
points – see results in Fig. 10. The average error in position
are µp1 = 0.0819, µp2 = 0.168, and µp3 = 0.762, and
its standard deviations are σp1 = 0.056, σp2 = 0.145, and
σp3 = 0.088.

Since our current implementation does not use any feed-
back from the actual position of the intersection points, there
are some offsets in their positions. It is interestingly, that
the moving point p1 has a smaller error. We observed that
the motion of the vertex helps to overcome the frictional
resistance between cables. We tested two types of ropes –
nylon and leather. The nylon rope has higher friction, and it
makes it more difficult to move the vertex.

Experiment 3 - Action 3, moving an edge, This experi-
ment shows the ability to move an edge. The initial polygon,
P = {p1,p2,p3}, is given by p1 = [0.,−1.,0.5]

⊺, p2 =

[−0.4,0.5,0.5]⊺, and p3 = [0.4,0.5,0.5]
⊺. We computed

the distance between the current intersection points and the
desired intersection points (see results in Fig. 11). However,
we observed an increase in position errors in e1 while e2 and
e3 were moving in the second ten. This increase in error is
due to the friction of the interlaced cable. The average error
in positions are µp1 = 0.0819, µp2 = 0.168, and µp3 = 0.762,
and the standard deviations are σp1 = 0.056, σp2 = 0.145,
and σp3 = 0.088.

Experiment 4 - Action 4, adjusting a cable: The last
action that we discuss is adjusting the cable length. This
action is helpful after moving a vertex or an edge as the
resultant action will give ek /= dk. Then, adjusting the cable
length can create a balanced configuration with ek = dk. We
computed the distance between the current intersection points
and the desired intersection points (see results in Fig. 12).
Notably, this experiment shows the ability to adjust the cable
and maintain a smaller position error. The average error
in position µp1 = 0.0363, µp2 = 0.026, and µp3 = 0.043,

Fig. 11: Results of Experiment 3: Action moving an edge.
The plots show the error of the desired intersection. The
static point p1 is represented by the green line. The moving
points p2 and p3 are the red and blue line, respectively.

Fig. 12: Results of Experiment 4: Action adjusting the cable.
The plots show the error of the desired intersection. p1, p2

and p3 .

and its standard deviations σp1 = 0.036, σp2 = 0.084, and
σp3

= 0.987.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a novel class of hitches that
can be formed and morphed in midair using a team of aerial
robots with cables. We introduce the concept of a polygonal-
hitch, which consists of multiple catenary robots forming a
cyclic sequence by interlacing multiple cables. The cables of
two consecutive catenary robots are linked, forming a convex
polygonal shape. We propose an algorithm to form the hitch
systematically without any human intervention. The steps
can run in parallel, allowing hitches with a large number
of robots to be formed in constant time. We develop a set
of actions that include three actions to change its shape.
Including , moving a vertex, moving an edge, and adjusting
the cable. We analyzed and controlled the hitch with a quasi-
static approach that works in simulation and actual robots.
We demonstrated the successful functionality of our system
in simulation and actual robots. In future work, we aim to
transport objects and include the cable dynamics involved in
our system.
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