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A B S T R A C T

Data selection is a practical technique for improving parameter estimation accuracy through the strategic
selection of information-rich data for use in the estimation algorithm. Traditional selection criteria have
been either heuristic or sensitivity-based, without consideration of uncertainties in measurement, model, or
parameter. In this paper, we propose an uncertainty-aware data selection framework that selects data segments
based on the potential of the ingrained data structures to mitigate the influence of system uncertainties on
the estimation result. The framework comprises two components: the data quality rating and data selection
algorithm. The data quality rating is a metric for evaluating the uncertainty-propagating data structures of a
data segment, and the data selection algorithm automatically integrates the data selection into the estimation
procedure. Furthermore, a novel adaptive approximation of model/measurement uncertainty is derived and
implemented in the data quality rating formula to enhance performance in the presence of time-varying
sensor bias/noise and unmodeled system dynamics. The framework is validated through an advanced battery
management system application, where two lithium-ion battery health-related electrochemical parameters are
separately estimated under random drive-cycle input data to emulate battery state of health monitoring for
an electric vehicle. We show that the drive-cycle data, which are frequently used for battery state of health
estimation as the only available data during battery operation, may not provide accurate estimation results
due to the existence of large portions of low-quality data (low sensitivity and high uncertainty). By extracting
the high-quality data segments, the data selection framework reduced experimental estimation errors by one
order of magnitude when compared with the conventional approach of estimating without data selection.
1. Introduction

Data-based parameter estimation is the practice of using measured
input–output data to determine the parameters of a system model. It is
vital for the reliable modeling and control of dynamic systems because
the quality of a model (and any model-based functionality that may
rely upon it) is dependent upon the accuracy of its parameters. This is
especially important for advanced battery management systems (BMSs)
as they monitor state of charge (SOC) and state of health (SOH) with an
increasing reliance on complex physics-based electrochemical battery
models that have dozens of parameters [1–3].

Of the three components of a parameter estimation problem –
odel, data, and estimation algorithm – data is a growing topic of
nterest, as researchers seek to understand how to quantify and op-
imize the quality of data to maximize estimation accuracy. This is
otivated by the fact that data is the fundamental input to the esti-
ation problem; specifically, a poor data set will limit the achievable
stimation accuracy regardless of the complexity of the model or al-
orithm. The Fisher information is often regarded as the standard
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metric for data quality, as its inverse yields the Cramér–Rao bound,
i.e., the lower bound of achievable estimation error (co)variance for
an unbiased estimator [4,5]. Accordingly, the Fisher information is
routinely implemented as the criterion for data optimization and op-
timal experiment design [6–8]. This is exemplified in the field of
battery modeling and control, where works have centered on analytical
[9,10], experimental [11], and computational [12–14] data design
using the Fisher information, as to optimize current input excitations
for improved parameter estimation accuracy.

The majority of existing data optimization research is applicable to
offline parameter estimation, where input excitations are designed and
administered in a laboratory setting. However, if no control authority
exists over the data, as in the case of online estimation where data
are passively generated by system operation under random load, the
practical question arises: can high-quality data be strategically selected
from a data stream to improve parameter estimation accuracy? Some
early works took a temporal approach and empirically established data
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sampling rates for each target parameter, based on the time-scales
of their variations [15–18]. Another approach empirically assigned
weights to different data based on their expected reliability [19]. Others
used input excitation as the criterion for data selection. Specifically, the
framework proposed in [20] empirically truncates low-magnitude and
unvarying input data because these structures are often dominated by
measurement noise; the frameworks proposed in [21,22] prioritize data
diversity by selecting samples of input data that are distributed across
the amplitude range of a data set. The aforementioned methodologies
are empirical in the sense that they rely on heuristic metrics that are
not directly related to the suitability of the data for estimation. As
such, selection criteria are often hand-tuned from experience, and may
even degrade estimation accuracy if ill-chosen [19]. Recent works have
explored sensitivity-based data selection, which seeks to effectively
maximize the Fisher information by selecting data that are highly
sensitive to the estimated parameter(s) [23,24]. These works argue
that insensitive data add little value to the estimation, yet can intro-
duce substantial errors through ingrained parameter uncertainty [25]
and model/measurement uncertainty, i.e., due to unmodeled system
dynamics [26,27] and measurement noise [28–30].

The state-of-the-art sensitivity-based methodologies overcome the
heuristic limitations of the empirical approaches by basing the selection
metric on the Fisher information and Cramér–Rao bound. However, al-
though widely implemented for data optimization, the Fisher informa-
tion and Cramér–Rao bound feature several theoretical limitations that
restrict their use as criteria for evaluating data quality. These include
the assumption that the estimator is unbiased, neglect of model and
parameter uncertainties, and the possibility that the estimator cannot
achieve the best-case error (co)variance specified by the Cramér–Rao
bound in practice [4,5]. To address these limitations, an equation was
derived in [31] to directly quantify the parameter estimation error un-
der uncertainties in model/measurement and parameter for the widely
used least-squares estimation objective. It was found that for each type
of system uncertainty, there is a specific data structure, represented
in terms of parameter sensitivity, that governs the propagation of the
uncertainty to the estimation error. The estimation error equation also
provides a critical insight—estimation accuracy is dependent on the
quality of the data, rather than the quantity. This insight casts new
light on the conventional view that follows from the mathematical
definition of the Fisher information, i.e., more data provide more
information and thus always improve estimation accuracy. We envision
that these findings can be leveraged to overcome the restrictions of the
state-of-the-art sensitivity-based data selection criteria.

The objective of this paper is to enhance battery SOH-monitoring by
establishing a data selection framework for parameter estimation that
focuses on the quality of data. Our recent work explored the potential
for the uncertainty-propagating data structures identified in [31] to
indicate the quality of data, with promising results in simulation [32].
Here, we leverage these data structures and incorporate a novel adap-
tive approximation of model/measurement uncertainty to select data
segments that can achieve the best estimation accuracy. The key con-
tributions of this work include the following aspects. First, it is the
first attempt, to the best of our knowledge, at a data selection ap-
proach that explicitly addresses system uncertainties in the process of
estimation. Second, we propose a mechanism to integrate automatic
data selection into the estimation procedure, which is necessary for
the data selection framework to be practically implemented in BMS
applications. Third, we establish a rating formula as a new criterion
for evaluating data quality, which can be efficiently applied to battery
voltage data segments of arbitrary length under generic input cur-
rent. Finally, we derive a new adaptive approximation of time-varying
model/measurement uncertainty that can be conveniently incorporated
into the data selection criterion, to consider the limitations of BMS
sensor resolution and model fidelity. It will be shown through an
SOH-monitoring application in simulation and experiment that the
2

framework is capable of significantly improving parameter estimation i
accuracy, with experimental error reductions of one order of magnitude
when compared with the conventional approach of estimating without
data selection.

The remainder of the paper is organized as follows. Section 2
eviews the lithium-ion (Li-ion) battery dynamics and model associ-
ted with our application of estimating health-related electrochemical
arameters. Section 3 details the proposed data selection framework
hrough the introduction of the data quality rating concept and the
esign of the data selection algorithm. Section 4 proposes a preliminary
ata quality rating formula and demonstrates the functionality of the
ramework in simulation and experiment. Section 5 extends the capa-
ility of the data quality rating through an ingrained approximation of
he time-varying model/measurement uncertainty, with experimental
alidation. Lastly, Section 6 presents concluding remarks and potential
pplications.

. Li-ion battery dynamics and modeling

The SOH of a Li-ion battery is a critical quantity that character-
zes the remaining cyclable capacity and/or power capability, which
irectly affect the range and performance of a battery-powered device,
.g., an electric vehicle [3,33]. The SOH can be efficiently monitored
ith an electrochemical model by routinely estimating health-related
arameters, i.e., physical parameters that are intrinsically linked to
he SOH. Therefore, we will develop and validate the data selection
ramework under the objective of accurately estimating health-related
lectrochemical parameters using random drive-cycle data, to emulate
he cycling conditions in an electric vehicle. This section provides a
rief overview of the parameters, battery dynamics, and parameter sen-
itivities that play critical roles in our SOH-monitoring data selection
pplication.
The two electrochemical parameters that will be targeted for esti-
ation are the solid-phase cathode lithium diffusion coefficient 𝐷𝑠,𝑝
nd the cathode active material volume fraction 𝜀𝑠,𝑝. Physically, 𝐷𝑠,𝑝
haracterizes the rate at which lithium ions can diffuse through the
athode electrode particle material, while 𝜀𝑠,𝑝 represents the proportion
f the total cathode volume capable of storing lithium ions. Both
arameters play a vital role in battery performance and serve as key
ndicators of battery degradation and SOH [34–36]. Specifically, sev-
ral works have employed electrochemical impedance spectroscopy to
how that 𝐷𝑠,𝑝 decreases over time with SOH, in accordance with the
ncreasing cell impedance [37,38]. In the same way, 𝜀𝑠,𝑝 decreases over
ime with SOH because it is directly proportional to the decreasing
ell capacity through the relation 𝑄𝑝 = 𝐹𝐴𝑝𝛿𝑝𝑐𝑚𝑎𝑥𝑠,𝑝 𝜀𝑠,𝑝, where 𝑄𝑝 is
he cathode capacity, 𝐹 is the Faraday constant, 𝑐𝑚𝑎𝑥𝑠,𝑝 is the ionic
oncentration limit of the cathode material, and 𝐴𝑝 and 𝛿𝑝 are the
athode area and thickness, respectively. These trends in 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝
re attributed to degradation mechanisms such as reaction-induced
echanical stress [39,40], transition metal dissolution [41,42], and
olid-electrolyte interphase (SEI) layer growth [43,44]. While other
lectrochemical parameters may also be related to SOH, the 𝐷𝑠,𝑝 and
𝑠,𝑝 correlations are well established in the literature and thus com-
only studied in SOH estimation applications [44–46]. In addition, 𝐷𝑠,𝑝
s a weakly sensitive parameter while 𝜀𝑠,𝑝 is strongly sensitive, which
akes 𝐷𝑠,𝑝 conventionally challenging to estimate, especially under
ncertainty in 𝜀𝑠,𝑝 [47,48].
The battery dynamics are modeled with the widely adopted single

article model with electrolyte dynamics (SPMe) [49,50], which pre-
icts the output terminal voltage (𝑉 ) from the input current (𝐼). The
PMe is a simplified version of the full-order Doyle–Fuller–Newman
DFN) electrochemical model [51], operating under the assumption
hat lithium intercalation current density (and thus ionic concentra-
ion) is uniform across each electrode. Accordingly, the electrochem-
cal mechanisms in each electrode (e.g., diffusion, intercalation) are
epresented with a single particle, and both electrode particles are

nterfaced with the electrolyte diffusion dynamics. Mathematically, the
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single-particle assumption decouples the governing partial differen-
tial equations (PDEs) of the DFN model, which significantly reduces
the computational complexity and makes the SPMe suitable for use
in real-time BMS applications [3]. This is facilitated through model-
order reduction techniques that enable computationally-efficient and
high-fidelity solutions to the decoupled PDEs [52,53].

The output terminal voltage is expressed as

𝑉 = 𝑈𝑝(𝑐𝑠𝑒,𝑝) − 𝑈𝑛(𝑐𝑠𝑒,𝑛) + 𝜙𝑒,𝑝(𝑐𝑒,𝑝) − 𝜙𝑒,𝑛(𝑐𝑒,𝑛)

+ 𝜂𝑝(𝑐𝑠𝑒,𝑝, 𝑐𝑒,𝑝) − 𝜂𝑛(𝑐𝑠𝑒,𝑛, 𝑐𝑒,𝑛) − 𝐼𝑅𝑙 , (1)

which includes the difference between the cathode and anode (denoted
by subscripts 𝑝 and 𝑛 respectively) open-circuit potentials (OCPs) 𝑈 ,
lectrolyte potentials 𝜙𝑒, and overpotentials 𝜂. The OCPs 𝑈 represent
he equilibrium potential of each electrode as a nonlinear function
f the electrode particle surface lithium concentration 𝑐𝑠𝑒, which is
overned by Fick’s second law of diffusion. The electrolyte potentials
𝑒 are driven by the ionic concentration gradient across the electrolyte,
hich is characterized by the dynamic electrolyte lithium concentra-
ion at each electrode boundary 𝑐𝑒, according to Fick’s second law.
he overpotential 𝜂 drives the intercalation reaction at the electrode
article surface according to the Butler–Volmer equation, in function of
𝑠𝑒 and 𝑐𝑒. Finally, the voltage drop across the various Ohmic resistances
i.e., of the SEI layer, electrolyte, and current collectors) is incorporated
hrough the lumped resistance term 𝑅𝑙. The reader is referred to [50]
or the full details of the model.
The data quality rating formulas, to be introduced in subsequent

ections, rely upon the sensitivity of battery voltage to various pa-
ameters. To facilitate the computation of sensitivity, we employ the
nalytical sensitivity expressions derived in [50] for the SPMe, which
fficiently capture the sensitivity dynamics through sensitivity transfer
unctions. For example, the sensitivity of the output voltage 𝑉 to 𝜀𝑠,𝑝
an be derived by taking the partial derivative of Eq. (1) with respect
o 𝜀𝑠,𝑝 as

𝜕𝑉
𝜕𝜀𝑠,𝑝

(𝑡) =
𝜕𝜂𝑝
𝜕𝜀𝑠,𝑝

+
( 𝜕𝜂𝑝
𝜕𝑐𝑠𝑒,𝑝

+
𝜕𝑈𝑝

𝜕𝑐𝑠𝑒,𝑝

)

⋅
𝜕𝑐𝑠𝑒,𝑝
𝜕𝜀𝑠,𝑝

(𝑡). (2)

The first term reflects the non-dynamic sensitivity of 𝜂𝑝 to 𝜀𝑠,𝑝, which
can be easily obtained based on the model as a nonlinear function
of current, while the second term captures the dynamic sensitivity of
𝜂𝑝 and 𝑈𝑝 to 𝜀𝑠,𝑝 through the solid-phase diffusion mechanism in the
cathode. Regarding the second term, 𝜕𝜂𝑝

𝜕𝑐𝑠𝑒,𝑝
and 𝜕𝑈𝑝

𝜕𝑐𝑠𝑒,𝑝
are the slopes of

overpotential and OCP, while 𝜕𝑐𝑠𝑒,𝑝
𝜕𝜀𝑠,𝑝

(𝑡) reflects the dynamic nature of the
sensitivity due to the dynamic diffusion process. A sensitivity transfer
function has been derived to characterize 𝜕𝑐𝑠𝑒,𝑝

𝜕𝜀𝑠,𝑝
,

𝜕𝐶𝑠𝑒,𝑝

𝜕𝜀𝑠,𝑝
(𝑠) =

7𝑅4
𝑠,𝑝𝑠

2 + 420𝐷𝑠,𝑝𝑅2
𝑠,𝑝𝑠 + 3465𝐷2

𝑠,𝑝

𝑠(𝑅4
𝑠,𝑝𝑠2 + 189𝐷𝑠,𝑝𝑅2

𝑠,𝑝𝑠 + 3465𝐷2
𝑠,𝑝)

⋅
𝐼(𝑠)

𝐹𝜀2𝑠,𝑝𝐴𝑝𝛿𝑝
, (3)

which allows the dynamic sensitivity to be conveniently computed,
e.g., by converting to a linear state-space model. Here, 𝑅𝑠,𝑝 is the
cathode particle radius. Similarly, the 𝐷𝑠,𝑝 sensitivity expression can
be derived in the same way as

𝜕𝑉
𝜕𝐷𝑠,𝑝

(𝑡) =
( 𝜕𝜂𝑝
𝜕𝑐𝑠𝑒,𝑝

+
𝜕𝑈𝑝

𝜕𝑐𝑠𝑒,𝑝

)

⋅
𝜕𝑐𝑠𝑒,𝑝
𝜕𝐷𝑠,𝑝

(𝑡), (4)

hich relies entirely upon the diffusion dynamics through 𝑐𝑠𝑒,𝑝. The
ssociated sensitivity transfer function is

𝜕𝐶𝑠𝑒,𝑝

𝜕𝐷𝑠,𝑝
(𝑠) =

43𝑅4
𝑠,𝑝𝑠

2 + 1980𝐷𝑠,𝑝𝑅2
𝑠,𝑝𝑠 + 38115𝐷2

𝑠,𝑝

(𝑅4
𝑠,𝑝𝑠2 + 189𝐷𝑠,𝑝𝑅2

𝑠,𝑝𝑠 + 3465𝐷2
𝑠,𝑝)2

⋅
21𝑅2

𝑠,𝑝𝐼(𝑠)

𝐹𝜀𝑠,𝑝𝐴𝑝𝛿𝑝
. (5)

These sensitivity transfer functions were derived using Laplace trans-
forms and Padé approximations, with the full procedure detailed in [50]
3

.

3. Data selection framework

The proposed data selection framework comprises two core ele-
ments, namely, the data quality rating formula and the data selection
algorithm. The rating formula predicts the extent to which system
uncertainties are propagated to the estimation error, based on the sen-
sitivity dynamics of the uncertain parameters. Accordingly, the rating
serves as a metric for data segment quality. Two rating formulas are
presented in this paper—a simple preliminary rating formula is derived
in Section 4 for instructional purposes and to motivate the derivation
of the improved adaptive rating formula in Section 5.

The purpose of the whole framework is to maximize parameter
estimation accuracy by integrating the data selection (based on the
data rating formula) into the estimation procedure. Specifically, the
algorithm seeks to select high-quality data segments from a given data
set, perform the estimation using the selected data segments, reevaluate
the quality of the selected segments based on the estimation results,
and return an accurate final estimate based on the updated quality
rating. This methodology is illustrated in Fig. 1 and compared with
the conventional univariate estimation approach. An additional benefit
of integrating the data selection and estimation procedures is that the
estimation only needs to be performed for the selected data segments
(rather than for all data segments), which maintains computational
tractability for practical implementation in advanced BMSs.

In this work, the data selection framework is proposed for the
scenario of univariate estimation, where one health-related parameter 𝜃
(i.e., 𝐷𝑠,𝑝 or 𝜀𝑠,𝑝) is estimated in the presence of uncertainties in model,
measurement, and other parameters. This is an important problem for
two reasons. First, it is a common scenario in practice, as many applica-
tions only require the estimation of a certain parameter, rather than all
of them. For example, battery capacity fade can be indicated by moni-
toring 𝜀𝑠,𝑝 [39,45]. Meanwhile, parameters that are not estimated may
not be perfectly known, as some of them may undergo large variations
due to changing operating conditions and/or system degradation [54–
56]. These parameters need to be assumed with nominal values and
become an unavoidable source of uncertainty. An alternative to assum-
ing values for uncertain parameters is to estimate them simultaneously
alongside the target parameter. However, estimating more parameters
may make the problem ill-posed while increasing the computational
complexity—a vital factor for online estimation applications. It will
be shown in Section 4.2.2 that jointly estimating even one additional
arameter can cause the problem to become ill-posed and lead to
ignificant estimation errors under random drive-cycle data. The second
eason regarding the importance of this type of problem is that it can
e very challenging to solve, as estimating a weakly sensitive param-
ter (e.g., 𝐷𝑠,𝑝) under the shadow of uncertainty in strongly sensitive
arameters (e.g., 𝜀𝑠,𝑝) is traditionally extremely difficult [47,48]. The
ata quality rating seeks to facilitate a solution by evaluating the extent
o which an estimation result may be affected by system uncertainties.
evertheless, the methodology proposed in this paper can be extended
o multivariate estimation problems in future work.
The data input to the algorithm is a sequence of input–output mea-

urements, making the framework suitable for both offline and online
pplications. In the offline case, the data sequence can be retrieved
rom an existing database or acquired through laboratory measurement.
n online applications, the data sequence can be a window of an
ncoming passive data stream, and the estimation can be performed
ecursively on the moving window as new data become available.
The integrated data selection and estimation procedures are sum-
arized in Algorithm 1 and each step is subsequently detailed:

1. Data Segment Quality Evaluation: The data quality rating is com-
puted a priori to evaluate the quality of each data segment
that is extracted from the data set. This step of computation
is considered a priori because it occurs before the estimation
and uses the initial guess of the target parameter (𝜃̂−) when

evaluating the rating formula.
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Fig. 1. Univariate estimation under conventional approach and data selection framework.
2. Data Selection: Data segments are selected for estimation based
on the a priori data quality rating.

• Offline Estimation: Data segments are selected from the data
set to span a range of good a priori rating values.

• Online Estimation: A data segment is selected from a moving
window of incoming random data if the a priori rating
satisfies a given threshold.

3. Estimation: The target parameter is estimated from each selected
data segment.

4. Data Quality Update: The accuracy of the data quality rating is
improved by recomputing it a posteriori for the selected data
segments. Specifically, this step of the computation uses the esti-
mated value of the target parameter (𝜃̂+) to reevaluate the rating
formula. It will be demonstrated that this step can significantly
reduce the chance of mis-selection.

5. Return Estimation Result : The final estimation result is returned
based on the a posteriori data quality rating.

• Offline Estimation: The estimation results from the data
segments with the best a posteriori ratings are averaged and
returned.

• Online Estimation: The estimation result from a data seg-
ment is returned if the a posteriori rating satisfies a given
threshold.

4. Preliminary data quality rating formula: Derivation, verifica-
tion, & validation

The preliminary data quality rating formula is subsequently derived
for implementation in the data selection framework. Simulation verifi-
cation and experimental validation follow, which highlight key benefits
of the data selection process while motivating the derivation of the
improved adaptive rating formula in Section 5.

4.1. Derivation

The purpose of this subsection is to develop the preliminary data
quality rating formula—the metric for evaluating the quality of can-
didate data segments for selection. We begin with the discrete-time
least-squares estimation objective in Eq. (6),

min
+
𝐽 =

𝑁
∑

(

𝑦𝑚𝑘 − 𝑦𝑘(𝜃̂+, 𝝓̂, 𝒖𝑘)
)2 , (6)
4

𝜃̂ 𝑘=1
Algorithm 1 Data Selection Framework
Input: Measured input–output data set/stream

1. Evaluate quality of each data segment with a priori data
quality rating

2. Select high-quality data segments:
Offline: Select from specified data set
Online: Select from window of data stream

3. Perform estimation with each selected data segment
4. Reevaluate quality of selected data segments with a posteriori
data quality rating using estimation results

5. Return final estimation result:
Offline: Return mean of estimates from highest-quality

data segments
Online: Return estimates from data segments with

acceptable quality

Output: Final estimation result 𝜃̂+

which is one of the most widely used objectives for parameter estima-
tion. The purpose of this function is to determine the estimate of one
target parameter 𝜃̂+ that minimizes the sum of squared errors between
the measured system output 𝑦𝑚𝑘 and that predicted by a certain model
𝑦𝑘(𝜃̂+, 𝝓̂, 𝒖𝑘) over a time sequence indexed by 𝑘. The modeled output
𝑦𝑘 is driven by the input excitation sequence 𝒖𝑘 = [𝑢1,… , 𝑢𝑘]𝑇 (with
any state dynamics contained implicitly), and parameterized by 𝜃 and
a set of other parameters that are not being estimated 𝝓 = [𝜙1,… , 𝜙𝑚]𝑇 .
Since the exact parameter values in 𝝓 are not necessarily known, 𝝓̂ is
used to denote the assumed values in the estimation problem, which
may contain uncertainty. The output 𝑦𝑘 is treated as a scalar in this
work, as is the case for most battery applications, but it may be readily
extended to the multidimensional case. The measured system output 𝑦𝑚𝑘
is represented as

𝑦𝑚𝑘 = 𝑦𝑘(𝜃,𝝓, 𝒖𝑘) + 𝛿𝑦𝑘, (7)

where 𝑦𝑘(𝜃,𝝓, 𝒖𝑘) is the modeled system output under the true target
parameter 𝜃 and true non-target parameter set 𝝓, and 𝛿𝑦𝑘 is the
varying uncertainty between the modeled and measured system outputs
(e.g., due to unmodeled system dynamics and/or sensor noise).

It is noted that without uncertainties (and structural unidentifiabil-
ity), the solution of the least squares problem should yield the exact
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value of the target parameter, as it would minimize the sum of squared
error to zero. It is the inevitable uncertainties in practice that deviate
the estimation result from the true value. In our prior work [31],
we derived an equation to quantify the estimation error induced by
different types of system uncertainties for the least-squares objective in
Eq. (6). The results revealed the data structures that form the basis of
the data quality rating. The derivation was performed by approximating
the modeled system output 𝑦𝑘(𝜃,𝝓, 𝒖𝑘) in Eq. (7) under the unknown
true parameter set (𝜃,𝝓) with a first-order Taylor series expansion about
the estimated/uncertain parameter set (𝜃̂+, 𝝓̂), i.e.,

𝑦𝑘(𝜃,𝝓, 𝒖𝑘) ≈ 𝑦𝑘(𝜃̂+, 𝝓̂, 𝒖𝑘)+
𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+, 𝝓̂, 𝒖𝑘)(𝜃− 𝜃̂+)+
𝜕𝑦𝑘
𝜕𝝓̂

(𝜃̂+, 𝝓̂, 𝒖𝑘)(𝝓− 𝝓̂).

(8)

he first-order optimality condition
(

𝜕𝐽
𝜕𝜃̂+

= 0
)

was then applied to
q. (6) to complete the derivation. The reader is referred to [31] for
he full details.
The final form of the derived error equation is reproduced in Eq. (9),

here 𝛥𝜃 = 𝜃 − 𝜃̂+ denotes the estimation error as the difference
etween the true value of the target parameter and the estimated value.
he right-hand side of the equation shows the errors induced by each
ype of uncertainty, associated with summations of certain sensitivity
erms, where 𝜕𝑦𝑘

𝜕𝜃̂
(𝜃̂+) and 𝜕𝑦𝑘

𝜕𝜙̂𝑖
(𝜃̂+) denote the sensitivity of the modeled

system output 𝑦𝑘 to 𝜃̂ and 𝜙̂𝑖, respectively, under the estimate of the
target parameter 𝜃̂+. The sensitivities can be calculated with the derived
expressions for specific parameters, e.g., Eqs. (2)–(5). Note that each
sensitivity term is also dependent on the non-target parameter set and
input excitation, e.g., 𝜕𝑦𝑘

𝜕𝜙̂𝑖
(𝜃̂+, 𝝓̂, 𝒖𝑘), but the notation in Eq. (9) excludes

he 𝝓̂ and 𝒖𝑘 terms for brevity.

𝜃 = −

(

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+)𝛿𝑦𝑘
)

+
∑𝑚

𝑖=1

[(

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+) 𝜕𝑦𝑘
𝜕𝜙̂𝑖

(𝜃̂+)
)

𝛥𝜙𝑖

]

∑𝑁
𝑘=1

(

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+)
)2

(9)

The most important insights from Eq. (9) are the set of data struc-
ures that govern the propagation of system uncertainties to the es-
imation error. The numerator reveals that each system uncertainty,
amely the varying model/measurement uncertainty 𝛿𝑦𝑘 and constant
arameter uncertainties 𝛥𝜙𝑖 = 𝜙𝑖 − 𝜙̂𝑖, is multiplied by a summation
f sensitivity terms. Thus, a data structure with a minimal summa-
ion of the respective sensitivities will minimize the effect of the
ssociated uncertainty on the estimation result. For example, con-
ider the first numerator term, where a data segment with a structure
hat minimizes ∑𝑁

𝑘=1
𝜕𝑦𝑘
𝜕𝜃̂

𝛿𝑦𝑘 will significantly reduce the estimation
error induced by 𝛿𝑦𝑘. In the same way, data structures that minimize
∑𝑁

𝑘=1
𝜕𝑦𝑘
𝜕𝜃̂

𝜕𝑦𝑘
𝜕𝜙̂𝑖

(i.e., with a high degree of orthogonality between the
sensitivities of the target and non-target parameters), will attenuate
the influence of 𝛥𝜙𝑖 on the estimation result. Finally, data structures
that yield a large denominator term, i.e., ∑𝑁

𝑘=1

(

𝜕𝑦𝑘
𝜕𝜃̂

)2
, can also be

ffective at reducing the overall estimation error. Note that the denom-
nator term is the Fisher information, simplified under i.i.d. Gaussian
oises [57,58], which reflects the data information content about the
arget parameter.
Based on these results and insights, a preliminary data rating for-
ula (𝑄±

𝜃 ) is proposed to evaluate the quality of an arbitrary data
egment according to its potential of propagating system uncertainties
o the estimation result,

±
𝜃 =

𝛼𝛥
|

|

|

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂±)||
|

+
∑𝑚

𝑖=1

(

𝛼𝜙𝑖
|

|

|

|

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂±) 𝜕𝑦𝑘
𝜕𝜙̂𝑖

(𝜃̂±)
|

|

|

|

)

∑𝑁
𝑘=1

(

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂±)
)2

. (10)

maller rating values indicate reduced uncertainty propagation and
hus higher-quality data. The superscript ± indicates that the rating
ormula can be evaluated both a priori and a posteriori, under the initial
5

o

uess 𝜃̂− and estimate 𝜃̂+, respectively, which is needed in the first
and fourth steps of the aforementioned data selection algorithm in
Section 3. The design of the rating formula is based on Eq. (9) under
he following considerations.

• The sensitivity terms are normalized via Eq. (11),
𝜕𝑦𝑘
𝜕𝜙̂𝑖

= 𝜙̂𝑖
𝜕𝑦𝑘
𝜕𝜙̂𝑖

, (11)

to account for large variations in magnitude among parameters.
For example, Li-ion electrochemical battery models typically have
diffusion parameters that are on the order of 10−10 − 10−15 m2/s,
while volume fraction parameters are of order 10−1. Normalizing
the sensitivity terms makes the rating nondimensional so that it
reflects the impact of each uncertainty in proportion to the value
of the target parameter.

• The amount of uncertainties, i.e., 𝛿𝑦𝑘 and 𝛥𝜙𝑖 in Eq. (9), are
unknown in practice. Thus, the rating formula leverages the
uncertainty-propagating data structures in Eq. (9) to indicate the
extent to which the unknown system uncertainties may influence
the estimation result. For instance, in each 𝛼𝜙𝑖

|

|

|

|

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

𝜕𝑦𝑘
𝜕𝜙̂𝑖

|

|

|

|

term,

which is associated with the parameter uncertainty,
|

|

|

|

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

𝜕𝑦𝑘
𝜕𝜙̂𝑖

|

|

|

|

accounts for the potential of the data to propagate the uncertainty
in 𝜙𝑖 according to the observed data structures. Meanwhile, 𝛼𝜙𝑖
is a weight reflecting the magnitude of the uncertainty, which
can be either estimated based on any rough knowledge of the
parameter uncertainty magnitude, or tuned to specify a relative
ratio between different uncertainties. Similarly, the first term
in the numerator, 𝛼𝛥

|

|

|

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

|

|

|

, accounts for the impact of the
model/measurement uncertainty on the estimation result. This
term is formulated by approximating the time-varying 𝛿𝑦𝑘 as its
average value over the data segment, represented as bias weight
𝛼𝛥. This simplification is performed because of the unknown
nature of the time-varying uncertainty, which is usually difficult
to even have a moderate knowledge of. Selecting the value of
𝛼𝛥 is a major challenge, as the measurement and model uncer-
tainties (especially the latter), are dependent on the operating
conditions (e.g., the input) and hence vary among data segments.
Therefore, beyond the difficulty of hand-tuning (or guessing) the
bias weight 𝛼𝛥, using a universal 𝛼𝛥 for all data will intrinsically
cause inaccuracy in the data rating, which will be illustrated in
Section 4.2.2. This is addressed in Section 5 through the deriva-
tion of an improved rating formula that incorporates an adaptive
approximation of the varying model/measurement uncertainty.

• The absolute value is applied to each numerator term in Eq. (10)
so that a small rating can only be achieved if the data segment
can mitigate the influence of all uncertainties. This is necessary
because each uncertainty may have an unknown and even chang-
ing sign, which can cause different uncertainty terms to either add
up or (partially) cancel out. Without applying the absolute value,
the rating formula may substantially overestimate the quality of
the data segment if the numerator terms erroneously cancel out.
To put it another way, we consider the worst-case scenario, where
the errors caused by different types of uncertainties add up.

It is important to note that the rating formula in Eq. (10) requires
he sensitivity terms to be computed efficiently, which is often chal-
enging through the conventional methods of manual perturbation [59]
r solving sensitivity differential equations [13,24]. Therefore, the
nalytical sensitivity expressions introduced in Section 2 for the elec-
rochemical parameters will be used to facilitate the sensitivity compu-
ation so that the data rating formula may be evaluated with minimal
omputational expense. Finally, the rating formula is not limited to
he ordinary gradient-based least-squares algorithm, but applicable to
eneral estimation methods with similar objectives of minimizing the
quared error or variance, e.g., Kalman filter and moving horizon

bserver, among others.



eTransportation 18 (2023) 100283J. Fogelquist and X. Lin

w

m
i
t
n
s
i
a
s
t
m
n
t
𝛼
s

o
p
u
t
i
e
t
0

T
o
u
c
c
i

4

g
l
m
q
b
d
i
S
d
o
i
f
3
s
s
d
s
b
s
F

4.2. Verification & validation

The data selection framework with the preliminary data rating for-
mula is verified through simulation and validated through experiment
in two Li-ion battery electrochemical parameter estimation problems.
The first problem targets the solid-phase cathode lithium diffusion
coefficient 𝐷𝑠,𝑝 for estimation under uncertainty in the cathode active
material volume fraction 𝜀𝑠,𝑝. The second problem is the converse,
here 𝜀𝑠,𝑝 is estimated under uncertainty in 𝐷𝑠,𝑝. As detailed in Sec-

tion 2, both physical parameters are intrinsic to the modeled battery
dynamics and serve as key indicators of battery SOH.

For simulation verification of the data selection framework, the bat-
tery output voltage data set is generated using the SPMe under various
input current profiles and a true parameter set denoted as (𝜃,𝝓). For
experimental validation, the battery voltage data are attained through
physical measurement of an LGM50T INR21700 Li–Nickel–Manganese–
Cobalt (NMC) cell subjected to the same input current profiles. In this
work, the true parameter set is adopted from [60], which implemented
a variety of electrochemical measurement techniques to experimentally
parameterize an LGM50 INR21700 cell. Several parameter values were
adjusted according to [48] to incorporate the subtle differences be-
tween the LGM50 and LGM50T cells. This parameter set thus serves
as a benchmark for the estimation results determined through both
simulation and experiment. Alternative methods of obtaining a bench-
mark parameter set include acquiring it from the cell manufacturer
(if possible) or system identification from experimental input–output
data, as in [61–64]. In both simulation verification and experimental
validation, the SPMe serves as the model used for estimation, which
provides the modeled output voltage under the input current and
estimated/uncertain parameter set (𝜃̂+, 𝝓̂). Results are generated with
an initial SOC of 50% under four drive-cycle input current profiles,
namely the Federal Urban Driving Schedule (FUDS), Urban Dynamome-
ter Driving Schedule (UDDS), US06 Highway Driving Schedule (US06),
and Dynamic Stress Test (DST). These current profiles were selected
to emulate the estimation of electric vehicle battery SOH from online
operation data, as each profile represents a typical battery operation
scenario in an electric vehicle application. Drive-cycle profiles typically
provide limited information about the health-related parameters due
to the characteristic rapid current fluctuations and associated shallow
discharges [65]. Each profile has a duration of 1800 s with a time step
of 0.3 s, yielding 6000 samples.

In this section, the preliminary data rating formula only considers
uncertainty in one parameter 𝛥𝜙, while omitting the model/measure-
ent uncertainty 𝛿𝑦𝑘 (with 𝛼𝛥 = 0) due to the aforementioned variabil-
ty and difficulty of tuning 𝛼𝛥. Accordingly, in simulation verification,
he voltage data are generated under only parameter uncertainty with
o model uncertainty to verify the effectiveness of data rating and
election to accommodate the former. Then in the subsequent exper-
mental validation, data selection will be subject to both parameter
nd model/measurement uncertainty to reveal that the latter can sub-
tantially reduce the effectiveness of the rating, motivating the need
o improve the rating formula with an adaptive approximation of
odel/measurement uncertainty (detailed in Section 5). For this sce-
ario of estimation under uncertainty in one non-target parameter,
he rating formula contains one numerator term and hence the weight
𝜙 can be arbitrary (i.e., 𝛼𝜙 uniformly scales the rating for all data
egments and thus plays no role in discerning data quality).
The data selection framework is evaluated under two scenarios

f uncertainty for each target parameter, according to the uncertain
arameter sets summarized in Table 1. Each parameter set contains
ncertainty in both 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝, represented as deviations from the
rue values of 4.0 × 10−15 m2/s and 0.5616, respectively. The remain-
ng parameter values are consistent with the true parameter set. For
xample, in Uncertain Parameter Set II of Table 1, the initial guess of
arget parameter 𝐷𝑠,𝑝 is 20% smaller than the true value, i.e., 𝐷̂−

𝑠,𝑝 =
6

.8𝐷𝑠,𝑝, which will be used in the a priori data rating formula. This is
Table 1
Summary of uncertain parameter sets.
Uncertain
Parameter Set

Target
Parameter

𝛥𝐷𝑠,𝑝 𝛥𝜀𝑠,𝑝

I 𝐷𝑠,𝑝 −20% −20%
II 𝐷𝑠,𝑝 20% 10%
III 𝜀𝑠,𝑝 20% 10%
IV 𝜀𝑠,𝑝 −20% 10%

represented in the parameter uncertainty notation of Eq. (9) as 𝛥𝐷𝑠,𝑝 =
𝐷𝑠,𝑝 − 𝐷̂−

𝑠,𝑝 = 𝐷𝑠,𝑝 − 0.8𝐷𝑠,𝑝 = 0.2𝐷𝑠,𝑝, or 𝛥𝐷𝑠,𝑝 = 20% of the true value.
he uncertainty in 𝜀𝑠,𝑝 is −10%, where the assumed value 𝜀̂𝑠,𝑝 is 0.9𝜀𝑠,𝑝,
r 𝛥𝜀𝑠,𝑝 = 10% of the true value. Note that, physically, a 10%–20%
ncertainty in 𝜀𝑠,𝑝 is substantial because 𝜀𝑠,𝑝 is directly related to cell
apacity [39,45], which typically degrades only 20% throughout the
ell operating life in an electric vehicle application [3]. The variation
n 𝐷𝑠,𝑝 throughout the cell operating life is expected to be similar.

.2.1. Simulation verification
The simulation verification entails applying the data selection al-

orithm to solve each aforementioned estimation problem under simu-
ated output data, i.e., data generated via simulation under the bench-
ark parameter set. First, the effectiveness of the preliminary data
uality rating formula will be assessed by examining the correlation
etween the quality rating and the parameter estimation error for
ifferent data segments within a data set. This correlation is presented
n Fig. 2 for the estimation of 𝐷𝑠,𝑝 under the FUDS input current profile.
pecifically, Fig. 2(a) shows the FUDS current profile, from which
ifferent data segments can be extracted with different combinations
f starting point and length. One such selected data segment is boxed
n red as an example. The a priori rating was computed via Eq. (10)
or every data segment that was extracted from the data set, and
000 segments were examined as demonstration. These 3000 segments
pan the full range of observed a priori rating values as representative
amples. The 𝐷𝑠,𝑝 estimates were computed via Eq. (6) for each selected
ata segment and the results are plotted in Fig. 2(b), with the example
egment marked by the red diamond and the full FUDS cycle by the
lack triangle. The a posteriori rating was then computed for each data
egment and the resulting rating-error correlation is shown in Fig. 2(c).
our important insights can be drawn from this plot:

• The black triangles in Figs. 2(b) and 2(c) indicate that the es-
timation using the full FUDS cycle yielded an estimation error
of 46%. The majority of the data segments (blue circles) yielded
smaller estimation errors (as low as 14%), which attests to the
benefit of data selection. Since the full FUDS cycle is the longest
data segment, it is evident that longer segments do not nec-
essarily lead to higher estimation accuracy in the presence of
system uncertainties. This can be explained by examining the
estimation error equation in Eq. (9), where both the denominator
(Fisher information) and the numerator (reflecting the impact of
uncertainties) can increase with the number of data points 𝑁 .
For example, consider a data segment with low (≪ 1) parameter
sensitivity

(

𝜕𝑦𝑘
𝜕𝜃̂

)

and a high amount of uncertainty (𝛿𝑦𝑘 and/or
𝛥𝜙𝑖). The growth of the numerator (first-order with respect to
the product of 𝜕𝑦𝑘

𝜕𝜃̂
and the uncertainties) may outpace that of the

denominator (quadratic with respect to 𝜕𝑦𝑘
𝜕𝜃̂
) as the number of data

points 𝑁 increases, leading to an increasing estimation error.
• There is a good correlation between the estimation error and the
data rating, which indicates that the rating can be used as an
effective metric for evaluating data quality. The large spread of
ratings and estimation errors among segments reveals that data
quality can vary significantly throughout a given data set. Thus,
it is critical for data segments to be carefully selected to achieve
optimal/adequate estimation accuracy.
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Fig. 2. Data rating results using preliminary rating formula for 𝐷𝑠,𝑝 estimation under
FUDS profile in simulation, with 𝛥𝐷𝑠,𝑝: −20% (in initial guess) and 𝛥𝜀𝑠,𝑝: −20%.

• The minimum achievable estimation error was 14%, indicating
that estimation accuracy is limited by the data structures present
in the data set. This is a fundamental limitation—the data selec-
tion framework seeks to optimize the use of available data, but
can only provide estimates as accurate as the available data will
allow.

• By comparing Figs. 2(b) with 2(c), it is seen that incorporat-
ing knowledge of the estimates through the a posteriori rating
evaluation renders a more monotonic and cleaner rating-error
correlation than the a priori correlation. This can be explained
by examining the estimation error equation in Eq. (9), which
specifies the use of the estimated (instead of guessed) target
parameter value. The observed refinement facilitates the selection
(or confirmation) of high-quality data segments for determining
the final estimation result, as the highest-quality data segments
are more likely to be distinguished by the smallest ratings.

Fig. 3 shows two more examples of a priori and a posteriori rating-
rror correlations for the estimation of 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝 under different
urrent profiles. These plots reinforce the insights from Fig. 2; specifi-
ally, the large spread of estimation errors indicates that data segment
uality can vary substantially throughout a given data set, the strong
ating-error correlations attest to the effectiveness of the preliminary
ating formula for evaluating data segment quality, and the improved
onotonicity of the a posteriori rating-error correlations indicate that a
osteriori rating evaluations can facilitate the selection of high-quality
7

Table 2
𝐷𝑠,𝑝 estimation results using preliminary rating formula for data selection in simulation

Case 𝐷𝑠,𝑝 Estimation Error

𝛥𝐷𝑠,𝑝 𝛥𝜀𝑠,𝑝 Input
Profile

Data Selection Framework
(Preliminary Rating)

Conventional
Univariate Approach

−20% −20%

FUDS −13.8% −45.7%
UDDS 0.4% −45.9%
US06 −20.5% −46.1%
DST −18.9% −45.4%

20% 10%

FUDS 7.9% 54.6%
UDDS 0.4% 55.6%
US06 12.8% 56.7%
DST 12.1% 53.4%

Table 3
𝜀𝑠,𝑝 estimation results using preliminary rating formula for data selection in simulation

Case 𝜀𝑠,𝑝 Estimation Error

𝛥𝐷𝑠,𝑝 𝛥𝜀𝑠,𝑝 Input
Profile

Data Selection Framework
(Preliminary Rating)

Conventional
Univariate Approach

20% 10%

FUDS 0.003% 5.9%
UDDS 0.003% 6.0%
US06 0.005% 6.0%
DST 0.003% 6.0%

−20% 10%

FUDS −0.005% −4.1%
UDDS −0.005% −4.2%
US06 −0.003% −4.2%
DST −0.005% −4.2%

data segments. Notably, Fig. 3(b) indicates that a small portion of
data segments achieved excellent estimation accuracy when 𝐷𝑠,𝑝 was
estimated under the UDDS profile, with errors as small as 0.25%. A
comparison with the correlation in Fig. 2(c) exemplifies how a different
(albeit seemingly similar) input data set, i.e., UDDS vs. FUDS, can
significantly improve estimation accuracy by providing data structures
that suppress the influence of system uncertainties on the estimation
result.

For the estimation of 𝜀𝑠,𝑝, both rating-error correlations in Figs. 3(c)
and 3(d) have relatively small estimation errors across all segments.
These rating-error correlations are also stronger than those of 𝐷𝑠,𝑝
(Figs. 2(c) and 3(b)). Both of these characteristics were attributed to
the fact that battery voltage is substantially more sensitive to variations
in 𝜀𝑠,𝑝 than 𝐷𝑠,𝑝. This is illustrated in Fig. 4, which indicates that the
RMS of the normalized 𝜀𝑠,𝑝 sensitivity (i.e., 𝜀𝑠,𝑝

𝜕𝑉𝑘
𝜕𝜀𝑠,𝑝

) is four times larger
than that of 𝐷𝑠,𝑝 under the FUDS current profile and true parameter
set. Highly sensitive parameters like 𝜀𝑠,𝑝 are often estimated with
relative ease, despite the presence of system uncertainties. This can be
explained by examining the estimation error equation in Eq. (9), which
reveals that highly sensitive parameters will yield a large denominator
term (i.e., sum of squared sensitivity, or Fisher information), which can
drive down the estimation error despite moderately-sized uncertainty
terms in the numerator.

We then compiled the estimation results for the two target parame-
ters under the aforementioned four scenarios of parameter uncertainty
and four data sets, yielding a total of 16 cases for thorough evaluation
of the data selection performance. For each case, the final estimation
result was computed by averaging the estimates from the five data
segments with the smallest a posteriori ratings. The results are sum-
marized in Table 2 for the estimation of 𝐷𝑠,𝑝 and Table 3 for the
estimation of 𝜀𝑠,𝑝. For comparison, estimation results are included from
the conventional univariate approach without data selection, i.e., using
each complete data set.

The results in Tables 2 and 3 were interpreted as follows:

• Data Selection Performance: The data selection framework is ca-
pable of achieving excellent estimation accuracy by identifying
the high-quality data segments present within each data set. This
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Fig. 3. Data rating results using preliminary rating formula for 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝 under different input profiles in simulation, with 𝛥𝐷𝑠,𝑝: 20% and 𝛥𝜀𝑠,𝑝: 10%.
U
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Fig. 4. Evolution of normalized 𝜀𝑠,𝑝 and 𝐷𝑠,𝑝 sensitivities under FUDS profile and true
parameter set.

is illustrated by the 0.4% error for the estimation of 𝐷𝑠,𝑝 under
the UDDS profile in Table 2, and the maximum observed error of
0.005% for the estimation of 𝜀𝑠,𝑝 in Table 3. However, the results
could only be as accurate as the available data would allow,
resulting in relatively large estimation errors for data sets that
do not contain uncertainty-suppressing data structures, e.g., the
US06 profile under 𝛥𝐷𝑠,𝑝: −20% and 𝛥𝜀𝑠,𝑝: −20% yielded an error
of 20.5% in Table 2.

• Influence of Parameter Sensitivity : As illustrated in Fig. 4, the
voltage output is significantly more sensitive to variations in
𝜀𝑠,𝑝 than 𝐷𝑠,𝑝. Traditionally, attempting to estimate the weakly
sensitive 𝐷𝑠,𝑝 under the shadow of uncertainty in the strongly
sensitive 𝜀𝑠,𝑝 is extremely difficult [47,48]. However, the results
in Table 2 show that 𝐷𝑠,𝑝 can be estimated with excellent accuracy
through the selection of data segments that mitigate the influence
of uncertainty in 𝜀𝑠,𝑝. Regarding the estimation of 𝜀𝑠,𝑝, the errors
in Table 3 are smaller (≤ 6%) for every case, even without
data selection. This was attributed to the high 𝜀𝑠,𝑝 sensitivity,
as strongly sensitive parameters are typically estimated with less
difficulty due to their robustness against uncertainties.

• Comparison with Conventional Approach: The data selection frame-
work consistently improved estimation accuracy over the con-
ventional approach of estimating without data selection, by as
much as two orders of magnitude in the estimation of 𝐷𝑠,𝑝 and
8

three orders of magnitude in the estimation of 𝜀𝑠,𝑝. Thus, it is m
not desirable to use arbitrary data sets (e.g., generated online) for
parameter estimation without considering the data quality. This
also indicates that random data sets, which may yield inaccurate
estimation results as a whole, often contain high-quality data
segments that can be leveraged to improve estimation accuracy.
It is notable that, although the influence of uncertainties may
be minor for strongly sensitive parameters like 𝜀𝑠,𝑝, estimation
accuracy can still be improved by considering the effects of
uncertainties in data selection.

To sum up, the strategy of evaluating the data quality rating a priori
and a posteriori was demonstrated to be effective in simulation under
the presence of parameter uncertainty. The a priori rating, albeit less
precise, is reliable for selecting data segments with the potential to
yield accurate estimates, given the available knowledge of the system.
The a posteriori rating incorporates the knowledge of the estimates to
refine the correlation between the estimation error and quality rating,
enhancing the reliability of subsequent selections.

4.2.2. Experimental validation
The experimental validation of the data selection framework with

the preliminary data rating formula follows the same procedure as
the simulation verification, except that the measured output voltage
data set is acquired through physical measurement of an LGM50T
INR21700 cell, rather than generated through simulation. Accordingly,
model/measurement uncertainty is present due to unmodeled system
dynamics and/or sensor noise, which will be shown to adversely im-
pact estimation performance. Voltage data is measured with an Arbin
LBT21084 cycler under the same four drive-cycle current profiles,
i.e., FUDS, UDDS, US06, and DST. The cell is initialized at 50% SOC
for each profile by charging it to the cut-off voltage via the constant-
current-constant-voltage protocol, and then discharging it for 30 min
at 1C, based on the measured capacity.

Two examples of a priori and a posteriori rating-error correlations
from experimental data are shown in Fig. 5 for the estimation of 𝐷𝑠,𝑝.
nlike in simulation, the rating-error relationships are generally much
ess monotonic and consistent. For example, the a priori rating-error
orrelation in Fig. 5(a) shows that data segments with low-accuracy
stimates yielded small (good) ratings while the segments with the

ost accurate estimates returned mid-range (worse) ratings. Thus, the
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a priori rating becomes ineffective for discerning between high- and
low-quality segments, as the highest-quality segments can no longer be
identified as the segments with the smallest (best) ratings. The a poste-
riori rating-error correlations were slightly more monotonic than the a
riori correlations, where several high-quality data segments achieved
mall ratings while most low-quality segments returned large ratings.
his separation between high- and low-quality data may be sufficient
o return an accurate final estimate by averaging the estimates from
he segments with the smallest a posteriori ratings, according to the
ata selection algorithm. However, this is not guaranteed, as Fig. 5(d)
ndicates that low-quality data segments may remain associated with
he smallest ratings.
The degradation in rating performance is due to the presence

f model/measurement uncertainty, which is the only difference be-
ween the voltage data sets used for the simulation verification and
xperimental validation. Since measurement uncertainty (i.e., sensor
oise/bias) is negligible in our high-precision testing equipment, we
ill henceforth refer to the model/measurement uncertainty simply as
odel uncertainty, as this is the dominant component. However, the
iscussion still applies to the lumped model/measurement uncertainty.
ollowing from Eq. (7), the model uncertainty is defined as the differ-
nce between the measured and modeled system outputs under the true
arameter set,

𝑦𝑘 = 𝑦𝑚𝑘 − 𝑦𝑘(𝜃,𝝓, 𝒖𝑘), (12)

hich is caused by unmodeled or imperfectly modeled system dynam-
cs. As discussed in Section 2, the implemented SPMe battery model
s derived from the full-order DFN model through the simplifying
ssumption that lithium intercalation current density is uniform across
ach electrode. This simplification has been demonstrated to maintain
ood accuracy under low current amplitudes, but errors grow as current
ncreases [50]. Regardless, even the DFN model is subject to assump-
ions (e.g., electrode particles are spherical with uniform radii) and will
till yield discrepancies against measured output data [61]. No model
an perfectly capture the exact dynamics of a physical system, thus
ome level of model uncertainty will always be present.
Fig. 6 provides an example visualization of the model uncertainty

nder the FUDS current profile, in which Fig. 6(a) compares the mea-
ured voltage with the modeled voltage under the benchmark parame-
er set. The model uncertainty was computed according to Eq. (12) as
9

he difference between the measured and modeled voltage responses,
nd is shown in Fig. 6(b). In this case, the model uncertainty varies in
oth sign and amplitude with high-frequency fluctuations superposed
ver a gradual decline. As discussed in Section 4.1, the estimation error
quation in Eq. (9) indicates that a data structure will mitigate the
nfluence of model uncertainty on the estimation result if ∑𝑁

𝑘=1
𝜕𝑦𝑘
𝜕𝜃̂

𝛿𝑦𝑘
is small. Since the time-varying 𝛿𝑦𝑘 is difficult to predict, the proposed
strategy of incorporating it into the rating was to approximate it as
a constant (average) value for the entire data set, represented by the
bias weight 𝛼𝛥 in Eq. (10). Disregarding the difficulty of adequately
guessing/tuning 𝛼𝛥, Fig. 6(b) reveals that approximating 𝛿𝑦𝑘 as a
onstant can introduce considerable error, as the model uncertainty can
ary significantly throughout the data set.
The last step of the data selection algorithm was to return the final

esult by averaging the estimates from the five data segments with the
mallest a posteriori ratings. The 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝 estimation results are
presented in Tables 4 and 5, respectively. As with the simulation verifi-
cation, estimation results are included from the conventional approach
of univariate estimation without data selection. In addition, results are
provided for two joint estimation scenarios (without data selection)
to consider the common practice of simultaneously estimating all sys-
tem uncertainties, including the model uncertainty. The first scenario
is the bivariate joint estimation of 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝, which attempts to
effectively eliminate the parameter uncertainty by simultaneously esti-
mating both unknown parameters. The second scenario is the trivariate
joint estimation of 𝐷𝑠,𝑝, 𝜀𝑠,𝑝, and the unknown (and assumed constant)
model uncertainty 𝛥𝑉 , which essentially attempts to estimate all system
uncertainties,

min
𝐷̂+
𝑠,𝑝 ,𝜀̂

+
𝑠,𝑝 ,𝛥𝑉 +

𝐽 =
𝑁
∑

𝑘=1

[

𝑉 𝑚
𝑘 −

(

𝑉𝑘(𝐷̂+
𝑠,𝑝, 𝜀̂

+
𝑠,𝑝, 𝝓̂, 𝒖𝑘) + 𝛥𝑉 +

)]2
. (13)

Tables 4 and 5 provide the following insights:

• Data Selection Performance: The data selection framework yielded
several accurate results (e.g., 0.6% 𝐷𝑠,𝑝 error in Table 4, 1.3%
𝜀𝑠,𝑝 error in Table 5), though estimation errors were generally
higher than those observed in simulation (Tables 2 and 3). This
was attributed to the presence of model uncertainty in the ex-
perimental data, which degraded the performance of the rating

formula and often caused the mis-selection of the highest-quality
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Table 4
Summary of experimental 𝐷𝑠,𝑝 estimation results with preliminary rating formula.

Case 𝐷𝑠,𝑝 Estimation Error

𝛥𝐷𝑠,𝑝 𝛥𝜀𝑠,𝑝 Input
Profile

Data Selection
Framework
(Preliminary Rating)

Univariate
Approach
(𝐷𝑠,𝑝)

Bivariate
Approach
(𝐷𝑠,𝑝 , 𝜀𝑠,𝑝)

Trivariate
Approach
(𝐷𝑠,𝑝 , 𝜀𝑠,𝑝 , 𝛥𝑉 )

−20% −20%

FUDS 16.8% −32.0% 26799% −32.0%
UDDS 13.7% −42.3% 26864% 26864%
US06 −28.4% −25.9% 26809% 26788%
DST −16.5% −22.9% 26838% 849%

20% 10%

FUDS 52.6% 206% 26799% 312%
UDDS −0.6% 117% 26864% 26864%
US06 −3.7% 337% 26809% 26788%
DST 21.4% 318% 26838% 849%
Table 5
Summary of experimental 𝜀𝑠,𝑝 estimation results with preliminary rating formula.

Case 𝜀𝑠,𝑝 Estimation Error

𝛥𝐷𝑠,𝑝 𝛥𝜀𝑠,𝑝 Input
Profile

Data Selection
Framework
(Preliminary Rating)

Univariate
Approach
(𝜀𝑠,𝑝)

Bivariate
Approach
(𝐷𝑠,𝑝 , 𝜀𝑠,𝑝)

Trivariate
Approach
(𝐷𝑠,𝑝 , 𝜀𝑠,𝑝 , 𝛥𝑉 )

20% 10%

FUDS −1.3% 12.7% −23.3% −32.4%
UDDS −4.0% 7.5% −26.7% −35.7%
US06 −2.1% 14.5% −22.0% −35.8%
DST −3.1% 15.7% −22.3% −35.4%

−20% 10%

FUDS −7.7% 1.8% −23.3% −32.4%
UDDS −9.8% −3.0% −26.7% −35.7%
US06 −9.2% 3.3% −22.0% −35.8%
DST −9.7% 4.3% −22.3% −35.4%
Fig. 6. Visualization of model uncertainty under FUDS current profile.

data segments. Additionally, Fig. 5(d) reveals that the smallest
estimation error of 0.6% (for the estimation of 𝐷𝑠,𝑝 under UDDS)
occurred somewhat fortuitously, as the estimates from the five
segments with the smallest a posteriori ratings are each individ-
ually poor, but are centered around the true value such that the
average error is small (note that the vertical axis in Fig. 5(d) is the
10
absolute value of the estimation error). In other words, averaging
the estimates from a different number of data segments would
yield a larger error for this case.

• Comparison with Conventional Univariate Estimation Approach: The
data selection framework generally delivered smaller estimation
errors than the conventional univariate approach without data
selection, yielding error improvements in both 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝 of
one order of magnitude. Interestingly, for the estimation of 𝜀𝑠,𝑝,
the data selection framework outperformed the conventional ap-
proach for every current profile under 𝛥𝐷𝑠,𝑝: 20% and 𝛥𝜀𝑠,𝑝:
10%, while the conventional approach performed better under
𝛥𝐷𝑠,𝑝: −20% and 𝛥𝜀𝑠,𝑝: 10%. This inconsistent behavior under
different parameter sets was not observed in simulation and is
thus attributed to the presence of model uncertainty—the only
difference between the two scenarios.

• Comparison with Bi- and Trivariate Joint Estimation Approaches: The
bivariate joint estimation of 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝 is generally inaccurate
with minimum errors of 26,799% for 𝐷𝑠,𝑝 and 22% for 𝜀𝑠,𝑝. This is
because the estimation problem is ill-posed under the drive-cycle
data, and the estimator attempted to reconcile the error between
the measured and modeled voltage outputs by varying the values
of 𝐷̂𝑠,𝑝 and 𝜀̂𝑠,𝑝, though the errors were caused by mechanisms
beyond parameter uncertainty, i.e., unmodeled system dynamics.
Mathematically, we can understand this high sensitivity of joint
estimation error to model uncertainty by examining the error
equation for the bivariate estimation of two target parameters
𝜃1 and 𝜃2, which is presented as Eq. (14) for the first target
parameter 𝜃1. The error equation for the second target parameter
𝜃2 follows a symmetric form. The equation is derived following
the same procedure as the univariate estimation error equation in
Eq. (9), and the numerator is abbreviated due to the complicated
structure and limited space.

𝛥𝜃1 =

{⋯}
∑𝑁

𝑘=1

(

𝜕𝑦𝑘
𝜕𝜃̂2

(𝜽̂+)
)2

∑𝑁
𝑘=1

(

𝜕𝑦𝑘
𝜕𝜃̂1

(𝜽̂+)
)2

−

(

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂1

(𝜽̂+) 𝜕𝑦𝑘
𝜕𝜃̂2

(𝜽̂+)
)2

∑𝑁
(

𝜕𝑦𝑘 (𝜽̂+)
)2

(14)
𝑘=1 𝜕𝜃̂2
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The form of Eq. (14) mirrors that of Eq. (9), where the de-
nominator is the determinant of the Fisher information matrix
[57,58] and each numerator term describes the propagation of
one system uncertainty to the estimation result, i.e., 𝛿𝑦𝑘 and 𝛥𝜙𝑖.
Thus, the denominator is indicative of estimation robustness to
system uncertainties, as it will proportionally reduce (or amplify)
the influence of all uncertainty-propagating numerator terms.
Comparison of the bivariate estimation error equation in Eq. (14)
with the univariate form in Eq. (9) reveals that the denomina-
tor of the bivariate form is always smaller by a difference of
(

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂1

𝜕𝑦𝑘
𝜕𝜃̂2

)2

∑𝑁
𝑘=1

(

𝜕𝑦𝑘
𝜕𝜃̂2

)2 . Thus, simultaneously estimating a second target

parameter will always reduce the denominator of the estimation
error equation, causing the estimation result to be less robust
against the uncertainties. Similarly, the trivariate joint estimation
was also ill-posed and yielded inaccurate results. Fundamentally,
this approach of attempting to eliminate all system uncertainties
by adding more target parameters for estimation is susceptible
to ill-posedness in the absence of adequate information/data.
Accordingly, the resulting estimates are often inaccurate or even
nonunique (e.g., a denominator of zero in the estimation error
equation indicates unidentifiability) [31,61,66].

Evidently, model uncertainty critically influences estimation accu-
racy for the data selection framework and conventional estimation
approaches. The remedy of approximating model uncertainty as a con-
stant bias in the data rating formula or performing multi-variate joint
estimation was found to be ineffective due to the substantial variation
of model uncertainty among data segments. Thus, we propose a new
strategy to fix the issue by adaptively incorporating model uncertainty
in the rating formula.

5. Data quality rating adaptive to model/measurement uncer-
tainty: Derivation & validation

The results in Section 4.2 revealed that model uncertainty can
ignificantly degrade estimation accuracy, not only for the data selec-
ion framework but for conventional univariate and joint estimation
pproaches as well. This is a serious concern for EV BMSs, where model
idelity is restricted by the onboard computational resources, and high-
recision measurement hardware is typically cost-prohibitive—indeed,
odel/measurement uncertainty is inevitable in practice. To improve
he capability of the data selection framework to differentiate data in
erms of the model/measurement uncertainty, an adaptive approxima-
ion of the model/measurement uncertainty is derived and embedded
nto the data quality rating formula. Experimental validation follows.
or brevity, we will continue to refer to the model/measurement
ncertainty simply as model uncertainty, in reference to the dominant
omponent in our Li-ion battery application.

.1. Derivation

As discussed in Section 4, the challenge with incorporating varying
odel uncertainty into the rating formula is that it is varying and
epends on the true parameter values, according to Eq. (12). Since the
rue parameter values are unknown, the model uncertainty can only be
pproximated. Recent works have developed data-driven approaches
or predicting model uncertainty with recurrent neural networks [67],
eedforward neural networks [68,69], polynomial regression [70], and
aussian process regression [70]. However, these techniques cannot
e adopted in the data selection framework because they depend on
11

raining data that is generated under the unknown true parameter
values. For this reason, a new approach is developed for approximating
model uncertainty under an uncertain parameter set.

The basic idea of the new approach is to approximate the time-
varying model uncertainty as

𝛿𝑦𝑘 = 𝑦𝑚𝑘 − 𝑦𝑘(𝜃,𝝓, 𝒖𝑘)

≈ 𝑦𝑚𝑘 −

[

𝑦𝑘(𝜃̂−, 𝝓̂, 𝒖𝑘) +
𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂−, 𝝓̂, 𝒖𝑘)(𝜃 − 𝜃̂−) +
𝑚
∑

𝑖=1

(

𝜕𝑦𝑘
𝜕𝜙̂𝑖

(𝜃̂−, 𝝓̂, 𝒖𝑘)𝛥𝜙𝑖

)]

,

(15)

where the modeled output under the true parameter set 𝑦𝑘(𝜃,𝝓, 𝒖𝑘)
s approximated by the 1st order Taylor expansion about the a priori
arameter set (𝜃̂−, 𝝓̂). It is important for the Taylor expansion to be
entered about the a priori parameter set because the model uncertainty
pproximation in Eq. (15) will be combined with the estimation error
quation in Eq. (9), which was derived through a Taylor expansion
f 𝑦𝑘(𝜃,𝝓, 𝒖𝑘) about the a posteriori parameter set (𝜃̂+, 𝝓̂). Thus, ap-
roximating 𝑦𝑘(𝜃,𝝓, 𝒖𝑘) from the alternative perspective of the a priori
arameter set will provide the error equation with new information that
an be leveraged to characterize the model uncertainty. The adaptive
posteriori rating formula is hence derived by combining the model
ncertainty approximation in Eq. (15) and the error equation in Eq. (9),
nd the final form is presented as Eq. (16) after normalizing by the
stimate of the target parameter (𝜃̂+) and applying the absolute value.

+
𝜃 =

|

|

|

|

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+)
[

𝑦𝑚𝑘 − 𝑦𝑘(𝜃̂−) +
𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂−)
(

𝜃̂−

𝜃̂+
− 1

)

+
∑𝑚

𝑖=1 𝛼𝜙𝑖

(

𝜕𝑦𝑘
𝜕𝜙̂𝑖

(𝜃̂+) − 𝜕𝑦𝑘
𝜕𝜙̂𝑖

(𝜃̂−)
)]

|

|

|

|

|

|

|

|

∑𝑁
𝑘=1

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+)
(

𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+) − 𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂−)
)

|

|

|

|

(16)

The adaptive rating formula incorporates the model uncertainty
ithout any need for prior knowledge or tuning. Additionally, the full
ime-varying model uncertainty is captured without being oversim-
lified as a constant, as was necessary for the preliminary rating in
q. (10) and the trivariate joint estimation in Eq. (13). This is enabled
y a distinct feature of the adaptive rating, i.e., it involves both the
priori and a posteriori values of the target parameter. Specifically, be-
ides using the aforementioned sensitivity-based data structures related
o uncertainty propagation, the rating also leverages the difference
etween the a priori and a posteriori values, featured by

(

𝜃̂−

𝜃̂+
− 1

)

in
the numerator and other terms. This difference essentially indicates
the extent to which the initial guess of the target parameter can be
changed/improved by the data. In this way, the rating formula not
only evaluates the potential of a data segment to amplify/attenuate
uncertainty, but also implicitly incorporates the (model) uncertainty
itself. However, since the new rating cannot be evaluated a priori only,
it is recommended that the preliminary rating in Eq. (10) continue
to be used for the a priori evaluation in the data selection algo-
rithm. Meanwhile, the denominator of the adaptive rating no longer
represents the Fisher information of the target parameter, as it is
smaller than the preliminary rating denominator by a difference of
∑𝑁

𝑘=1
𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+) 𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂−). Regardless, the denominator can still be large if
he target parameter is strongly sensitive, which is indicative of high-
uality data through robustness against the uncertainty-propagating
umerator terms. Thus, it is still desirable for the target parameter to
e strongly sensitive, as it was for the preliminary rating. On the other
and, the ∑𝑁

𝑘=1
𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂+) 𝜕𝑦𝑘
𝜕𝜃̂

(𝜃̂−) term can substantially reduce the rating
denominator, which may cause numerical instability in computation
due to the unaccounted errors in the numerator associated with the
truncated higher-order terms of the Taylor expansion. For example,
if the rating denominator is very small for a given data segment, a
minor error in the numerator (due to Taylor approximations) can be
amplified to substantially impact the rating value. To mitigate the
possibility of mis-rating segments, a threshold will be applied to the
rating denominator to enforce a minimum acceptable value.
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Table 6
Summary of experimental 𝐷𝑠,𝑝 estimation results with adaptive rating formula.

Case 𝐷𝑠,𝑝 Estimation Error

𝛥𝐷𝑠,𝑝 𝛥𝜀𝑠,𝑝 𝛼𝜀𝑠,𝑝 Input
Profile

Data Selection
Framework
(Adaptive Rating)

Univariate
Approach
(𝐷𝑠,𝑝)

Bivariate
Approach
(𝐷𝑠,𝑝 , 𝜀𝑠,𝑝)

Trivariate
Approach
(𝐷𝑠,𝑝 , 𝜀𝑠,𝑝 , 𝛥𝑉 )

−20% −20% 1/12

FUDS −4.8% −32.0% 26799% −32.0%
UDDS −4.7% −42.3% 26864% 26864%
US06 −2.6% −25.9% 26809% 26788%
DST −3.5% −22.9% 26838% 849%

20% 10% −1/3

FUDS 18.6% 206% 26799% 312%
UDDS 5.4% 117% 26864% 26864%
US06 30.8% 337% 26809% 26788%
DST 37.6% 318% 26838% 849%
Table 7
Summary of experimental 𝜀𝑠,𝑝 estimation results with adaptive rating formula.

Case 𝜀𝑠,𝑝 Estimation Error

𝛥𝐷𝑠,𝑝 𝛥𝜀𝑠,𝑝 𝛼𝐷𝑠,𝑝
Input
Profile

Data Selection
Framework
(Adaptive Rating)

Univariate
Approach
(𝜀𝑠,𝑝)

Bivariate
Approach
(𝐷𝑠,𝑝 , 𝜀𝑠,𝑝)

Trivariate
Approach
(𝐷𝑠,𝑝 , 𝜀𝑠,𝑝 , 𝛥𝑉 )

20% 10% −3/8

FUDS 3.6% 12.7% −23.3% −32.4%
UDDS −1.5% 7.5% −26.7% −35.7%
US06 3.5% 14.5% −22.0% −35.8%
DST 4.7% 15.7% −22.3% −35.4%

−20% 10% 1/12

FUDS 0.8% 1.8% −23.3% −32.4%
UDDS −3.0% −3.0% −26.7% −35.7%
US06 0.6% 3.3% −22.0% −35.8%
DST 1.5% 4.3% −22.3% −35.4%
1
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5.2. Experimental validation

The experimental validation of the adaptive rating formula is iden-
tical to that of the preliminary rating formula in Section 4.2.2, except
that the a posteriori rating evaluation is performed with the adaptive
rating formula in Eq. (16). Fig. 7 shows the a posteriori rating-error cor-
relations for the same examples in Fig. 5, where the data segments are
simply rearranged along the horizontal-axis according to the new rating
values. Fig. 7 also includes correlations for 𝜀𝑠,𝑝 under different current
rofiles and parameter uncertainties. The 𝛼𝜙 weight was selected to
e 1/12, −1/3, −3/8, and 1/12 for the four uncertain parameter sets
n Table 1, corresponding to arbitrary parameter uncertainty guesses
𝛥𝜙̂) of 10%, −30%, −30%, and 10% of the true parameter values,
espectively, as 𝛼𝜙𝜙̂ = 𝛥𝜙̂. To improve the numerical stability of
he rating, the denominator threshold was selected to be 0.1 for 𝐷𝑠,𝑝
stimation and 1.7 for 𝜀𝑠,𝑝 estimation. These values were hand-tuned
or each target parameter, though we intend to develop a method for
utomatically determining them in future work.
It can be seen that each rating-error correlation in Fig. 7 is strongly
onotonic, indicating the adequacy of using it for data selection, as the
ighest-quality data segments are associated with the smallest ratings.
he rating-error correlations were significantly improved over those us-
ng the preliminary rating formula shown in Fig. 5, which attests to the
ffectiveness of the model uncertainty approximation for enhancing the
eliability of the rating formula. For each case, the final estimate was
eturned by averaging the estimates from the five data segments with
he smallest a posteriori ratings. The 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝 estimation results are
ummarized in Tables 6 and 7 alongside results from the conventional
pproaches of univariate, bivariate, and trivariate estimation without
ata selection.
In comparison with the results under the preliminary rating formula

Tables 4 and 5), the adaptive rating improved the estimation accuracy
or most cases, with several error reductions of one order of magnitude.
he adaptive rating also delivered tighter error variation than the
reliminary rating, i.e., [−4.8%, 37.6%] vs. [−28.4%, 52.6%] for 𝐷𝑠,𝑝
nd [−3.0%, 4.7%] vs. [−9.8%, −1.3%] for 𝜀𝑠,𝑝. Estimation accuracy
as notably improved in 𝜀 for the case of 𝛥𝐷 : −20% and 𝛥𝜀 :
12

𝑠,𝑝 𝑠,𝑝 𝑠,𝑝 e
0%, with errors consistently less than or equal to those of the three
onventional approaches. In summary, the data selection framework
utperformed or matched the conventional approaches in every case,
nd yielded estimation errors that were at least one order of magnitude
maller in 28 out of the 48 cases. Thus, the adaptive rating formula has
een validated as an effective means for improving the performance of
he data selection framework.

. Conclusions

In this paper, an uncertainty-aware data selection framework was
roposed and demonstrated for the accurate estimation of health-
elated Li-ion battery parameters. The foundation of the framework
s the proposed data quality rating, which is a metric for predicting
he extent to which a selected data segment will propagate system
ncertainties to the estimation result. The data selection and estimation
rocedures were integrated through a priori and a posteriori evaluations
f data segment quality, and the a posteriori data quality rating was
nhanced with a novel approximation of model/measurement uncer-
ainty that considers the influence of unmodeled dynamics and/or
ensor noise. Two health-related electrochemical parameters, 𝐷𝑠,𝑝 and
𝑠,𝑝, were separately estimated in simulation and experiment to evalu-
te the performance of the framework. Excellent estimation accuracy
as achieved, even in the difficult case of estimating the weakly
ensitive 𝐷𝑠,𝑝 under uncertainty in the strongly sensitive 𝜀𝑠,𝑝. Addi-
ionally, model/measurement uncertainty was generally observed to
educe estimation accuracy, though its influence was mitigated through
uccessful integration of the adaptive model/measurement uncertainty
pproximation into the rating formula. The framework yielded exper-
mental estimation error reductions of one order of magnitude when
ompared with the conventional approaches of univariate and mul-
ivariate estimation without data selection. It was thus validated as
n effective means for improving parameter estimation accuracy when
ontrol authority is not available over the data.
The data selection framework is significant because it has the po-

ential to change the paradigm of both online and offline parameter

stimation. Throughout this work, we showed that drive-cycle data



eTransportation 18 (2023) 100283J. Fogelquist and X. Lin

V
s

Fig. 7. Experimental a posteriori rating-error correlations for 𝐷𝑠,𝑝 and 𝜀𝑠,𝑝 using adaptive
rating formula under different input profiles and parameter uncertainties.

(e.g., FUDS, UDDS, US06, and DST), which are frequently used for
battery SOH estimation as the only available data during battery oper-
ation, may not provide accurate estimation results. This is mainly due
to the existence of large portions of low-quality data (low sensitivity
and high uncertainty) in the cycle. The contribution of this paper is to
propose a data selection scheme that can extract the high-quality data
segments from random operational data to improve estimation accu-
racy. In online estimation, high-quality data segments can be selected
from a window of a random data stream, which facilitates the optimal
use of the incoming data when it cannot be controlled/designed. In
13
offline estimation, high-quality data segments can be selected from an
existing database of measurements. This may eliminate or reduce the
time, equipment, labor, and expertise required to design and conduct
experiments, which would otherwise be necessary to generate suitable
data sets when accurate estimation results are critical. For example,
consider the emerging field of battery repurposing, in which retired
electric vehicle batteries must undergo a lengthy health testing and di-
agnosis procedure before being appropriately repackaged for stationary
applications. Through the data selection framework, an existing high-
quality data segment from the vehicle BMS might be extracted and used
to quickly and accurately estimate the health-related battery parame-
ters, as was demonstrated in the verification and validation studies in
Sections 4 and 5, circumventing the need for lengthy experimentation.

CRediT authorship contribution statement

Jackson Fogelquist: Conceptualization, Methodology, Software,
alidation, Investigation, Data curation, Writing – original draft, Vi-
ualization. Xinfan Lin: Conceptualization, Methodology, Validation,
Resources, Writing – original draft, Visualization, Supervision, Project
administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We appreciate the funding support from the NSF CAREER Program,
United States (Grant No. 2046292) and the NASA HOME Space Tech-
nology Research Institute, United States (Grant No. 80NSSC19K1052).

References

[1] Chaturvedi NA, Klein R, Christensen J, Ahmed J, Kojic A. Algorithms for ad-
vanced battery-management systems. IEEE Control Syst Mag 2010;30(3):49–68.
http://dx.doi.org/10.1109/MCS.2010.936293.

[2] Xiong R, Li L, Tian J. Towards a smarter battery management system: A
critical review on battery state of health monitoring methods. J Power Sources
2018;405:18–29. http://dx.doi.org/10.1016/j.jpowsour.2018.10.019.

[3] Lin X, Kim Y, Mohan S, Siegel JB, Stefanopoulou AG. Modeling and estimation
for advanced battery management. In: Annual review of control, robotics, and
autonomous systems. Vol. 2. Annual Reviews; 2019, p. 393–426. http://dx.doi.
org/10.1146/annurev-control-053018-023643.

[4] Cramér H. Mathematical methods of statistics (PMS-9). Princeton University
Press; 1999, URL http://www.jstor.org/stable/j.ctt1bpm9r4.

[5] Cover TM, Thomas JA. Elements of information theory. second ed.. Hoboken,
NJ: John Wiley & Sons, Inc; 2006, p. 392–9.

[6] Fedorov VV. Theory of optimal experiments. New York, NY: Academic Press, Inc;
1972, p. 27–30.

[7] Pronzato L, Walter E. Robust experiment design via stochastic approximation.
Math Biosci 1985;75(1):103–20. http://dx.doi.org/10.1016/0025-
5564(85)90068-9, URL https://www.sciencedirect.com/science/article/pii/
0025556485900689.

[8] Emery AF, Nenarokomov AV. Optimal experiment design. Meas Sci Technol
1998;9(6):864–76. http://dx.doi.org/10.1088/0957-0233/9/6/003.

[9] Lin X. Analytic analysis of the data-dependent estimation accuracy of battery
equivalent circuit dynamics. IEEE Control Syst Lett 2017;1(2):304–9. http://dx.
doi.org/10.1109/LCSYS.2017.2715821.

[10] Song Z, Hofmann H, Lin X, Han X, Hou J. Parameter identification of lithium-ion
battery pack for different applications based on Cramer-Rao bound analysis and
experimental study. Appl Energy 2018;231:1307–18. http://dx.doi.org/10.1016/
j.apenergy.2018.09.126, URL https://www.sciencedirect.com/science/article/pii/
S0306261918314375.

http://dx.doi.org/10.1109/MCS.2010.936293
http://dx.doi.org/10.1016/j.jpowsour.2018.10.019
http://dx.doi.org/10.1146/annurev-control-053018-023643
http://dx.doi.org/10.1146/annurev-control-053018-023643
http://dx.doi.org/10.1146/annurev-control-053018-023643
http://www.jstor.org/stable/j.ctt1bpm9r4
http://refhub.elsevier.com/S2590-1168(23)00058-9/sb5
http://refhub.elsevier.com/S2590-1168(23)00058-9/sb5
http://refhub.elsevier.com/S2590-1168(23)00058-9/sb5
http://refhub.elsevier.com/S2590-1168(23)00058-9/sb6
http://refhub.elsevier.com/S2590-1168(23)00058-9/sb6
http://refhub.elsevier.com/S2590-1168(23)00058-9/sb6
http://dx.doi.org/10.1016/0025-5564(85)90068-9
http://dx.doi.org/10.1016/0025-5564(85)90068-9
http://dx.doi.org/10.1016/0025-5564(85)90068-9
https://www.sciencedirect.com/science/article/pii/0025556485900689
https://www.sciencedirect.com/science/article/pii/0025556485900689
https://www.sciencedirect.com/science/article/pii/0025556485900689
http://dx.doi.org/10.1088/0957-0233/9/6/003
http://dx.doi.org/10.1109/LCSYS.2017.2715821
http://dx.doi.org/10.1109/LCSYS.2017.2715821
http://dx.doi.org/10.1109/LCSYS.2017.2715821
http://dx.doi.org/10.1016/j.apenergy.2018.09.126
http://dx.doi.org/10.1016/j.apenergy.2018.09.126
http://dx.doi.org/10.1016/j.apenergy.2018.09.126
https://www.sciencedirect.com/science/article/pii/S0306261918314375
https://www.sciencedirect.com/science/article/pii/S0306261918314375
https://www.sciencedirect.com/science/article/pii/S0306261918314375


eTransportation 18 (2023) 100283J. Fogelquist and X. Lin
[11] Forman JC, Moura SJ, Stein JL, Fathy HK. Optimal experimental design for
modeling battery degradation. In: Dynamic systems and control conference. Vol.
1. 2012, p. 309–18. http://dx.doi.org/10.1115/DSCC2012-MOVIC2012-8751,
arXiv:https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2012-
MOVIC2012/45295/309/4446721/309_1.pdf.

[12] Rothenberger MJ, Docimo DJ, Ghanaatpishe M, Fathy HK. Genetic optimiza-
tion and experimental validation of a test cycle that maximizes parameter
identifiability for a Li-ion equivalent-circuit battery model. J Energy Storage
2015;4:156–66. http://dx.doi.org/10.1016/j.est.2015.10.004, URL https://www.
sciencedirect.com/science/article/pii/S2352152X15300232.

[13] Park S, Kato D, Gima Z, Klein R, Moura S. Optimal experimental design for
parameterization of an electrochemical lithium-ion battery model. J Electrochem
Soc 2018;165(7):A1309–23. http://dx.doi.org/10.1149/2.0421807jes.

[14] Lai Q, Ahn HJ, Kim G, Joe WT, Lin X. Optimization of current excitation for
identification of battery electrochemical parameters based on analytic sensitivity
expression. In: 2020 American control conference. 2020, p. 346–51. http://dx.
doi.org/10.23919/ACC45564.2020.9147575.

[15] Hu C, Youn BD, Chung J. A multiscale framework with extended Kalman
filter for lithium-ion battery SOC and capacity estimation. Appl Energy
2012;92:694–704. http://dx.doi.org/10.1016/j.apenergy.2011.08.002, URL https:
//www.sciencedirect.com/science/article/pii/S0306261911004971.

[16] Xiong R, Sun F, Chen Z, He H. A data-driven multi-scale extended Kalman
filtering based parameter and state estimation approach of lithium-ion polymer
battery in electric vehicles. Appl Energy 2014;113:463–76. http://dx.doi.org/
10.1016/j.apenergy.2013.07.061, URL https://www.sciencedirect.com/science/
article/pii/S0306261913006284.

[17] Chen C, Xiong R, Shen W. A lithium-ion battery-in-the-loop approach to test
and validate multiscale dual H infinity filters for state-of-charge and capacity
estimation. IEEE Trans Power Electron 2018;33(1):332–42. http://dx.doi.org/10.
1109/TPEL.2017.2670081.

[18] Hua Y, Cordoba-Arenas A, Warner N, Rizzoni G. A multi time-scale state-
of-charge and state-of-health estimation framework using nonlinear predictive
filter for lithium-ion battery pack with passive balance control. J Power
Sources 2015;280:293–312. http://dx.doi.org/10.1016/j.jpowsour.2015.01.112,
URL https://www.sciencedirect.com/science/article/pii/S0378775315001287.

[19] Veraart J, Sijbers J, Sunaert S, Leemans A, Jeurissen B. Weighted linear
least squares estimation of diffusion MRI parameters: Strengths, limita-
tions, and pitfalls. NeuroImage 2013;81:335–46. http://dx.doi.org/10.1016/
j.neuroimage.2013.05.028, URL https://www.sciencedirect.com/science/article/
pii/S1053811913005223.

[20] Li Y, Wang X. Conditional extended Kalman filter for battery model
parameter identification. In: Dynamic systems and control conference. Vol.
2. 2014, p. 5820–6. http://dx.doi.org/10.1115/DSCC2014-5820, arXiv:https:
//asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2014/46193/
V002T36A001/4445305/v002t36a001-dscc2014-5820.pdf. V002T36A001.

[21] Zhang Y, Liu H, Chen Y, Wang Q. Selection method of measurement data for
the parameters estimation of transmission line. In: 2018 2nd IEEE conference on
energy internet and energy system integration. 2018, p. 1–5. http://dx.doi.org/
10.1109/EI2.2018.8582624.

[22] Li C, Zhang Y, Zhang H, Wu Q, Terzija V. Measurement-based transmission line
parameter estimation with adaptive data selection scheme. IEEE Trans Smart
Grid 2018;9(6):5764–73. http://dx.doi.org/10.1109/TSG.2017.2696619.

[23] Lin X. A data selection strategy for real-time estimation of battery parameters.
In: 2018 American control conference. 2018, p. 2276–81. http://dx.doi.org/10.
23919/ACC.2018.8431747.

[24] Gima ZT, Kato D, Klein R, Moura SJ. Analysis of online parameter estimation
for electrochemical Li-ion battery models via reduced sensitivity equations. In:
2020 American control conference. 2020, p. 373–8. http://dx.doi.org/10.23919/
ACC45564.2020.9147260.

[25] Lin X, Stefanopoulou A, Laskowsky P, Freudenberg J, Li Y, Anderson RD. State
of charge estimation error due to parameter mismatch in a generalized explicit
lithium ion battery model. In: Dynamic systems and control conference.
Vol. 1. 2011, p. 393–400. http://dx.doi.org/10.1115/DSCC2011-6193,
arXiv:https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2011/
54754/393/2766969/393_1.pdf.

[26] Mishra PP, Garg M, Mendoza S, Liu J, Rahn CD, Fathy HK. How does model
reduction affect lithium-ion battery state of charge estimation errors? Theory
and experiments. J Electrochem Soc 2016;164(2):A237–51. http://dx.doi.org/10.
1149/2.0751702jes.

[27] Li Z, Huang J, Liaw BY, Zhang J. On state-of-charge determination for lithium-
ion batteries. J Power Sources 2017;348:281–301. http://dx.doi.org/10.1016/
j.jpowsour.2017.03.001, URL https://www.sciencedirect.com/science/article/pii/
S0378775317302859.

[28] Mendoza S, Liu J, Mishra P, Fathy H. On the relative contributions of bias
and noise to lithium-ion battery state of charge estimation errors. J Energy
Storage 2017;11:86–92. http://dx.doi.org/10.1016/j.est.2017.01.006, URL https:
//www.sciencedirect.com/science/article/pii/S2352152X16301633.

[29] Lin X. Analytic derivation of battery SOC estimation error under sensor
noises. IFAC-PapersOnLine 2017;50(1):2175–80. http://dx.doi.org/10.1016/
j.ifacol.2017.08.277, URL https://www.sciencedirect.com/science/article/pii/
S2405896317305943. 20th IFAC World Congress.
14
[30] Lin X. Theoretical analysis of battery SOC estimation errors under sensor bias
and variance. IEEE Trans Ind Electron 2018;65:7138–48. http://dx.doi.org/10.
1109/TIE.2018.2795521.

[31] Fogelquist J, Lai Q, Lin X. On the error of Li-ion battery parameter estimation
subject to system uncertainties. J Electrochem Soc 2023;170(3):030510. http:
//dx.doi.org/10.1149/1945-7111/acbc9c.

[32] Fogelquist J, Lin X. Uncertainty-aware data selection framework for parame-
ter estimation with application to Li-ion battery. In: 2022 American control
conference. IEEE; 2022, p. 384–91. http://dx.doi.org/10.23919/ACC53348.2022.
9867243.

[33] Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion
battery management in electric vehicles. J Power Sources 2013;226:272–88. http:
//dx.doi.org/10.1016/j.jpowsour.2012.10.060, URL https://linkinghub.elsevier.
com/retrieve/pii/S0378775312016163.

[34] Ramadass P, Haran B, White R, Popov BN. Mathematical modeling of the
capacity fade of Li-ion cells. J Power Sources 2003;123(2):230–40. http://dx.
doi.org/10.1016/S0378-7753(03)00531-7, URL https://www.sciencedirect.com/
science/article/pii/S0378775303005317.

[35] Wang AA, O’Kane SEJ, Brosa Planella F, Houx JL, O’Regan K, Zyskin M, et
al. Review of parameterisation and a novel database (LiionDB) for continuum
Li-ion battery models. Progr Energy 2022;4(3):032004. http://dx.doi.org/10.
1088/2516-1083/ac692c, URL https://iopscience.iop.org/article/10.1088/2516-
1083/ac692c.

[36] Wojtala ME, Planella FB, Zulke AA, Hoster HE, Howey DA. Investigating changes
in transport, kinetics and heat generation over NCA/Gr-SiOx battery lifetime.
In: 2022 Vehicle power and propulsion conference. IEEE; 2022, p. 1–6. http:
//dx.doi.org/10.1109/VPPC55846.2022.10003425.

[37] Capron O, Gopalakrishnan R, Jaguemont J, Van Den Bossche P, Omar N,
Van Mierlo J. On the ageing of high energy lithium-ion batteries—Comprehensive
electrochemical diffusivity studies of harvested nickel manganese cobalt elec-
trodes. Materials 2018;11(2):176. http://dx.doi.org/10.3390/ma11020176, URL
https://www.mdpi.com/1996-1944/11/2/176.

[38] Zhou X, Huang J, Pan Z, Ouyang M. Impedance characterization of lithium-ion
batteries aging under high-temperature cycling: Importance of electrolyte-
phase diffusion. J Power Sources 2019;426:216–22. http://dx.doi.org/10.
1016/j.jpowsour.2019.04.040, URL https://linkinghub.elsevier.com/retrieve/pii/
S0378775319304513.

[39] Channagiri SA, Nagpure SC, Babu S, Noble GJ, Hart RT. Porosity
and phase fraction evolution with aging in lithium iron phosphate bat-
tery cathodes. J Power Sources 2013;243:750–7. http://dx.doi.org/10.1016/j.
jpowsour.2013.06.023, URL https://www.sciencedirect.com/science/article/pii/
S0378775313010173.

[40] Dong G, Wei J. A physics-based aging model for lithium-ion battery
with coupled chemical/mechanical degradation mechanisms. Electrochim Acta
2021;139133. http://dx.doi.org/10.1016/j.electacta.2021.139133, URL https://
www.sciencedirect.com/science/article/pii/S0013468621014237.

[41] Birkl CR, Roberts MR, McTurk E, Bruce PG, Howey DA. Degradation diagnostics
for lithium ion cells. J Power Sources 2017;341:373–86. http://dx.doi.org/10.
1016/j.jpowsour.2016.12.011, URL https://linkinghub.elsevier.com/retrieve/pii/
S0378775316316998.

[42] Han X, Lu L, Zheng Y, Feng X, Li Z, Li J, et al. A review on the key
issues of the lithium ion battery degradation among the whole life cycle.
eTransportation 2019;1:100005. http://dx.doi.org/10.1016/j.etran.2019.100005,
URL https://linkinghub.elsevier.com/retrieve/pii/S2590116819300050.

[43] Fang R, Miao C, Nie Y, Wang D, Xiao W, Xu M, et al. Degradation mechanism
and performance enhancement strategies of LiNi𝑥Co𝑦Al1-𝑥-𝑦O2 (x ≥ 0.8) cathodes
for rechargeable lithium-ion batteries: A review. Ionics 2020;26(7):3199–214.
http://dx.doi.org/10.1007/s11581-020-03569-7, URL https://link.springer.com/
10.1007/s11581-020-03569-7.

[44] Prasad GK, Rahn CD. Model based identification of aging parameters in
lithium ion batteries. J Power Sources 2013;232:79–85. http://dx.doi.org/10.
1016/j.jpowsour.2013.01.041, URL https://linkinghub.elsevier.com/retrieve/pii/
S0378775313000700.

[45] Schmidt AP, Bitzer M, Imre ÁW, Guzzella L. Model-based distinction and
quantification of capacity loss and rate capability fade in Li-ion bat-
teries. J Power Sources 2010;195(22):7634–8. http://dx.doi.org/10.1016/j.
jpowsour.2010.06.011, URL https://www.sciencedirect.com/science/article/pii/
S0378775310009948.

[46] Ramadesigan V, Chen K, Burns NA, Boovaragavan V, Braatz RD, Subrama-
nian VR. Parameter estimation and capacity fade analysis of lithium-ion batteries
using reformulated models. J Electrochem Soc 2011;158(9):A1048. http://dx.
doi.org/10.1149/1.3609926, URL https://iopscience.iop.org/article/10.1149/1.
3609926.

[47] Lai Q, Joe WT, Kim G, Lin X. Data optimization for parameter estimation
under system uncertainties with application to Li-ion battery. In: 2021 American
control conference. 2021, p. 4408–13. http://dx.doi.org/10.23919/ACC50511.
2021.9483048.

[48] Lai Q, Ahn HJ, Kim Y, Kim YN, Lin X. New data optimization frame-
work for parameter estimation under uncertainties with application to
lithium-ion battery. Appl Energy 2021;295:117034. http://dx.doi.org/10.1016/j.

http://dx.doi.org/10.1115/DSCC2012-MOVIC2012-8751
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2012-MOVIC2012/45295/309/4446721/309_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2012-MOVIC2012/45295/309/4446721/309_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2012-MOVIC2012/45295/309/4446721/309_1.pdf
http://dx.doi.org/10.1016/j.est.2015.10.004
https://www.sciencedirect.com/science/article/pii/S2352152X15300232
https://www.sciencedirect.com/science/article/pii/S2352152X15300232
https://www.sciencedirect.com/science/article/pii/S2352152X15300232
http://dx.doi.org/10.1149/2.0421807jes
http://dx.doi.org/10.23919/ACC45564.2020.9147575
http://dx.doi.org/10.23919/ACC45564.2020.9147575
http://dx.doi.org/10.23919/ACC45564.2020.9147575
http://dx.doi.org/10.1016/j.apenergy.2011.08.002
https://www.sciencedirect.com/science/article/pii/S0306261911004971
https://www.sciencedirect.com/science/article/pii/S0306261911004971
https://www.sciencedirect.com/science/article/pii/S0306261911004971
http://dx.doi.org/10.1016/j.apenergy.2013.07.061
http://dx.doi.org/10.1016/j.apenergy.2013.07.061
http://dx.doi.org/10.1016/j.apenergy.2013.07.061
https://www.sciencedirect.com/science/article/pii/S0306261913006284
https://www.sciencedirect.com/science/article/pii/S0306261913006284
https://www.sciencedirect.com/science/article/pii/S0306261913006284
http://dx.doi.org/10.1109/TPEL.2017.2670081
http://dx.doi.org/10.1109/TPEL.2017.2670081
http://dx.doi.org/10.1109/TPEL.2017.2670081
http://dx.doi.org/10.1016/j.jpowsour.2015.01.112
https://www.sciencedirect.com/science/article/pii/S0378775315001287
http://dx.doi.org/10.1016/j.neuroimage.2013.05.028
http://dx.doi.org/10.1016/j.neuroimage.2013.05.028
http://dx.doi.org/10.1016/j.neuroimage.2013.05.028
https://www.sciencedirect.com/science/article/pii/S1053811913005223
https://www.sciencedirect.com/science/article/pii/S1053811913005223
https://www.sciencedirect.com/science/article/pii/S1053811913005223
http://dx.doi.org/10.1115/DSCC2014-5820
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2014/46193/V002T36A001/4445305/v002t36a001-dscc2014-5820.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2014/46193/V002T36A001/4445305/v002t36a001-dscc2014-5820.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2014/46193/V002T36A001/4445305/v002t36a001-dscc2014-5820.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2014/46193/V002T36A001/4445305/v002t36a001-dscc2014-5820.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2014/46193/V002T36A001/4445305/v002t36a001-dscc2014-5820.pdf
http://dx.doi.org/10.1109/EI2.2018.8582624
http://dx.doi.org/10.1109/EI2.2018.8582624
http://dx.doi.org/10.1109/EI2.2018.8582624
http://dx.doi.org/10.1109/TSG.2017.2696619
http://dx.doi.org/10.23919/ACC.2018.8431747
http://dx.doi.org/10.23919/ACC.2018.8431747
http://dx.doi.org/10.23919/ACC.2018.8431747
http://dx.doi.org/10.23919/ACC45564.2020.9147260
http://dx.doi.org/10.23919/ACC45564.2020.9147260
http://dx.doi.org/10.23919/ACC45564.2020.9147260
http://dx.doi.org/10.1115/DSCC2011-6193
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2011/54754/393/2766969/393_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2011/54754/393/2766969/393_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2011/54754/393/2766969/393_1.pdf
http://dx.doi.org/10.1149/2.0751702jes
http://dx.doi.org/10.1149/2.0751702jes
http://dx.doi.org/10.1149/2.0751702jes
http://dx.doi.org/10.1016/j.jpowsour.2017.03.001
http://dx.doi.org/10.1016/j.jpowsour.2017.03.001
http://dx.doi.org/10.1016/j.jpowsour.2017.03.001
https://www.sciencedirect.com/science/article/pii/S0378775317302859
https://www.sciencedirect.com/science/article/pii/S0378775317302859
https://www.sciencedirect.com/science/article/pii/S0378775317302859
http://dx.doi.org/10.1016/j.est.2017.01.006
https://www.sciencedirect.com/science/article/pii/S2352152X16301633
https://www.sciencedirect.com/science/article/pii/S2352152X16301633
https://www.sciencedirect.com/science/article/pii/S2352152X16301633
http://dx.doi.org/10.1016/j.ifacol.2017.08.277
http://dx.doi.org/10.1016/j.ifacol.2017.08.277
http://dx.doi.org/10.1016/j.ifacol.2017.08.277
https://www.sciencedirect.com/science/article/pii/S2405896317305943
https://www.sciencedirect.com/science/article/pii/S2405896317305943
https://www.sciencedirect.com/science/article/pii/S2405896317305943
http://dx.doi.org/10.1109/TIE.2018.2795521
http://dx.doi.org/10.1109/TIE.2018.2795521
http://dx.doi.org/10.1109/TIE.2018.2795521
http://dx.doi.org/10.1149/1945-7111/acbc9c
http://dx.doi.org/10.1149/1945-7111/acbc9c
http://dx.doi.org/10.1149/1945-7111/acbc9c
http://dx.doi.org/10.23919/ACC53348.2022.9867243
http://dx.doi.org/10.23919/ACC53348.2022.9867243
http://dx.doi.org/10.23919/ACC53348.2022.9867243
http://dx.doi.org/10.1016/j.jpowsour.2012.10.060
http://dx.doi.org/10.1016/j.jpowsour.2012.10.060
http://dx.doi.org/10.1016/j.jpowsour.2012.10.060
https://linkinghub.elsevier.com/retrieve/pii/S0378775312016163
https://linkinghub.elsevier.com/retrieve/pii/S0378775312016163
https://linkinghub.elsevier.com/retrieve/pii/S0378775312016163
http://dx.doi.org/10.1016/S0378-7753(03)00531-7
http://dx.doi.org/10.1016/S0378-7753(03)00531-7
http://dx.doi.org/10.1016/S0378-7753(03)00531-7
https://www.sciencedirect.com/science/article/pii/S0378775303005317
https://www.sciencedirect.com/science/article/pii/S0378775303005317
https://www.sciencedirect.com/science/article/pii/S0378775303005317
http://dx.doi.org/10.1088/2516-1083/ac692c
http://dx.doi.org/10.1088/2516-1083/ac692c
http://dx.doi.org/10.1088/2516-1083/ac692c
https://iopscience.iop.org/article/10.1088/2516-1083/ac692c
https://iopscience.iop.org/article/10.1088/2516-1083/ac692c
https://iopscience.iop.org/article/10.1088/2516-1083/ac692c
http://dx.doi.org/10.1109/VPPC55846.2022.10003425
http://dx.doi.org/10.1109/VPPC55846.2022.10003425
http://dx.doi.org/10.1109/VPPC55846.2022.10003425
http://dx.doi.org/10.3390/ma11020176
https://www.mdpi.com/1996-1944/11/2/176
http://dx.doi.org/10.1016/j.jpowsour.2019.04.040
http://dx.doi.org/10.1016/j.jpowsour.2019.04.040
http://dx.doi.org/10.1016/j.jpowsour.2019.04.040
https://linkinghub.elsevier.com/retrieve/pii/S0378775319304513
https://linkinghub.elsevier.com/retrieve/pii/S0378775319304513
https://linkinghub.elsevier.com/retrieve/pii/S0378775319304513
http://dx.doi.org/10.1016/j.jpowsour.2013.06.023
http://dx.doi.org/10.1016/j.jpowsour.2013.06.023
http://dx.doi.org/10.1016/j.jpowsour.2013.06.023
https://www.sciencedirect.com/science/article/pii/S0378775313010173
https://www.sciencedirect.com/science/article/pii/S0378775313010173
https://www.sciencedirect.com/science/article/pii/S0378775313010173
http://dx.doi.org/10.1016/j.electacta.2021.139133
https://www.sciencedirect.com/science/article/pii/S0013468621014237
https://www.sciencedirect.com/science/article/pii/S0013468621014237
https://www.sciencedirect.com/science/article/pii/S0013468621014237
http://dx.doi.org/10.1016/j.jpowsour.2016.12.011
http://dx.doi.org/10.1016/j.jpowsour.2016.12.011
http://dx.doi.org/10.1016/j.jpowsour.2016.12.011
https://linkinghub.elsevier.com/retrieve/pii/S0378775316316998
https://linkinghub.elsevier.com/retrieve/pii/S0378775316316998
https://linkinghub.elsevier.com/retrieve/pii/S0378775316316998
http://dx.doi.org/10.1016/j.etran.2019.100005
https://linkinghub.elsevier.com/retrieve/pii/S2590116819300050
http://dx.doi.org/10.1007/s11581-020-03569-7
https://link.springer.com/10.1007/s11581-020-03569-7
https://link.springer.com/10.1007/s11581-020-03569-7
https://link.springer.com/10.1007/s11581-020-03569-7
http://dx.doi.org/10.1016/j.jpowsour.2013.01.041
http://dx.doi.org/10.1016/j.jpowsour.2013.01.041
http://dx.doi.org/10.1016/j.jpowsour.2013.01.041
https://linkinghub.elsevier.com/retrieve/pii/S0378775313000700
https://linkinghub.elsevier.com/retrieve/pii/S0378775313000700
https://linkinghub.elsevier.com/retrieve/pii/S0378775313000700
http://dx.doi.org/10.1016/j.jpowsour.2010.06.011
http://dx.doi.org/10.1016/j.jpowsour.2010.06.011
http://dx.doi.org/10.1016/j.jpowsour.2010.06.011
https://www.sciencedirect.com/science/article/pii/S0378775310009948
https://www.sciencedirect.com/science/article/pii/S0378775310009948
https://www.sciencedirect.com/science/article/pii/S0378775310009948
http://dx.doi.org/10.1149/1.3609926
http://dx.doi.org/10.1149/1.3609926
http://dx.doi.org/10.1149/1.3609926
https://iopscience.iop.org/article/10.1149/1.3609926
https://iopscience.iop.org/article/10.1149/1.3609926
https://iopscience.iop.org/article/10.1149/1.3609926
http://dx.doi.org/10.23919/ACC50511.2021.9483048
http://dx.doi.org/10.23919/ACC50511.2021.9483048
http://dx.doi.org/10.23919/ACC50511.2021.9483048
http://dx.doi.org/10.1016/j.apenergy.2021.117034
http://dx.doi.org/10.1016/j.apenergy.2021.117034


eTransportation 18 (2023) 100283J. Fogelquist and X. Lin
apenergy.2021.117034, URL https://www.sciencedirect.com/science/article/pii/
S0306261921004955.

[49] Moura SJ, Argomedo FB, Klein R, Mirtabatabaei A, Krstic M. Battery state
estimation for a single particle model with electrolyte dynamics. IEEE Trans
Control Syst Technol 2017;25(2):453–68. http://dx.doi.org/10.1109/TCST.2016.
2571663, URL http://ieeexplore.ieee.org/document/7489035/.

[50] Lai Q, Jangra S, Ahn HJ, Kim G, Joe WT, Lin X. Analytical derivation and
analysis of parameter sensitivity for battery electrochemical dynamics. J Power
Sources 2020;472:228–338. http://dx.doi.org/10.1016/j.jpowsour.2020.228338,
URL https://www.sciencedirect.com/science/article/pii/S037877532030642X.

[51] Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge
of the lithium/polymer/insertion cell. J Electrochem Soc 1993;140(6):1526–33.
http://dx.doi.org/10.1149/1.2221597, URL https://iopscience.iop.org/article/
10.1149/1.2221597.

[52] Forman JC, Bashash S, Stein JL, Fathy HK. Reduction of an electrochemistry-
based Li-ion battery model via quasi-linearization and Padé approximation. J
Electrochem Soc 2011;158(2):A93. http://dx.doi.org/10.1149/1.3519059, URL
https://iopscience.iop.org/article/10.1149/1.3519059.

[53] Rodríguez A, Plett GL, Trimboli MS. Comparing four model-order reduction tech-
niques, applied to lithium-ion battery-cell internal electrochemical transfer func-
tions. eTransportation 2019;1:100009. http://dx.doi.org/10.1016/j.etran.2019.
100009, URL https://linkinghub.elsevier.com/retrieve/pii/S2590116819300098.

[54] Wildfeuer L, Lienkamp M. Quantifiability of inherent cell-to-cell variations of
commercial lithium-ion batteries. eTransportation 2021;9:100129. http://dx.doi.
org/10.1016/j.etran.2021.100129, URL https://linkinghub.elsevier.com/retrieve/
pii/S2590116821000278.

[55] Song Z, Yang X-G, Yang N, Delgado FP, Hofmann H, Sun J. A study of
cell-to-cell variation of capacity in parallel-connected lithium-ion battery cells.
eTransportation 2021;7:100091. http://dx.doi.org/10.1016/j.etran.2020.100091,
URL https://linkinghub.elsevier.com/retrieve/pii/S2590116820300497.

[56] Wei Y, Wang S, Han X, Lu L, Li W, Zhang F, et al. Toward more realistic
microgrid optimization: Experiment and high-efficient model of Li-ion battery
degradation under dynamic conditions. eTransportation 2022;14:100200. http://
dx.doi.org/10.1016/j.etran.2022.100200, URL https://linkinghub.elsevier.com/
retrieve/pii/S2590116822000455.

[57] Scharf L, McWhorter L. Geometry of the Cramer-Rao bound. In: IEEE sixth
SP workshop on statistical signal and array processing. 1992, p. 5–8. http:
//dx.doi.org/10.1109/SSAP.1992.246835.

[58] Lin X. On the analytic accuracy of battery SOC, capacity and resistance
estimation. In: 2016 American control conference. 2016, p. 4006–11. http:
//dx.doi.org/10.1109/ACC.2016.7525539.

[59] Zhang L, Lyu C, Hinds G, Wang L, Luo W, Zheng J, et al. Parameter sensi-
tivity analysis of cylindrical LiFePO4 battery performance using multi-physics
modeling. J Electrochem Soc 2014;161(5):A762–76. http://dx.doi.org/10.1149/
2.048405jes.
15
[60] Chen C-H, Brosa Planella F, O’Regan K, Gastol D, Widanage WD, Kendrick E.
Development of experimental techniques for parameterization of multi-scale
lithium-ion battery models. J Electrochem Soc 2020;167(8):080534. http://dx.
doi.org/10.1149/1945-7111/ab9050, URL https://iopscience.iop.org/article/10.
1149/1945-7111/ab9050.

[61] Forman JC, Moura SJ, Stein JL, Fathy HK. Genetic identification and Fisher
identifiability analysis of the Doyle–Fuller–Newman model from experimental
cycling of a LiFePO4 cell. J Power Sources 2012;210:263–75. http://dx.doi.org/
10.1016/j.jpowsour.2012.03.009, URL https://linkinghub.elsevier.com/retrieve/
pii/S0378775312006088.

[62] Khalik Z, Donkers M, Sturm J, Bergveld H. Parameter estimation of the Doyle–
Fuller–Newman model for lithium-ion batteries by parameter normalization,
grouping, and sensitivity analysis. J Power Sources 2021;499:229901. http:
//dx.doi.org/10.1016/j.jpowsour.2021.229901, URL https://linkinghub.elsevier.
com/retrieve/pii/S0378775321004341.

[63] Li W, Demir I, Cao D, Jöst D, Ringbeck F, Junker M, et al. Data-driven
systematic parameter identification of an electrochemical model for lithium-
ion batteries with artificial intelligence. Energy Storage Mater 2022;44:557–70.
http://dx.doi.org/10.1016/j.ensm.2021.10.023, URL https://linkinghub.elsevier.
com/retrieve/pii/S2405829721004864.

[64] Lai Q, Fogelquist JB, Lin X. System identification of battery single particle
model parameters using new data optimization approach. In: 2022 American
control conference. Atlanta, GA, USA: IEEE; 2022, p. 376–83. http://dx.doi.org/
10.23919/ACC53348.2022.9867365, URL https://ieeexplore.ieee.org/document/
9867365/.

[65] You G-w, Park S, Oh D. Real-time state-of-health estimation for electric vehicle
batteries: A data-driven approach. Appl Energy 2016;176:92–103. http://dx.
doi.org/10.1016/j.apenergy.2016.05.051, URL https://linkinghub.elsevier.com/
retrieve/pii/S0306261916306456.

[66] Berliner MD, Zhao H, Das S, Forsuelo M, Jiang B, Chueh WH, et al. Nonlinear
identifiability analysis of the porous electrode theory model of lithium-ion
batteries. J Electrochem Soc 2021;168(9):090546. http://dx.doi.org/10.1149/
1945-7111/ac26b1, URL https://iopscience.iop.org/article/10.1149/1945-7111/
ac26b1.

[67] Park S, Zhang D, Moura S. Hybrid electrochemical modeling with recurrent
neural networks for Li-ion batteries. In: 2017 American control conference. 2017,
p. 3777–82. http://dx.doi.org/10.23919/ACC.2017.7963533, ISSN: 2378-5861.

[68] Tu H, Moura S, Fang H. Integrating electrochemical modeling with machine
learning for lithium-ion batteries. In: 2021 American control conference. IEEE;
2021, p. 4401–7. http://dx.doi.org/10.23919/ACC50511.2021.9482997.

[69] Tu H, Moura S, Wang Y, Fang H. Integrating physics-based modeling with
machine learning for lithium-ion batteries. Appl Energy 2023;329:120289. http:
//dx.doi.org/10.1016/j.apenergy.2022.120289, URL https://www.sciencedirect.
com/science/article/pii/S030626192201546X.

[70] Xi Z, Dahmardeh M, Xia B, Fu Y, Mi C. Learning of battery model bias for
effective state of charge estimation of lithium-ion batteries. IEEE Trans Veh
Technol 2019;68(9):8613–28. http://dx.doi.org/10.1109/TVT.2019.2929197.

http://dx.doi.org/10.1016/j.apenergy.2021.117034
https://www.sciencedirect.com/science/article/pii/S0306261921004955
https://www.sciencedirect.com/science/article/pii/S0306261921004955
https://www.sciencedirect.com/science/article/pii/S0306261921004955
http://dx.doi.org/10.1109/TCST.2016.2571663
http://dx.doi.org/10.1109/TCST.2016.2571663
http://dx.doi.org/10.1109/TCST.2016.2571663
http://ieeexplore.ieee.org/document/7489035/
http://dx.doi.org/10.1016/j.jpowsour.2020.228338
https://www.sciencedirect.com/science/article/pii/S037877532030642X
http://dx.doi.org/10.1149/1.2221597
https://iopscience.iop.org/article/10.1149/1.2221597
https://iopscience.iop.org/article/10.1149/1.2221597
https://iopscience.iop.org/article/10.1149/1.2221597
http://dx.doi.org/10.1149/1.3519059
https://iopscience.iop.org/article/10.1149/1.3519059
http://dx.doi.org/10.1016/j.etran.2019.100009
http://dx.doi.org/10.1016/j.etran.2019.100009
http://dx.doi.org/10.1016/j.etran.2019.100009
https://linkinghub.elsevier.com/retrieve/pii/S2590116819300098
http://dx.doi.org/10.1016/j.etran.2021.100129
http://dx.doi.org/10.1016/j.etran.2021.100129
http://dx.doi.org/10.1016/j.etran.2021.100129
https://linkinghub.elsevier.com/retrieve/pii/S2590116821000278
https://linkinghub.elsevier.com/retrieve/pii/S2590116821000278
https://linkinghub.elsevier.com/retrieve/pii/S2590116821000278
http://dx.doi.org/10.1016/j.etran.2020.100091
https://linkinghub.elsevier.com/retrieve/pii/S2590116820300497
http://dx.doi.org/10.1016/j.etran.2022.100200
http://dx.doi.org/10.1016/j.etran.2022.100200
http://dx.doi.org/10.1016/j.etran.2022.100200
https://linkinghub.elsevier.com/retrieve/pii/S2590116822000455
https://linkinghub.elsevier.com/retrieve/pii/S2590116822000455
https://linkinghub.elsevier.com/retrieve/pii/S2590116822000455
http://dx.doi.org/10.1109/SSAP.1992.246835
http://dx.doi.org/10.1109/SSAP.1992.246835
http://dx.doi.org/10.1109/SSAP.1992.246835
http://dx.doi.org/10.1109/ACC.2016.7525539
http://dx.doi.org/10.1109/ACC.2016.7525539
http://dx.doi.org/10.1109/ACC.2016.7525539
http://dx.doi.org/10.1149/2.048405jes
http://dx.doi.org/10.1149/2.048405jes
http://dx.doi.org/10.1149/2.048405jes
http://dx.doi.org/10.1149/1945-7111/ab9050
http://dx.doi.org/10.1149/1945-7111/ab9050
http://dx.doi.org/10.1149/1945-7111/ab9050
https://iopscience.iop.org/article/10.1149/1945-7111/ab9050
https://iopscience.iop.org/article/10.1149/1945-7111/ab9050
https://iopscience.iop.org/article/10.1149/1945-7111/ab9050
http://dx.doi.org/10.1016/j.jpowsour.2012.03.009
http://dx.doi.org/10.1016/j.jpowsour.2012.03.009
http://dx.doi.org/10.1016/j.jpowsour.2012.03.009
https://linkinghub.elsevier.com/retrieve/pii/S0378775312006088
https://linkinghub.elsevier.com/retrieve/pii/S0378775312006088
https://linkinghub.elsevier.com/retrieve/pii/S0378775312006088
http://dx.doi.org/10.1016/j.jpowsour.2021.229901
http://dx.doi.org/10.1016/j.jpowsour.2021.229901
http://dx.doi.org/10.1016/j.jpowsour.2021.229901
https://linkinghub.elsevier.com/retrieve/pii/S0378775321004341
https://linkinghub.elsevier.com/retrieve/pii/S0378775321004341
https://linkinghub.elsevier.com/retrieve/pii/S0378775321004341
http://dx.doi.org/10.1016/j.ensm.2021.10.023
https://linkinghub.elsevier.com/retrieve/pii/S2405829721004864
https://linkinghub.elsevier.com/retrieve/pii/S2405829721004864
https://linkinghub.elsevier.com/retrieve/pii/S2405829721004864
http://dx.doi.org/10.23919/ACC53348.2022.9867365
http://dx.doi.org/10.23919/ACC53348.2022.9867365
http://dx.doi.org/10.23919/ACC53348.2022.9867365
https://ieeexplore.ieee.org/document/9867365/
https://ieeexplore.ieee.org/document/9867365/
https://ieeexplore.ieee.org/document/9867365/
http://dx.doi.org/10.1016/j.apenergy.2016.05.051
http://dx.doi.org/10.1016/j.apenergy.2016.05.051
http://dx.doi.org/10.1016/j.apenergy.2016.05.051
https://linkinghub.elsevier.com/retrieve/pii/S0306261916306456
https://linkinghub.elsevier.com/retrieve/pii/S0306261916306456
https://linkinghub.elsevier.com/retrieve/pii/S0306261916306456
http://dx.doi.org/10.1149/1945-7111/ac26b1
http://dx.doi.org/10.1149/1945-7111/ac26b1
http://dx.doi.org/10.1149/1945-7111/ac26b1
https://iopscience.iop.org/article/10.1149/1945-7111/ac26b1
https://iopscience.iop.org/article/10.1149/1945-7111/ac26b1
https://iopscience.iop.org/article/10.1149/1945-7111/ac26b1
http://dx.doi.org/10.23919/ACC.2017.7963533
http://dx.doi.org/10.23919/ACC50511.2021.9482997
http://dx.doi.org/10.1016/j.apenergy.2022.120289
http://dx.doi.org/10.1016/j.apenergy.2022.120289
http://dx.doi.org/10.1016/j.apenergy.2022.120289
https://www.sciencedirect.com/science/article/pii/S030626192201546X
https://www.sciencedirect.com/science/article/pii/S030626192201546X
https://www.sciencedirect.com/science/article/pii/S030626192201546X
http://dx.doi.org/10.1109/TVT.2019.2929197

	Data selection framework for battery state of health related parameter estimation under system uncertainties
	Introduction
	Li-ion Battery Dynamics and Modeling
	Data Selection Framework
	Preliminary Data Quality Rating Formula: Derivation, Verification, & Validation
	Derivation
	Verification & Validation
	Simulation Verification
	Experimental Validation


	Data Quality Rating Adaptive to Model/Measurement Uncertainty: Derivation & Validation
	Derivation
	Experimental Validation

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


