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Data selection is a practical technique for improving parameter estimation accuracy through the strategic
selection of information-rich data for use in the estimation algorithm. Traditional selection criteria have
been either heuristic or sensitivity-based, without consideration of uncertainties in measurement, model, or

[S;ate (f .health parameter. In this paper, we propose an uncertainty-aware data selection framework that selects data segments
ncertain - . - o . B

Data selec?i,on based on the potential of the ingrained data structures to mitigate the influence of system uncertainties on
Sensitivity the estimation result. The framework comprises two components: the data quality rating and data selection

algorithm. The data quality rating is a metric for evaluating the uncertainty-propagating data structures of a
data segment, and the data selection algorithm automatically integrates the data selection into the estimation
procedure. Furthermore, a novel adaptive approximation of model/measurement uncertainty is derived and
implemented in the data quality rating formula to enhance performance in the presence of time-varying
sensor bias/noise and unmodeled system dynamics. The framework is validated through an advanced battery
management system application, where two lithium-ion battery health-related electrochemical parameters are
separately estimated under random drive-cycle input data to emulate battery state of health monitoring for
an electric vehicle. We show that the drive-cycle data, which are frequently used for battery state of health
estimation as the only available data during battery operation, may not provide accurate estimation results
due to the existence of large portions of low-quality data (low sensitivity and high uncertainty). By extracting
the high-quality data segments, the data selection framework reduced experimental estimation errors by one
order of magnitude when compared with the conventional approach of estimating without data selection.

1. Introduction metric for data quality, as its inverse yields the Cramér-Rao bound,
i.e., the lower bound of achievable estimation error (co)variance for
an unbiased estimator [4,5]. Accordingly, the Fisher information is
routinely implemented as the criterion for data optimization and op-
timal experiment design [6-8]. This is exemplified in the field of

battery modeling and control, where works have centered on analytical

Data-based parameter estimation is the practice of using measured
input-output data to determine the parameters of a system model. It is
vital for the reliable modeling and control of dynamic systems because
the quality of a model (and any model-based functionality that may
rely upon it) is dependent upon the accuracy of its parameters. This is

especially important for advanced battery management systems (BMSs)
as they monitor state of charge (SOC) and state of health (SOH) with an
increasing reliance on complex physics-based electrochemical battery
models that have dozens of parameters [1-3].

Of the three components of a parameter estimation problem -
model, data, and estimation algorithm - data is a growing topic of
interest, as researchers seek to understand how to quantify and op-
timize the quality of data to maximize estimation accuracy. This is
motivated by the fact that data is the fundamental input to the esti-
mation problem; specifically, a poor data set will limit the achievable
estimation accuracy regardless of the complexity of the model or al-
gorithm. The Fisher information is often regarded as the standard
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[9,10], experimental [11], and computational [12-14] data design
using the Fisher information, as to optimize current input excitations
for improved parameter estimation accuracy.

The majority of existing data optimization research is applicable to
offline parameter estimation, where input excitations are designed and
administered in a laboratory setting. However, if no control authority
exists over the data, as in the case of online estimation where data
are passively generated by system operation under random load, the
practical question arises: can high-quality data be strategically selected
from a data stream to improve parameter estimation accuracy? Some
early works took a temporal approach and empirically established data
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sampling rates for each target parameter, based on the time-scales
of their variations [15-18]. Another approach empirically assigned
weights to different data based on their expected reliability [19]. Others
used input excitation as the criterion for data selection. Specifically, the
framework proposed in [20] empirically truncates low-magnitude and
unvarying input data because these structures are often dominated by
measurement noise; the frameworks proposed in [21,22] prioritize data
diversity by selecting samples of input data that are distributed across
the amplitude range of a data set. The aforementioned methodologies
are empirical in the sense that they rely on heuristic metrics that are
not directly related to the suitability of the data for estimation. As
such, selection criteria are often hand-tuned from experience, and may
even degrade estimation accuracy if ill-chosen [19]. Recent works have
explored sensitivity-based data selection, which seeks to effectively
maximize the Fisher information by selecting data that are highly
sensitive to the estimated parameter(s) [23,24]. These works argue
that insensitive data add little value to the estimation, yet can intro-
duce substantial errors through ingrained parameter uncertainty [25]
and model/measurement uncertainty, i.e., due to unmodeled system
dynamics [26,27] and measurement noise [28-30].

The state-of-the-art sensitivity-based methodologies overcome the
heuristic limitations of the empirical approaches by basing the selection
metric on the Fisher information and Cramér—-Rao bound. However, al-
though widely implemented for data optimization, the Fisher informa-
tion and Cramér-Rao bound feature several theoretical limitations that
restrict their use as criteria for evaluating data quality. These include
the assumption that the estimator is unbiased, neglect of model and
parameter uncertainties, and the possibility that the estimator cannot
achieve the best-case error (co)variance specified by the Cramér-Rao
bound in practice [4,5]. To address these limitations, an equation was
derived in [31] to directly quantify the parameter estimation error un-
der uncertainties in model/measurement and parameter for the widely
used least-squares estimation objective. It was found that for each type
of system uncertainty, there is a specific data structure, represented
in terms of parameter sensitivity, that governs the propagation of the
uncertainty to the estimation error. The estimation error equation also
provides a critical insight—estimation accuracy is dependent on the
quality of the data, rather than the quantity. This insight casts new
light on the conventional view that follows from the mathematical
definition of the Fisher information, i.e., more data provide more
information and thus always improve estimation accuracy. We envision
that these findings can be leveraged to overcome the restrictions of the
state-of-the-art sensitivity-based data selection criteria.

The objective of this paper is to enhance battery SOH-monitoring by
establishing a data selection framework for parameter estimation that
focuses on the quality of data. Our recent work explored the potential
for the uncertainty-propagating data structures identified in [31] to
indicate the quality of data, with promising results in simulation [32].
Here, we leverage these data structures and incorporate a novel adap-
tive approximation of model/measurement uncertainty to select data
segments that can achieve the best estimation accuracy. The key con-
tributions of this work include the following aspects. First, it is the
first attempt, to the best of our knowledge, at a data selection ap-
proach that explicitly addresses system uncertainties in the process of
estimation. Second, we propose a mechanism to integrate automatic
data selection into the estimation procedure, which is necessary for
the data selection framework to be practically implemented in BMS
applications. Third, we establish a rating formula as a new criterion
for evaluating data quality, which can be efficiently applied to battery
voltage data segments of arbitrary length under generic input cur-
rent. Finally, we derive a new adaptive approximation of time-varying
model/measurement uncertainty that can be conveniently incorporated
into the data selection criterion, to consider the limitations of BMS
sensor resolution and model fidelity. It will be shown through an
SOH-monitoring application in simulation and experiment that the
framework is capable of significantly improving parameter estimation
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accuracy, with experimental error reductions of one order of magnitude
when compared with the conventional approach of estimating without
data selection.

The remainder of the paper is organized as follows. Section 2
reviews the lithium-ion (Li-ion) battery dynamics and model associ-
ated with our application of estimating health-related electrochemical
parameters. Section 3 details the proposed data selection framework
through the introduction of the data quality rating concept and the
design of the data selection algorithm. Section 4 proposes a preliminary
data quality rating formula and demonstrates the functionality of the
framework in simulation and experiment. Section 5 extends the capa-
bility of the data quality rating through an ingrained approximation of
the time-varying model/measurement uncertainty, with experimental
validation. Lastly, Section 6 presents concluding remarks and potential
applications.

2. Li-ion battery dynamics and modeling

The SOH of a Li-ion battery is a critical quantity that character-
izes the remaining cyclable capacity and/or power capability, which
directly affect the range and performance of a battery-powered device,
e.g., an electric vehicle [3,33]. The SOH can be efficiently monitored
with an electrochemical model by routinely estimating health-related
parameters, i.e., physical parameters that are intrinsically linked to
the SOH. Therefore, we will develop and validate the data selection
framework under the objective of accurately estimating health-related
electrochemical parameters using random drive-cycle data, to emulate
the cycling conditions in an electric vehicle. This section provides a
brief overview of the parameters, battery dynamics, and parameter sen-
sitivities that play critical roles in our SOH-monitoring data selection
application.

The two electrochemical parameters that will be targeted for esti-
mation are the solid-phase cathode lithium diffusion coefficient D, ,
and the cathode active material volume fraction ¢ ,. Physically, D; ,
characterizes the rate at which lithium ions can diffuse through the
cathode electrode particle material, while ¢, , represents the proportion
of the total cathode volume capable of storing lithium ions. Both
parameters play a vital role in battery performance and serve as key
indicators of battery degradation and SOH [34-36]. Specifically, sev-
eral works have employed electrochemical impedance spectroscopy to
show that D, , decreases over time with SOH, in accordance with the
increasing cell impedance [37,38]. In the same way, ¢, , decreases over
time with SOH because it is directly proportional to the decreasing
cell capacity through the relation Q, = FA,5,c/"", ,, where Q, is
the cathode capacity, F is the Faraday constant, c¢{'* is the ionic
concentration limit of the cathode material, and A, and ¢, are the
cathode area and thickness, respectively. These trends in D, , and ¢, ,
are attributed to degradation mechanisms such as reaction-induced
mechanical stress [39,40], transition metal dissolution [41,42], and
solid-electrolyte interphase (SEI) layer growth [43,44]. While other
electrochemical parameters may also be related to SOH, the D, , and
g, correlations are well established in the literature and thus com-
monly studied in SOH estimation applications [44-46]. In addition, D, ,
is a weakly sensitive parameter while ¢, , is strongly sensitive, which
makes D, , conventionally challenging to estimate, especially under
uncertainty in E5p [47,48].

The battery dynamics are modeled with the widely adopted single
particle model with electrolyte dynamics (SPMe) [49,50]1, which pre-
dicts the output terminal voltage (V) from the input current (I). The
SPMe is a simplified version of the full-order Doyle-Fuller-Newman
(DFN) electrochemical model [51], operating under the assumption
that lithium intercalation current density (and thus ionic concentra-
tion) is uniform across each electrode. Accordingly, the electrochem-
ical mechanisms in each electrode (e.g., diffusion, intercalation) are
represented with a single particle, and both electrode particles are
interfaced with the electrolyte diffusion dynamics. Mathematically, the



J. Fogelquist and X. Lin

single-particle assumption decouples the governing partial differen-
tial equations (PDEs) of the DFN model, which significantly reduces
the computational complexity and makes the SPMe suitable for use
in real-time BMS applications [3]. This is facilitated through model-
order reduction techniques that enable computationally-efficient and
high-fidelity solutions to the decoupled PDEs [52,53].

The output terminal voltage is expressed as

V= Up(cse,p) - Un(cxe,n) + d)e,p(ce,p) - d)e.n(ce,n)
+ "p(cs&,p’ Ce,p) - ”n(cxe,w Cen) = IRI7 €))

which includes the difference between the cathode and anode (denoted
by subscripts p and n respectively) open-circuit potentials (OCPs) U,
electrolyte potentials ¢,, and overpotentials #. The OCPs U represent
the equilibrium potential of each electrode as a nonlinear function
of the electrode particle surface lithium concentration c,,, which is
governed by Fick’s second law of diffusion. The electrolyte potentials
¢, are driven by the ionic concentration gradient across the electrolyte,
which is characterized by the dynamic electrolyte lithium concentra-
tion at each electrode boundary c,, according to Fick’s second law.
The overpotential # drives the intercalation reaction at the electrode
particle surface according to the Butler—Volmer equation, in function of
¢, and c,. Finally, the voltage drop across the various Ohmic resistances
(i.e., of the SEI layer, electrolyte, and current collectors) is incorporated
through the lumped resistance term R,. The reader is referred to [50]
for the full details of the model.

The data quality rating formulas, to be introduced in subsequent
sections, rely upon the sensitivity of battery voltage to various pa-
rameters. To facilitate the computation of sensitivity, we employ the
analytical sensitivity expressions derived in [50] for the SPMe, which
efficiently capture the sensitivity dynamics through sensitivity transfer
functions. For example, the sensitivity of the output voltage V to ¢,
can be derived by taking the partial derivative of Eq. (1) with respect

to e, as

oV B dr]p +< 011,, 6UI, > dcmp

Og, ) Bew chl, 6cse’p ‘kw

o. (2)

The first term reflects the non-dynamic sensitivity of #, to ¢, ,, which
can be easily obtained based on the model as a nonlinear function
of current, while the second term captures the dynamic sensitivity of
n, and U, to g, through the solid-phase diffusigg mechanism in the

. P
cathode. Regarding the second term, 06”" and - L are the slopes of
se.p se.p
dc

se,p
Og »
sensitivity due to the dynamic diffusion process. A sensitivity transfer

i : . deg,
function has been derived to characterize —d;” s
5P

overpotential and OCP, while

(t) reflects the dynamic nature of the

4 2 2 2
ac“*”(s)— TR;,s +420D,,RY s +3465D7, () @
O, S(RY 52+ 189D, ,R? s +3465D2 ) Fe2 A58,

which allows the dynamic sensitivity to be conveniently computed,
e.g., by converting to a linear state-space model. Here, R, , is the
cathode particle radius. Similarly, the D, sensitivity expression can
be derived in the same way as

% (r)=< et ),acw ® @
oD, , 0,  0C, oD, ’
which relies entirely upon the diffusion dynamics through ¢, ,. The
associated sensitivity transfer function is
9Cy,, 43R} s>+ 1980D, ,R; ;s +38115D7 , 21R} I(s)
= (s) = - ? ! L i . 5)
aD,, ® (R} 5% + 189D, ,R? s +3465D2 )2 Fe;,A,5,

These sensitivity transfer functions were derived using Laplace trans-

forms and Padé approximations, with the full procedure detailed in [50].
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3. Data selection framework

The proposed data selection framework comprises two core ele-
ments, namely, the data quality rating formula and the data selection
algorithm. The rating formula predicts the extent to which system
uncertainties are propagated to the estimation error, based on the sen-
sitivity dynamics of the uncertain parameters. Accordingly, the rating
serves as a metric for data segment quality. Two rating formulas are
presented in this paper—a simple preliminary rating formula is derived
in Section 4 for instructional purposes and to motivate the derivation
of the improved adaptive rating formula in Section 5.

The purpose of the whole framework is to maximize parameter
estimation accuracy by integrating the data selection (based on the
data rating formula) into the estimation procedure. Specifically, the
algorithm seeks to select high-quality data segments from a given data
set, perform the estimation using the selected data segments, reevaluate
the quality of the selected segments based on the estimation results,
and return an accurate final estimate based on the updated quality
rating. This methodology is illustrated in Fig. 1 and compared with
the conventional univariate estimation approach. An additional benefit
of integrating the data selection and estimation procedures is that the
estimation only needs to be performed for the selected data segments
(rather than for all data segments), which maintains computational
tractability for practical implementation in advanced BMSs.

In this work, the data selection framework is proposed for the
scenario of univariate estimation, where one health-related parameter 6
(i.e, Dy, ore ) is estimated in the presence of uncertainties in model,
measurement, and other parameters. This is an important problem for
two reasons. First, it is a common scenario in practice, as many applica-
tions only require the estimation of a certain parameter, rather than all
of them. For example, battery capacity fade can be indicated by moni-
toring ¢, , [39,45]. Meanwhile, parameters that are not estimated may
not be perfectly known, as some of them may undergo large variations
due to changing operating conditions and/or system degradation [54-
56]. These parameters need to be assumed with nominal values and
become an unavoidable source of uncertainty. An alternative to assum-
ing values for uncertain parameters is to estimate them simultaneously
alongside the target parameter. However, estimating more parameters
may make the problem ill-posed while increasing the computational
complexity—a vital factor for online estimation applications. It will
be shown in Section 4.2.2 that jointly estimating even one additional
parameter can cause the problem to become ill-posed and lead to
significant estimation errors under random drive-cycle data. The second
reason regarding the importance of this type of problem is that it can
be very challenging to solve, as estimating a weakly sensitive param-
eter (e.g., D,,) under the shadow of uncertainty in strongly sensitive
parameters (e.g., Ex,p) is traditionally extremely difficult [47,48]. The
data quality rating seeks to facilitate a solution by evaluating the extent
to which an estimation result may be affected by system uncertainties.
Nevertheless, the methodology proposed in this paper can be extended
to multivariate estimation problems in future work.

The data input to the algorithm is a sequence of input-output mea-
surements, making the framework suitable for both offline and online
applications. In the offline case, the data sequence can be retrieved
from an existing database or acquired through laboratory measurement.
In online applications, the data sequence can be a window of an
incoming passive data stream, and the estimation can be performed
recursively on the moving window as new data become available.

The integrated data selection and estimation procedures are sum-
marized in Algorithm 1 and each step is subsequently detailed:

1. Data Segment Quality Evaluation: The data quality rating is com-
puted a priori to evaluate the quality of each data segment
that is extracted from the data set. This step of computation
is considered a priori because it occurs before the estimation
and uses the initial guess of the target parameter (§~) when
evaluating the rating formula.
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Conventional Univariate Estimation
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Fig. 1. Univariate estimation under conventional approach and data selection framework.

2. Data Selection: Data segments are selected for estimation based
on the a priori data quality rating.

+ Offline Estimation: Data segments are selected from the data
set to span a range of good a priori rating values.

* Online Estimation: A data segment is selected from a moving
window of incoming random data if the a priori rating
satisfies a given threshold.

3. Estimation: The target parameter is estimated from each selected
data segment.

4. Data Quality Update: The accuracy of the data quality rating is
improved by recomputing it a posteriori for the selected data
segments. Specifically, this step of the computation uses the esti-
mated value of the target parameter (*) to reevaluate the rating
formula. It will be demonstrated that this step can significantly
reduce the chance of mis-selection.

5. Return Estimation Result: The final estimation result is returned
based on the a posteriori data quality rating.

* Offline Estimation: The estimation results from the data
segments with the best a posteriori ratings are averaged and
returned.

* Online Estimation: The estimation result from a data seg-
ment is returned if the a posteriori rating satisfies a given
threshold.

4. Preliminary data quality rating formula: Derivation, verifica-
tion, & validation

The preliminary data quality rating formula is subsequently derived
for implementation in the data selection framework. Simulation verifi-
cation and experimental validation follow, which highlight key benefits
of the data selection process while motivating the derivation of the
improved adaptive rating formula in Section 5.

4.1. Derivation

The purpose of this subsection is to develop the preliminary data
quality rating formula—the metric for evaluating the quality of can-
didate data segments for selection. We begin with the discrete-time
least-squares estimation objective in Eq. (6),

N

min/ = 3% (4 - 00" 4, )’ )
k=1

Algorithm 1 Data Selection Framework

Input: Measured input—output data set/stream

1. Evaluate quality of each data segment with a priori data
quality rating
2. Select high-quality data segments:
Offline: Select from specified data set
Online: Select from window of data stream
3. Perform estimation with each selected data segment
4. Reevaluate quality of selected data segments with a posteriori
data quality rating using estimation results
5. Return final estimation result:
Offline: Return mean of estimates from highest-quality
data segments
Online: Return estimates from data segments with
acceptable quality

Output: Final estimation result §*

which is one of the most widely used objectives for parameter estima-
tion. The purpose of this function is to determine the estimate of one
target parameter §* that minimizes the sum of squared errors between
the measured system output y}' and that predicted by a certain model
yi(0*, ¢, u,) over a time sequence indexed by k. The modeled output

¥, is driven by the input excitation sequence u; = [u,,...,u;]" (with
any state dynamics contained implicitly), and parameterized by 6 and
a set of other parameters that are not being estimated ¢ = [¢,, ..., ¢, 1.

Since the exact parameter values in ¢ are not necessarily known, ¢ is
used to denote the assumed values in the estimation problem, which
may contain uncertainty. The output y, is treated as a scalar in this
work, as is the case for most battery applications, but it may be readily
extended to the multidimensional case. The measured system output y}'
is represented as

yz’ = yk(6’, ¢, "k) + 6y, (@]

where y, (0, ¢, u,) is the modeled system output under the true target
parameter # and true non-target parameter set ¢, and Sy, is the
varying uncertainty between the modeled and measured system outputs
(e.g., due to unmodeled system dynamics and/or sensor noise).

It is noted that without uncertainties (and structural unidentifiabil-
ity), the solution of the least squares problem should yield the exact
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value of the target parameter, as it would minimize the sum of squared
error to zero. It is the inevitable uncertainties in practice that deviate
the estimation result from the true value. In our prior work [31],
we derived an equation to quantify the estimation error induced by
different types of system uncertainties for the least-squares objective in
Eq. (6). The results revealed the data structures that form the basis of
the data quality rating. The derivation was performed by approximating
the modeled system output y, (6, ¢,u,) in Eq. (7) under the unknown
true parameter set (0, ¢) with a first-order Taylor series expansion about
the estimated/uncertain parameter set (9, $), ie.,

(6, d.w) ~ 3 (67, §, uk)+—(9+ b u)(O— 9+)+ b Y 9+, . u)($—).

(€))

The first-order optimality condition (:9% =0) was then applied to
Eq. (6) to complete the derivation. The reader is referred to [31] for
the full details.

The final form of the derived error equation is reproduced in Eq. (9),
where 49 = 6 — §* denotes the estimation error as the difference
between the true value of the target parameter and the estimated value.
The right-hand side of the equation shows the errors induced by each
type of uncertainty, associated with summations of certain sensitivity
terms, where %‘(9* ) and %(9* ) denote the sensitivity of the modeled

system output y, to § and ¢;, respectively, under the estimate of the
target parameter 0. The sensitivities can be calculated with the derived
expressions for specific parameters, e.g., Egs. (2)-(5). Note that each
sensitivity term is also dependent on the non-target parameter set and

input excitation, e.g., %(@*’, ¢, u,), but the notation in Eq. (9) excludes

the ¢ and u, terms for brevity.

(T 20080 ) + T (X, 201280 ) 40
A0 = — > - )
i (%0)

The most important insights from Eq. (9) are the set of data struc-
tures that govern the propagation of system uncertainties to the es-
timation error. The numerator reveals that each system uncertainty,
namely the varying model/measurement uncertainty sy, and constant
parameter uncertainties A¢, = ¢, — ¢,, is multiplied by a summation
of sensitivity terms. Thus, a data structure with a minimal summa-
tion of the respective sensitivities will minimize the effect of the
associated uncertainty on the estimation result. For example, con-
sider the first numerator term, where a data segment with a structure
that minimizes ZkN: | %"5“ will significantly reduce the estimation
error induced by 6y,. In the same way, data structures that minimize
>y, d£‘ Zy L (i.e., with a high degree of orthogonality between the
sensitivities of the target and non-target parameters), will attenuate
the influence of A¢; on the estimation result. Finally, data structures

2
that yield a large denominator term, i.e., Zk | dayé‘) , can also be

effective at reducing the overall estimation error. Note that the denom-
inator term is the Fisher information, simplified under i.i.d. Gaussian
noises [57,58], which reflects the data information content about the
target parameter.

Based on these results and insights, a preliminary data rating for-
mula (Qj) is proposed to evaluate the quality of an arbitrary data
segment according to its potential of propagating system uncertainties
to the estimation result,

N 9
ay | T, Ze60)| + T 1(%,
B N (% h
= (Ze@m)
Smaller rating values indicate reduced uncertainty propagation and
thus higher-quality data. The superscript * indicates that the rating
formula can be evaluated both a priori and a posteriori, under the initial

T, % (9*)‘)” (6%)

(10)
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guess O~ and estimate 4+, respectively, which is needed in the first
and fourth steps of the aforementioned data selection algorithm in
Section 3. The design of the rating formula is based on Eq. (9) under
the following considerations.

» The sensitivity terms are normalized via Eq. (11),

(3_ = g, 0y
0¢i a¢l
to account for large variations in magnitude among parameters.
For example, Li-ion electrochemical battery models typically have
diffusion parameters that are on the order of 10~'0 — 10~!5 m?/s,
while volume fraction parameters are of order 10~!. Normalizing
the sensitivity terms makes the rating nondimensional so that it
reflects the impact of each uncertainty in proportion to the value
of the target parameter.

The amount of uncertainties, i.e., 5y, and A¢; in Eq. (9), are
unknown in practice. Thus, the rating formula leverages the
uncertainty-propagating data structures in Eq. (9) to indicate the
extent to which the unknown system uncertainties may influence

an

. 93
the estimation result. For instance, in each a,, |YY 2 2k | term,
i k=1 59 (34,

20 0¢;
accounts for the potential of the data to propagate the uncertainty
in ¢; according to the observed data structures. Meanwhile, ay,
is a weight reflecting the magnitude of the uncertainty, which
can be either estimated based on any rough knowledge of the
parameter uncertainty magnitude, or tuned to specify a relative
ratio between different uncertainties. Similarly, the first term
in the numerator, a, ‘Z,I(V: | %"‘, accounts for the impact of the
model/measurement uncertainty on the estimation result. This
term is formulated by approximating the time-varying 6y, as its
average value over the data segment, represented as bias weight
ay. This simplification is performed because of the unknown
nature of the time-varying uncertainty, which is usually difficult
to even have a moderate knowledge of. Selecting the value of
@, is a major challenge, as the measurement and model uncer-
tainties (especially the latter), are dependent on the operating
conditions (e.g., the input) and hence vary among data segments.
Therefore, beyond the difficulty of hand-tuning (or guessing) the
bias weight a,, using a universal a4 for all data will intrinsically
cause inaccuracy in the data rating, which will be illustrated in
Section 4.2.2. This is addressed in Section 5 through the deriva-
tion of an improved rating formula that incorporates an adaptive
approximation of the varying model/measurement uncertainty.
The absolute value is applied to each numerator term in Eq. (10)
so that a small rating can only be achieved if the data segment
can mitigate the influence of all uncertainties. This is necessary
because each uncertainty may have an unknown and even chang-
ing sign, which can cause different uncertainty terms to either add
up or (partially) cancel out. Without applying the absolute value,
the rating formula may substantially overestimate the quality of
the data segment if the numerator terms erroneously cancel out.
To put it another way, we consider the worst-case scenario, where
the errors caused by different types of uncertainties add up.

which is associated with the parameter uncertainty, ‘Z =1

It is important to note that the rating formula in Eq. (10) requires
the sensitivity terms to be computed efficiently, which is often chal-
lenging through the conventional methods of manual perturbation [59]
or solving sensitivity differential equations [13,24]. Therefore, the
analytical sensitivity expressions introduced in Section 2 for the elec-
trochemical parameters will be used to facilitate the sensitivity compu-
tation so that the data rating formula may be evaluated with minimal
computational expense. Finally, the rating formula is not limited to
the ordinary gradient-based least-squares algorithm, but applicable to
general estimation methods with similar objectives of minimizing the
squared error or variance, e.g., Kalman filter and moving horizon
observer, among others.
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4.2. Verification & validation

The data selection framework with the preliminary data rating for-
mula is verified through simulation and validated through experiment
in two Li-ion battery electrochemical parameter estimation problems.
The first problem targets the solid-phase cathode lithium diffusion
coefficient D, , for estimation under uncertainty in the cathode active
material volume fraction ¢, ,. The second problem is the converse,
where ¢ , is estimated under uncertainty in D, ,. As detailed in Sec-
tion 2, both physical parameters are intrinsic to the modeled battery
dynamics and serve as key indicators of battery SOH.

For simulation verification of the data selection framework, the bat-
tery output voltage data set is generated using the SPMe under various
input current profiles and a true parameter set denoted as (6, ¢). For
experimental validation, the battery voltage data are attained through
physical measurement of an LGM50T INR21700 Li-Nickel-Manganese—
Cobalt (NMC) cell subjected to the same input current profiles. In this
work, the true parameter set is adopted from [60], which implemented
a variety of electrochemical measurement techniques to experimentally
parameterize an LGM50 INR21700 cell. Several parameter values were
adjusted according to [48] to incorporate the subtle differences be-
tween the LGM50 and LGMS5O0T cells. This parameter set thus serves
as a benchmark for the estimation results determined through both
simulation and experiment. Alternative methods of obtaining a bench-
mark parameter set include acquiring it from the cell manufacturer
(if possible) or system identification from experimental input-output
data, as in [61-64]. In both simulation verification and experimental
validation, the SPMe serves as the model used for estimation, which
provides the modeled output voltage under the input current and
estimated/uncertain parameter set (6%, @). Results are generated with
an initial SOC of 50% under four drive-cycle input current profiles,
namely the Federal Urban Driving Schedule (FUDS), Urban Dynamome-
ter Driving Schedule (UDDS), US06 Highway Driving Schedule (US06),
and Dynamic Stress Test (DST). These current profiles were selected
to emulate the estimation of electric vehicle battery SOH from online
operation data, as each profile represents a typical battery operation
scenario in an electric vehicle application. Drive-cycle profiles typically
provide limited information about the health-related parameters due
to the characteristic rapid current fluctuations and associated shallow
discharges [65]. Each profile has a duration of 1800 s with a time step
of 0.3 s, yielding 6000 samples.

In this section, the preliminary data rating formula only considers
uncertainty in one parameter A¢, while omitting the model/measure-
ment uncertainty 6y, (with a, = 0) due to the aforementioned variabil-
ity and difficulty of tuning a4. Accordingly, in simulation verification,
the voltage data are generated under only parameter uncertainty with
no model uncertainty to verify the effectiveness of data rating and
selection to accommodate the former. Then in the subsequent exper-
imental validation, data selection will be subject to both parameter
and model/measurement uncertainty to reveal that the latter can sub-
stantially reduce the effectiveness of the rating, motivating the need
to improve the rating formula with an adaptive approximation of
model/measurement uncertainty (detailed in Section 5). For this sce-
nario of estimation under uncertainty in one non-target parameter,
the rating formula contains one numerator term and hence the weight
ay can be arbitrary (i.e., @, uniformly scales the rating for all data
segments and thus plays no role in discerning data quality).

The data selection framework is evaluated under two scenarios
of uncertainty for each target parameter, according to the uncertain
parameter sets summarized in Table 1. Each parameter set contains
uncertainty in both D, and ¢ ,, represented as deviations from the
true values of 4.0 x 101 m?/s and 0.5616, respectively. The remain-
ing parameter values are consistent with the true parameter set. For
example, in Uncertain Parameter Set II of Table 1, the initial guess of
target parameter D, , is 20% smaller than the true value, i.e., ﬁ; » =

0.8D, ,, which will be used in the a priori data rating formula. This is
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Table 1

Summary of uncertain parameter sets.
Uncertain Target 4D, dey,
Parameter Set Parameter
1 D,, -20% —20%
I Dy, 20% 10%
1L £p 20% 10%
I\ € -20% 10%

S.p

represented in the parameter uncertainty notation of Eq. (9) as 4D, , =
D, - ﬁ;p =D,,-08D,,=02D, ,, or AD , = 20% of the true value.
The uncertainty in € , is —~10%, where the assumed value &, , is 0.9, ,,
or 4de;, = 10% of the true value. Note that, physically, a 10%-20%
uncertainty in g, , is substantial because ¢, , is directly related to cell
capacity [39,45], which typically degrades only 20% throughout the
cell operating life in an electric vehicle application [3]. The variation
in D, , throughout the cell operating life is expected to be similar.

4.2.1. Simulation verification

The simulation verification entails applying the data selection al-
gorithm to solve each aforementioned estimation problem under simu-
lated output data, i.e., data generated via simulation under the bench-
mark parameter set. First, the effectiveness of the preliminary data
quality rating formula will be assessed by examining the correlation
between the quality rating and the parameter estimation error for
different data segments within a data set. This correlation is presented
in Fig. 2 for the estimation of D; , under the FUDS input current profile.
Specifically, Fig. 2(a) shows the FUDS current profile, from which
different data segments can be extracted with different combinations
of starting point and length. One such selected data segment is boxed
in red as an example. The a priori rating was computed via Eq. (10)
for every data segment that was extracted from the data set, and
3000 segments were examined as demonstration. These 3000 segments
span the full range of observed a priori rating values as representative
samples. The D , estimates were computed via Eq. (6) for each selected
data segment and the results are plotted in Fig. 2(b), with the example
segment marked by the red diamond and the full FUDS cycle by the
black triangle. The a posteriori rating was then computed for each data
segment and the resulting rating-error correlation is shown in Fig. 2(c).
Four important insights can be drawn from this plot:

» The black triangles in Figs. 2(b) and 2(c) indicate that the es-
timation using the full FUDS cycle yielded an estimation error
of 46%. The majority of the data segments (blue circles) yielded
smaller estimation errors (as low as 14%), which attests to the
benefit of data selection. Since the full FUDS cycle is the longest
data segment, it is evident that longer segments do not nec-
essarily lead to higher estimation accuracy in the presence of
system uncertainties. This can be explained by examining the
estimation error equation in Eq. (9), where both the denominator
(Fisher information) and the numerator (reflecting the impact of
uncertainties) can increase with the number of data points N.
For example, consider a data segment with low (« 1) parameter
sensitivity (M) and a high amount of uncertainty (§y, and/or
A¢g;). The growth of the numerator (first-order with respect to
the product of % and the uncertainties) may outpace that of the
denominator (quadratic with respect to %k) as the number of data
points N increases, leading to an increasing estimation error.
There is a good correlation between the estimation error and the
data rating, which indicates that the rating can be used as an
effective metric for evaluating data quality. The large spread of
ratings and estimation errors among segments reveals that data
quality can vary significantly throughout a given data set. Thus,
it is critical for data segments to be carefully selected to achieve
optimal/adequate estimation accuracy.
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Fig. 2. Data rating results using preliminary rating formula for D, , estimation under
FUDS profile in simulation, with 4D, ,;: ~20% (in initial guess) and 4e, ,: —20%.

» The minimum achievable estimation error was 14%, indicating
that estimation accuracy is limited by the data structures present
in the data set. This is a fundamental limitation—the data selec-
tion framework seeks to optimize the use of available data, but
can only provide estimates as accurate as the available data will
allow.

By comparing Figs. 2(b) with 2(c), it is seen that incorporat-
ing knowledge of the estimates through the a posteriori rating
evaluation renders a more monotonic and cleaner rating-error
correlation than the a priori correlation. This can be explained
by examining the estimation error equation in Eq. (9), which
specifies the use of the estimated (instead of guessed) target
parameter value. The observed refinement facilitates the selection
(or confirmation) of high-quality data segments for determining
the final estimation result, as the highest-quality data segments
are more likely to be distinguished by the smallest ratings.

Fig. 3 shows two more examples of a priori and a posteriori rating-
error correlations for the estimation of D, , and ¢, under different
current profiles. These plots reinforce the insights from Fig. 2; specifi-
cally, the large spread of estimation errors indicates that data segment
quality can vary substantially throughout a given data set, the strong
rating-error correlations attest to the effectiveness of the preliminary
rating formula for evaluating data segment quality, and the improved
monotonicity of the a posteriori rating-error correlations indicate that a
posteriori rating evaluations can facilitate the selection of high-quality
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Table 2
D, , estimation results using preliminary rating formula for data selection in simulation.
Case D, , Estimation Error
4D,  A4e, Input Data Selection Framework Conventional
Profile (Preliminary Rating) Univariate Approach
FUDS -13.8% —45.7%
UDDS 0.4% —45.9%
-20% —-20%
0% =20% " ysoe ~20.5% ~46.1%
DST -18.9% —45.4%
FUDS 7.9% 54.6%
UDDS 0.4% 55.6%
0, 0,
20% 10% Uso06 12.8% 56.7%
DST 12.1% 53.4%

Table 3
€, estimation results using preliminary rating formula for data selection in simulation.
Case €, , Estimation Error
AD,, 4e,,  Input Data Selection Framework Conventional
Profile (Preliminary Rating) Univariate Approach
FUDS 0.003% 5.9%
UDDS 0.003% 6.0%
0, 0,
20% 10% Uso06 0.005% 6.0%
DST 0.003% 6.0%
FUDS —0.005% —4.1%
UDDS —0.005% —4.2%
—20% 10%
’ ° US06 -0.003% -4.2%
DST —0.005% —4.2%

data segments. Notably, Fig. 3(b) indicates that a small portion of
data segments achieved excellent estimation accuracy when D, , was
estimated under the UDDS profile, with errors as small as 0.25%. A
comparison with the correlation in Fig. 2(c) exemplifies how a different
(albeit seemingly similar) input data set, i.e., UDDS vs. FUDS, can
significantly improve estimation accuracy by providing data structures
that suppress the influence of system uncertainties on the estimation
result.

For the estimation of ¢; ,, both rating-error correlations in Figs. 3(c)
and 3(d) have relatively small estimation errors across all segments.
These rating-error correlations are also stronger than those of D,
(Figs. 2(c) and 3(b)). Both of these characteristics were attributed to
the fact that battery voltage is substantially more sensitive to variations
in ¢, than D, ,. This is illustrated in Fig. 4, which indicates that the
RMS of the normalized €, sensitivity (i.e., ew%) is four times larger
than that of D, under the FUDS current profile and true parameter
set. Highly sensitive parameters like e, , are often estimated with
relative ease, despite the presence of system uncertainties. This can be
explained by examining the estimation error equation in Eq. (9), which
reveals that highly sensitive parameters will yield a large denominator
term (i.e., sum of squared sensitivity, or Fisher information), which can
drive down the estimation error despite moderately-sized uncertainty
terms in the numerator.

We then compiled the estimation results for the two target parame-
ters under the aforementioned four scenarios of parameter uncertainty
and four data sets, yielding a total of 16 cases for thorough evaluation
of the data selection performance. For each case, the final estimation
result was computed by averaging the estimates from the five data
segments with the smallest a posteriori ratings. The results are sum-
marized in Table 2 for the estimation of D,, and Table 3 for the
estimation of ¢, ,. For comparison, estimation results are included from
the conventional univariate approach without data selection, i.e., using
each complete data set.

The results in Tables 2 and 3 were interpreted as follows:

* Data Selection Performance: The data selection framework is ca-
pable of achieving excellent estimation accuracy by identifying
the high-quality data segments present within each data set. This
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is illustrated by the 0.4% error for the estimation of D, , under
the UDDS profile in Table 2, and the maximum observed error of
0.005% for the estimation of ¢, , in Table 3. However, the results
could only be as accurate as the available data would allow,
resulting in relatively large estimation errors for data sets that
do not contain uncertainty-suppressing data structures, e.g., the
US06 profile under 4D, ,: —20% and 4e, ,: —20% yielded an error
of 20.5% in Table 2.

Influence of Parameter Sensitivity: As illustrated in Fig. 4, the
voltage output is significantly more sensitive to variations in
e,, than D, . Traditionally, attempting to estimate the weakly
sensitive D, , under the shadow of uncertainty in the strongly
sensitive ¢ , is extremely difficult [47,48]. However, the results
in Table 2 show that D, , can be estimated with excellent accuracy
through the selection of data segments that mitigate the influence
of uncertainty in ¢, ,. Regarding the estimation of ¢, ,, the errors
in Table 3 are smaller (< 6%) for every case, even without
data selection. This was attributed to the high e, sensitivity,
as strongly sensitive parameters are typically estimated with less
difficulty due to their robustness against uncertainties.
Comparison with Conventional Approach: The data selection frame-
work consistently improved estimation accuracy over the con-
ventional approach of estimating without data selection, by as
much as two orders of magnitude in the estimation of D, , and
three orders of magnitude in the estimation of ¢ ,. Thus, it is
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under different input profiles in simulation, with AD; ,: 20% and 4e,: 10%.

not desirable to use arbitrary data sets (e.g., generated online) for
parameter estimation without considering the data quality. This
also indicates that random data sets, which may yield inaccurate
estimation results as a whole, often contain high-quality data
segments that can be leveraged to improve estimation accuracy.
It is notable that, although the influence of uncertainties may
be minor for strongly sensitive parameters like ¢, ,, estimation
accuracy can still be improved by considering the effects of
uncertainties in data selection.

To sum up, the strategy of evaluating the data quality rating a priori
and a posteriori was demonstrated to be effective in simulation under
the presence of parameter uncertainty. The a priori rating, albeit less
precise, is reliable for selecting data segments with the potential to
yield accurate estimates, given the available knowledge of the system.
The a posteriori rating incorporates the knowledge of the estimates to
refine the correlation between the estimation error and quality rating,
enhancing the reliability of subsequent selections.

4.2.2. Experimental validation

The experimental validation of the data selection framework with
the preliminary data rating formula follows the same procedure as
the simulation verification, except that the measured output voltage
data set is acquired through physical measurement of an LGM50T
INR21700 cell, rather than generated through simulation. Accordingly,
model/measurement uncertainty is present due to unmodeled system
dynamics and/or sensor noise, which will be shown to adversely im-
pact estimation performance. Voltage data is measured with an Arbin
LBT21084 cycler under the same four drive-cycle current profiles,
i.e.,, FUDS, UDDS, US06, and DST. The cell is initialized at 50% SOC
for each profile by charging it to the cut-off voltage via the constant-
current-constant-voltage protocol, and then discharging it for 30 min
at 1C, based on the measured capacity.

Two examples of a priori and a posteriori rating-error correlations
from experimental data are shown in Fig. 5 for the estimation of D ,.
Unlike in simulation, the rating-error relationships are generally much
less monotonic and consistent. For example, the a priori rating-error
correlation in Fig. 5(a) shows that data segments with low-accuracy
estimates yielded small (good) ratings while the segments with the
most accurate estimates returned mid-range (worse) ratings. Thus, the
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Fig. 5. Experimental D;, a priori and a posteriori rating-error correlations using preliminary rating formula under different input profiles and parameter uncertainties.

a priori rating becomes ineffective for discerning between high- and
low-quality segments, as the highest-quality segments can no longer be
identified as the segments with the smallest (best) ratings. The a poste-
riori rating-error correlations were slightly more monotonic than the a
priori correlations, where several high-quality data segments achieved
small ratings while most low-quality segments returned large ratings.
This separation between high- and low-quality data may be sufficient
to return an accurate final estimate by averaging the estimates from
the segments with the smallest a posteriori ratings, according to the
data selection algorithm. However, this is not guaranteed, as Fig. 5(d)
indicates that low-quality data segments may remain associated with
the smallest ratings.

The degradation in rating performance is due to the presence
of model/measurement uncertainty, which is the only difference be-
tween the voltage data sets used for the simulation verification and
experimental validation. Since measurement uncertainty (i.e., sensor
noise/bias) is negligible in our high-precision testing equipment, we
will henceforth refer to the model/measurement uncertainty simply as
model uncertainty, as this is the dominant component. However, the
discussion still applies to the lumped model/measurement uncertainty.
Following from Eq. (7), the model uncertainty is defined as the differ-
ence between the measured and modeled system outputs under the true
parameter set,

8y =Y — w0, d,uy), (12)

which is caused by unmodeled or imperfectly modeled system dynam-
ics. As discussed in Section 2, the implemented SPMe battery model
is derived from the full-order DFN model through the simplifying
assumption that lithium intercalation current density is uniform across
each electrode. This simplification has been demonstrated to maintain
good accuracy under low current amplitudes, but errors grow as current
increases [50]. Regardless, even the DFN model is subject to assump-
tions (e.g., electrode particles are spherical with uniform radii) and will
still yield discrepancies against measured output data [61]. No model
can perfectly capture the exact dynamics of a physical system, thus
some level of model uncertainty will always be present.

Fig. 6 provides an example visualization of the model uncertainty
under the FUDS current profile, in which Fig. 6(a) compares the mea-
sured voltage with the modeled voltage under the benchmark parame-
ter set. The model uncertainty was computed according to Eq. (12) as

the difference between the measured and modeled voltage responses,
and is shown in Fig. 6(b). In this case, the model uncertainty varies in
both sign and amplitude with high-frequency fluctuations superposed
over a gradual decline. As discussed in Section 4.1, the estimation error
equation in Eq. (9) indicates that a data structure will mitigate the
influence of model uncertainty on the estimation result if Z,’L . %"5 Vi
is small. Since the time-varying 8y, is difficult to predict, the proposed
strategy of incorporating it into the rating was to approximate it as
a constant (average) value for the entire data set, represented by the
bias weight a, in Eq. (10). Disregarding the difficulty of adequately
guessing/tuning «,, Fig. 6(b) reveals that approximating 5y, as a
constant can introduce considerable error, as the model uncertainty can
vary significantly throughout the data set.

The last step of the data selection algorithm was to return the final
result by averaging the estimates from the five data segments with the
smallest a posteriori ratings. The D, and ¢,, estimation results are
presented in Tables 4 and 5, respectively. As with the simulation verifi-
cation, estimation results are included from the conventional approach
of univariate estimation without data selection. In addition, results are
provided for two joint estimation scenarios (without data selection)
to consider the common practice of simultaneously estimating all sys-
tem uncertainties, including the model uncertainty. The first scenario
is the bivariate joint estimation of D, and e, ,, which attempts to
effectively eliminate the parameter uncertainty by simultaneously esti-
mating both unknown parameters. The second scenario is the trivariate
joint estimation of D, ,, ¢ ,, and the unknown (and assumed constant)
model uncertainty 4V, which essentially attempts to estimate all system
uncertainties,

. < A ~ . 2
min =Y [V - (VD et b+ 47| as)
k=1

DY, et av+
Tables 4 and 5 provide the following insights:

+ Data Selection Performance: The data selection framework yielded
several accurate results (e.g., 0.6% D, , error in Table 4, 1.3%
e,, error in Table 5), though estimation errors were generally
higher than those observed in simulation (Tables 2 and 3). This
was attributed to the presence of model uncertainty in the ex-
perimental data, which degraded the performance of the rating
formula and often caused the mis-selection of the highest-quality
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Table 4
Summary of experimental D;, estimation results with preliminary rating formula.
Case D, , Estimation Error
AD,, 4eg, Input Data Selection Univariate Bivariate Trivariate
Profile Framework Approach Approach Approach
(Preliminary Rating) (D,,) (D; . €4,) (D; . € ,, AV)
FUDS 16.8% -32.0% 26799% -32.0%
0y — 0/ 0, V)
0% 0% UDDS 13.7% 42.3% 26864% 26864%
USo06 —28.4% —25.9% 26809% 26788%
DST -16.5% -22.9% 26838% 849%
FUDS 52.6% 206% 26799% 312%
— 0, 0, 0, 0
20% 10% UDDS 0.6% 117% 26864% 26864%
Uso06 -3.7% 337% 26809% 26788%
DST 21.4% 318% 26838% 849%
Table 5
Summary of experimental ¢, estimation results with preliminary rating formula.
Case €, , Estimation Error
AD,, de,, Input Data Selection Univariate Bivariate Trivariate
Profile Framework Approach Approach Approach
(Preliminary Rating) (e5,) (D, €5,) (D, . €, ,,4V)
FUDS -1.3% 12.7% -23.3% -32.4%
UDDS —4.0% 7.5% -26.7% -35.7%
20% 10%
0% 0% US06 -2.1% 14.5% ~22.0% -35.8%
DST -3.1% 15.7% -22.3% -35.4%
FUDS -7.7% 1.8% -23.3% -32.4%
UDDS -9.8% -3.0% -26.7% -35.7%
—20% 10%
’ ’ Us06 -9.2% 3.3% ~22.0% -35.8%
DST -9.7% 4.3% -22.3% —35.4%
absolute value of the estimation error). In other words, averaging
38 the estimates from a different number of data segments would
yield a larger error for this case.
3.7 Bliyi= . . . o L
< i H N | » Comparison with Conventional Univariate Estimation Approach: The
Y i K il ‘ data selection framework generally delivered smaller estimation
an r ) It . . . .

s g errors than the conventional univariate approach without data
2 a5l selection, yielding error improvements in both D, and ¢, of
” Measured one order of magnitude. Interestingly, for the estimation of &

— — —Modeled with Benchmark Parameter Set . & ’ Sk . Sp?

34 0 ) ) ) 0 I | | | the data selection framework outperformed the conventional ap-

0 200 400 600 800 1000 1200 1400 1600 1800 proach for every current profile under AD;,: 20% and Ae, ,:
Time (s) 10%, while the conventional approach performed better under

(a) Comparison of measured and modeled voltage responses un- AD, ,: —20% and Ae,,: 10%. This inconsistent behavior under
der benchmark parameter set. different parameter sets was not observed in simulation and is

thus attributed to the presence of model uncertainty—the only
difference between the two scenarios.
Comparison with Bi- and Trivariate Joint Estimation Approaches: The
bivariate joint estimation of D, , and ¢, , is generally inaccurate
with minimum errors of 26,799% for D, , and 22% for ¢ ,. This is
because the estimation problem is ill-posed under the drive-cycle
data, and the estimator attempted to reconcile the error between
the measured and modeled voltage outputs by varying the values
of D,, and &, ,, though the errors were caused by mechanisms
00T 200 400 oo 0 1000 1200 1200  1o00  1s0o beyond parameter uncertainty, i.e., unmodeled system dynamics.
Time (s) Mathematically, we can understand this high sensitivity of joint
(b) Model uncertainty computed as difference between measured estimation error to model uncertainty by examining the error
and modeled voltage responses from (a). equation for the bivariate estimation of two target parameters
0, and 6,, which is presented as Eq. (14) for the first target
parameter 6,. The error equation for the second target parameter
0, follows a symmetric form. The equation is derived following
the same procedure as the univariate estimation error equation in
Eq. (9), and the numerator is abbreviated due to the complicated
structure and limited space.
data segments. Additionally, Fig. 5(d) reveals that the smallest ()

Model Uncertainty, §V;, (mV)

Fig. 6. Visualization of model uncertainty under FUDS current profile.

estimation error of 0.6% (for the estimation of Dy, under UDDS) o <d};k (é+)>2

occurred somewhat fortuitously, as the estimates from the five 40, = —\% - (14)
segments with the smallest a posteriori ratings are each individ- ) (Zﬁv:l e ) (§+))

ually poor, but are centered around the true value such that the 211:,:1 (%(@ﬁ)) _ 6 26 2

average error is small (note that the vertical axis in Fig. 5(d) is the ! >, <§;§ (?f))
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The form of Eq. (14) mirrors that of Eq. (9), where the de-
nominator is the determinant of the Fisher information matrix
[57,58] and each numerator term describes the propagation of
one system uncertainty to the estimation result, i.e., 6y, and A¢;,.
Thus, the denominator is indicative of estimation robustness to
system uncertainties, as it will proportionally reduce (or amplify)
the influence of all uncertainty-propagating numerator terms.
Comparison of the bivariate estimation error equation in Eq. (14)
with the univariate form in Eq. (9) reveals that the denomina-
tor of the bivariate form is always smaller by a difference of

2
Pl <Z)7§

parameter will always reduce the denominator of the estimation
error equation, causing the estimation result to be less robust
against the uncertainties. Similarly, the trivariate joint estimation
was also ill-posed and yielded inaccurate results. Fundamentally,
this approach of attempting to eliminate all system uncertainties
by adding more target parameters for estimation is susceptible
to ill-posedness in the absence of adequate information/data.
Accordingly, the resulting estimates are often inaccurate or even
nonunique (e.g., a denominator of zero in the estimation error
equation indicates unidentifiability) [31,61,66].

s—. Thus, simultaneously estimating a second target

Evidently, model uncertainty critically influences estimation accu-
racy for the data selection framework and conventional estimation
approaches. The remedy of approximating model uncertainty as a con-
stant bias in the data rating formula or performing multi-variate joint
estimation was found to be ineffective due to the substantial variation
of model uncertainty among data segments. Thus, we propose a new
strategy to fix the issue by adaptively incorporating model uncertainty
in the rating formula.

5. Data quality rating adaptive to model/measurement uncer-
tainty: Derivation & validation

The results in Section 4.2 revealed that model uncertainty can
significantly degrade estimation accuracy, not only for the data selec-
tion framework but for conventional univariate and joint estimation
approaches as well. This is a serious concern for EV BMSs, where model
fidelity is restricted by the onboard computational resources, and high-
precision measurement hardware is typically cost-prohibitive—indeed,
model/measurement uncertainty is inevitable in practice. To improve
the capability of the data selection framework to differentiate data in
terms of the model/measurement uncertainty, an adaptive approxima-
tion of the model/measurement uncertainty is derived and embedded
into the data quality rating formula. Experimental validation follows.
For brevity, we will continue to refer to the model/measurement
uncertainty simply as model uncertainty, in reference to the dominant
component in our Li-ion battery application.

5.1. Derivation

As discussed in Section 4, the challenge with incorporating varying
model uncertainty into the rating formula is that it is varying and
depends on the true parameter values, according to Eq. (12). Since the
true parameter values are unknown, the model uncertainty can only be
approximated. Recent works have developed data-driven approaches
for predicting model uncertainty with recurrent neural networks [67],
feedforward neural networks [68,69], polynomial regression [70], and
Gaussian process regression [70]. However, these techniques cannot
be adopted in the data selection framework because they depend on
training data that is generated under the unknown true parameter
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values. For this reason, a new approach is developed for approximating
model uncertainty under an uncertain parameter set.

The basic idea of the new approach is to approximate the time-

varying model uncertainty as
(ﬂ(é:&, uk>A¢,)] ,
09,

(15)

5yk = ykm - yk(e, P, uk)

A n Vi A a -
~ = |0, dou) + d—gw bu)O -0+
i=1

where the modeled output under the true parameter set y.(6, ¢, u;)
is approximated by the 1st order Taylor expansion about the a priori
parameter set (60—, ). It is important for the Taylor expansion to be
centered about the a priori parameter set because the model uncertainty
approximation in Eq. (15) will be combined with the estimation error
equation in Eq. (9), which was derived through a Taylor expansion
of y,(6,¢,u,) about the a posteriori parameter set (9*, ). Thus, ap-
proximating y, (6, ¢, u,) from the alternative perspective of the a priori
parameter set will provide the error equation with new information that
can be leveraged to characterize the model uncertainty. The adaptive
a posteriori rating formula is hence derived by combining the model
uncertainty approximation in Eq. (15) and the error equation in Eq. (9),
and the final form is presented as Eq. (16) after normalizing by the
estimate of the target parameter (%) and applying the absolute value.

[ =@+ 5@ (5 =1)+ Ty, (560 - 50|

N W p+

[ S
+
-

0

L0 (226 - %(9*))‘

(16)

The adaptive rating formula incorporates the model uncertainty
without any need for prior knowledge or tuning. Additionally, the full
time-varying model uncertainty is captured without being oversim-
plified as a constant, as was necessary for the preliminary rating in
Eq. (10) and the trivariate joint estimation in Eq. (13). This is enabled
by a distinct feature of the adaptive rating, i.e., it involves both the
a priori and a posteriori values of the target parameter. Specifically, be-
sides using the aforementioned sensitivity-based data structures related
to uncertainty propagation, the rating also leverages the difference
between the a priori and a posteriori values, featured by (9—; - l> in
the numerator and other terms. This difference essentially indicates
the extent to which the initial guess of the target parameter can be
changed/improved by the data. In this way, the rating formula not
only evaluates the potential of a data segment to amplify/attenuate
uncertainty, but also implicitly incorporates the (model) uncertainty
itself. However, since the new rating cannot be evaluated a priori only,
it is recommended that the preliminary rating in Eq. (10) continue
to be used for the a priori evaluation in the data selection algo-
rithm. Meanwhile, the denominator of the adaptive rating no longer
represents the Fisher information of the target parameter, as it is
smaller than the preliminary rating denominator by a difference of
Z,’Ll %(9*)%(9*). Regardless, the denominator can still be large if
the target parameter is strongly sensitive, which is indicative of high-
quality data through robustness against the uncertainty-propagating
numerator terms. Thus, it is still desirable for the target parameter to
be strongly sensitive, as it was for the preliminary rating. On the other
hand, the fo: | %(9*)%(9*) term can substantially reduce the rating
denominator, which may cause numerical instability in computation
due to the unaccounted errors in the numerator associated with the
truncated higher-order terms of the Taylor expansion. For example,
if the rating denominator is very small for a given data segment, a
minor error in the numerator (due to Taylor approximations) can be
amplified to substantially impact the rating value. To mitigate the
possibility of mis-rating segments, a threshold will be applied to the
rating denominator to enforce a minimum acceptable value.
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Table 6

Summary of experimental D;, estimation results with adaptive rating formula.
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Case D, , Estimation Error
AD,, Ae,, o, Input Data Selection Univariate Bivariate Trivariate
Profile Framework Approach Approach Approach
(Adaptive Rating) (Dy,) (D; . €4,) (Dy . €5,.4V)
FUDS —4.8% -32.0% 26799% -32.0%
UDDS —-4.7% —-42.3% 26864% 26864%
—20% —-20% 1/12
’ ’ / US06 ~2.6% ~25.9% 26809% 26788%
DST -3.5% -22.9% 26838% 849%
FUDS 18.6% 206% 26799% 312%
UDDS 5.4% 117% 26864% 26864%
20% 10% -1/3
’ ’ / Us06 30.8% 337% 26809% 26788%
DST 37.6% 318% 26838% 849%
Table 7
Summary of experimental ¢, estimation results with adaptive rating formula.
Case €,, Estimation Error
AD,, deg, ap,, Input Data Selection Univariate Bivariate Trivariate
Profile Framework Approach Approach Approach
(Adaptive Rating) (g,) (D, . €5,) (D; €5 ,, AV)
FUDS 3.6% 12.7% -23.3% -32.4%
UDDS -1.5% 7.5% —26.7% -35.7%
20% 10% -3/8
’ ? 4 Uso06 3.5% 14.5% -22.0% —-35.8%
DST 4.7% 15.7% —22.3% —35.4%
FUDS 0.8% 1.8% -23.3% -32.4%
UDDS -3.0% -3.0% -26.7% -35.7%
—20% 10% 1/12
’ : / Us06 0.6% 3.3% ~22.0% -35.8%
DST 1.5% 4.3% -22.3% —35.4%

5.2. Experimental validation

The experimental validation of the adaptive rating formula is iden-
tical to that of the preliminary rating formula in Section 4.2.2, except
that the a posteriori rating evaluation is performed with the adaptive
rating formula in Eq. (16). Fig. 7 shows the a posteriori rating-error cor-
relations for the same examples in Fig. 5, where the data segments are
simply rearranged along the horizontal-axis according to the new rating
values. Fig. 7 also includes correlations for ¢ , under different current
profiles and parameter uncertainties. The «, weight was selected to
be 1/12, -1/3, —3/8, and 1/12 for the four uncertain parameter sets
in Table 1, corresponding to arbitrary parameter uncertainty guesses
(4¢) of 10%, —30%, —30%, and 10% of the true parameter values,
respectively, as ay = Ad. To improve the numerical stability of
the rating, the denominator threshold was selected to be 0.1 for D,
estimation and 1.7 for ¢, , estimation. These values were hand-tuned
for each target parameter, though we intend to develop a method for
automatically determining them in future work.

It can be seen that each rating-error correlation in Fig. 7 is strongly
monotonic, indicating the adequacy of using it for data selection, as the
highest-quality data segments are associated with the smallest ratings.
The rating-error correlations were significantly improved over those us-
ing the preliminary rating formula shown in Fig. 5, which attests to the
effectiveness of the model uncertainty approximation for enhancing the
reliability of the rating formula. For each case, the final estimate was
returned by averaging the estimates from the five data segments with
the smallest a posteriori ratings. The D, , and ¢, , estimation results are
summarized in Tables 6 and 7 alongside results from the conventional
approaches of univariate, bivariate, and trivariate estimation without
data selection.

In comparison with the results under the preliminary rating formula
(Tables 4 and 5), the adaptive rating improved the estimation accuracy
for most cases, with several error reductions of one order of magnitude.
The adaptive rating also delivered tighter error variation than the
preliminary rating, i.e., [-4.8%, 37.6%] vs. [-28.4%, 52.6%] for D,
and [-3.0%, 4.7%] vs. [-9.8%, —1.3%] for e, ,- Estimation accuracy
was notably improved in ¢, for the case of AD,,: —20% and 4g; ,:

12

10%, with errors consistently less than or equal to those of the three
conventional approaches. In summary, the data selection framework
outperformed or matched the conventional approaches in every case,
and yielded estimation errors that were at least one order of magnitude
smaller in 28 out of the 48 cases. Thus, the adaptive rating formula has
been validated as an effective means for improving the performance of
the data selection framework.

6. Conclusions

In this paper, an uncertainty-aware data selection framework was
proposed and demonstrated for the accurate estimation of health-
related Li-ion battery parameters. The foundation of the framework
is the proposed data quality rating, which is a metric for predicting
the extent to which a selected data segment will propagate system
uncertainties to the estimation result. The data selection and estimation
procedures were integrated through a priori and a posteriori evaluations
of data segment quality, and the a posteriori data quality rating was
enhanced with a novel approximation of model/measurement uncer-
tainty that considers the influence of unmodeled dynamics and/or
sensor noise. Two health-related electrochemical parameters, D, , and
€, 5> were separately estimated in simulation and experiment to evalu-
ate the performance of the framework. Excellent estimation accuracy
was achieved, even in the difficult case of estimating the weakly
sensitive D, , under uncertainty in the strongly sensitive ¢, ,. Addi-
tionally, model/measurement uncertainty was generally observed to
reduce estimation accuracy, though its influence was mitigated through
successful integration of the adaptive model/measurement uncertainty
approximation into the rating formula. The framework yielded exper-
imental estimation error reductions of one order of magnitude when
compared with the conventional approaches of univariate and mul-
tivariate estimation without data selection. It was thus validated as
an effective means for improving parameter estimation accuracy when
control authority is not available over the data.

The data selection framework is significant because it has the po-
tential to change the paradigm of both online and offline parameter
estimation. Throughout this work, we showed that drive-cycle data
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Fig. 7. Experimental a posteriori rating-error correlations for D, , and ¢, , using adaptive
rating formula under different input profiles and parameter uncertainties.

(e.g., FUDS, UDDS, US06, and DST), which are frequently used for
battery SOH estimation as the only available data during battery oper-
ation, may not provide accurate estimation results. This is mainly due
to the existence of large portions of low-quality data (low sensitivity
and high uncertainty) in the cycle. The contribution of this paper is to
propose a data selection scheme that can extract the high-quality data
segments from random operational data to improve estimation accu-
racy. In online estimation, high-quality data segments can be selected
from a window of a random data stream, which facilitates the optimal
use of the incoming data when it cannot be controlled/designed. In
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offline estimation, high-quality data segments can be selected from an
existing database of measurements. This may eliminate or reduce the
time, equipment, labor, and expertise required to design and conduct
experiments, which would otherwise be necessary to generate suitable
data sets when accurate estimation results are critical. For example,
consider the emerging field of battery repurposing, in which retired
electric vehicle batteries must undergo a lengthy health testing and di-
agnosis procedure before being appropriately repackaged for stationary
applications. Through the data selection framework, an existing high-
quality data segment from the vehicle BMS might be extracted and used
to quickly and accurately estimate the health-related battery parame-
ters, as was demonstrated in the verification and validation studies in
Sections 4 and 5, circumventing the need for lengthy experimentation.
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