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Abstract

Urban greenspaces, including green roofs and ground-level urban habitats provide habitat for insect communities in cit-
ies. However, beneficial insect communities likely differ between human-managed habitats because of varying provision
of resources and connectivity in these greenspaces. This study examined the insect communities in four extensive green
roofs and three non-adjacent, similarly structured, managed ground-level habitats. We detected a high degree of over-
lap in insect taxa but found moderate differences in overall insect community composition between the green roof and
ground-level habitats. While there was no difference in Shannon diversity between green roofs and ground-level habitats,
the ground-level habitat had greater insect taxa richness. Green roof and ground-level habitats supported pollinators and
natural enemies, while ground-level had greater mean pollinator and natural enemy richness and Shannon diversity. Green
roofs intentionally designed for biodiversity using native plants for habitat did not differ from those designed for storm-
water management and energy reduction using non-native plants in insect community metrics used in this study. These
findings suggest that urban greenspaces continue to provide valuable habitat while connectivity and structure play a role
in shaping urban insect communities.
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Introduction

Human-managed and occupied urban green spaces may
mimic the ecosystem functionality of naturally occurring
habitats, either spontaneously or by design (Lundholm
2006; Oberndorfer et al. 2007). Understanding how com-
munities of organisms assemble and use these novel spaces
provides a key opportunity to understand, and potentially
shape, the ecosystem functions and services delivered
in human-dominated landscapes (Groffman et al. 2017;
Mallinger et al. 2016). The structural elements that make
a habitat unique is termed “habitat template” (Southwood
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1977). The habitat template shapes which organisms can
colonize by filtering out many species that are not suited for
that habitat (Lundholm 2006). Using this theory, Lundholm
(2006) developed the habitat template approach to urban
biodesign, in which built elements, such as extensive green
roofs, can be designed using elements from various ground-
level thin-soil rock barren environments, due to the similar
physical attributes they share. It has been suggested that a
structural diversity of plants and abiotic factors in green
roofs influences insect diversity (Brenneisen 2003).

Green roofs may, or may not, be designed to mimic
similarly structured habitats in their region. The services
that green roofs provide, including stormwater manage-
ment, reduced energy consumption, accessible or vis-
ible green space, and habitat for organisms, among others,
vary according to how the green roof is designed and
maintained (Dunnett and Kingsbury 2004). As part of the
urban built environment, green roofs may experience high
wind and solar radiation, as well as periods of flooding or
drought brought on by the thin substrate on top of a hard
surface. These conditions limit primary producers’ survival
(Lundholm 2006). Thin soil (substrate) roofs are known
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as extensive green roofs, in which plants are intentionally
grown on top of a human-built structure in shallow (typi-
cally 15-20 cm or less) growing medium (Getter and Rowe
2006; Oberndorfer et al. 2007). As opposed to intensive
green roofs, which have at least 15 cm of substrate and may
host a wide range of vegetation types, extensive roofs put
less stress on buildings and can be less expensive (Dun-
nett and Kingsbury 2004). This intensive/extensive nomen-
clature has been used for some time to characterize green
roofs (Dunnett and Kingsbury 2004; Getter and Rowe 2006;
Oberndorfer et al. 2007; Razzaghmanesh and Beecham
2014; Starry et al. 2018; Stella and Personne 2021), but
some authors also classify green roofs by their plant com-
munity or function (Kotze et al. 2020).

In many locations, roofs designed without specific
biodiversity goals in mind commonly use exotic Sedum
(Phedimus) species because as succulents they have been
shown to withstand the challenging growing conditions,
especially drought, on roofs (Dunnett and Kingsbury 2004;
VanWoert et al. 2005). These Sedum based roofs initially
became widely used in western Europe, especially Ger-
many (Kohler 2006; Ngan 2004; Oberndorfer et al. 2007;
Thuring and Grant 2015), and are now popular in many
places of the world including North America (Dunnett and
Kingsbury 2004; Dvorak and Volder 2010; Snodgrass and
Mclntyre 2010). When biodiversity service provision is a
priority, designers may choose to use plants native to their
region, creating a habitat analog. For example, prairie eco-
systems are widely distributed in North America and com-
monly experience drought conditions, so these plants are
well accustomed to the challenges often encountered on
green roofs (Sutton et al. 2012). Although prairie plants,
especially in tallgrass prairies, often have deep root sys-
tems (Nippert et al. 2012) many species root less deeply or
will adapt to shallow growing mediums by growing roots
horizontally (Sutton et al. 2012). The diversity of plant taxa
found in prairies is also beneficial to their success as the
richness supports ecosystem functioning (Cardinale et al.
2011; Tilman et al. 1996). Prairie analog roofs can be found
in the Great Lakes Region of the United States of America
(Dvorak 2015; Hawke 2015). Other ground-level thin-soil
ecosystems that are structurally analogous to extensive
green roofs, such as alvars, cliff edges, and barrens are
found in the Great Lakes Basin (McNamara Manning et al.
2023). These natural environments experience similar envi-
ronmental conditions to green roofs and have thin soils on
top of bedrock, usually sandstone, limestone, or dolostone
(Lundholm 2006). Studies examining plant performance on
green roofs predominately seek suggestions for plant mixes
suited to particular climates or for different design goals
(Butler and Orians 2011; Caceres et al. 2018, 2022; Calvifio
et al. 2023; Chell et al. 2022; Coffman and Blackson 2020;
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Farrell et al. 2022; Hawke 2015; Heim and Lundholm 2014,
Kohler 2006; Maclvor and Lundholm 2011a; Monterusso
et al. 2005; Nagase et al. 2017; Nagase and Dunnett 2010;
among others).

Insects inhabit practically all terrestrial and freshwa-
ter ecosystems, including urban environments, and play a
variety of critical roles in ecosystem function and service
(Rosenberg et al. 1986), making them the ideal ‘barometers’
to measure biodiversity functions of green roofs. Insects
that provide services such as pollination, pest control, and
decomposition are commonly referred to as beneficial
insects, and these groups provide billions of dollars’ worth
of ecosystem services to agricultural ecosystems in the
United States each year (Losey and Vaughan 2006). Numer-
ous studies have reported a wide variety of invertebrate
taxa occurring in green roof habitats: beetles (Brenneisen
2003; Pétremand et al. 2018; Starry et al. 2018), bees (Colla
et al. 2009; Kratschmer et al. 2018; Ksiazek et al. 2012;
Maclvor et al. 2015; Tonietto et al. 2011) and other pollina-
tors (Jacobs et al. 2023; Maclvor 2016; Passaseo et al. 2020,
2021), parasitoid wasps (Diethelm and Masta 2022), and a
variety of mixed taxa (Coffman and Davis 2005; Coffman
and Waite 2011; Fabian et al. 2021; Kadas 2006; Kyro et al.
2020; Maclvor and Lundholm 2011b; Sanchez Dominguez
et al. 2020). Green roofs designed with insect biodiversity
and native resources in mind can provide habitat in these
urban landscapes that have lost some of this space on the
ground level (Brenneisen 2003, 2006; Lundholm 2006).
However, green roofs not necessarily designed for biodiver-
sity still provide habitat or foraging resources (Coffman and
Davis 2005; Coffman and Waite 2011; Maclvor et al. 2015).
In general, green spaces in human dominated landscapes
can be important to support biodiversity and conservation
(Tonietto et al. 2011), but the connectivity of these habitats
may influence insect communities (Barr et al. 2021; Braaker
et al. 2014, 2017).

To understand insect community composition several
previous authors have compared green roofs and ground-
level sites, often finding higher biodiversity at ground-level
sites, but concluding that green roofs provided important
habitat (Braaker et al. 2017; Colla et al. 2009; Ksiazek et
al. 2012; Maclvor and Lundholm 2011a; Tonietto et al.
2011). However, less is known about ground-level habi-
tats under management or protection, except Tonietto et al.
(2011) examined managed prairies, city parks, and green
roofs. They found a higher abundance and diversity of bees
in prairies, compared to green roofs, with bee communities
in city parks similar to both other habitats. There are con-
flicting conclusions when comparing insect communities
on green roofs with different plant types. Kyro et al. (2020)
found differences between meadow and succulent roof
insect communities in Finland, while Jacobs et al. (2023)
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found no difference between Sedum and mixed vegetation
roofs in Belgium.

Regarding beneficial insects, pollinator studies on green
roofs are more abundant (Colla et al. 2009; Jacobs et al.
2023; Ksiazek et al. 2012; Maclvor et al. 2015; Passaseo
et al. 2020, 2021; Tonietto et al. 2011) than studies exam-
ining natural enemies (Diethelm and Masta 2022; Fabian
et al. 2021; Sanchez Dominguez et al. 2020). The majority
of green roof insect studies use only one sampling method
(Brenneisen 2003; Coffman and Davis 2005; Coffman and
Waite 2011; Colla et al. 2009; Fabian et al. 2021; Kratschmer
et al. 2018; Ksiazek et al. 2012; Kyr6 et al. 2020; Maclvor
and Lundholm 2011a; Passaseo et al. 2020, 2021; Sanchez
Dominguez et al. 2020; Starry et al. 2018), but using mul-
tiple sampling methods can improve understanding of the
insect community (Aguiar and Santos 2010; Campbell et al.
2023; McNamara Manning et al. 2022; Missa et al. 2009;
Russo et al. 2011).

In this study, we aim to expand from current under-
standings by examining insect communities in green roofs
and protected ground-level thin soil habitats using a multi-
dimensional sampling approach to characterize the full com-
munity while on beneficial insects, including pollinators and
natural enemies. Because urban infrastructure is designed
and planned with different purposes, we compared the insect
communities on green roofs designed with and without bio-
diversity in mind. We ask (1) how does insect community
richness and Shannon diversity differ between ground-level
and green roof habitats?; (2) how does insect community
richness and Shannon diversity differ between green roofs
designed for biodiversity and those designed for stormwa-
ter management and energy reduction? (3) how do benefi-
cial insects, pollinators and natural enemies, differ between
these habitats and green roof types? While green roofs and
ground-level thin soil habitats may share common structur-
ing characteristics, due to perceived greater connectivity
with other habitats as well as findings from previous studies,
we predict that total insect and beneficial insect richness and
diversity will be greater in ground-level than green roof hab-
itats. Between green roofs, we predict that total insect and
beneficial insect richness and diversity will be greater among
green roofs designed for biodiversity services versus those
designed for other services like stormwater management and
reducing energy consumption of the building.

Methods
Study sites

Seven locations, four green roof and three ground-level sites
in the greater Cleveland, Ohio, USA area were sampled

in 2019 and 2021 (Fig. 1). The structural and vegeta-
tive characteristics of all sites differed, but they had soils
or substrates of similar depths, were open to solar radia-
tion, winds, and precipitation. All sites were embedded in
a greater landscape of mixed use, urban, semi-urban, and
industrial land use histories, and had differing adjacencies.
To assess greenspace surrounding each site, a GIS layer of
Open Space was downloaded from Cuyahoga County Open
Data, created by the Cuyahoga County Planning Com-
mission Greenprint Service. Areas with primary land use
designation listed as agriculture, preserved, recreation/rec-
reational, conservation, park, or greenspace were selected
and used as a greenspace layer. A 1.5 km buffer (Gardiner
et al. 2009) was created around all study site points and per-
cent greenspace within each buffer was calculated using the
Tabulate Intersection tool in ArcGIS Pro (version 3.1.2).

The three ground-level sites were managed habitats
located in conservation-based park systems each with a
history of disturbance. The Slate Shale Hill was a roadside
hill of highly exposed slate shale soil, surrounded by for-
est (Fig. 2a). Sparse vegetation and trees included mixed
patches of Danthonia spicata (L.) Roem. & Schult. (Poverty
Oat Grass), Schizachyrium scoparium (Michx.) Nash (Little
Bluestem), several species of Aster, Acer rubrum L. (Red
Maple), Pinus strobus L. (White Pine), and Nyssa sylvatica
Marshall (Black Gum). The Dusty Goldenrod Meadow was
a portion of a preserve that was an open wet meadow sur-
rounded by forest and residential development (Fig. 2b).
This site had continuous grass and sedge vegetation and
sparse trees, including Rhynchospora sp. (Beaksedge),
Schizachyrium scoparium (Little Bluestem), Polygala nut-
tallii Torr. & A.Gray (Nutall’s Milkwort), Acer rubrum (Red
Maple), Pinus strobus (White Pine), and Nyssa slyvatica
(Black Gum). It is the only known home in Ohio to its name-
sake, the rare and endangered Dusty Goldenrod (Solidago
puberula Nutt.). Bedford Barren was a thin-soil mossy bar-
ren adjacent to a hiking trail, between a meadow and forest,
at a cliff edge over a creek (Fig. 2¢). The site was located
in a utility easement that is heavy machine brush-cut every
5-10 years. The barren mostly contained mosses, leaves,
coarse woody debris, and Danthonia spicata (Poverty Oat
Grass). In the adjacent meadow grew Achillea millefolium
L. (Common Yarrow), several species of Solidago (Golden-
rod), and Daucus carota L. (Queen Anne’s Lace), and the
adjacent trees were mostly Acer rubrum (Red Maple) and
Quercus rubra L. (Northern Red Oak).

Among the four green roof sites, we sampled two green
roof design types. Stormwater-energy (SE) green roofs were
designed for stormwater management and to reduce build-
ing energy needs. Biodiversity-ecological (BE) green roofs
were designed with ecomimicry and native plants in mind,
utilizing greater plant diversity and providing habitat for
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Fig. 1 Map of Cuyahoga County, Ohio displaying sampling sites with
1.5 km radii: Dusty goldenrod meadow (1), Bedford barren (2), Slate
shale hill (3), Edgewater beach (4), Watershed Steward Center (5),

wildlife (Droz et al. 2022; Kotze et al. 2020). The Edge-
water Beach House roof (SE) at was designed to prevent
stormwater runoff and cool the structure (Fig. 2e). The flat
two-story roof, adjacent to Lake Erie, was planted with non-
native Sedum and other low growing succulent species in
a flexible modular system, including Sedum sexangulare
L. (Tasteless Stonecrop), Sedum acre L. (Goldmoss Stone-
crop), Sedum montanum ssp. orientale (Unusual Evergreen
Sedum), Sedum album L. (White Stonecrop), Phedimus
spurius (M. Bieb.) ‘t Hart (Two-row Stonecrop). The Water-
shed Stewardship Center roof (SE) was also designed for
stormwater and energy benefits (Fig. 2f). Using a similar
rigid modular system, the two-story sloped roof was planted
with Hylotelephium spectabile ‘meteor’ (Showy Stonecrop),
Hylotelephium ewersii (Pink Mongolian Stonecrop), Sedum
album brevifolium (White Stonecrop), and Allium senescens
ssp. glaucum (German Garlic). Trifolium repens L. (White
Clover) has volunteered and is periodically weeded out but
was present for our sampling. It was surrounded by native
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Nature Center at Shaker Lakes (6), Happy Dog bike box (7). Map cre-
ated by Stephanie Burkey using ArcGIS Pro.

landscaping on the ground level and adjacent woods and
streams. The Happy Dog Bike Box (BE) was built on a bike
shelter and designed to mimic a prairie ecosystem (Fig. 2g).
The one-story flat roof had a loose-laid system planted
with Bouteloua gracilis (Kunth) Griffiths (Blue Gramma),
Solidago nemoralis Aiton (Gray Goldenrod), Solidago ptar-
micoides (Torrey & A. Gray) B. Boivin (White Flat-top
Goldenrod), Sporobolus heterolepis A.Gray (Prairie Drop-
seed), Symphyotrichum oblongifolium (Nutt.) G.L. Nesom
(Aromatic Aster), and Viola pedatifida G. Don (Prairie Vio-
let). Notably, the structure had limited green space at the
ground level surrounding it. This roof was considered semi-
intensive because although most of it has thin soil, it also
utilized varied soil depths, featuring a 20 cm mound near the
middle. The green roof at the Nature Center at Shaker Lakes
(BE) was designed to mimic a forest understory (Fig. 2d).
The one-story flat roof had a rigid modular system that was
broken into three sections on the roof, planted with primar-
ily Aquilegia canadensis L. (Wild Columbine), Chrysopsis
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Fig. 2 Ground-level (A) Slate shale hill, (B) Dusty Goldenrod meadow, (C) Bedford barren, and green roof sites (D) Nature Center at Shaker
Lakes, (E) Edgewater beach house, (F) Watershed Stewardship Center, (G) Happy Dog Bike Box

mariana (L.) Elliott (Golden Aster), Geranium maculatum
L. (Wild Geranium), Heuchera americana L. (Coral Bells),
Solidago flexicaulis L. (Zigzag Goldenrod), and Thalictrum
dioicum L. (Early Meadow-rue), among other species. On
the ground-level it was surrounded by similar native plant
landscaping, a wooded park, and wetland. These modular
systems were initially deeper than on the SE roofs, but the
substrate has settled in the over 15 years since establish-
ment. All green roofs except Edgewater Beach House were
examined by Droz et al. (2022, 2021), detailing additional
properties of the roofs and adjacent ground-level land.

Field and laboratory methods

Sampling began in 2019. Due to the COVID-19 pandemic
and associated travel restrictions in 2020 this experiment
was placed on hiatus. In 2021 we resumed sampling. The
thin soil at the ground-level and green roof sites of interest
constrained how we were able to monitor the insects. From
a conservation standpoint, disturbing ground-level thin soil
habitats is undesirable, because limited substrate is avail-
able in these habitats. Additionally, many extensive green
roofs cannot be disturbed as it would impact the expensive
structural elements below the substrate such as waterproof-
ing membranes. Due to these constraints, all sampling had
to be done above the surface level.

In 2019 insects were trapped using three types of passive
sampling traps: sticky cards (Pherocon, Zoecon, Palo Alto,
CA, USA), bee bowls (also known as pan traps, inspired by
Leong and Thorp 1999), and yellow ramp traps (ChemTica
Internacional S.A., Santo Domingo, Costa Rica), evenly
spaced at each site for 48 h once per month for June, July
and August (Supplementary Material — Table 1). In 2021,

after a trap calibration experiment (McNamara Manning
et al. 2022), yellow ramp traps were replaced with a novel
trap design which was more targeted at capturing ground-
dwelling insects, which we refer to here as the jar ramp trap.
Additionally, the months of May and September were added
to the protocol to capture insects active during the begin-
ning and end of the growing season. In 2021 we reduced the
number of traps per site to limit oversampling and ensure
sampling evenness across sites. All sites were sampled with
two of each trap type except for the Happy Dog Bike Box
which could not support this many traps due to its small area
(13.935 m?) and instead had one jar ramp trap and one bee
bowl (Supplementary Material — Table 1).

The trap types were chosen to target insects that provide
the relevant ecosystem services, while gaining insights into
factors structuring the entire insect community. The bee
bowls, consisting of an array of three colored bowls (blue,
yellow, and white), were adjusted to the height of the plant
canopy and filled with soapy water, collecting flying insects,
and targeting pollinators. The sticky cards were approxi-
mately one foot off the ground, collecting flying insects,
and targeting predators and parasitoids, insects most associ-
ated with pest control services. The yellow ramp traps or jar
ramp traps were placed on the ground and filled with soapy
water, collecting ground-dwelling insects, targeting preda-
tors. Bowls, ramps, and jar ramps were filled with soapy
water (Dawn Original Liquid Dish Soap, Procter & Gamble,
Cincinnati, OH, USA), to break the surface tension. Bowls
and yellow ramp traps were strained in the field with fine
mesh upon collection and placed in a gallon zipper top bag
with ethanol. Jars had a lid screwed on to secure the sam-
ple. Sticky cards were placed directly into gallon zipper top
bags. In the lab, the liquid samples were strained, identified
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and placed in vials with 70% ethanol for storage. The sticky
cards were frozen and identified while remaining in the bag.
Specimens were identified to order, superfamily, group
(“wingless parasitoid wasps”), or family. This was modeled
after studies that used this mixed approach of identifying
for insect functional classifications such as natural enemy or
herbivore (Fiedler and Landis 2007; Gibson et al. 2019), or
predators (Hermann et al. 2019; Mabin et al. 2020). Speci-
mens were classified into groups of pollinators, natural
enemies, or other. Taxa identified as Apoidea: Anthophila,
Lepidoptera, and Syphridae were classified as pollinators
(Herrmann et al. 2023). Taxa identified as Anthocoridae,
Cantharidae, Carabidae, Chalcidoidea, Coccinellidae, Ich-
neumonoidea, Neuroptera, Reduviidae, Syrphidae, and
wingless parasitoid wasps were classified as natural ene-
mies, which is a classification made up of predators and
parasitoids (Gibson et al. 2019). Note that syrphids (hover-
flies) were classified as both pollinators and natural enemies
(many immatures belonging to this family are predaceous,
while adults are nectar feeders) (Skevington et al. 2019).

Statistical methods

All statistical analyses were completed using R 4.2.2 (Core
Team 2022). Data were evaluated for statistical assumptions
of normality and homogeneity of variance. Taxonomic rich-
ness (number of taxa per trap) and Shannon diversity index
(Hill 1973) were calculated using the vegan 2.6-4 package
(Oksanen et al. 2022).

Linear mixed effects models were developed to examine
differences in insect communities between green roof and
ground-level habitats, using the packages /me4 (Bates et al.
2015) and ImerTest (Kuznetsova et al. 2017). The response
variables examined were insect taxa richness and Shan-
non diversity. Each model included sampling date, habitat
(green roof or ground-level), and type of trap (yellow sticky
card, yellow ramp trap, jar ramp trap, or bee bowl) as cat-
egorical fixed effects and trap number nested within site as a
random effect: Response variable ~ Date + habitat + Trap
+ (1|Site:Replicate). The same models were performed on
only the green roof sites, replacing the variable ‘habitat’
with ‘design’ to compare between green roof design types
(SE or BE): Response variable ~ Date + design + Trap +
(1|Site:Replicate). Tukey pairwise comparisons between
site or design types, as well as trap type were performed
using the emmeans 1.8.5 package (Lenth et al. 2023) for all
models.

To characterize the insect communities, we used non-
metric multidimensional scaling (NMDS, with Jaccard dis-
tance) (Oksanen et al. 2022). NMDS was used to compare
four separate classification schemes for the insect communi-
ties: green roof and ground-level habitats, green roof design
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types: SE and BE, ground-level habitats and SE green roofs,
and ground-level habitats and BE green roofs. For this anal-
ysis we used presence-absence data pooled by site for each
sampling date. Permutational multivariate analysis of vari-
ance (PERMANOVA) and analysis of multivariate homoge-
neity of group dispersions using betadisper were performed
following each NMDS analysis to assess compositional
dissimilarity between habitat or design type (Oksanen et
al. 2022). With the green roof insect community NMDS we
also compared each of the four green roof sites using the
pairwiseAdonis 0.4 package (Martinez Arbizu 2020).

To evaluate beneficial insects, linear mixed effects mod-
els were used to examine differences in pollinator and
natural enemy taxa between green roof and ground-level
habitats and between green roof design types. The response
variables examined were beneficial insect taxa richness and
Shannon diversity, modeling pollinators and natural ene-
mies separately. Each model included sampling date, habitat
(green roof or ground-level), and type of trap (yellow sticky
card, yellow ramp trap, jar ramp trap, or bee bowl) as cat-
egorical fixed effects and trap number nested within site as a
random effect: Response variable ~ Date + habitat + Trap
+ (1|Site:Replicate). The same models were performed on
only the green roof sites, replacing the variable ‘habitat’
with ‘design’ to compare between green roof design types
(SE or BE): Response variable ~ Date + design + Trap +
(1|Site:Replicate). Tukey pairwise comparisons between
habitat or design type, as well as trap type were performed
for all models (Lenth et al. 2023).

Results

In total we collected and identified 42,503 insect specimens:
14,565 specimens from the four green roof sites and 27,938
from the three ground-level sites. Hemiptera was the most
abundant order in the green roof habitat, with Aphididae
(aphids) as the most abundant family. Between the two
green roof design types, there was a greater total abundance
of aphids on SE (4,900) than BE (598) green roofs. Diptera
(flies) was the most abundant order in the ground-level habi-
tat (Table 1). In the 1.5 km radius around each site percent
greenspace was approximately 31% (Bedford barren), 29%
(Slate shale hill), 25% (Watershed Stewardship Center),
14% (Edgewater beach), 12% (Happy Dog bike box and
Nature Center at Shaker Lakes), and 2% (Dusty goldenrod
meadow) (Supplementary Material — Table 2).

Insect community analyses

Overall, ground-level habitats had statistically greater insect
richness than the green roof habitats (5.52 + 0.30; 4.66 +
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Table 1 Insect abundances, total (T) and standardized (S), by habitat. Total is the raw abundance collected during the study. Standardized abun-
dances represent the average number of insects collected per trap during the study. Standardized abundances were calculated by dividing total
abundances by the total number of traps used in that habitat, green roof or ground-level, during the length of the study

Green roof Ground-level
T S T S
Blattodea Cockroaches and termites 0 0 1 0.01
Diptera Flies 4557 20.07 19,586 98.92
Syrphidae *+ Hoverflies 250 1.10 359 1.81
Other Dipterans 4307 18.97 19,227 97.11
Hymenoptera Sawflies, wasps, bees & ants 810 3.57 1195 6.04
Apoidea: Anthophila *  Bees 78 0.34 291 1.47
Chalcidoidea 1 Chalcid wasps 538 2.37 674 3.40
Ichneumonoidea f Braconid & Ichneumonid wasps 86 0.38 138 0.70
Formicidae Ants 89 0.39 69 0.35
Other wasp 14 0.06 20 0.10
Wingless parasitoid 5 0.02 3 0.02
Hemiptera True bugs 6462 28.47 6500 32.83
Adelgidae Adelgids 6 0.03 0 0
Aleyrodidae Whiteflies 559 2.46 170 0.86
Anthocoridae T Minute pirate bugs 13 0.06 3 0.02
Aphididae Aphids 5498 24.22 6028 30.44
Cercopidae Froghoppers 8 0.04 12 0.06
Cicadellidae Leathoppers 248 1.09 222 1.12
Fulgoroidae Planthoppers 0 0 3 0.02
Membracidae Treehoppers 40 0.18 3 0.02
Miridae Plant bugs 42 0.19 1 0.01
Pentatomidae Stink bugs 2 0.01 0 0
Psyllidae Jumping plant lice 26 0.11 28 0.14
Reduviidae Assassin bugs 0 0 1 0.01
Tingidae Lace bugs 0 0 1 0.01
Unknown Hemipteran 20 0.09 28 0.14
Coleoptera Beetles 191 0.84 227 1.15
Cantharidae 1 Solider beetles 18 0.08 22 0.11
Carabidae Ground beetles 1 0.004 3 0.02
Chrysomelidae Leaf beetles 32 0.14 52 0.26
Coccinellidae f Lady beetles 17 0.07 16 0.08
Curculionidae Weevils 10 0.04 24 0.12
Elateridae Click beetles 2 0.01 1 0.01
Lampyridae Fireflies 7 0.03 1 0.01
Mordellidae Tumbling flower beetles 20 0.09 43 0.22
Scarabaeidae Scarab beetles 1 0.004 8 0.04
Staphylinidae Rove beetles 7 0.03 4 0.02
Unknown Coleoptera 76 0.33 53 0.27
Lepidoptera * Butterflies and moths 11 0.05 32 0.16
Neuroptera Lacewings, mantidflies, antlions 2 0.01 3 0.02
Orthoptera Grasshoppers, crickets, katydids 152 0.67 29 0.15
Psocodea Bark, book, and parasitic lice 15 0.07 2 0.01
Thysanoptera Thrips 2361 10.40 361 1.82
Trichoptera Caddisflies 4 0.02 2 0.01

Note: * denotes pollinator, Tdenotes natural enemy

0.28, p = 0.01). There was no difference in Shannon diver- diversity (richness: 4.79 + 0.41; 4.29 4+ 0.46, p > 0.05; Shan-
sity between the green roof and ground-level habitats (0.95  non diversity: 0.81 & 0.06; 0.94 + 0.07, p > 0.05) (Fig. 3b).
+ 0.05; 0.91 + 0.05, p > 0.05) (Fig. 3a). When examining All non-metric multidimensional scaling analyses found
the green roofs functional intent design types, SE and BE,  strong overlap in insect communities, although some com-
there was no difference in insect taxa richness or Shannon  parisons were statistically different. The PERMANOVA
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following the NMDS of the total insect community (stress =
0.20) found statistical differences in the insect communities
between green roof and ground-level habitats (p = 0.001;
Fig. 4a). Homogeneity of multivariate dispersion could not
be assumed, indicating that the green roof sites are more
different from one another than the ground-level sites. The
PERMANOVA following the NMDS of the green roof insect
community (stress = 0.16) found no difference between SE
and BE green roof design types (p = 0.60; Fig. 4b) and
homogeneity of multivariate dispersion was assumed. Pair-
wise PERMANOVA also found no difference between any
of the green roof sites (p > 0.05). The PERMANOVA fol-
lowing the NMDS of the ground-level habitat and SE green
roof insect communities (stress = 0.18) found statistical dif-
ferences between the communities at the ground-level habi-
tat and on SE green roofs (p = 0.01; Fig. 4c). Homogeneity
of multivariate dispersion could not be assumed, indicating
that SE green roof sites are more different from one another

than the ground-level sites. The PERMANOVA following
the NMDS of the ground-level habitat and BE green roof
insect communities (stress = 0.18) found statistical differ-
ences between the community at the ground-level habitat
and on BE green roofs (p = 0.001; Fig. 4d) and homogeneity
of multivariate dispersion was assumed.

Beneficial insect analyses

In ground-level habitat we captured 682 pollinator speci-
mens and 1222 natural enemy specimens. In the green
roof habitat we captured 339 pollinator specimens and 930
natural enemy specimens. Of the green roof design types,
SE roofs had a greater abundance of both pollinators and
natural enemies (236 and 556), than BE roofs (103 and 341)
(Table 2).

We found statistically greater mean pollinator richness
(0.74 + 0.05, p = 0.0001) and Shannon diversity (0.11 +
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Fig. 3 Box plots comparing taxa richness and Shannon diversity of
insect communities in each site grouped by habitat: ground-level and
green roof (A) and green roof design type: Stormwater-energy (SE)
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and Biodiversity-ecological (BE) (B). Letters shared indicate no sta-
tistical difference in estimated marginal means by Tukey method, P
> 0.05



Urban Ecosystems (2024) 27:977-991

985

A e Ground-level
4 Greenroof

1.0

05

2 2
K]
"}
=
|
<
2
'Q —
i3 T T T T T
-15 -10 -05 00 0s
NMDS1
e C e Ground-level
B SE
<
w
(=]
$ 31

T T T T T T
-15 -1.0 -05 0.0 05

NMDS1

Fig. 4 Non-metric multidimensional scaling figures representing
insect communities by habitat: ground-level and green roof (A: stress
= 0.20, p = 0.001); green roof design type: Stormwater-energy (SE)

0.02, p = 0.001) at ground-level than green roof (0.44 +
0.05; 0.05 + 0.01) habitats (Fig. 5). Bee bowls captured
statistically greater mean pollinator richness and diversity
than the other trap types (p < 0.0001). Comparing pollina-
tors between SE and BE green roofs, we found no difference
in mean pollinator richness (0.49 + 0.07; 0.41 + 0.08, p >
0.05) and Shannon diversity (0.06 + 0.02; 0.04 + 0.02, p
> 0.05) (Fig. 5). The trap comparisons produced the same
results: bee bowls captured statistically greater mean pol-
linator richness and diversity than the other type types (p <
0.0001).

We found statistically greater mean natural enemy rich-
ness (1.36 = 0.10, p = 0.01) and Shannon diversity (0.28

B + BE
SE

NMDS2

-15 -10 -05 00 05
NMDS1
D e Ground-level
+ BE

1.0

NMDS2

0.0

-1.0

T T T T
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and Biodiversity-ecological (BE) (B: stress = 0.16, p = 0.60); ground-
level habitat and SE roof (C: stress = 0.18, p = 0.01) and BE roof (D:
stress = 0.18, p = 0.001)

+ 0.03, p = 0.01) at ground-level than green roof (1.02 +
0.09; 0.16 + 0.03) habitats (Fig. 5). Bee bowls captured the
greatest mean natural enemy richness and diversity, but they
were only statistically greater than yellow ramp traps (p =
0.01). Sticky cards also captured statistically greater mean
natural enemy richness than yellow ramp traps (p = 0.01).
Comparing natural enemies between SE and BE green roofs
we found no difference in mean natural enemy richness
(1.14 + 0.14; 0.90 + 0.14, p > 0.05) or Shannon diversity
(0.18 + 0.03; 0.12 + 0.04, p > 0.05) (Fig. 5). There was no
difference in catch between any of the trap types for natural
enemy richness or diversity (p > 0.05).
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Table 2 Beneficial insect abundances, total (T) and standardized (S), by ground-level habitat and green roof design type. Total is the raw abun-
dance collected during the study. Standardized abundances represent the average number of insects collected per trap during the study. Standard-
ized abundances were calculated by dividing total abundances by the total number of traps used in that category during the length of the study

Green roof Ground-level

SE BE

T S T S T S
Natural enemies 556 4.41 341 3.38 1222 6.17
Anthocoridae Minute pirate bugs 12 0.10 1 0.01 3 0.02
Cantharidae Solider beetles 18 0.14 0 0.00 22 0.11
Carabidae Ground beetles 1 0.01 0 0.00 3 0.02
Chalcidoidea Chalcid wasps 284 2.25 235 2.33 674 3.40
Coccinellidae Lady beetles 14 0.11 2 0.02 16 0.08
Ichneumonoidea Braconid & Ichneumo- 38 0.30 35 0.35 138 0.70

nid wasps
Neuroptera Lacewings, mantidflies, 1 0.01 1 0.01 3 0.02
antlions

Reduviidae Assassian bugs 0 0 0 0.00 1 0.01
Syrphidae Hoverflies 188 1.49 62 0.61 359 1.81
Wingless parasitoid 0 0 5 0.05 3 0.02
Pollinators 236 1.87 103 1.02 682 3.44
Apoidea: Anthophila Bees 41 0.33 37 0.37 291 1.47
Lepidoptera Butterflies and moths 7 0.06 4 0.04 32 0.16
Syrphidae Hoverflies 188 1.49 62 0.61 359 1.81
Discussion parasitoid wasps (Diethelm and Masta 2022), and preda-

In examining the insect communities on extensive green
roofs and similarly structured ground-level habitats we
found that both habitats supported diverse insect com-
munities, including beneficial insects. As predicted, the
ground-level habitat possessed greater insect taxa richness
than green roof habitat. However, we observed no differ-
ence in Shannon diversity between ground-level and green
roof habitats. This finding is similar to other studies that
compared green roof and ground-level habitat insect com-
munities, finding insect richness (and abundance (Maclvor
and Lundholm 2011a) greater on the ground-level, but no
difference in diversity (Braaker et al. 2017; Maclvor and
Lundholm 2011a).

Likely driven by similar mechanisms as the insect com-
munity at large, we observed greater taxa richness and
Shannon diversity of both pollinators and natural enemies
at ground-level habitat. Although, there were relatively low
numbers collected, especially of pollinators. This finding is
similar to studies by Tonietto et al. (2011) in Chicago, IL,
USA and Colla et al. (2009) in Toronto, Ontario, Canada
that found greater bee richness and diversity at ground-level
sites than on green roofs. Green roofs provide habitat for
bees (Colla et al. 2009; Passaseo et al. 2020, 2021; Toni-
etto et al. 2011) and hoverflies (Passaseo et al. 2020, 2021),
but perhaps to a lesser extent for hoverflies (Jacobs et al.
2023). Although we found almost 70% more hoverflies than
bees at our green roof sites. Similar to our study, green roofs
have also been shown to support biocontrol agents such as

@ Springer

tors and parasitoids in general (Fabian et al. 2021; Sanchez
Dominguez et al. 2020).

Generally, the design of the green roof did not influence
the insect community or its relationship to the ground-level
habitat. The biodiversity-ecological (BE) oriented green
roofs were designed as analogs to prairie or forest under-
story, and thus have varied plant taxa between them. In
general, the stormwater-energy (SE) green roofs had very
similar plant communities as they were both planted with
mostly non-native Sedum species. It would be expected that
if plants alone defined the insect community using a space,
then BE green roofs would be more similar to ground-level
communities. Yet, despite the difference in intent and plant
communities, the green roof design types had similar insect
communities and no difference in insect taxa richness or
Shannon diversity between any of the green roof sites. This
finding is similar to Jacobs et al. (2023), which found no
difference in insect communities between green roofs with
Sedum and roofs with Sedum mixed with other vegetation.
Maclvor (2016) found that increasing height and decreasing
surrounding greenspace contributed to lower bee and wasp
species richness and abundance, which could help explain
our findings.

SE and BE green roofs had similar biodiversity metrics
for beneficial insects, and there was a greater abundance
of pollinators and natural enemies on SE green roofs. This
observation may be related to a prevalence of flowering
plants on the SE roofs, despite their non-native status. It has
been shown that bees can use Sedum flowers for foraging,
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but exotic bees had greater pollen loads than natives, thus
vegetation on green roofs could shape the urban bee com-
munity that inhabits or forages on them (Maclvor et al.
2015). Potentially contributing to natural enemy abundance
in our study, SE roofs supported a much higher abundance
of aphids, a common agricultural pest insect (Emden and
Harrington, 2017; Miller and Foottit 2009), which is typi-
cally preyed upon by the natural enemy Coccinellidae (lady
beetles). Nearly 5,000 aphids were captured over the course
of the study on SE roofs while on BE green roof captures
of this taxa were an order of magnitude lower. Aphids
have been observed on other extensive, Sedum green roofs
(Maclvor and Ksiazek 2015), sometimes in abundance
(Coffman and Waite 2011), and notably lady beetles are
often spotted as well (Appleby-Jones 2014; Kadas 20006).

The two sites with the greatest surrounding greenspace
were ground-level habitats: Bedford barren and slate shale
hill. The former is within the Cuyahoga Valley National
Park and the latter a metro park reservation. However, the
third ground-level habitat, dusty goldenrod meadow had the
lowest surrounding greenspace of all sites. The dusty gold-
enrod meadow is surrounded by a dense residential area.
These yards may provide some resources for insect com-
munities, but it is not the same as the greenspace surround-
ing the other two ground-level sites, which are larger parks.
This site also had the lowest insect richness and diversity
among the ground-level sites. Though the Happy Dog bike
box green roof does not have much greenspace directly sur-
rounding, as it is in downtown Cleveland, the 1.5 radius
does reach to a metro park reserve near the lakeshore, add-
ing to the greenspace percentage and making it about equal
with the Nature Center at Shaker Lakes green roof which
is within a park. The Edgewater beach green roof sits in
the metro park reservation near the bike box green roof.
These two green roofs have overlapping radii, leading us
to believe that insects could travel between these two green
roofs. Lastly, the Watershed Stewardship Center has the
greatest surrounding greenspace of the green roof habitats.
It is surrounded by floral resources and sits within the same
metro park reservation as the slate shale hill, hence the over-
lap of radii, which again means that insects should be able to
travel between these habitats.

Conclusions

Using vegetated infrastructure, such as green roofs, could
expand insect habitat in fragmented urban landscapes that
have lost some habitat due to urbanization (Brenneisen
2003, 2006; Colla et al. 2009; Lundholm 2006; Maclvor and
Lundholm 2011a; Tonietto et al. 2011). Though commu-
nity metrics differed between green roof and ground-level
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habitats in our study, we do show that both habitat types
support insects, including the beneficial insects, pollinators
and natural enemies. Having the goal of increasing biodi-
versity in mind when designing green roofs is beneficial,
but in some cases, simply having the resources provided by
a novel habitat patch may be sufficient to support insects.
Even when roofs are designed for primarily other benefits,
such as stormwater management and energy reduction, they
may still provide habitat for insects (Coffman and Davis
2005; Maclvor et al. 2015). However, examining insect ser-
vices is critical to supporting conservation decision-making
in these human-managed ecosystems and providing sup-
portive and diverse habitat for beneficial insects that will
bring pollination and pest control to the urban environment
is important to think about when designing green roofs
(Tonietto et al. 2011).

Integrated ecology and architecture research offers a
unique opportunity to advance both basic understanding of
community assembly in novel environments and to drive
the human benefits associated with the biodiversity of living
architecture. Our study used a relatively small number of
green roofs, of two design types. Increasing the sample size
or including similar types across cities occurring in different
locations could provide researchers with more information
on the ability of green roofs to provide habitat for insects,
as well as design elements to incorporate. More work on
beneficial insects and green roof design could be valuable
to humans by potentially increasing the services of polli-
nation and pest control, on top of the benefits that urban
areas already receive from this infrastructure. Identifying
the beneficial insects captured to species could tell us spe-
cifically who is being supported by these habitats and green
roof design types. Also examining which plants are being
visited by the beneficial insects could be informative for
design. For example, taking pollen samples from pollinators
at the habitats could help discern which floral resources they
are utilizing. Additionally, though all sites are in an urban
matrix of human-disturbed habitat, the landscape around
each site differed and with that, the amount of greenspace
around each site and the connectivity of that habitat to oth-
ers. Further examining the impervious surfaces, vegetation,
and other factors about the area adjacent to our study sites
could reveal more patterns.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s11252-
023-01499-6.
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