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Abstract 8 

Predicting how insects will respond to stressors through time is difficult because of the diversity 9 

of insects, environments, and approaches used to monitor and model. Forecasting models take 10 

correlative/statistical, mechanistic models, and integrated forms; in some cases, temporal 11 

processes can be inferred from spatial models. Because of heterogeneity associated with broad 12 

community measurements, models are often unable to identify mechanistic explanations. Many 13 

present efforts to forecast insect dynamics are restricted to single-species models, which can 14 

offer precise predictions but limited generalizability. Trait-based approaches may offer a good 15 

compromise which limits the masking of the ranges of responses while still offering insight. 16 

Regardless of modeling approach, the data used to parameterize a forecasting model should be 17 

carefully evaluated for temporal autocorrelation, minimum data needs, and sampling biases in 18 

the data. Forecasting models can be tested using near-term predictions and revised to improve 19 

future forecasts. 20 

Highlights 21 

● Many models used to understand insect dynamics are never extended to prediction 22 

● Density-dependence and sampling biases are often present in long term data  23 

● Biodiversity metrics have tradeoffs in predictability, generalizability and scale 24 

● Simple statistics and more advanced integrated modeling can address biases directly 25 

● Forecasting models can be tested using near-term predictions and revised iteratively 26 

  27 
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Introduction 28 

Insect ecologists have generally approached forecasting insect dynamics in a piecemeal way, 29 

with individual solutions developed as needed to predict vital metrics for a few key species.  Yet 30 

in an era of profound biodiversity loss, understanding and predicting long-term trends is key to 31 

mitigating functional losses [1].The critical importance of insects to most ecosystems has led to 32 

dire projections, but also considerable scientific debate on the nature of these predictions has 33 

occurred [2]. At present, most attempts at modeling the insect decline phenomenon fall more 34 

accurately into explanatory modeling with implied extrapolation rather than predictive modeling. 35 

Indeed, most true forecasts of insect dynamics have focused on individual species of economic 36 

or cultural significance, that is, primarily pests and a few well-studied species of conservation 37 

concern [3,4]. Given controversies, modeling disagreements, data needs, and natural variability 38 

in insect population sizes, a fundamental question emerges: how forecastable are insect 39 

populations? (Figure 1) 40 

Forecasting biodiversity dynamics 41 

In forecasting responses of biodiversity to environmental change, a wide variety of modeling 42 

techniques are commonly used, including combining correlative approaches (i.e. species 43 

distribution models), mechanistic approaches (i.e. demography and temperature dependence), 44 

and theory [5]. Predicting the behavior of ecological systems is a means to test scientific 45 

understanding, yet much of the field of ecology has often focused on explanatory models [6]. 46 

Although some authors define ecological forecasting as a strictly quantitative endeavor [e.g. 7], 47 

more colloquially in biodiversity science, predictions yielded by modeling and synthesis may be 48 

qualitative, directional, or quantitative. Quantitative outputs are desirable from a hypothesis-49 

testing standpoint because these predictions can be explicitly tested [6]. 50 

Because biodiversity processes are driven, in part, by environmental variables, the accuracy of 51 

the projection will depend on the accuracy and uncertainty of the projection of these covariates 52 

[8,9]. The uncertainty surrounding forecasts of biodiversity parameters inherently depends on 53 

the uncertainties associated with the information used in the models, including future 54 

uncertainties in driving variables, which variables are included, and the underlying model 55 

structure, and the interaction of these factors all ultimately drive how far a model may be used to 56 

predict into the future [10]. While understating uncertainty is not desirable, models which 57 

incorporate all possible uncertainties may produce unrealistic and unreliable predictions [11].  58 

Explanatory predictions tend to be based in mechanistic hypotheses: they can be used to 59 

describe the behavior of individual systems under testable conditions which can then be 60 

corroborated by data. Anticipatory predictions are forecasts (also referred to as projections and 61 

scenarios): they represent the extension of a hypothesis into the future, assuming a theory 62 

holds [5]. Forecasts may be conditional rather than explicitly temporal, that is, their results 63 

depend on certain driver conditions occurring, rather than explicitly predicting a given metric at a 64 

point in time. For example, models can be used to forecast the likelihood that animals 65 

experience mortality during extreme heat events [12], or the locations where invasive insects 66 

are most likely to be detected [3]. However, these predictions have an inherent temporal aspect: 67 
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the implication being that should the modeled conditions be realized at some time in the future, 68 

the projected outcomes would (or could) occur at that point in time. In fact, many forecasts are 69 

not necessarily intended to predict the next state of the system under study, but may be used in 70 

an anticipatory way, to extrapolate explanatory models to possible scenarios, given uncertainty 71 

in driving parameters [5]. 72 

Quantifying the change in biodiversity metrics (whether for a single species population or a 73 

broader taxon) is difficult because the data needs to adequately characterize temporal 74 

processes [9]. Simply detecting temporal trajectories of population processes (much less 75 

extrapolating from them) may require more than a decade of annual data when no underlying 76 

structure of the data is assumed, especially in environments with high inherent thermal 77 

variability [13]. Given the challenges of simply measuring trends in many biodiversity systems 78 

and the peculiarities of insect biology, explicit efforts to forecast the dynamics of a system are 79 

relatively rare in insect ecology. 80 

Explaining insect dynamics is challenging 81 

Prediction of insect population responses, even to a single stressor, is not necessarily 82 

straightforward [14]. It is likely that, as a general rule, anthropogenic change will negatively 83 

affect insect abundance and biodiversity [15]. However, insect herbivore populations may be 84 

negatively, neutrally or positively affected by a stressor, depending on the nature of the 85 

disturbance [16]. Responses to stressors may have immediate population effects or more 86 

idiosyncratic physiological effects [17], and may be mediated by behavioral adaptations [18,19]. 87 

Insect biology can present a particular challenge because responses can be non-uniform, even 88 

within a single species, at different life stages [20,21]. Specific taxa may be sensitive to lesser-89 

documented stressors [22]. Furthermore, given their rapid generation time, eco-evolutionary 90 

dynamics will inevitably affect range and population sizes of insects over time [23]. Ultimately, 91 

forecasting insect dynamics relies on an understanding of these complex biologies: they 92 

increase the complexity of the task of predicting future dynamics in insect taxa, and undermine 93 

researchers in their quest for generality. Due to the complexity of these interactions, some 94 

authors have argued that knowledge gaps remain too great and that understanding and 95 

predicting insect decline cannot be achieved without directed experimentation [24], while others 96 

have argued that extremely large scale observational approaches are key to understanding and 97 

ultimately testing forecasts of insect dynamics [25]. 98 

Impediments to forecasting insect dynamics 99 

A major impediment to forecasting biodiversity dynamics in insects is the sheer difficulty in 100 

collecting insect species data:  taxonomic expertise needed to process biodiversity samples to 101 

species is rare [26]. Even in situations where standardized sampling approaches are employed 102 

[e.g. 27], significant lags may hinder the timely production of data, and thus, the viability of 103 

forecasts [28]. Another major hindrance to forecasting is that insect biodiversity data may not be 104 

collected at the scale of the process being modeled, leading to biased inferences or inflation of 105 

observed precision [29]. However, recent advances in automated identification show promise in 106 
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increasing capacity and speed for insect monitoring data, which may soon increase our ability to 107 

meaningful quantify insect variability across space and time [30]. 108 

Trends observed in insect dynamics also depend highly on how they are monitored. Estimates 109 

of extent and area of occupancy may differ dramatically when predicted using different data 110 

sources [31]. Data may be taken from locations biased by their attributes to be more inviting to 111 

insects, like gardens or preserves [32]. Similar biases are likely present in the data that the 112 

community considers the highest quality: much of the long-term, systematic data taken for 113 

insects comes from areas under protection [e.g. 33], with less monitoring undertaken from areas 114 

under increasing disturbance [34]. Biases may also be present in unstructured and untargeted 115 

records (like those produced by community scientists), with less experienced users contributing 116 

more observations of larger species with more striking visual traits [35] (Box 1).The increasing 117 

reliance on unstructured community science to estimate biodiversity trends may increase the 118 

likelihood of misleading results [36,37] (Box 2). 119 

The selection of drivers used in models also plays a profound role in how predictions of insect 120 

populations manifest. For instance, using temperature extremes rather than average 121 

temperatures in extinction risk models to account for thermal stress results in substantial 122 

changes in predictions [38]. An additional element of complexity occurs due to the non-123 

uniformity of drivers of insect biodiversity trends through both time and space (Box 3). Finally, it 124 

is well-established that species are affected unequally by change: many species are negatively 125 

impacted by human activities, but a few thrive under the conditions of continuous disturbance of 126 

human altered environments [39]. This ‘winners and losers’ dynamic presents a barrier to 127 

generalizability when it comes to selecting metrics that both authentically capture the broad 128 

scale of the insect decline problem without masking the details through unwarranted statistical 129 

lumping of very different groups of organisms. 130 

Predictability of different metrics 131 

The question of whether forecasting insect dynamics is possible depends greatly on the 132 

specifics of both the question being asked, but also on the information available to support this 133 

question, and, indeed, the inherent predictability of the biodiversity metric or property to be 134 

modeled [40].  In most cases, the reliability of forecasting predictions decreases with time, while 135 

it increases with the amount of historical data informing the predictions [41,42]. However, the 136 

inherent predictability, and the scale at which prediction can occur, will ultimately dictate the 137 

limitations on the accuracy of a forecast. 138 

Aggregate and derivative measures may be more accurately predicted compared to more 139 

simple metrics, however, this comes at a cost to characterization of drivers and precision of 140 

estimates [28]. Whereas forecasting models for single species abundance or distribution are 141 

common and offer detailed mechanistic explanations [e.g. 3], whole-community metrics like 142 

diversity, evenness and richness may provide a more holistic picture of insect well-being.  But 143 

these metrics may also mask unequal responses across a community, particularly in groups of 144 

insects with traits that cause widely divergent responses to environmental conditions [43]. The 145 

temporal grain of the underlying data and the desired predictions inevitably interact with the 146 
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selection of the metric, with longer time spans (i.e. inter-annual variation vs intra-annual 147 

variation) representing both different processes and the integration of more short-term 148 

underlying processes, but metrics that can be used for nearer-term forecasts are more 149 

inherently testable [44]. Because most studies have a particular focus, most attempts to forecast 150 

insect well-being as a whole suffers from phylogenetic, functional, spatial and temporal biases; it 151 

has been argued that to optimize these broad scale predictions, standardized monitoring 152 

schemes focusing on net abundance and biomass were needed to capture authentic estimates 153 

of these processes. [45].  154 

These more aggregated measures for biodiversity are often used to imply more general future 155 

predictions, or provide qualitative predictions associated with a management scenario [40]: for 156 

example, a recent study found that habitats with more rare plant species supported more rare 157 

insects, regardless of habitat size [46],  implying that restoration efforts that focus on improving 158 

plant richness rather than protecting more habitat would result in better outcomes for insect 159 

richness. However, other authors caution against using richness as a measure for biodiversity 160 

change because this metric is highly sensitive to plot size, making it unreliable to measure, 161 

much less predict biodiversity change [47].  162 

Functional and trait-based approaches to measuring biodiversity processes may yield some 163 

more generalizable, if often qualitative, predictions that offer a workable compromise from the 164 

highly stochastic species-focused metrics and limited mechanistic explanation of all-insect-level 165 

metrics [48]. For instance, functional trait approaches to measuring biodiversity may provide 166 

generalities beyond taxonomic classification: climatic niche breadth was associated with degree 167 

of range shifts under climate conditions, and this association held in both vertebrates (birds) and 168 

invertebrates (moths and butterflies) across a latitudinal gradient in Europe [49]. Thus, these 169 

approaches offer a viable compromise that may offer broad generalizability in prediction without 170 

the cost to mechanistic explanation, and some traits may be more conducive to building viable 171 

predictions than others [e.g. 50] 172 

What tools can we use and where are they appropriate? 173 

Several classes of tools hold promise for forecasting insect populations, depending on the 174 

desired scales and precision of predictions desired. A subset of the most commonly used 175 

current approaches are presented here. 176 

Correlative/statistical approaches 177 

Often, projections in ecological systems are based on linear trends applied to time series data 178 

[9,13,51].  This is often statistically inappropriate based on the underlying autocorrelation 179 

structure of biodiversity metrics (i.e. the current state of the metric in question is dependent on 180 

both the environmental drivers and the previous state of that same metric), however, these 181 

linear trends are often essential for communicating change over time and provide more intuitive 182 

outputs to the model, such as expected change in population size. Thus, we can evaluate the 183 

length of time needed to establish a linear trend in the system under study, given the actual 184 

structure of historical data [52,53], but more importantly, it is essential that entomologists use 185 
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models which statistically manage for this underlying structure in their estimates of rates-of-186 

change. Weiss et al. 2023 provide an accessible approach for correcting annual data using 187 

random year intercepts in generalized linear models (GLMs). Their approach was able to 188 

produce more conservative, less biased estimates of rates of change for ground beetle 189 

abundance over a 24 year study, and also demonstrated how sensitivity analysis could be 190 

applied to identify influential observations [54]. 191 

In data-rich systems where there is limited functional understanding (e.g. data produced by 192 

large distributed monitoring networks) other tools can be employed. Generalized additive 193 

modeling (GAM) approaches can be use where the shape of the relationship between variables 194 

is unknown: this suite of tools allows the estimation of smoothing functions between variables of 195 

interest, allowing predictions to be ‘data-led’ and not necessarily relying on a fore-knowledge of 196 

the mechanistic explanation of their relationships [55]. For example, GAMs were used to explain 197 

patterns in carabid beetle richness relative to climatic variables, forecast the distribution of 198 

biodiversity hotspots, and used this information to develop conservation recommendations for a 199 

protected temperate steppe area in northwestern China [56].Machine learning models such as 200 

artificial neural networks may be used to take this data-driven approach further in cases where 201 

system knowledge is limited, making it possible to forecast systems with very limited knowledge 202 

of their ecology. For example, an early warning system for rice gall midge was developed using 203 

an autoregressive neural network approach on time series data documenting abundance of the 204 

midge, and the model outperformed more typical statistical approaches because the method 205 

does not assume linear relationships in the data [57].  206 

Mechanistic and physiological population models 207 

Mechanistic and physiological population models come in a wide variety of scales. In applied 208 

entomology, short-term forecasts of insects are commonly constructed, usually from 209 

mechanistic models describing the phenology, population growth and immediate environmental 210 

responses of a particular species or complex [58]. These models often include spatially-explicit 211 

elements to indicate risk, and may include management information (i.e. economic injury levels, 212 

action thresholds) often providing these forecasts at a weekly interval, aligned with how farmers 213 

and foresters make pest management decisions [59].  Near-term forecasting models may be 214 

extended (i.e. to the length of a growing season, for example) for a specific population of well-215 

studied insects using models that account for many of the major parameters, however these 216 

models may have very limited transferability if the models incorporate site-specific information 217 

and highly specific dynamics [e.g. 60]. Yet, mechanistic models can be used to gain more 218 

general insights when applied to broader groups using trait- based approaches. Mechanistic 219 

modeling essentially leverages very specific understanding of insect ecophysiological responses 220 

to predict higher level phenomena in insect populations, and can be used under longer term 221 

scenarios where statistical extrapolations are likely to break down [61] or explicitly link 222 

physiological traits to ecological theory [62]. For instance, thermal sensitivity traits were used to 223 

forecast insect community responses under future climate scenarios: these analyses suggested 224 

greater extinction risk among insects in tropical environments without rapid adaptation or 225 

migration [63].Mechanistic approaches can be used to predict future selection patterns in plastic 226 
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or variable traits within their ranges: e.g. selection for lighter wing colors to avoid overheating in 227 

warming climates [64].  228 

Integrating heterogenous data into forecasting 229 

Integrated population modeling is an approach commonly used in wildlife conservation, where 230 

taxa under management, such as game species, are monitored using varied survey protocols, 231 

at different life stages, across different parts of their range, creating a highly heterogenous but 232 

very rich set of observational data [65]. Animals monitored across their ranges or lifecycles often 233 

yield discrepant patterns which can be difficult to resolve in isolation, often resulting from factors 234 

such as asynchronies between metapopulations and density-dependent demographic effects 235 

[66]. This approach allows researchers to identify which data and monitoring strategies provide 236 

the most informative estimates [67], and is generally applied to well-monitored species with 237 

complex life histories, but may be used to estimate and forecast a wide variety of metrics 238 

regarding that population at various points in its lifecycle [66]. This integrated modeling 239 

approach has recently been extended to integrated community occupancy modeling, which 240 

allows the integration of single species distribution models and hierarchical community 241 

occupancy models to forecast biodiversity dynamics of bird communities [68]. 242 

Inferring temporal processes from spatial approaches 243 

Spatial processes may serve as a proxy for temporal processes in developing forecasts for 244 

insect decline, or as part of direct experiments to identify drivers that might be managed through 245 

time [69]. Distribution models can be used to estimate range size and occupancy to prioritize 246 

protections and listings of species with contracting or vulnerable populations within their ranges, 247 

based on projected extinction risks [70]. Spatial approaches may provide a means for 248 

forecasting other vital parameters in cases where abundance data are unavailable. For instance 249 

an extinction risk index was developed based on range size and was used to examine how 250 

species traits like thermal limits and body size affect extirpation risk in 600 Odonata species, 251 

using occurrence data [43]. 252 

Future ranges forecast through distribution modeling can be refined by combining this approach 253 

with dynamic evolutionary models that account for the genetic potential of the species to 254 

respond to changes in their environment [71], and may provide anticipatory predictions that go 255 

beyond interactions with the abiotic environment. Range dynamics models can be further 256 

refined beyond the niche-implicit aspects typical to species distribution models  by the 257 

superimposition of process-explicit, mechanistic models (for organismal physiology, biotic 258 

interactions, and demography), helping to mitigate extrapolation issues created by distribution 259 

models based on correlative characteristics alone [72]. 260 

Iterative forecasting methods 261 

With all methods described above, iterative, near-term forecasting approaches can be applied. 262 

In this case, the forecasts are made repeatedly and updated as new data becomes available, 263 

effectively re-running the model for each new system state as it is realized [40]. This approach 264 
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allows explicit testing not just the performance of predictive models, but would allow multiple 265 

competing models to be evaluated in real time, and provide insights into situations where 266 

relationships between drivers may not hold. This approach is currently under use for the NEON 267 

Ecological Forecasting Challenge, a community-driven scientific networking activity designed to 268 

bring about scientific interest in advancing approaches to ecological forecasting [7].The project 269 

challenges users to develop forecasting models to predict the next state of data collected by the 270 

National Ecological Observatory Network [73]. Among the challenges, users have been tasked 271 

with developing models for the richness and abundance of Carabid beetles collected in pitfall 272 

traps at all the sites [7]. At time of writing, the challenge was still ongoing. 273 

Conclusions 274 

Forecasting insect populations, as a whole, with simultaneous great generalization and 275 

precision is unlikely due to the diversity of insects, ecologies, life histories, behaviors and 276 

environments in which they occur, but also in the diversity of metrics, data sources, inherent 277 

biases in monitoring strategies, and tools available. However, several approaches, including 278 

integrated population monitoring for single species predictions, and near-term iterative 279 

approaches to testing forecasts hold promise for developing novel insights into drivers, 280 

particularly when underlying data are classified using relevant species traits. Yet, broader 281 

generalities may not be needed when speaking of biodiversity trends as a whole: it is well 282 

established that rates of anthropogenic change in the environment generally have negative 283 

consequences for all but a handful of species that have traits that favor disturbed environments 284 

and tend to be associated with humans. Because of the non-uniqueness of models, it is likely 285 

that the quest for the ‘best’ (i.e. most precise) model to inform management is both ill-informed 286 

and potentially dangerous[74]. Although a nuanced approach to predicting insect responses to 287 

stressors is desirable from a scientific and management standpoint, core conservation and 288 

policy efforts do not require this level of detail in order to enact positive changes for insects 289 

more generally [75,76].  290 
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Figure 1. Core elements required to forecast insect dynamics. Researchers must consider 596 

the research question and context to select appropriate data, metrics models and validation 597 

approaches to be used for forecasting insect dynamics. Figure constructed using Canva. 598 

Box 1: Can natural history collection data be used to estimate and predict insect 599 

population trends? 600 

Using natural history collection data (and similarly, data produced by community science 601 

surveys like iNaturalist) in explanatory and forecasting models is a subject of ongoing concern in 602 

the quantitative ecology community because of the unstructured nature of these data [36,77]. 603 

Yet, one of the principal challenges in understanding and predicting insect decline is the lack of 604 

historical baseline data [2]. If used with caution, these data represent an unprecedented 605 

resource for understanding how insect communities have changed over time [78].  A technique 606 

that could capitalize on this data resource is to use a community of specimens instead of single 607 

species from within the collection data, where multiple species with a similar probability of being 608 

captured are examined together, using total captures across the community to control for 609 

sampling effort over time. This approach allows relative, if not absolute abundance and thus 610 

long-term responses to historical drivers to be evaluated [79]. Similarly, researchers might use 611 

detection data of similar species within a given species’ expected range, at a given date and 612 

time to infer non-detection for the construction of occupancy models [80]. Furthermore, these 613 

records can be brought into integrated modeling approaches which have the ability to couple 614 

these long term, but unstructured data with contemporary experimentally-produced data in a 615 

single analytical framework [77].  616 

 617 

Box 2: Tool Highlight: Evaluating bias in time series 618 

Because of the high degree of temporal and spatial autocorrelation present in occurrence and 619 

abundance surveys, Boyd et al. [81] developed ROBITT: Risk Of Bias In Studies of Temporal 620 

Trends. ROBITT is a tool which provides a structured approach for a researcher to essentially 621 

‘interview’ their data in the context of bias assessment, focusing on explicitly defining the 622 

questions, scales, data reliability and provenance, as well as any apparent geographical, 623 

environmental and taxonomic biases. This tool is especially useful for assessing limitations of 624 

data from unstructured surveys and how these biases might manifest in any projection models 625 

[81]. 626 

 627 

BOX 3: Case study: Forecasting the dynamics of complex insects 628 

In addition to different species being sensitive to different disturbances through their varied 629 

biologies, different stressors may act on populations at different times, and one stressor may 630 

predispose a species to sensitivity to another. In the iconic and well-studied Monarch butterfly, a 631 

number of conditions have been linked to the dynamics of this species, including pesticide use 632 

in breeding grounds, unfavorable conditions at migratory stopover points, or loss of integrity of 633 
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overwintering sites [82]. While time-series methods may be used to identify periods of change in 634 

internal rules of population regulation, providing insight into when the most changes have 635 

occurred historically [83], a hierarchical modeling approach used to integrate population data 636 

across the monarch lifecycle and isolate the effects of these potential drivers, disentangling 637 

those with historical effects from those currently driving the dynamics of this species [84]. This 638 

approach revealed that breeding season temperatures played a larger role in monarch 639 

dynamics than previously thought in recent years: when it was used in concert with climate 640 

projections to forecast future populations of the species, it highlighted particular vulnerability to 641 

monarch breeding in parts of the US Midwest experiencing higher rates of temperature increase 642 

[4]. 643 
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