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Abstract

Predicting how insects will respond to stressors through time is difficult because of the diversity
of insects, environments, and approaches used to monitor and model. Forecasting models take
correlative/statistical, mechanistic models, and integrated forms; in some cases, temporal
processes can be inferred from spatial models. Because of heterogeneity associated with broad
community measurements, models are often unable to identify mechanistic explanations. Many
present efforts to forecast insect dynamics are restricted to single-species models, which can
offer precise predictions but limited generalizability. Trait-based approaches may offer a good
compromise which limits the masking of the ranges of responses while still offering insight.
Regardless of modeling approach, the data used to parameterize a forecasting model should be
carefully evaluated for temporal autocorrelation, minimum data needs, and sampling biases in
the data. Forecasting models can be tested using near-term predictions and revised to improve
future forecasts.

Highlights

Many models used to understand insect dynamics are never extended to prediction
Density-dependence and sampling biases are often present in long term data
Biodiversity metrics have tradeoffs in predictability, generalizability and scale

Simple statistics and more advanced integrated modeling can address biases directly
Forecasting models can be tested using near-term predictions and revised iteratively
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Introduction

Insect ecologists have generally approached forecasting insect dynamics in a piecemeal way,
with individual solutions developed as needed to predict vital metrics for a few key species. Yet
in an era of profound biodiversity loss, understanding and predicting long-term trends is key to
mitigating functional losses [1].The critical importance of insects to most ecosystems has led to
dire projections, but also considerable scientific debate on the nature of these predictions has
occurred [2]. At present, most attempts at modeling the insect decline phenomenon fall more
accurately into explanatory modeling with implied extrapolation rather than predictive modeling.
Indeed, most true forecasts of insect dynamics have focused on individual species of economic
or cultural significance, that is, primarily pests and a few well-studied species of conservation
concern [3,4]. Given controversies, modeling disagreements, data needs, and natural variability
in insect population sizes, a fundamental question emerges: how forecastable are insect
populations? (Figure 1)

Forecasting biodiversity dynamics

In forecasting responses of biodiversity to environmental change, a wide variety of modeling
techniques are commonly used, including combining correlative approaches (i.e. species
distribution models), mechanistic approaches (i.e. demography and temperature dependence),
and theory [5]. Predicting the behavior of ecological systems is a means to test scientific
understanding, yet much of the field of ecology has often focused on explanatory models [6].
Although some authors define ecological forecasting as a strictly quantitative endeavor [e.g. 7],
more colloquially in biodiversity science, predictions yielded by modeling and synthesis may be
qualitative, directional, or quantitative. Quantitative outputs are desirable from a hypothesis-
testing standpoint because these predictions can be explicitly tested [6].

Because biodiversity processes are driven, in part, by environmental variables, the accuracy of
the projection will depend on the accuracy and uncertainty of the projection of these covariates
[8,9]. The uncertainty surrounding forecasts of biodiversity parameters inherently depends on
the uncertainties associated with the information used in the models, including future
uncertainties in driving variables, which variables are included, and the underlying model
structure, and the interaction of these factors all ultimately drive how far a model may be used to
predict into the future [10]. While understating uncertainty is not desirable, models which
incorporate all possible uncertainties may produce unrealistic and unreliable predictions [11].

Explanatory predictions tend to be based in mechanistic hypotheses: they can be used to
describe the behavior of individual systems under testable conditions which can then be
corroborated by data. Anticipatory predictions are forecasts (also referred to as projections and
scenarios): they represent the extension of a hypothesis into the future, assuming a theory
holds [5]. Forecasts may be conditional rather than explicitly temporal, that is, their results
depend on certain driver conditions occurring, rather than explicitly predicting a given metric at a
point in time. For example, models can be used to forecast the likelihood that animals
experience mortality during extreme heat events [12], or the locations where invasive insects
are most likely to be detected [3]. However, these predictions have an inherent temporal aspect:
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the implication being that should the modeled conditions be realized at some time in the future,
the projected outcomes would (or could) occur at that point in time. In fact, many forecasts are
not necessarily intended to predict the next state of the system under study, but may be used in
an anticipatory way, to extrapolate explanatory models to possible scenarios, given uncertainty
in driving parameters [5].

Quantifying the change in biodiversity metrics (whether for a single species population or a
broader taxon) is difficult because the data needs to adequately characterize temporal
processes [9]. Simply detecting temporal trajectories of population processes (much less
extrapolating from them) may require more than a decade of annual data when no underlying
structure of the data is assumed, especially in environments with high inherent thermal
variability [13]. Given the challenges of simply measuring trends in many biodiversity systems
and the peculiarities of insect biology, explicit efforts to forecast the dynamics of a system are
relatively rare in insect ecology.

Explaining insect dynamics is challenging

Prediction of insect population responses, even to a single stressor, is not necessarily
straightforward [14]. It is likely that, as a general rule, anthropogenic change will negatively
affect insect abundance and biodiversity [15]. However, insect herbivore populations may be
negatively, neutrally or positively affected by a stressor, depending on the nature of the
disturbance [16]. Responses to stressors may have immediate population effects or more
idiosyncratic physiological effects [17], and may be mediated by behavioral adaptations [18,19].
Insect biology can present a particular challenge because responses can be non-uniform, even
within a single species, at different life stages [20,21]. Specific taxa may be sensitive to lesser-
documented stressors [22]. Furthermore, given their rapid generation time, eco-evolutionary
dynamics will inevitably affect range and population sizes of insects over time [23]. Ultimately,
forecasting insect dynamics relies on an understanding of these complex biologies: they
increase the complexity of the task of predicting future dynamics in insect taxa, and undermine
researchers in their quest for generality. Due to the complexity of these interactions, some
authors have argued that knowledge gaps remain too great and that understanding and
predicting insect decline cannot be achieved without directed experimentation [24], while others
have argued that extremely large scale observational approaches are key to understanding and
ultimately testing forecasts of insect dynamics [25].

Impediments to forecasting insect dynamics

A major impediment to forecasting biodiversity dynamics in insects is the sheer difficulty in
collecting insect species data: taxonomic expertise needed to process biodiversity samples to
species is rare [26]. Even in situations where standardized sampling approaches are employed
[e.g. 27], significant lags may hinder the timely production of data, and thus, the viability of
forecasts [28]. Another major hindrance to forecasting is that insect biodiversity data may not be
collected at the scale of the process being modeled, leading to biased inferences or inflation of
observed precision [29]. However, recent advances in automated identification show promise in
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increasing capacity and speed for insect monitoring data, which may soon increase our ability to
meaningful quantify insect variability across space and time [30].

Trends observed in insect dynamics also depend highly on how they are monitored. Estimates
of extent and area of occupancy may differ dramatically when predicted using different data
sources [31]. Data may be taken from locations biased by their attributes to be more inviting to
insects, like gardens or preserves [32]. Similar biases are likely present in the data that the
community considers the highest quality: much of the long-term, systematic data taken for
insects comes from areas under protection [e.g. 33], with less monitoring undertaken from areas
under increasing disturbance [34]. Biases may also be present in unstructured and untargeted
records (like those produced by community scientists), with less experienced users contributing
more observations of larger species with more striking visual traits [35] (Box 1).The increasing
reliance on unstructured community science to estimate biodiversity trends may increase the
likelihood of misleading results [36,37] (Box 2).

The selection of drivers used in models also plays a profound role in how predictions of insect
populations manifest. For instance, using temperature extremes rather than average
temperatures in extinction risk models to account for thermal stress results in substantial
changes in predictions [38]. An additional element of complexity occurs due to the non-
uniformity of drivers of insect biodiversity trends through both time and space (Box 3). Finally, it
is well-established that species are affected unequally by change: many species are negatively
impacted by human activities, but a few thrive under the conditions of continuous disturbance of
human altered environments [39]. This ‘winners and losers’ dynamic presents a barrier to
generalizability when it comes to selecting metrics that both authentically capture the broad
scale of the insect decline problem without masking the details through unwarranted statistical
lumping of very different groups of organisms.

Predictability of different metrics

The question of whether forecasting insect dynamics is possible depends greatly on the
specifics of both the question being asked, but also on the information available to support this
question, and, indeed, the inherent predictability of the biodiversity metric or property to be
modeled [40]. In most cases, the reliability of forecasting predictions decreases with time, while
it increases with the amount of historical data informing the predictions [41,42]. However, the
inherent predictability, and the scale at which prediction can occur, will ultimately dictate the
limitations on the accuracy of a forecast.

Aggregate and derivative measures may be more accurately predicted compared to more
simple metrics, however, this comes at a cost to characterization of drivers and precision of
estimates [28]. Whereas forecasting models for single species abundance or distribution are
common and offer detailed mechanistic explanations [e.g. 3], whole-community metrics like
diversity, evenness and richness may provide a more holistic picture of insect well-being. But
these metrics may also mask unequal responses across a community, particularly in groups of
insects with traits that cause widely divergent responses to environmental conditions [43]. The
temporal grain of the underlying data and the desired predictions inevitably interact with the
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selection of the metric, with longer time spans (i.e. inter-annual variation vs intra-annual
variation) representing both different processes and the integration of more short-term
underlying processes, but metrics that can be used for nearer-term forecasts are more
inherently testable [44]. Because most studies have a particular focus, most attempts to forecast
insect well-being as a whole suffers from phylogenetic, functional, spatial and temporal biases; it
has been argued that to optimize these broad scale predictions, standardized monitoring
schemes focusing on net abundance and biomass were needed to capture authentic estimates
of these processes. [45].

These more aggregated measures for biodiversity are often used to imply more general future
predictions, or provide qualitative predictions associated with a management scenario [40]: for
example, a recent study found that habitats with more rare plant species supported more rare
insects, regardless of habitat size [46], implying that restoration efforts that focus on improving
plant richness rather than protecting more habitat would result in better outcomes for insect
richness. However, other authors caution against using richness as a measure for biodiversity
change because this metric is highly sensitive to plot size, making it unreliable to measure,
much less predict biodiversity change [47].

Functional and trait-based approaches to measuring biodiversity processes may yield some
more generalizable, if often qualitative, predictions that offer a workable compromise from the
highly stochastic species-focused metrics and limited mechanistic explanation of all-insect-level
metrics [48]. For instance, functional trait approaches to measuring biodiversity may provide
generalities beyond taxonomic classification: climatic niche breadth was associated with degree
of range shifts under climate conditions, and this association held in both vertebrates (birds) and
invertebrates (moths and butterflies) across a latitudinal gradient in Europe [49]. Thus, these
approaches offer a viable compromise that may offer broad generalizability in prediction without
the cost to mechanistic explanation, and some traits may be more conducive to building viable
predictions than others [e.g. 50]

What tools can we use and where are they appropriate?

Several classes of tools hold promise for forecasting insect populations, depending on the
desired scales and precision of predictions desired. A subset of the most commonly used
current approaches are presented here.

Correlativelstatistical approaches

Often, projections in ecological systems are based on linear trends applied to time series data
[9,13,51]. This is often statistically inappropriate based on the underlying autocorrelation
structure of biodiversity metrics (i.e. the current state of the metric in question is dependent on
both the environmental drivers and the previous state of that same metric), however, these
linear trends are often essential for communicating change over time and provide more intuitive
outputs to the model, such as expected change in population size. Thus, we can evaluate the
length of time needed to establish a linear trend in the system under study, given the actual
structure of historical data [52,53], but more importantly, it is essential that entomologists use
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models which statistically manage for this underlying structure in their estimates of rates-of-
change. Weiss et al. 2023 provide an accessible approach for correcting annual data using
random year intercepts in generalized linear models (GLMs). Their approach was able to
produce more conservative, less biased estimates of rates of change for ground beetle
abundance over a 24 year study, and also demonstrated how sensitivity analysis could be
applied to identify influential observations [54].

In data-rich systems where there is limited functional understanding (e.g. data produced by
large distributed monitoring networks) other tools can be employed. Generalized additive
modeling (GAM) approaches can be use where the shape of the relationship between variables
is unknown: this suite of tools allows the estimation of smoothing functions between variables of
interest, allowing predictions to be ‘data-led’ and not necessarily relying on a fore-knowledge of
the mechanistic explanation of their relationships [55]. For example, GAMs were used to explain
patterns in carabid beetle richness relative to climatic variables, forecast the distribution of
biodiversity hotspots, and used this information to develop conservation recommendations for a
protected temperate steppe area in northwestern China [56].Machine learning models such as
artificial neural networks may be used to take this data-driven approach further in cases where
system knowledge is limited, making it possible to forecast systems with very limited knowledge
of their ecology. For example, an early warning system for rice gall midge was developed using
an autoregressive neural network approach on time series data documenting abundance of the
midge, and the model outperformed more typical statistical approaches because the method
does not assume linear relationships in the data [57].

Mechanistic and physiological population models

Mechanistic and physiological population models come in a wide variety of scales. In applied
entomology, short-term forecasts of insects are commonly constructed, usually from
mechanistic models describing the phenology, population growth and immediate environmental
responses of a particular species or complex [58]. These models often include spatially-explicit
elements to indicate risk, and may include management information (i.e. economic injury levels,
action thresholds) often providing these forecasts at a weekly interval, aligned with how farmers
and foresters make pest management decisions [59]. Near-term forecasting models may be
extended (i.e. to the length of a growing season, for example) for a specific population of well-
studied insects using models that account for many of the major parameters, however these
models may have very limited transferability if the models incorporate site-specific information
and highly specific dynamics [e.g. 60]. Yet, mechanistic models can be used to gain more
general insights when applied to broader groups using trait- based approaches. Mechanistic
modeling essentially leverages very specific understanding of insect ecophysiological responses
to predict higher level phenomena in insect populations, and can be used under longer term
scenarios where statistical extrapolations are likely to break down [61] or explicitly link
physiological traits to ecological theory [62]. For instance, thermal sensitivity traits were used to
forecast insect community responses under future climate scenarios: these analyses suggested
greater extinction risk among insects in tropical environments without rapid adaptation or
migration [63].Mechanistic approaches can be used to predict future selection patterns in plastic
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or variable traits within their ranges: e.g. selection for lighter wing colors to avoid overheating in
warming climates [64].

Integrating heterogenous data into forecasting

Integrated population modeling is an approach commonly used in wildlife conservation, where
taxa under management, such as game species, are monitored using varied survey protocols,
at different life stages, across different parts of their range, creating a highly heterogenous but
very rich set of observational data [65]. Animals monitored across their ranges or lifecycles often
yield discrepant patterns which can be difficult to resolve in isolation, often resulting from factors
such as asynchronies between metapopulations and density-dependent demographic effects
[66]. This approach allows researchers to identify which data and monitoring strategies provide
the most informative estimates [67], and is generally applied to well-monitored species with
complex life histories, but may be used to estimate and forecast a wide variety of metrics
regarding that population at various points in its lifecycle [66]. This integrated modeling
approach has recently been extended to integrated community occupancy modeling, which
allows the integration of single species distribution models and hierarchical community
occupancy models to forecast biodiversity dynamics of bird communities [68].

Inferring temporal processes from spatial approaches

Spatial processes may serve as a proxy for temporal processes in developing forecasts for
insect decline, or as part of direct experiments to identify drivers that might be managed through
time [69]. Distribution models can be used to estimate range size and occupancy to prioritize
protections and listings of species with contracting or vulnerable populations within their ranges,
based on projected extinction risks [70]. Spatial approaches may provide a means for
forecasting other vital parameters in cases where abundance data are unavailable. For instance
an extinction risk index was developed based on range size and was used to examine how
species traits like thermal limits and body size affect extirpation risk in 600 Odonata species,
using occurrence data [43].

Future ranges forecast through distribution modeling can be refined by combining this approach
with dynamic evolutionary models that account for the genetic potential of the species to
respond to changes in their environment [71], and may provide anticipatory predictions that go
beyond interactions with the abiotic environment. Range dynamics models can be further
refined beyond the niche-implicit aspects typical to species distribution models by the
superimposition of process-explicit, mechanistic models (for organismal physiology, biotic
interactions, and demography), helping to mitigate extrapolation issues created by distribution
models based on correlative characteristics alone [72].

Iterative forecasting methods

With all methods described above, iterative, near-term forecasting approaches can be applied.
In this case, the forecasts are made repeatedly and updated as new data becomes available,
effectively re-running the model for each new system state as it is realized [40]. This approach
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allows explicit testing not just the performance of predictive models, but would allow multiple
competing models to be evaluated in real time, and provide insights into situations where
relationships between drivers may not hold. This approach is currently under use for the NEON
Ecological Forecasting Challenge, a community-driven scientific networking activity designed to
bring about scientific interest in advancing approaches to ecological forecasting [7].The project
challenges users to develop forecasting models to predict the next state of data collected by the
National Ecological Observatory Network [73]. Among the challenges, users have been tasked
with developing models for the richness and abundance of Carabid beetles collected in pitfall
traps at all the sites [7]. At time of writing, the challenge was still ongoing.

Conclusions

Forecasting insect populations, as a whole, with simultaneous great generalization and
precision is unlikely due to the diversity of insects, ecologies, life histories, behaviors and
environments in which they occur, but also in the diversity of metrics, data sources, inherent
biases in monitoring strategies, and tools available. However, several approaches, including
integrated population monitoring for single species predictions, and near-term iterative
approaches to testing forecasts hold promise for developing novel insights into drivers,
particularly when underlying data are classified using relevant species traits. Yet, broader
generalities may not be needed when speaking of biodiversity trends as a whole: it is well
established that rates of anthropogenic change in the environment generally have negative
consequences for all but a handful of species that have traits that favor disturbed environments
and tend to be associated with humans. Because of the non-uniqueness of models, it is likely
that the quest for the ‘best’ (i.e. most precise) model to inform management is both ill-informed
and potentially dangerous[74]. Although a nuanced approach to predicting insect responses to
stressors is desirable from a scientific and management standpoint, core conservation and
policy efforts do not require this level of detail in order to enact positive changes for insects
more generally [75,76].

Acknowledgements

This paper was supported by National Science Foundation grants DBI #2045721 and DEB
#2225092. | would like to thank John Gerrath, Kayla Perry and Eliza Grames for discussion
during the drafting of this manuscript.



301

302

303

304

305



306

307
308

309
310
311

312
313

314
315

316
317
318
319
320
321

322
323

324
325

326
327
328

329
330

331
332
333

334
335
336

337
338
339

340
341

10

References

1.

Loreau M, Cardinale BJ, Isbell F, Newbold T, O’'Connor MI, de Mazancourt C: Do not
downplay biodiversity loss. Nature 2022, 601:E27—-E28.

Didham RK, Basset Y, Collins CM, Leather SR, Littlewood NA, Menz MHM, Mdller J,
Packer L, Saunders ME, Schonrogge K, et al.: Interpreting insect declines: seven
challenges and a way forward. Insect Conserv Divers 2020, 13:103-114.

Barker BS, Coop L, Wepprich T, Grevstad F, Cook G: DDRP: Real-time phenology and
climatic suitability modeling of invasive insects. PLOS ONE 2021, 15:0244005.

Zylstra ER, Neupane N, Zipkin EF: Multi-season climate projections forecast declines
in migratory monarch butterflies. Glob Change Biol 2022, 28:6135-6151.

This paper builds on an annual cycle forecasting model for eastern populations of Monarch
butterflies using a variety of retrospective data sources, combined with climate projections
throughout the range of this population. The model forecasted shifts in distribution and
abundance of the monarch through its breeding range.

5.

10.

11.

12.

Mouquet N, Lagadeuc Y, Devictor V, Doyen L, Duputié A, Eveillard D, Faure D, Garnier E,
Gimenez O, Huneman P, et al.. REVIEW: Predictive ecology in a changing world. J
Appl Ecol 2015, 52:1293-1310.

Houlahan JE, McKinney ST, Anderson TM, McGill BJ: The priority of prediction in
ecological understanding. Oikos 2017, 126:1-7.

Thomas RQ, Boettiger C, Carey CC, Dietze MC, Johnson LR, Kenney MA, Mclachlan JS,
Peters JA, Sokol ER, Weltzin JF, et al.: The NEON Ecological Forecasting Challenge.
Preprints; 2022.

Dietze MC: Prediction in ecology: a first-principles framework. Ecol App/ 2017,
27:2048-2060.

Dornelas M, Magurran AE, Buckland ST, Chao A, Chazdon RL, Colwell RK, Curtis T,
Gaston KJ, Gotelli NJ, Kosnik MA, et al.: Quantifying temporal change in biodiversity:
challenges and opportunities. Proc R Soc B Biol Sci 2013, 280:20121931.

Petchey OL, Pontarp M, Massie TM, Kéfi S, Ozgul A, Weilenmann M, Palamara GM,
Altermatt F, Matthews B, Levine JM, et al.: The ecological forecast horizon, and
examples of its uses and determinants. Ecol Lett 2015, 18:597-611.

Neupane N, Zipkin EF, Saunders SP, Ries L: Grappling with uncertainty in ecological
projections: a case study using the migratory monarch butterfly. Ecosphere 2022,
13:e03874.

Ratnayake HU, Kearney MR, Govekar P, Karoly D, Welbergen JA: Forecasting wildlife
die-offs from extreme heat events. Anim Conserv 2019, 22:386—395.

10



342
343
344

345
346
347

348
349

350
351

352
353

354
355
356

357
358

359
360
361

362
363
364

365
366
367

368
369
370
371

372
373

374
375
376
377

378
379

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

11

Cusser S, Helms IV J, Bahlai CA, Haddad NM: How long do population level field
experiments need to be? Utilising data from the 40-year-old LTER network. Ecol Lett
2021, n/a.

Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M,
Boggs C, Brodeur J, et al.: Scientists’ warning on climate change and insects. Ecol/
Monogr 2023, 93:1553.

Thakur MP, Risch AC, van der Putten WH: Biotic responses to climate extremes in
terrestrial ecosystems. iScience 2022, 25:104559.

Sconiers WB, Eubanks MD: Not all droughts are created equal? The effects of stress
severity on insect herbivore abundance. Arthropod-Plant Interact 2017, 11:45-60.

van Heerwaarden B, Sgro CM: Male fertility thermal limits predict vulnerability to
climate warming. Nat Commun 2021, 12:2214.

Duffy GA, Coetzee BW, Janion-Scheepers C, Chown SL: Microclimate-based
macrophysiology: implications for insects in a warming world. Glob Change Biol Mol
Physiol 2015, 11:84—809.

Weaving H, Terblanche JS, Pottier P, English S: Meta-analysis reveals weak but
pervasive plasticity in insect thermal limits. Nat Commun 2022, 13:5292.

Williams CM, Chick WD, Sinclair BJ: A cross-seasonal perspective on local adaptation:
metabolic plasticity mediates responses to winter in a thermal-generalist moth.
Funct Ecol 2015, 29:549-561.

Radchuk V, Turlure C, Schtickzelle N: Each life stage matters: the importance of
assessing the response to climate change over the complete life cycle in butterflies.
J Anim Ecol 2013, 82:275-285.

Vaz S, Manes S, Gama-Maia D, Silveira L, Mattos G, Paiva PC, Figueiredo M, Lorini ML:
Light pollution is the fastest growing potential threat to firefly conservation in the
Atlantic Forest hotspot. Insect Conserv Divers 2021, 14:211-224.

Wellenreuther M, Dudaniec RY, Neu A, Lessard J-P, Bridle J, Carbonell JA, Diamond SE,
Marshall KE, Parmesan C, Singer MC, et al.: The importance of eco-evolutionary
dynamics for predicting and managing insect range shifts. Curr Opin Insect Sci 2022,
52:100939.

Weisser W, Blithgen N, Staab M, Achury R, Miller J: Experiments are needed to
quantify the main causes of insect decline. Biol Lett 2023, 19:20220500.

This review argues that current long-term data collection efforts are insufficient for developing
viable conservation strategies because they are unable to dis-entangle the relative importance
of the drivers of insect population change.

25.

Oliver TH, Roy DB: The pitfalls of ecological forecasting. Biol J Linn Soc 2015,
115:767-778.

11



380
381
382

383
384
385
386

387
388
389
390

391
392
393

394
395
396
397
398

399
400
401

402
403
404

405
406
407

408
409

410
411
412

413
414
415
416
417
418
419

26.

27.

28.

29.

12

Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR, Saunders ME, Shortall CR,
Tingley MW, Wagner DL: Is the insect apocalypse upon us? How to find out. Bio/
Conserv 2020, 241:108327.

Hoekman D, LeVan KE, Gibson C, Ball GE, Browne RA, Davidson RL, Erwin TL, Knisley
CB, LaBonte JR, Lundgren J, et al.: Design for ground beetle abundance and diversity
sampling within the National Ecological Observatory Network. Ecosphere 2017,
8:e01744.

Lewis ASL, Woelmer WM, Wander HL, Howard DW, Smith JW, McClure RP, Lofton ME,
Hammond NW, Corrigan RS, Thomas RQ, et al.: Increased adoption of best practices
in ecological forecasting enables comparisons of forecastability. Ecol App/ 2022,
32:e2500.

Zipkin EF, Zylstra ER, Wright AD, Saunders SP, Finley AO, Dietze MC, Itter MS, Tingley
MW: Addressing data integration challenges to link ecological processes across
scales. Front Ecol Environ 2021, 19:30-38.

This paper examines a principal challenge in macroecology: when studying ecology at broad
scales, this inherently means integration of heterogeneous data. The authors examine common
barriers to data integration and provide instructive commentary on possible approaches to
manage data integration issues.

30.

31.

32.

33.

34.

Blair J, Weiser MD, de Beurs K, Kaspari M, Siler C, Marshall KE: Embracing
imperfection: Machine-assisted invertebrate classification in real-world datasets.
Ecol Inform 2022, 72:101896.

Rosa AHB, Ribeiro DB, Freitas AVL: How data curation and new geographical records
can change the conservation status of threatened brazilian butterflies. J Insect
Conserv 2023, 27:403-414.

Plummer KE, Dadam D, Brereton T, Dennis EB, Massimino D, Risely K, Siriwardena GM,
Toms MP: Trends in butterfly populations in UK gardens—New evidence from citizen
science monitoring. Insect Conserv Divers 2023, n/a.

Ulyshen M, Horn S: Declines of bees and butterflies over 15 years in a forested
landscape. Curr Biol 2023, 33:1346-1350.e3.

Forister ML, Black SH, Elphick CS, Grames EM, Halsch CA, Schultz CB, Wagner DL.:
Missing the bigger picture: Why insect monitoring programs are limited in their
ability to document the effects of habitat loss. Conserv Lett 2023, n/a:e12951.

This perspective piece highlights a particularly insidious bias associated with insect biodiversity
monitoring: insect populations are monitored in habitats that are “good” for insects like
conservation areas. This ignores the biodiversity dynamics occurring in impacted areas, even
while human activities encroach into more and more relatively pristine habitats. This effect
almost certainly has compromised our ability to measure insect dynamics across broader
scales.

12



420
421
422

423
424

425
426
427
428
429
430

431
432
433

434
435

436
437

438
439
440

441
442
443
444
445
446

447
448
449

450
451
452

453
454
455

456
457
458

35.

36.

13

Tongeren EV, Sistri G, Bonifacino M, Menchetti M, Pasquali L, Salvati V, Balletto E, Bonelli
S, Cini A, Portera M, et al.: Discard butterfly local extinctions through untargeted citizen
science: the interplay between species traits and user effort. In Review; 2023.

Boyd RJ, Powney GD, Pescott OL: We need to talk about nonprobability samples.
Trends Ecol Evol 2023, doi:10.1016/j.tree.2023.01.001.

This paper colorfully illustrates how using biodiversity collections and community science
databases can bias biodiversity trend estimation. It also provides a steady-handed, careful and
accessible description of how these biases in sampling play out, and reviews the literature,
including several major studies on insect decline, to explore how sampling and underlying data
affected the observed patterns in each of these studies.

37.

38.

39.

40.

Gigliotti FN, Franzem TP, Ferguson PFB: Rapid, recurring, structured survey versus
bioblitz for generating biodiversity data and analysis with a multispecies abundance
model. Conserv Biol 2023, 37:€13996.

Duffy K, Gouhier TC, Ganguly AR: Climate-mediated shifts in temperature fluctuations
promote extinction risk. Nat Clim Change 2022, 12:1037-1044.

McKinney ML, Lockwood JL: Biotic homogenization: a few winners replacing many
losers in the next mass extinction. Trends Ecol Evol 1999, 14:450-453.

Lewis ASL, Rollinson CR, Allyn AJ, Ashander J, Brodie S, Brookson CB, Collins E, Dietze
MC, Gallinat AS, Juvigny-Khenafou N, et al.: The power of forecasts to advance
ecological theory. Methods Ecol Evol 2023, 14.746—756.

This perspective piece provides a framework for moving forecasting from its more

applied management uses into a framework that can be used for advancing ecological theory.
The paper also includes a thoughtful review on ecological forecasting, including definitions,
approaches and applications, and would serve as a good introduction to the field of ecological
forecasting.

41.

42.

43.

44.

Rousso BZ, Bertone E, Stewart R, Hamilton DP: A systematic literature review of
forecasting and predictive models for cyanobacteria blooms in freshwater lakes.
Water Res 2020, 182:115959.

Ward EJ, Holmes EE, Thorson JT, Collen B: Complexity is costly: a meta-analysis of
parametric and non-parametric methods for short-term population forecasting. Oikos
2014, 123:652-661.

Rocha-Ortega M, Rodriguez P, Bried J, Abbott J, Cérdoba-Aguilar A: Why do bugs
perish? Range size and local vulnerability traits as surrogates of Odonata extinction
risk. Proc R Soc B Biol Sci 2020, 287:20192645.

White EP, Yenni GM, Taylor SD, Christensen EM, Bledsoe EK, Simonis JL, Ernest SKM:

Developing an automated iterative near-term forecasting system for an ecological
study. Methods Ecol Evol 2019, 10:332-344.

13



459
460

461
462
463
464

465
466
467

468
469
470
471

472
473

474
475
476
477

478
479
480
481
482
483

484
485
486

487
488
489

490
491

492
493
494

495
496

497
498

14

45. Cardoso P, Leather SR: Predicting a global insect apocalypse. Insect Conserv Divers
2019, 12:263-267.

46. Tobisch C, Rojas-Botero S, Uhler J, Kollmann J, Miller J, Moning C, Redlich S, Steffan-
Dewenter |, Benjamin C, Englimeier J, et al.: Conservation-relevant plant species
indicate arthropod richness across trophic levels: Habitat quality is more important
than habitat amount. Ecol Indic 2023, 148:110039.

47. Valdez JW, Callaghan CT, Junker J, Purvis A, Hill SLL, Pereira HM: The undetectability
of global biodiversity trends using local species richness. Ecography 2023,
2023:e06604.

This paper illustrates the issues that arise when using overly- general biodiversity metrics to
characterize biodiversity trends. In particular, this study noted that spatial biases and even small
sampling errors could result in the reversal of observed trends in richness.

48. Beissinger SR, Riddell EA: Why Are Species’ Traits Weak Predictors of Range Shifts?
Annu Rev Ecol Evol Syst 2021, 52:47—66.

49. Hallfors MH, Heikkinen RK, Kuussaari M, Lehikoinen A, Luoto M, Pdyry J, Virkkala R,
Saastamoinen M, Kujala H: Recent range shifts of moths, butterflies, and birds are
driven by the breadth of their climatic niche. Evol Lett 2023,
doi:10.1093/evlett/qrad004.

This study very nicely illustrates how the use of a traits-based approach can offer
generalizability in explanatory models and, by extension, forecasts across very phylogenetically
different groups. Using birds and Lepidoptera, the authors were able to demonstrate that recent
range shifts in several hundred species were related to their respective climactic niche breaths
and not other life history traits.

50. Jackson HM, Johnson SA, Morandin LA, Richardson LL, Guzman LM, M’Gonigle LK:
Climate change winners and losers among North American bumblebees. Biol Lett
2022, 18:20210551.

51. Cusser S, Bahlai C, Swinton SM, Robertson GP, Haddad NM: Long-term research
avoids spurious and misleading trends in sustainability attributes of no-till. G/ob
Change Biol 2020, 26:3715-3725.

52. White ER: Minimum Time Required to Detect Population Trends: The Need for Long-
Term Monitoring Programs. BioScience 2019, doi:10.1093/biosci/biy144.

53. Bahlai CA, White ER, Perrone JD, Cusser S, Stack Whitney K: The broken window: An
algorithm for quantifying and characterizing misleading trajectories in ecological
processes. Ecol Inform 2021, 64:101336.

54. Weiss F, von Wehrden H, Linde A: Random year intercepts in mixed models help to
assess uncertainties in insect population trends. Insect Conserv Divers 2023, n/a.

55. Pedersen EJ, Miller DL, Simpson GL, Ross N: Hierarchical generalized additive models
in ecology: an introduction with mgcv. PeerJ 2019, 7:e6876.

14



499
500

501
502
503
504

505
506

507
508
509

510
511
512

513
514
515

516
517
518

519
520
521

522
523

524
525

526
527

528
529
530

531
532
533

534
535

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

15

Liu X, Wang H, He D, Wang X, Bai M: The Modeling and Forecasting of Carabid Beetle
Distribution in Northwestern China. Insects 2021, 12.

Rathod S, Yerram S, Arya P, Katti G, Rani J, Padmakumari AP, Somasekhar N,
Padmavathi C, Ondrasek G, Amudan S, et al.: Climate-Based Modeling and Prediction
of Rice Gall Midge Populations Using Count Time Series and Machine Learning
Approaches. Agronomy 2022, 12.

Magarey RD, Isard SA: A Troubleshooting Guide for Mechanistic Plant Pest Forecast
Models. J Integr Pest Manag 2017, 8:3.

Crimmins TM, Gerst KL, Huerta DG, Marsh RL, Posthumus EE, Rosemartin AH, Switzer J,
Weltzin JF, Coop L, Dietschler N, et al.: Short-Term Forecasts of Insect Phenology
Inform Pest Management. Ann Entomol Soc Am 2020, 113:139-148.

Bahlai CA, Weiss RM, Hallett RH: A mechanistic model for a tritrophic interaction
involving soybean aphid, its host plants, and multiple natural enemies. Ecol Model
2013, 254:54-70.

Maino JL, Kong JD, Hoffmann AA, Barton MG, Kearney MR: Mechanistic models for
predicting insect responses to climate change. Glob Change Biol Mol Physiol 2016,
17:81-86.

Munch SB, Rogers TL, Symons CC, Anderson D, Pennekamp F: Constraining nonlinear
time series modeling with the metabolic theory of ecology. Proc Natl Acad Sci 2023,
120:2211758120.

Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR:
Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad
Sci 2008, 105:6668—-6672.

Buckley LB, Kingsolver JG: Environmental variability shapes evolution, plasticity and
biogeographic responses to climate change. Glob Ecol Biogeogr 2019, 28:1456—1468.

Frost F, McCrea R, King R, Gimenez O, Zipkin E: Integrated Population Models:
Achieving Their Potential. J Stat Theory Pract 2022, 17:6.

Zipkin EF, Saunders SP: Synthesizing multiple data types for biological conservation
using integrated population models. Biol Conserv 2018, 217:240-250.

Saunders SP, Farr MT, Wright AD, Bahlai CA, Ribeiro Jr. JW, Rossman S, Sussman AL,
Arnold TW, Zipkin EF: Disentangling data discrepancies with integrated population
models. Ecology 2019, 100:e02714.

Doser JW, Leuenberger W, Sillett TS, Hallworth MT, Zipkin EF: Integrated community
occupancy models: A framework to assess occurrence and biodiversity dynamics
using multiple data sources. Methods Ecol Evol 2022, 13:919-932.

Blithgen N, Staab M, Achury R, Weisser WW: Unravelling insect declines: can space
replace time? Biol Lett 2022, 18:20210666.

15



536
537
538

539

540
541

542
543
544

545
546
547
548

549
550
551
552

553

554
555
556
557

558
559

560
561
562

563
564
565

566
567
568
569
570
571

572
573

16

This opinion piece argues that spatial approaches offer much greater statistical power than
long-term monitoring strategies to unravel the drivers of insect decline.

70. Bried JT, Rocha-Ortega M: Using range size to augment regional priority listing of
charismatic insects. Biol Conserv 2023, 283:110098.

71. DeMarche ML, Doak DF, Morris WF: Incorporating local adaptation into forecasts of
species’ distribution and abundance under climate change. Glob Change Biol 2019,
25:775-793.

72. Briscoe NJ, Elith J, Salguero-Gémez R, Lahoz-Monfort JJ, Camac JS, Giljohann KM,
Holden MH, Hradsky BA, Kearney MR, McMahon SM, et al.: Forecasting species range
dynamics with process-explicit models: matching methods to applications. Ecol Lett
2019, 22:1940-1956.

73. Nagy RC, Balch JK, Bissell EK, Cattau ME, Glenn NF, Halpern BS, llangakoon N, Johnson
B, Joseph MB, Marconi S, et al.: Harnessing the NEON data revolution to advance
open environmental science with a diverse and data-capable community. Ecosphere
2021, 12:e03833.

74. Boettiger C: The forecast trap. Ecol Lett 2022, 25:1655-1664.

This piece uses examples from fisheries management that illustrate ‘the forecast trap’- that is,
the tendency of managers to rely on models that, according to statistical measures, provide the
best fit, but do not guide the best real world outcomes.

75. Forister ML, Pelton EM, Black SH: Declines in insect abundance and diversity: We
know enough to act now. Conserv Sci Pract 2019, 1:e80.

76. Harvey JA, Heinen R, Armbrecht |, Basset Y, Baxter-Gilbert JH, Bezemer TM, Bohm M,
Bommarco R, Borges PAV, Cardoso P, et al.: International scientists formulate a
roadmap for insect conservation and recovery. Nat Ecol Evol 2020, 4:174-176.

77. Davis CL, Guralnick RP, Zipkin EF: Challenges and opportunities for using natural
history collections to estimate insect population trends. J Anim Ecol 2023, 92:237—-
249.

This review examines how natural history collection data is used in biodiversity dynamics
research, and how the limitations of these approaches might affect study outcomes. The
authors offer an instructive way forward on integrating these rich data with more contemporary
data produced by other means in a framework which accounts for biases across varied data
sources.

78. Meineke EK, Davies TJ, Daru BH, Davis CC: Biological collections for understanding
biodiversity in the Anthropocene. Philos Trans R Soc B Biol Sci 2018, 374:20170386.

16



574
575
576

577
578
579

580
581
582

583
584
585
586

587
588

589
590
591

592
593
594
595

79.

80.

81.

82.

83.

84.

17

Perry Kl, Bahlai CA, Assal TJ, Riley CB, Turo KJ, Taylor L, Radl J, Delgado de la flor YA,
Sivakoff FS, Gardiner MM: Landscape change and alien invasions drive shifts in native
lady beetle communities over a century. Ecology; 2022.

Guzman LM, Johnson SA, Mooers AO, M'Gonigle LK: Using historical data to estimate
bumble bee occurrence: Variable trends across species provide little support for
community-level declines. Biol Conserv 2021, 257:109141.

Boyd RJ, Powney GD, Burns F, Danet A, Duchenne F, Grainger MJ, Jarvis SG, Martin G,
Nilsen EB, Porcher E, et al.: ROBITT: A tool for assessing the risk-of-bias in studies of
temporal trends in ecology. Methods Ecol Evol 2022, 13:1497-1507.

Thogmartin WE, Wiederholt R, Oberhauser K, Drum RG, Diffendorfer JE, Altizer S, Taylor
OR, Pleasants J, Semmens D, Semmens B, et al.: Monarch butterfly population decline
in North America: identifying the threatening processes. R Soc Open Sci 2017,
4:170760.

Bahlai CA, Zipkin EF: The Dynamic Shift Detector: An algorithm to identify changes in
parameter values governing populations. PLOS Comput Biol 2020, 16:e1007542.

Zylstra ER, Ries L, Neupane N, Saunders SP, Ramirez M|, Rendon-Salinas E,

Oberhauser KS, Farr MT, Zipkin EF: Changes in climate drive recent monarch butterfly
dynamics. Nat Ecol Evol 2021, 5:1441-1452.

17



596
597
598

599
600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

617

618

619
620
621
622
623
624
625
626

627

628

629
630
631
632
633

18

Figure 1. Core elements required to forecast insect dynamics. Researchers must consider
the research question and context to select appropriate data, metrics models and validation
approaches to be used for forecasting insect dynamics. Figure constructed using Canva.

Box 1: Can natural history collection data be used to estimate and predict insect
population trends?

Using natural history collection data (and similarly, data produced by community science
surveys like iNaturalist) in explanatory and forecasting models is a subject of ongoing concern in
the quantitative ecology community because of the unstructured nature of these data [36,77].
Yet, one of the principal challenges in understanding and predicting insect decline is the lack of
historical baseline data [2]. If used with caution, these data represent an unprecedented
resource for understanding how insect communities have changed over time [78]. A technique
that could capitalize on this data resource is to use a community of specimens instead of single
species from within the collection data, where multiple species with a similar probability of being
captured are examined together, using total captures across the community to control for
sampling effort over time. This approach allows relative, if not absolute abundance and thus
long-term responses to historical drivers to be evaluated [79]. Similarly, researchers might use
detection data of similar species within a given species’ expected range, at a given date and
time to infer non-detection for the construction of occupancy models [80]. Furthermore, these
records can be brought into integrated modeling approaches which have the ability to couple
these long term, but unstructured data with contemporary experimentally-produced data in a
single analytical framework [77].

Box 2: Tool Highlight: Evaluating bias in time series

Because of the high degree of temporal and spatial autocorrelation present in occurrence and
abundance surveys, Boyd et al. [81] developed ROBITT: Risk Of Bias In Studies of Temporal
Trends. ROBITT is a tool which provides a structured approach for a researcher to essentially
‘interview’ their data in the context of bias assessment, focusing on explicitly defining the
questions, scales, data reliability and provenance, as well as any apparent geographical,
environmental and taxonomic biases. This tool is especially useful for assessing limitations of
data from unstructured surveys and how these biases might manifest in any projection models
[81].

BOX 3: Case study: Forecasting the dynamics of complex insects

In addition to different species being sensitive to different disturbances through their varied
biologies, different stressors may act on populations at different times, and one stressor may
predispose a species to sensitivity to another. In the iconic and well-studied Monarch butterfly, a
number of conditions have been linked to the dynamics of this species, including pesticide use
in breeding grounds, unfavorable conditions at migratory stopover points, or loss of integrity of
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overwintering sites [82]. While time-series methods may be used to identify periods of change in
internal rules of population regulation, providing insight into when the most changes have
occurred historically [83], a hierarchical modeling approach used to integrate population data
across the monarch lifecycle and isolate the effects of these potential drivers, disentangling
those with historical effects from those currently driving the dynamics of this species [84]. This
approach revealed that breeding season temperatures played a larger role in monarch
dynamics than previously thought in recent years: when it was used in concert with climate
projections to forecast future populations of the species, it highlighted particular vulnerability to
monarch breeding in parts of the US Midwest experiencing higher rates of temperature increase

[4].
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