1 Forecasting insect dynamics in a changing world

- 2 Christie A. Bahlai^{1,2}
- 3 1 Department of Biological Sciences
- 4 2 Environmental Science and Design Research Institute
- 5 Kent State University, Kent, OH, USA, 44242

6 7

8

Abstract

- 9 Predicting how insects will respond to stressors through time is difficult because of the diversity
- of insects, environments, and approaches used to monitor and model. Forecasting models take
- 11 correlative/statistical, mechanistic models, and integrated forms; in some cases, temporal
- 12 processes can be inferred from spatial models. Because of heterogeneity associated with broad
- community measurements, models are often unable to identify mechanistic explanations. Many
- present efforts to forecast insect dynamics are restricted to single-species models, which can
- offer precise predictions but limited generalizability. Trait-based approaches may offer a good
- 16 compromise which limits the masking of the ranges of responses while still offering insight.
- 17 Regardless of modeling approach, the data used to parameterize a forecasting model should be
- 18 carefully evaluated for temporal autocorrelation, minimum data needs, and sampling biases in
- 19 the data. Forecasting models can be tested using near-term predictions and revised to improve
- 20 future forecasts.

Highlights

- Many models used to understand insect dynamics are never extended to prediction
- Density-dependence and sampling biases are often present in long term data
- Biodiversity metrics have tradeoffs in predictability, generalizability and scale
- Simple statistics and more advanced integrated modeling can address biases directly
- Forecasting models can be tested using near-term predictions and revised iteratively

27

21

22

23

24

25

Introduction

28

29 Insect ecologists have generally approached forecasting insect dynamics in a piecemeal way, 30 with individual solutions developed as needed to predict vital metrics for a few key species. Yet 31 in an era of profound biodiversity loss, understanding and predicting long-term trends is key to 32 mitigating functional losses [1]. The critical importance of insects to most ecosystems has led to 33 dire projections, but also considerable scientific debate on the nature of these predictions has 34 occurred [2]. At present, most attempts at modeling the insect decline phenomenon fall more 35 accurately into explanatory modeling with implied extrapolation rather than predictive modeling. 36 Indeed, most true forecasts of insect dynamics have focused on individual species of economic 37 or cultural significance, that is, primarily pests and a few well-studied species of conservation 38 concern [3,4]. Given controversies, modeling disagreements, data needs, and natural variability 39 in insect population sizes, a fundamental question emerges: how forecastable are insect 40 populations? (Figure 1)

41 Forecasting biodiversity dynamics

- 42 In forecasting responses of biodiversity to environmental change, a wide variety of modeling
- 43 techniques are commonly used, including combining correlative approaches (i.e. species
- distribution models), mechanistic approaches (i.e. demography and temperature dependence),
- and theory [5]. Predicting the behavior of ecological systems is a means to test scientific
- understanding, yet much of the field of ecology has often focused on explanatory models [6].
- 47 Although some authors define ecological forecasting as a strictly quantitative endeavor [e.g. 7],
- 48 more colloquially in biodiversity science, predictions yielded by modeling and synthesis may be
- 49 qualitative, directional, or quantitative. Quantitative outputs are desirable from a hypothesis-
- testing standpoint because these predictions can be explicitly tested [6].
- 51 Because biodiversity processes are driven, in part, by environmental variables, the accuracy of
- the projection will depend on the accuracy and uncertainty of the projection of these covariates
- 53 [8,9]. The uncertainty surrounding forecasts of biodiversity parameters inherently depends on
- 54 the uncertainties associated with the information used in the models, including future
- uncertainties in driving variables, which variables are included, and the underlying model
- structure, and the interaction of these factors all ultimately drive how far a model may be used to
- 57 predict into the future [10]. While understating uncertainty is not desirable, models which
- 58 incorporate all possible uncertainties may produce unrealistic and unreliable predictions [11].
- 59 Explanatory predictions tend to be based in mechanistic hypotheses: they can be used to
- 60 describe the behavior of individual systems under testable conditions which can then be
- 61 corroborated by data. Anticipatory predictions are forecasts (also referred to as projections and
- scenarios): they represent the extension of a hypothesis into the future, assuming a theory
- 63 holds [5]. Forecasts may be conditional rather than explicitly temporal, that is, their results
- 64 depend on certain driver conditions occurring, rather than explicitly predicting a given metric at a
- point in time. For example, models can be used to forecast the likelihood that animals
- 66 experience mortality during extreme heat events [12], or the locations where invasive insects
- are most likely to be detected [3]. However, these predictions have an inherent temporal aspect:

- the implication being that should the modeled conditions be realized at some time in the future,
- the projected outcomes would (or could) occur at that point in time. In fact, many forecasts are
- 70 not necessarily intended to predict the next state of the system under study, but may be used in
- an anticipatory way, to extrapolate explanatory models to possible scenarios, given uncertainty
- 72 in driving parameters [5].
- 73 Quantifying the change in biodiversity metrics (whether for a single species population or a
- broader taxon) is difficult because the data needs to adequately characterize temporal
- 75 processes [9]. Simply detecting temporal trajectories of population processes (much less
- extrapolating from them) may require more than a decade of annual data when no underlying
- structure of the data is assumed, especially in environments with high inherent thermal
- variability [13]. Given the challenges of simply measuring trends in many biodiversity systems
- and the peculiarities of insect biology, explicit efforts to forecast the dynamics of a system are
- 80 relatively rare in insect ecology.

99

Explaining insect dynamics is challenging

- 82 Prediction of insect population responses, even to a single stressor, is not necessarily
- straightforward [14]. It is likely that, as a general rule, anthropogenic change will negatively
- affect insect abundance and biodiversity [15]. However, insect herbivore populations may be
- negatively, neutrally or positively affected by a stressor, depending on the nature of the
- disturbance [16]. Responses to stressors may have immediate population effects or more
- 87 idiosyncratic physiological effects [17], and may be mediated by behavioral adaptations [18,19].
- 88 Insect biology can present a particular challenge because responses can be non-uniform, even
- within a single species, at different life stages [20,21]. Specific taxa may be sensitive to lesser-
- 90 documented stressors [22]. Furthermore, given their rapid generation time, eco-evolutionary
- 91 dynamics will inevitably affect range and population sizes of insects over time [23]. Ultimately,
- 92 forecasting insect dynamics relies on an understanding of these complex biologies: they
- 93 increase the complexity of the task of predicting future dynamics in insect taxa, and undermine
- 94 researchers in their guest for generality. Due to the complexity of these interactions, some
- 95 authors have argued that knowledge gaps remain too great and that understanding and
- predicting insect decline cannot be achieved without directed experimentation [24], while others
- 97 have argued that extremely large scale observational approaches are key to understanding and
- 98 ultimately testing forecasts of insect dynamics [25].

Impediments to forecasting insect dynamics

- A major impediment to forecasting biodiversity dynamics in insects is the sheer difficulty in
- 101 collecting insect species data: taxonomic expertise needed to process biodiversity samples to
- species is rare [26]. Even in situations where standardized sampling approaches are employed
- 103 [e.g. 27], significant lags may hinder the timely production of data, and thus, the viability of
- forecasts [28]. Another major hindrance to forecasting is that insect biodiversity data may not be
- 105 collected at the scale of the process being modeled, leading to biased inferences or inflation of
- observed precision [29]. However, recent advances in automated identification show promise in

increasing capacity and speed for insect monitoring data, which may soon increase our ability to meaningful quantify insect variability across space and time [30].

Trends observed in insect dynamics also depend highly on how they are monitored. Estimates of extent and area of occupancy may differ dramatically when predicted using different data sources [31]. Data may be taken from locations biased by their attributes to be more inviting to insects, like gardens or preserves [32]. Similar biases are likely present in the data that the community considers the highest quality: much of the long-term, systematic data taken for insects comes from areas under protection [e.g. 33], with less monitoring undertaken from areas under increasing disturbance [34]. Biases may also be present in unstructured and untargeted records (like those produced by community scientists), with less experienced users contributing more observations of larger species with more striking visual traits [35] (Box 1). The increasing reliance on unstructured community science to estimate biodiversity trends may increase the likelihood of misleading results [36,37] (Box 2).

The selection of drivers used in models also plays a profound role in how predictions of insect populations manifest. For instance, using temperature extremes rather than average temperatures in extinction risk models to account for thermal stress results in substantial changes in predictions [38]. An additional element of complexity occurs due to the non-uniformity of drivers of insect biodiversity trends through both time and space (**Box 3**). Finally, it is well-established that species are affected unequally by change: many species are negatively impacted by human activities, but a few thrive under the conditions of continuous disturbance of human altered environments [39]. This 'winners and losers' dynamic presents a barrier to generalizability when it comes to selecting metrics that both authentically capture the broad scale of the insect decline problem without masking the details through unwarranted statistical lumping of very different groups of organisms.

Predictability of different metrics

The question of whether forecasting insect dynamics is possible depends greatly on the specifics of both the question being asked, but also on the information available to support this question, and, indeed, the inherent predictability of the biodiversity metric or property to be modeled [40]. In most cases, the reliability of forecasting predictions decreases with time, while it increases with the amount of historical data informing the predictions [41,42]. However, the inherent predictability, and the scale at which prediction can occur, will ultimately dictate the limitations on the accuracy of a forecast.

Aggregate and derivative measures may be more accurately predicted compared to more simple metrics, however, this comes at a cost to characterization of drivers and precision of estimates [28]. Whereas forecasting models for single species abundance or distribution are common and offer detailed mechanistic explanations [e.g. 3], whole-community metrics like diversity, evenness and richness may provide a more holistic picture of insect well-being. But these metrics may also mask unequal responses across a community, particularly in groups of insects with traits that cause widely divergent responses to environmental conditions [43]. The temporal grain of the underlying data and the desired predictions inevitably interact with the

- selection of the metric, with longer time spans (i.e. inter-annual variation vs intra-annual
- variation) representing both different processes and the integration of more short-term
- underlying processes, but metrics that can be used for nearer-term forecasts are more
- inherently testable [44]. Because most studies have a particular focus, most attempts to forecast
- insect well-being as a whole suffers from phylogenetic, functional, spatial and temporal biases; it
- has been argued that to optimize these broad scale predictions, standardized monitoring
- schemes focusing on net abundance and biomass were needed to capture authentic estimates
- of these processes. [45].
- 155 These more aggregated measures for biodiversity are often used to imply more general future
- predictions, or provide qualitative predictions associated with a management scenario [40]: for
- example, a recent study found that habitats with more rare plant species supported more rare
- insects, regardless of habitat size [46], implying that restoration efforts that focus on improving
- 159 plant richness rather than protecting more habitat would result in better outcomes for insect
- richness. However, other authors caution against using richness as a measure for biodiversity
- 161 change because this metric is highly sensitive to plot size, making it unreliable to measure,
- much less predict biodiversity change [47].
- 163 Functional and trait-based approaches to measuring biodiversity processes may yield some
- more generalizable, if often qualitative, predictions that offer a workable compromise from the
- 165 highly stochastic species-focused metrics and limited mechanistic explanation of all-insect-level
- metrics [48]. For instance, functional trait approaches to measuring biodiversity may provide
- 167 generalities beyond taxonomic classification: climatic niche breadth was associated with degree
- of range shifts under climate conditions, and this association held in both vertebrates (birds) and
- invertebrates (moths and butterflies) across a latitudinal gradient in Europe [49]. Thus, these
- approaches offer a viable compromise that may offer broad generalizability in prediction without
- the cost to mechanistic explanation, and some traits may be more conducive to building viable
- 172 predictions than others [e.g. 50]

173 What tools can we use and where are they appropriate?

- 174 Several classes of tools hold promise for forecasting insect populations, depending on the
- desired scales and precision of predictions desired. A subset of the most commonly used
- 176 current approaches are presented here.
- 177 Correlative/statistical approaches
- 178 Often, projections in ecological systems are based on linear trends applied to time series data
- 179 [9,13,51]. This is often statistically inappropriate based on the underlying autocorrelation
- 180 structure of biodiversity metrics (i.e. the current state of the metric in question is dependent on
- both the environmental drivers and the previous state of that same metric), however, these
- linear trends are often essential for communicating change over time and provide more intuitive
- outputs to the model, such as expected change in population size. Thus, we can evaluate the
- length of time needed to establish a linear trend in the system under study, given the actual
- structure of historical data [52,53], but more importantly, it is essential that entomologists use

models which statistically manage for this underlying structure in their estimates of rates-ofchange. Weiss et al. 2023 provide an accessible approach for correcting annual data using random year intercepts in generalized linear models (GLMs). Their approach was able to produce more conservative, less biased estimates of rates of change for ground beetle abundance over a 24 year study, and also demonstrated how sensitivity analysis could be applied to identify influential observations [54].

In data-rich systems where there is limited functional understanding (e.g. data produced by large distributed monitoring networks) other tools can be employed. Generalized additive modeling (GAM) approaches can be use where the shape of the relationship between variables is unknown: this suite of tools allows the estimation of smoothing functions between variables of interest, allowing predictions to be 'data-led' and not necessarily relying on a fore-knowledge of the mechanistic explanation of their relationships [55]. For example, GAMs were used to explain patterns in carabid beetle richness relative to climatic variables, forecast the distribution of biodiversity hotspots, and used this information to develop conservation recommendations for a protected temperate steppe area in northwestern China [56]. Machine learning models such as artificial neural networks may be used to take this data-driven approach further in cases where system knowledge is limited, making it possible to forecast systems with very limited knowledge of their ecology. For example, an early warning system for rice gall midge was developed using an autoregressive neural network approach on time series data documenting abundance of the midge, and the model outperformed more typical statistical approaches because the method does not assume linear relationships in the data [57].

Mechanistic and physiological population models

192

193

194

195

196

197

198

199 200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

Mechanistic and physiological population models come in a wide variety of scales. In applied entomology, short-term forecasts of insects are commonly constructed, usually from mechanistic models describing the phenology, population growth and immediate environmental responses of a particular species or complex [58]. These models often include spatially-explicit elements to indicate risk, and may include management information (i.e. economic injury levels, action thresholds) often providing these forecasts at a weekly interval, aligned with how farmers and foresters make pest management decisions [59]. Near-term forecasting models may be extended (i.e. to the length of a growing season, for example) for a specific population of wellstudied insects using models that account for many of the major parameters, however these models may have very limited transferability if the models incorporate site-specific information and highly specific dynamics [e.g. 60]. Yet, mechanistic models can be used to gain more general insights when applied to broader groups using trait- based approaches. Mechanistic modeling essentially leverages very specific understanding of insect ecophysiological responses to predict higher level phenomena in insect populations, and can be used under longer term scenarios where statistical extrapolations are likely to break down [61] or explicitly link physiological traits to ecological theory [62]. For instance, thermal sensitivity traits were used to forecast insect community responses under future climate scenarios; these analyses suggested greater extinction risk among insects in tropical environments without rapid adaptation or migration [63]. Mechanistic approaches can be used to predict future selection patterns in plastic

227 or variable traits within their ranges: e.g. selection for lighter wing colors to avoid overheating in 228 warming climates [64]. 229 Integrating heterogenous data into forecasting 230 Integrated population modeling is an approach commonly used in wildlife conservation, where 231 taxa under management, such as game species, are monitored using varied survey protocols, 232 at different life stages, across different parts of their range, creating a highly heterogenous but 233 very rich set of observational data [65]. Animals monitored across their ranges or lifecycles often 234 yield discrepant patterns which can be difficult to resolve in isolation, often resulting from factors 235 such as asynchronies between metapopulations and density-dependent demographic effects 236 [66]. This approach allows researchers to identify which data and monitoring strategies provide 237 the most informative estimates [67], and is generally applied to well-monitored species with 238 complex life histories, but may be used to estimate and forecast a wide variety of metrics 239 regarding that population at various points in its lifecycle [66]. This integrated modeling 240 approach has recently been extended to integrated community occupancy modeling, which 241 allows the integration of single species distribution models and hierarchical community 242 occupancy models to forecast biodiversity dynamics of bird communities [68]. 243 Inferring temporal processes from spatial approaches 244 Spatial processes may serve as a proxy for temporal processes in developing forecasts for 245 insect decline, or as part of direct experiments to identify drivers that might be managed through 246 time [69]. Distribution models can be used to estimate range size and occupancy to prioritize 247 protections and listings of species with contracting or vulnerable populations within their ranges, 248 based on projected extinction risks [70]. Spatial approaches may provide a means for 249 forecasting other vital parameters in cases where abundance data are unavailable. For instance 250 an extinction risk index was developed based on range size and was used to examine how 251 species traits like thermal limits and body size affect extirpation risk in 600 Odonata species. 252 using occurrence data [43]. 253 Future ranges forecast through distribution modeling can be refined by combining this approach 254 with dynamic evolutionary models that account for the genetic potential of the species to 255 respond to changes in their environment [71], and may provide anticipatory predictions that go 256 beyond interactions with the abiotic environment. Range dynamics models can be further 257 refined beyond the niche-implicit aspects typical to species distribution models by the 258 superimposition of process-explicit, mechanistic models (for organismal physiology, biotic 259 interactions, and demography), helping to mitigate extrapolation issues created by distribution 260 models based on correlative characteristics alone [72]. 261 Iterative forecasting methods 262 With all methods described above, iterative, near-term forecasting approaches can be applied. 263 In this case, the forecasts are made repeatedly and updated as new data becomes available, 264 effectively re-running the model for each new system state as it is realized [40]. This approach

allows explicit testing not just the performance of predictive models, but would allow multiple competing models to be evaluated in real time, and provide insights into situations where relationships between drivers may not hold. This approach is currently under use for the NEON Ecological Forecasting Challenge, a community-driven scientific networking activity designed to bring about scientific interest in advancing approaches to ecological forecasting [7]. The project challenges users to develop forecasting models to predict the next state of data collected by the National Ecological Observatory Network [73]. Among the challenges, users have been tasked with developing models for the richness and abundance of Carabid beetles collected in pitfall traps at all the sites [7]. At time of writing, the challenge was still ongoing.

Conclusions

Forecasting insect populations, as a whole, with simultaneous great generalization and precision is unlikely due to the diversity of insects, ecologies, life histories, behaviors and environments in which they occur, but also in the diversity of metrics, data sources, inherent biases in monitoring strategies, and tools available. However, several approaches, including integrated population monitoring for single species predictions, and near-term iterative approaches to testing forecasts hold promise for developing novel insights into drivers. particularly when underlying data are classified using relevant species traits. Yet, broader generalities may not be needed when speaking of biodiversity trends as a whole: it is well established that rates of anthropogenic change in the environment generally have negative consequences for all but a handful of species that have traits that favor disturbed environments and tend to be associated with humans. Because of the non-uniqueness of models, it is likely that the guest for the 'best' (i.e. most precise) model to inform management is both ill-informed and potentially dangerous[74]. Although a nuanced approach to predicting insect responses to stressors is desirable from a scientific and management standpoint, core conservation and policy efforts do not require this level of detail in order to enact positive changes for insects more generally [75,76].

Acknowledgements

This paper was supported by National Science Foundation grants DBI #2045721 and DEB #2225092. I would like to thank John Gerrath, Kayla Perry and Eliza Grames for discussion during the drafting of this manuscript.

References

- 1. Loreau M, Cardinale BJ, Isbell F, Newbold T, O'Connor MI, de Mazancourt C: **Do not downplay biodiversity loss**. *Nature* 2022, **601**:E27–E28.
- Didham RK, Basset Y, Collins CM, Leather SR, Littlewood NA, Menz MHM, Müller J,
 Packer L, Saunders ME, Schönrogge K, et al.: Interpreting insect declines: seven
 challenges and a way forward. Insect Conserv Divers 2020, 13:103–114.
- 312 3. Barker BS, Coop L, Wepprich T, Grevstad F, Cook G: **DDRP: Real-time phenology and climatic suitability modeling of invasive insects**. *PLOS ONE* 2021, **15**:e0244005.
- Zylstra ER, Neupane N, Zipkin EF: Multi-season climate projections forecast declines
 in migratory monarch butterflies. Glob Change Biol 2022, 28:6135–6151.
- This paper builds on an annual cycle forecasting model for eastern populations of Monarch
- 317 butterflies using a variety of retrospective data sources, combined with climate projections
- 318 throughout the range of this population. The model forecasted shifts in distribution and
- 319 abundance of the monarch through its breeding range.

320

- Mouquet N, Lagadeuc Y, Devictor V, Doyen L, Duputié A, Eveillard D, Faure D, Garnier E,
 Gimenez O, Huneman P, et al.: REVIEW: Predictive ecology in a changing world. J
 Appl Ecol 2015, 52:1293–1310.
- Houlahan JE, McKinney ST, Anderson TM, McGill BJ: **The priority of prediction in ecological understanding**. *Oikos* 2017, **126**:1–7.
- Thomas RQ, Boettiger C, Carey CC, Dietze MC, Johnson LR, Kenney MA, Mclachlan JS,
 Peters JA, Sokol ER, Weltzin JF, et al.: *The NEON Ecological Forecasting Challenge*.
 Preprints; 2022.
- 329 8. Dietze MC: **Prediction in ecology: a first-principles framework**. *Ecol Appl* 2017, **27**:2048–2060.
- Dornelas M, Magurran AE, Buckland ST, Chao A, Chazdon RL, Colwell RK, Curtis T,
 Gaston KJ, Gotelli NJ, Kosnik MA, et al.: Quantifying temporal change in biodiversity:
 challenges and opportunities. *Proc R Soc B Biol Sci* 2013, 280:20121931.
- 334 10. Petchey OL, Pontarp M, Massie TM, Kéfi S, Ozgul A, Weilenmann M, Palamara GM, Altermatt F, Matthews B, Levine JM, et al.: **The ecological forecast horizon, and examples of its uses and determinants**. *Ecol Lett* 2015, **18**:597–611.
- 337 11. Neupane N, Zipkin EF, Saunders SP, Ries L: **Grappling with uncertainty in ecological** 338 **projections: a case study using the migratory monarch butterfly**. *Ecosphere* 2022, 339 **13**:e03874.
- 12. Ratnayake HU, Kearney MR, Govekar P, Karoly D, Welbergen JA: **Forecasting wildlife** die-offs from extreme heat events. *Anim Conserv* 2019, **22**:386–395.

- Cusser S, Helms IV J, Bahlai CA, Haddad NM: How long do population level field
 experiments need to be? Utilising data from the 40-year-old LTER network. Ecol Lett
 2021, n/a.
- Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M,
 Boggs C, Brodeur J, et al.: Scientists' warning on climate change and insects. *Ecol Monogr* 2023, 93:e1553.
- 15. Thakur MP, Risch AC, van der Putten WH: **Biotic responses to climate extremes in terrestrial ecosystems**. *iScience* 2022, **25**:104559.
- 350 16. Sconiers WB, Eubanks MD: **Not all droughts are created equal? The effects of stress severity on insect herbivore abundance**. *Arthropod-Plant Interact* 2017, **11**:45–60.
- van Heerwaarden B, Sgrò CM: Male fertility thermal limits predict vulnerability to
 climate warming. Nat Commun 2021, 12:2214.
- Duffy GA, Coetzee BW, Janion-Scheepers C, Chown SL: Microclimate-based
 macrophysiology: implications for insects in a warming world. Glob Change Biol Mol
 Physiol 2015, 11:84–89.
- 357 19. Weaving H, Terblanche JS, Pottier P, English S: **Meta-analysis reveals weak but** pervasive plasticity in insect thermal limits. *Nat Commun* 2022, **13**:5292.
- Williams CM, Chick WD, Sinclair BJ: A cross-seasonal perspective on local adaptation:
 metabolic plasticity mediates responses to winter in a thermal-generalist moth.
 Funct Ecol 2015, 29:549–561.
- Radchuk V, Turlure C, Schtickzelle N: Each life stage matters: the importance of
 assessing the response to climate change over the complete life cycle in butterflies.
 J Anim Ecol 2013, 82:275–285.
- Vaz S, Manes S, Gama-Maia D, Silveira L, Mattos G, Paiva PC, Figueiredo M, Lorini ML:
 Light pollution is the fastest growing potential threat to firefly conservation in the
 Atlantic Forest hotspot. Insect Conserv Divers 2021, 14:211–224.
- Wellenreuther M, Dudaniec RY, Neu A, Lessard J-P, Bridle J, Carbonell JA, Diamond SE,
 Marshall KE, Parmesan C, Singer MC, et al.: The importance of eco-evolutionary
 dynamics for predicting and managing insect range shifts. *Curr Opin Insect Sci* 2022,
 52:100939.
- Weisser W, Blüthgen N, Staab M, Achury R, Müller J: **Experiments are needed to quantify the main causes of insect decline**. *Biol Lett* 2023, **19**:20220500.
- This review argues that current long-term data collection efforts are insufficient for developing viable conservation strategies because they are unable to dis-entangle the relative importance of the drivers of insect population change.
- 378 25. Oliver TH, Roy DB: **The pitfalls of ecological forecasting**. *Biol J Linn Soc* 2015, 379 **115**:767–778.

380 26. Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR, Saunders ME, Shortall CR, 381 Tingley MW, Wagner DL: **Is the insect apocalypse upon us? How to find out**. *Biol Conserv* 2020, **241**:108327.

- Hoekman D, LeVan KE, Gibson C, Ball GE, Browne RA, Davidson RL, Erwin TL, Knisley
 CB, LaBonte JR, Lundgren J, et al.: Design for ground beetle abundance and diversity
 sampling within the National Ecological Observatory Network. Ecosphere 2017,
 8:e01744.
- Lewis ASL, Woelmer WM, Wander HL, Howard DW, Smith JW, McClure RP, Lofton ME,
 Hammond NW, Corrigan RS, Thomas RQ, et al.: Increased adoption of best practices
 in ecological forecasting enables comparisons of forecastability. *Ecol Appl* 2022,
 32:e2500.
- Zipkin EF, Zylstra ER, Wright AD, Saunders SP, Finley AO, Dietze MC, Itter MS, Tingley
 MW: Addressing data integration challenges to link ecological processes across
 scales. Front Ecol Environ 2021, 19:30–38.
- This paper examines a principal challenge in macroecology: when studying ecology at broad scales, this inherently means integration of heterogeneous data. The authors examine common barriers to data integration and provide instructive commentary on possible approaches to manage data integration issues.
- 399 30. Blair J, Weiser MD, de Beurs K, Kaspari M, Siler C, Marshall KE: Embracing
 400 imperfection: Machine-assisted invertebrate classification in real-world datasets.
 401 *Ecol Inform* 2022, 72:101896.
- 402 31. Rosa AHB, Ribeiro DB, Freitas AVL: **How data curation and new geographical records**403 **can change the conservation status of threatened brazilian butterflies**. *J Insect*404 *Conserv* 2023, **27**:403–414.
- 405 32. Plummer KE, Dadam D, Brereton T, Dennis EB, Massimino D, Risely K, Siriwardena GM,
 406 Toms MP: **Trends in butterfly populations in UK gardens—New evidence from citizen**407 **science monitoring**. *Insect Conserv Divers* 2023, **n/a**.
- 408 33. Ulyshen M, Horn S: **Declines of bees and butterflies over 15 years in a forested** 409 **landscape**. *Curr Biol* 2023, **33**:1346-1350.e3.
- 410 34. Forister ML, Black SH, Elphick CS, Grames EM, Halsch CA, Schultz CB, Wagner DL:
 411 Missing the bigger picture: Why insect monitoring programs are limited in their
 412 ability to document the effects of habitat loss. Conserv Lett 2023, n/a:e12951.
- 413 This perspective piece highlights a particularly insidious bias associated with insect biodiversity
- 414 monitoring: insect populations are monitored in habitats that are "good" for insects like
- 415 conservation areas. This ignores the biodiversity dynamics occurring in impacted areas, even
- 416 while human activities encroach into more and more relatively pristine habitats. This effect
- 417 almost certainly has compromised our ability to measure insect dynamics across broader
- 418 scales.

419

- Tongeren EV, Sistri G, Bonifacino M, Menchetti M, Pasquali L, Salvati V, Balletto E, Bonelli S, Cini A, Portera M, et al.: Discard butterfly local extinctions through untargeted citizen science: the interplay between species traits and user effort. In Review; 2023.
- 423 36. Boyd RJ, Powney GD, Pescott OL: **We need to talk about nonprobability samples**. 424 *Trends Ecol Evol* 2023, doi:10.1016/j.tree.2023.01.001.
- This paper colorfully illustrates how using biodiversity collections and community science databases can bias biodiversity trend estimation. It also provides a steady-handed, careful and accessible description of how these biases in sampling play out, and reviews the literature, including several major studies on insect decline, to explore how sampling and underlying data affected the observed patterns in each of these studies.

- 431 37. Gigliotti FN, Franzem TP, Ferguson PFB: **Rapid, recurring, structured survey versus**432 **bioblitz for generating biodiversity data and analysis with a multispecies abundance**433 **model**. *Conserv Biol* 2023, **37**:e13996.
- 38. Duffy K, Gouhier TC, Ganguly AR: Climate-mediated shifts in temperature fluctuations promote extinction risk. *Nat Clim Change* 2022, **12**:1037–1044.
- 436 39. McKinney ML, Lockwood JL: **Biotic homogenization: a few winners replacing many** 437 **losers in the next mass extinction**. *Trends Ecol Evol* 1999, **14**:450–453.
- 438 40. Lewis ASL, Rollinson CR, Allyn AJ, Ashander J, Brodie S, Brookson CB, Collins E, Dietze
 439 MC, Gallinat AS, Juvigny-Khenafou N, et al.: The power of forecasts to advance
 440 ecological theory. *Methods Ecol Evol* 2023, 14:746–756.
- This perspective piece provides a framework for moving forecasting from its more
- 442 applied management uses into a framework that can be used for advancing ecological theory.
- The paper also includes a thoughtful review on ecological forecasting, including definitions,
- approaches and applications, and would serve as a good introduction to the field of ecological forecasting.

- 41. Rousso BZ, Bertone E, Stewart R, Hamilton DP: **A systematic literature review of**448 **forecasting and predictive models for cyanobacteria blooms in freshwater lakes**.
 449 *Water Res* 2020, **182**:115959.
- 42. Ward EJ, Holmes EE, Thorson JT, Collen B: **Complexity is costly: a meta-analysis of**451 **parametric and non-parametric methods for short-term population forecasting**. *Oikos*452 2014, **123**:652–661.
- 43. Rocha-Ortega M, Rodríguez P, Bried J, Abbott J, Córdoba-Aguilar A: **Why do bugs**454 **perish? Range size and local vulnerability traits as surrogates of Odonata extinction**455 **risk**. *Proc R Soc B Biol Sci* 2020, **287**:20192645.
- 44. White EP, Yenni GM, Taylor SD, Christensen EM, Bledsoe EK, Simonis JL, Ernest SKM:
 457 Developing an automated iterative near-term forecasting system for an ecological study. *Methods Ecol Evol* 2019, 10:332–344.

- 459 45. Cardoso P, Leather SR: **Predicting a global insect apocalypse**. *Insect Conserv Divers* 2019, **12**:263–267.
- 46. Tobisch C, Rojas-Botero S, Uhler J, Kollmann J, Müller J, Moning C, Redlich S, Steffan 462 Dewenter I, Benjamin C, Englmeier J, et al.: Conservation-relevant plant species
 463 indicate arthropod richness across trophic levels: Habitat quality is more important
- 464 than habitat amount. *Ecol Indic* 2023, **148**:110039.

- 47. Valdez JW, Callaghan CT, Junker J, Purvis A, Hill SLL, Pereira HM: The undetectability
 466 of global biodiversity trends using local species richness. *Ecography* 2023,
 467 2023:e06604.
- This paper illustrates the issues that arise when using overly- general biodiversity metrics to characterize biodiversity trends. In particular, this study noted that spatial biases and even small sampling errors could result in the reversal of observed trends in richness.
- 48. Beissinger SR, Riddell EA: **Why Are Species' Traits Weak Predictors of Range Shifts?**473 *Annu Rev Ecol Evol Syst* 2021, **52**:47–66.
- 474 49. Hällfors MH, Heikkinen RK, Kuussaari M, Lehikoinen A, Luoto M, Pöyry J, Virkkala R,
 475 Saastamoinen M, Kujala H: Recent range shifts of moths, butterflies, and birds are
 476 driven by the breadth of their climatic niche. Evol Lett 2023,
 477 doi:10.1093/evlett/qrad004.
- This study very nicely illustrates how the use of a traits-based approach can offer generalizability in explanatory models and, by extension, forecasts across very phylogenetically different groups. Using birds and Lepidoptera, the authors were able to demonstrate that recent range shifts in several hundred species were related to their respective climactic niche breaths and not other life history traits.
- Jackson HM, Johnson SA, Morandin LA, Richardson LL, Guzman LM, M'Gonigle LK:
 Climate change winners and losers among North American bumblebees. *Biol Lett* 2022, 18:20210551.
- Cusser S, Bahlai C, Swinton SM, Robertson GP, Haddad NM: Long-term research
 avoids spurious and misleading trends in sustainability attributes of no-till. *Glob Change Biol* 2020, 26:3715–3725.
- White ER: Minimum Time Required to Detect Population Trends: The Need for Long-Term Monitoring Programs. *BioScience* 2019, doi:10.1093/biosci/biy144.
- 492 53. Bahlai CA, White ER, Perrone JD, Cusser S, Stack Whitney K: **The broken window: An**493 **algorithm for quantifying and characterizing misleading trajectories in ecological**494 **processes**. *Ecol Inform* 2021, **64**:101336.
- Weiss F, von Wehrden H, Linde A: Random year intercepts in mixed models help to assess uncertainties in insect population trends. *Insect Conserv Divers* 2023, n/a.
- 497 55. Pedersen EJ, Miller DL, Simpson GL, Ross N: **Hierarchical generalized additive models** 498 **in ecology: an introduction with mgcv**. *PeerJ* 2019, **7**:e6876.

- 56. Liu X, Wang H, He D, Wang X, Bai M: **The Modeling and Forecasting of Carabid Beetle Distribution in Northwestern China**. *Insects* 2021, **12**.
- 501 57. Rathod S, Yerram S, Arya P, Katti G, Rani J, Padmakumari AP, Somasekhar N,
 502 Padmavathi C, Ondrasek G, Amudan S, et al.: Climate-Based Modeling and Prediction
 503 of Rice Gall Midge Populations Using Count Time Series and Machine Learning
 504 Approaches. Agronomy 2022, 12.
- 505 58. Magarey RD, Isard SA: **A Troubleshooting Guide for Mechanistic Plant Pest Forecast Models**. *J Integr Pest Manag* 2017, **8**:3.
- 507 59. Crimmins TM, Gerst KL, Huerta DG, Marsh RL, Posthumus EE, Rosemartin AH, Switzer J,
 508 Weltzin JF, Coop L, Dietschler N, et al.: Short-Term Forecasts of Insect Phenology
 509 Inform Pest Management. Ann Entomol Soc Am 2020, 113:139–148.
- 510 60. Bahlai CA, Weiss RM, Hallett RH: **A mechanistic model for a tritrophic interaction**511 **involving soybean aphid, its host plants, and multiple natural enemies**. *Ecol Model*512 2013, **254**:54–70.
- 513 61. Maino JL, Kong JD, Hoffmann AA, Barton MG, Kearney MR: **Mechanistic models for** 514 **predicting insect responses to climate change**. *Glob Change Biol Mol Physiol* 2016, 515 **17**:81–86.
- 516 62. Munch SB, Rogers TL, Symons CC, Anderson D, Pennekamp F: **Constraining nonlinear** 517 **time series modeling with the metabolic theory of ecology**. *Proc Natl Acad Sci* 2023, 518 **120**:e2211758120.
- 519 63. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR: 520 **Impacts of climate warming on terrestrial ectotherms across latitude**. *Proc Natl Acad* 521 *Sci* 2008, **105**:6668–6672.
- 522 64. Buckley LB, Kingsolver JG: **Environmental variability shapes evolution, plasticity and biogeographic responses to climate change**. *Glob Ecol Biogeogr* 2019, **28**:1456–1468.
- 524 65. Frost F, McCrea R, King R, Gimenez O, Zipkin E: **Integrated Population Models:** 525 **Achieving Their Potential**. *J Stat Theory Pract* 2022, **17**:6.
- 526 66. Zipkin EF, Saunders SP: **Synthesizing multiple data types for biological conservation using integrated population models**. *Biol Conserv* 2018, **217**:240–250.
- 528 67. Saunders SP, Farr MT, Wright AD, Bahlai CA, Ribeiro Jr. JW, Rossman S, Sussman AL,
 529 Arnold TW, Zipkin EF: Disentangling data discrepancies with integrated population
 530 models. Ecology 2019, 100:e02714.
- 531 68. Doser JW, Leuenberger W, Sillett TS, Hallworth MT, Zipkin EF: Integrated community 532 occupancy models: A framework to assess occurrence and biodiversity dynamics 533 using multiple data sources. *Methods Ecol Evol* 2022, **13**:919–932.
- 534 69. Blüthgen N, Staab M, Achury R, Weisser WW: **Unravelling insect declines: can space** replace time? *Biol Lett* 2022, **18**:20210666.

This opinion piece argues that spatial approaches offer much greater statistical power than long-term monitoring strategies to unravel the drivers of insect decline.

538539

- 540 70. Bried JT, Rocha-Ortega M: **Using range size to augment regional priority listing of charismatic insects**. *Biol Conserv* 2023, **283**:110098.
- 542 71. DeMarche ML, Doak DF, Morris WF: **Incorporating local adaptation into forecasts of** 543 **species' distribution and abundance under climate change**. *Glob Change Biol* 2019, 544 **25**:775–793.
- 72. Briscoe NJ, Elith J, Salguero-Gómez R, Lahoz-Monfort JJ, Camac JS, Giljohann KM,
 Holden MH, Hradsky BA, Kearney MR, McMahon SM, et al.: Forecasting species range dynamics with process-explicit models: matching methods to applications. *Ecol Lett* 2019, 22:1940–1956.
- Nagy RC, Balch JK, Bissell EK, Cattau ME, Glenn NF, Halpern BS, Ilangakoon N, Johnson B, Joseph MB, Marconi S, et al.: Harnessing the NEON data revolution to advance
 open environmental science with a diverse and data-capable community. *Ecosphere* 2021, 12:e03833.
- 553 74. Boettiger C: **The forecast trap**. *Ecol Lett* 2022, **25**:1655–1664.
- This piece uses examples from fisheries management that illustrate 'the forecast trap'- that is, the tendency of managers to rely on models that, according to statistical measures, provide the best fit, but do not guide the best real world outcomes.

557

- 558 75. Forister ML, Pelton EM, Black SH: **Declines in insect abundance and diversity: We know enough to act now**. *Conserv Sci Pract* 2019, **1**:e80.
- 76. Harvey JA, Heinen R, Armbrecht I, Basset Y, Baxter-Gilbert JH, Bezemer TM, Böhm M,
 561 Bommarco R, Borges PAV, Cardoso P, et al.: International scientists formulate a
 562 roadmap for insect conservation and recovery. Nat Ecol Evol 2020, 4:174–176.
- 563 77. Davis CL, Guralnick RP, Zipkin EF: **Challenges and opportunities for using natural** 564 **history collections to estimate insect population trends**. *J Anim Ecol* 2023, **92**:237– 565 249.
- This review examines how natural history collection data is used in biodiversity dynamics research, and how the limitations of these approaches might affect study outcomes. The authors offer an instructive way forward on integrating these rich data with more contemporary data produced by other means in a framework which accounts for biases across varied data sources.

571

572 78. Meineke EK, Davies TJ, Daru BH, Davis CC: **Biological collections for understanding** biodiversity in the Anthropocene. *Philos Trans R Soc B Biol Sci* 2018, **374**:20170386.

- 79. Perry KI, Bahlai CA, Assal TJ, Riley CB, Turo KJ, Taylor L, Radl J, Delgado de la flor YA,
 Sivakoff FS, Gardiner MM: Landscape change and alien invasions drive shifts in native
 lady beetle communities over a century. Ecology; 2022.
- 577 80. Guzman LM, Johnson SA, Mooers AO, M'Gonigle LK: **Using historical data to estimate** 578 **bumble bee occurrence: Variable trends across species provide little support for** 579 **community-level declines**. *Biol Conserv* 2021, **257**:109141.
- 81. Boyd RJ, Powney GD, Burns F, Danet A, Duchenne F, Grainger MJ, Jarvis SG, Martin G,
 Nilsen EB, Porcher E, et al.: ROBITT: A tool for assessing the risk-of-bias in studies of temporal trends in ecology. *Methods Ecol Evol* 2022, 13:1497–1507.
- 583 82. Thogmartin WE, Wiederholt R, Oberhauser K, Drum RG, Diffendorfer JE, Altizer S, Taylor
 584 OR, Pleasants J, Semmens D, Semmens B, et al.: **Monarch butterfly population decline**585 **in North America: identifying the threatening processes**. *R Soc Open Sci* 2017,
 586 **4**:170760.
- 83. Bahlai CA, Zipkin EF: **The Dynamic Shift Detector: An algorithm to identify changes in** parameter values governing populations. *PLOS Comput Biol* 2020, **16**:e1007542.
- Zylstra ER, Ries L, Neupane N, Saunders SP, Ramírez MI, Rendón-Salinas E,
 Oberhauser KS, Farr MT, Zipkin EF: Changes in climate drive recent monarch butterfly
 dynamics. *Nat Ecol Evol* 2021, 5:1441–1452.

Figure 1. Core elements required to forecast insect dynamics. Researchers must consider the research question and context to select appropriate data, metrics models and validation approaches to be used for forecasting insect dynamics. Figure constructed using Canva.

Box 1: Can natural history collection data be used to estimate and predict insect population trends?

Using natural history collection data (and similarly, data produced by community science surveys like iNaturalist) in explanatory and forecasting models is a subject of ongoing concern in the quantitative ecology community because of the unstructured nature of these data [36,77]. Yet, one of the principal challenges in understanding and predicting insect decline is the lack of historical baseline data [2]. If used with caution, these data represent an unprecedented resource for understanding how insect communities have changed over time [78]. A technique that could capitalize on this data resource is to use a community of specimens instead of single species from within the collection data, where multiple species with a similar probability of being captured are examined together, using total captures across the community to control for sampling effort over time. This approach allows relative, if not absolute abundance and thus long-term responses to historical drivers to be evaluated [79]. Similarly, researchers might use detection data of similar species within a given species' expected range, at a given date and time to infer non-detection for the construction of occupancy models [80]. Furthermore, these records can be brought into integrated modeling approaches which have the ability to couple these long term, but unstructured data with contemporary experimentally-produced data in a single analytical framework [77].

Box 2: Tool Highlight: Evaluating bias in time series

Because of the high degree of temporal and spatial autocorrelation present in occurrence and abundance surveys, Boyd et al. [81] developed ROBITT: Risk Of Bias In Studies of Temporal Trends. ROBITT is a tool which provides a structured approach for a researcher to essentially 'interview' their data in the context of bias assessment, focusing on explicitly defining the questions, scales, data reliability and provenance, as well as any apparent geographical, environmental and taxonomic biases. This tool is especially useful for assessing limitations of data from unstructured surveys and how these biases might manifest in any projection models [81].

BOX 3: Case study: Forecasting the dynamics of complex insects

In addition to different species being sensitive to different disturbances through their varied biologies, different stressors may act on populations at different times, and one stressor may predispose a species to sensitivity to another. In the iconic and well-studied Monarch butterfly, a number of conditions have been linked to the dynamics of this species, including pesticide use in breeding grounds, unfavorable conditions at migratory stopover points, or loss of integrity of

overwintering sites [82]. While time-series methods may be used to identify periods of change in internal rules of population regulation, providing insight into when the most changes have occurred historically [83], a hierarchical modeling approach used to integrate population data across the monarch lifecycle and isolate the effects of these potential drivers, disentangling those with historical effects from those currently driving the dynamics of this species [84]. This approach revealed that breeding season temperatures played a larger role in monarch dynamics than previously thought in recent years: when it was used in concert with climate projections to forecast future populations of the species, it highlighted particular vulnerability to monarch breeding in parts of the US Midwest experiencing higher rates of temperature increase [4].

644

647 648

634

635

636

637

638

639

640

641

642

643

