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Abstract

The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to
significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs
have shorter driving range and lower payload capacity, which need to be taken into account when
dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering
backhauls and time windows. To optimize vehicle utilization, customers are categorized into two
groups: linehaul customers requiring deliveries, where the deliveries need to be made following the
last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine
a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering
factors such as limited driving range, payload capacity of BETs, and the possibility of en route
recharging. We formulate the problem as a mixed-integer linear programming model and propose
an algorithm that combines adaptive large neighborhood search and simulated annealing meta-
heuristics to solve it. The effectiveness of the proposed strategy is demonstrated through extensive
experiments using a real-world case study from a logistics company in Southern California. The
results indicate that the proposed strategy leads to a significant reduction in total energy consump-
tion compared to the baseline strategy, ranging from 11% to 40%, while maintaining reasonable
computational time. In addition, the proposed strategy provides solutions that are better than or
comparable with those obtained by other metaheuristics. This research contributes to the develop-
ment of sustainable transportation solutions in the freight sector by providing a novel approach for
dispatching BET fleets. The findings emphasize the potential of deploying BETs to achieve energy
savings and advance the goal of green logistics.
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1. Introduction

nrecent decades, there has been an increase in greenhouse

gas (GHG) emissions due to human activities [1]. Among

various sectors, transportation is the leading contributor
to GHG emissions. In the US, the transportation sector
accounted for 28% of total GHG emissions in 2021, primarily
attributed to the combustion of fossil fuels in vehicular trans-
portation and goods movements [2]. Specifically, heavy-duty
vehicles contribute approximately 23% of GHG emissions
within the transportation sector, placing them as the second-
largest contributor, surpassed only by light-duty vehicles [3].
To address the environmental and climate challenges posed
by the freight transportation sector, efforts have been directed
toward promoting the accelerated adoption of clean heavy-
duty vehicles, including zero-emission heavy-duty trucks, in
the near future [4].

In recent years, the emergence of battery electric trucks
(BETs) has shown promise in reducing GHG emissions in the
transportation sector. However, the widespread adoption of
BETs presents several challenges due to technological limita-
tions of BETs as compared to conventional diesel trucks. These
limitations include shorter driving range, longer refueling
(recharging) time, and lower payload capacity. Furthermore,
the availability of public charging stations for BETs is currently
very limited.

In this article, we consider a real-world fleet dispatching
of a logistics company in Southern California, who aims to
transition to a 100% BET fleet. Given the technological limita-
tions of BETSs, as mentioned earlier, the company will need to
adapt their fleet dispatching strategies, together with BET
recharging strategies. Therefore, our study focuses on the BET
dispatching problem with the objective of minimizing total
energy consumption from dispatching and recharging opera-
tions. This problem can be seen as an extension of the green
vehicle routing problem (GVRP) proposed by Erdogan and
Miller-Hooks [5].

To accurately estimate BET energy consumption,
we propose a detailed energy consumption model for BETs in
this study. This model takes into account various factors, such
as varying cargo weight and driving speed. Additionally,
we explore an en route partial recharging policy for the BET
fleet, allowing BETs to recharge at any available charging
stations along their routes. This approach is more practical in
real-world scenarios compared to full recharging restrictions
since a well-designed recharging schedule can reduce charging
time and ensure adherence to customer time windows [6].

In addition to the requirements in the GVRP and the
classic Electric Vehicle Routing Problem with Time Windows
(EVRP-TW) [7], the BET dispatching problem under investi-
gation incorporates practical constraints that are crucial for
real-world applicability. Specifically, we consider precedence
and time window constraints to enhance the efficiency of BET
utilization. In this context, the truck driver follows a prece-
dence strategy whereby deliveries are performed upon depar-
ture from the depot, followed by pickups during the backhaul
trip. This strategy is known as Vehicle Routing Problem with

Backhauls (VRP-B) [8]. The customers in the problem are
divided into two distinct sets: linehaul customers who require
deliveries, where the deliveries need to be made following the
last-in-first-out principle, and backhaul customers who
require pickups. There are several benefits for this approach
from an economic and practical perspective. First, it reduces
the occurrence of empty vehicle trips, thereby reducing energy
consumption and mitigating the negative environmental
impact associated with transportation [9]. Second, since
trailers are often rear-loaded, the appropriate arrangement of
cargo load or pallets can be established when departing from
the depot to visit linehaul customers. This avoids the need for
cargo rearrangement at each customer location [8].

In this article, we present a novel approach to address the
energy-efficient BET dispatching problem with backhauls and
time windows. We develop a mixed-integer linear program-
ming (MILP) model specifically tailored for this problem,
which we refer to as the Green Vehicle Routing Problem with
Backhauls, Partial Recharging, and Time Windows (GVRP-
B-PR-TW). To efficiently solve this model, we design and
implement an adaptive large neighborhood search (ALNS)-
based metaheuristic algorithm. Extensive experimentation is
conducted using realistic test instances, allowing us to evaluate
the effectiveness and performance of our proposed approach.

This research makes significant contributions in the
following areas:

1. Formulating an Energy-Efficient BET Dispatching
Problem: This study addresses the need for sustainable
freight transportation by formulating an energy-
efficient BET dispatching problem. The formulation
extends the classic GVRP-TW by incorporating an
energy consumption model, a partial recharging
scheme, and a backhaul strategy. This comprehensive
problem formulation enables the consideration of
real-world operational constraints and
optimization objectives.

2. Development of a Computationally Efficient Approach:
To efliciently solve the proposed GVRP-B-PR-TW, an
effective ALNS-based metaheuristic algorithm is
employed. This algorithm utilizes a combination of
exploration and exploitation strategies to find high-
quality solutions for the dispatching problem. By
employing the ALNS framework, the algorithm can
efficiently explore the solution space and provide
near-optimal or improved solutions.

3. Validation with Real-World BET Fleet Dispatching
Data: The proposed dispatching strategy is rigorously
evaluated using real-world BET fleet dispatching data,
including orders, itineraries, and routes. The
experimental results demonstrate the efficacy of the
proposed approach in significantly reducing total
energy consumption when compared to the baseline
strategy implemented in the real world. In addition,
the proposed ALNS framework provides solutions
that are better than or comparable with those
obtained by other metaheuristics algorithms for our
case study. Lastly, the effect of battery capacities is
further evaluated.
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The remainder of this article is organized as follows.
Section 2 provides a brief literature review on the GVRP and
the VRP-B. In Section 3, we present the BET energy consump-
tion model and introduce a MILP model specifically designed
for the BET dispatching problem. The methodology of the
ALNS metaheuristics algorithm to solve the proposed problem
is detailed in Section 4. To assess the performance of the
proposed solution, Section 5 presents an evaluation based on
areal-world case study. Finally, in Section 6, we conclude the
article and discuss future directions for research.

2. Related Literature

The past two decades have witnessed a growing research
interest in solving the GVRP and its variants. In this section,
we first briefly review GVRP-related models, which mainly
focuses on alleviating the negative impacts on the environ-
ment when designing a routing strategy for electric vehicles
(EVs) and considering the energy consumption models.
Second, we discuss the related works focusing on the VRP-B,
where the goal is to design the most-effective routes that satisfy
the requirements of both linehaul and backhaul customers.

2.1. Green Vehicle Routing
Problem

In [5], GVRP was introduced as a variant of VRPs, involving
alternative and greener fuel vehicles (e.g., EVs, biodiesel,
ethanol, etc.) that have limited travel range and need to
be recharged en route. The goal of this problem is to decrease
the total energy consumption in fleet operations. The authors
proposed two heuristic approaches, involving a modified
Clarke and Wright saving (MCMS) and a density-based clus-
tering algorithm to solve this problem. In this study, the alter-
native fuel vehicles (AFVs) are incapacitated and the time
windows and partial refueling are not considered. Extend to
the GVRP [5], Schneider et al. [7] further investigated the
Electric Vehicle Routing Problem with Time Windows (EVRP-
TW), considering time windows, limited driving range, and
freight capacities during route planning. They developed a
hybrid metaheuristic framework that combines a variable
neighborhood search (VNS) and a tabu search (TS) to solve
the EVRP-TW, and demonstrated the performance of the
proposed algorithm based on the GVRP instances [5] and the
Solomon VRP-TW instances [10]. Furthermore, Keskin and
Catay [6] studied en route partial recharge strategies for the
EV fleet, which relax the full recharge restriction in [7]. The
authors proposed an ALNS algorithm to solve the problem
and demonstrated the efficiency of the partial recharging option.

However, the energy consumption of EVs is nonlinearly
in realistic scenario [11]. Many studies have been proposed to
investigate the EVRP (e.g., [5, 6, 7]) considering a more real-
istic energy consumption model of EV, where the energy
consumption is nonlinearly proportional to travel distance.
For instance, Goeke and Schneider [12] utilized a realistic
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energy consumption model considering speed, terrain
gradient, and cargo payload in the routing strategy for both
ECVs and ICCVs and evaluated the cost of battery replacement
as one of the objective functions. In this study, the charging
time varies depending on the battery state-of-charge (SOC)
when the EV arrives at the CSs. Zhang et al. [13] introduced
the electric vehicle routing problem with recharging stations
for minimizing energy consumption, where the energy
consumption model of ECV is similar to [11, 12]. The authors
developed an ant colony (AC)-based metaheuristic algorithm
and to address the proposed problem. In [14], Macrina et al.
studied a GVRP with a mixed fleet composed with electrical
and conventional vehicles. The authors proposed more real-
istic energy consumption models for both EVs and internal
combustion engine vehicles (ICEVs) and investigated the
effects of acceleration and deceleration on energy consump-
tion. Recently, Yu et al. [15] proposed an ALNS framework
embedded with a dynamic programming procedure to address
the green mixed fleet VRP and evaluate its potential for carbon
emission reduction.

Few studies have considered a practical constraint, the
pick-up and delivery sequence, in GVRPs. In [16], Granada-
Echeverri et al. introduced an EVRP with backhauls (EVRP-B)
in logistics distribution, and an iterated local search heuristic
algorithm was developed to solve the EVRP-B. Yang et al. [17]
proposed an EVRP-TW with mixed backhauls and recharging
strategies. The authors constructed a multidimensional
network to represent the transportation process, and an
augmented Lagrangian relaxation model is provided to solve
the vehicle routing and recharging strategies. Moreover, Xiao
et al. [18] proposed a diversity-enhanced memetic algorithm
(DEMA) to solve the EVRP-TW with mixed backhauls.

Nevertheless, from the economic and sustainable perspec-
tives, cargo weight and visit sequence significantly impact
energy consumption and transportation efficiency. In this
study, we introduce the GVRP-B-PR-TW, which accounts for
energy consumption characteristics of BETs, backhaul
strategy, partial recharging policy, and time windows. In
addition, the impact of cargo weight on electricity consump-
tion is also considered. We summarize the main differences
between our work and the related literature in Table 1.

2.2. Vehicle Routing Problem
with Backhauls

The second strand of relevant literature focuses on solving the
VRP-B, where the goal is to find a cost-effective routing plan
for the linehaul and backhaul customers. The VPR-B was first
introduced by Deif and Bodin [19] in the literature, an exten-
sion of the classic VRP. In this problem, the linehaul customers
who request deliveries are first visited, and followed by the
backhaul customers who request pickups. In [8], Toth and
Vigo introduced a mixed-integer programming formulation
for a general VRP-B and developed an exact branch-and-
bound algorithm to address the proposed problem.
Similarly, Mingozzi et al. [20] developed an exact method
based on the set partitioning model to solve the vehicle routing
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TABLE 1 Characteristic of GVRPs addressed in this article and related literature.

Energy Customer
Solution cost
Reference approach function Linehaul
Erdoganand  MCWS Linear .
Miller-Hooks
(2012)
Schneider VNS+TS Linear .
et al. (2014)
Goeke and ALNS+LS Nonlinear ¢
Schneider
(2015)
Keskin and ALNS+SA Linear .
Catay (2016)
Zhang et al. AC+ALNS Nonlinear e
(2018)
Macrinaetal. ILS Linear .
(2019)
Granada- ILS Linear .
Echeverri et al.
(2020)
Yang et al. ADMM Linear .
(2021)
Yu et al. (2021) ALNS+DP Nonlinear ¢
Xiao et al. DEMA Linear .
(2023)
This article ALNS+SA Nonlinear .

Mixed
Backhaul backhaul

Recharging

strategy
Time
windows

Fleet composition

Homogeneous Heterogeneous Full Partial

Note: AC, Ant Colony; ADMM, Alternating Direction Method of Multipliers; ALNS, Adaptive Large Neighborhood Search; DEMA, Diversity-
enhanced Memetic Algorithm; DP, Dynamic Programming; ILS, Iterated Local Search; LS, Local Search; MCWA, Modified Clarke and Wright
Savings; SA, Simulated Annealing; TS, Tabu Search; VNS, Variable Neighborhood Search.

problem with backhauls. This approach computed a valid
lower bound for the optimal solution by solving the dual of
the LP-relaxation of its integer program. Compared with the
classic VRP-B, Ropke and Pisinger [21] introduced a rich
pick-up and delivery problem with time windows and
proposed a unified heuristic solver to solve the VRP-B and its
variants. They proposed an improved version of the large
neighborhood search (LNS) algorithm to solve different types
of VRP-B.

The VRP-B has many realistic applications in transporta-
tion and logistics. For example, Salhi et al. [22] presented the
fleet size and mixed vehicle routing problem with backhauls,
where the goal is to minimize the total travel cost, including
the fixed cost of different types of vehicles and related traveling
cost. In [23], Chévez et al. presented a multi-depot vehicle
routing problem with backhauls, where the vehicle fleet is
collecting after the delivering process. The authors proposed
a multi-optimization approach based on an AC heuristic algo-
rithm to solve the proposed problem with respect to three
objectives of travel distance, travel time, and total energy
consumption. Recently, Lin et al. [24] investigated several
real-world operational constraints for the VRP-B, including
last-in, first-out precedence, order payload, vehicle types, and
operation times. Inspired by a practical application with a
major grocery chain, the authors formulated the proposed

problem as a mixed-integer programming model. A greedy
randomized adaptive search procedure (GRASP)-based algo-
rithm was developed to solve the proposed problem. In [25],
Yu et al. introduced VRP with simultaneous pick-up and
delivery and occasional drivers. A simulated annealing
(SA)-based heuristic algorithm that incorporates a set of
neighborhood operators is proposed to solve the model.

A general overview of the literature for the VRP-B was
provided by [26] with a focus on the computational perfor-
mance of exact algorithms and heuristic algorithms. In [27],
the authors provided a comprehensive review for the existing
literature on VRP-Bs, including the mathematical formula-
tion, solution methodology, and industrial applications.
Recently, from a sustainability perspective, Santos et al. [28]
conducted a survey on the VRP-B, focusing on the effective-
ness of the economic and sustainable concerns.

3. Problem Description
and Formulation

The proposed EVRP-B-PR-TW concerns a set of clustered
customers with known delivery types, demand, address,
appointment time windows, and service times. The dispatching

© The Authors
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center receives the customers’ information, then makes a
precedence dispatching strategy and recharging schedule for
a homogeneous fleet of BETs with limited cargo payload and
battery capacity. To serve the integrated inbound-outbound
logistics, the BET is fully recharged before departure at the
depot, and is partially/fully loaded with the requested delivery
orders for the linehaul customers. When arranging those
delivery orders into the trailer, the ones that will be delivered
later are loaded first and the ones that will be delivered sooner
are loaded at the end. This last-in-first-out arrangement can
reduce the cargo handling time when making delivery to the
linehaul customers on the outbound trip. On the return trip
to the depot, the BET visits the backhaul customers and loads
the pick-up orders (within its capacity). As a result, a possible
reduction in the number of BETs and the total travel distance
for the BET fleet leads to less energy consumption.

Figure 1 graphically describes our dispatching problem
involving seven linehaul customers (D1-D7) who request
deliveries, four backhaul customers (P1-P4) who request
pickups, two charging stations (CS1 and CS2), and a depot
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where the BET fleet is fully charged when starting the daily
operation. The percentage value in each arc/flow shows the
battery SOC when the BET arrives at each vertex or departs
from the CS. It should be noted that the BET can visit the
CS at most once and the maximum recharging time is
one hour.

The BET dispatching problem can be defined as a
complete directed graph G = (./\/’O,D UR,A ) , where N,
denotes the vertices including all customers’ nodes A/ and
depot (O, D), and R represents recharging stations. A set of
customers N can be partitioned into two groups {L, B},
where the set L = (1,2,..., n) represents the linehaul
customers, and the set B=(n + 1,n + 2,..., n+ m) denotes
the backhaul customers. Each customer ie NV has an
assigned delivery type with demand g; (positive if pick-up,
negative if delivery), service time s;, and time window [e;, /],
where e; and J; denotes the earliest and latest service starting
times, respectively. All BETs should departure from the depot
O and returns at D, with a maximum load capacity C and a
battery capacity Q.

m Illustration of a feasible solution to the BET dispatching problem with backhauling.
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Extend the integer linear programming formulation and
notation of [8], we define the set of arc A=A UA, UA,.
Specifically,let A = {(z,]) €A:ieLuUOjelLu R} denoteall
forward flows (i.e., from the depot to the linehaul vertices),
A = {(i,j) €A:ieBUR,jeBuU D} represent the backward
flows include all backhauling vertices, and the interface arc
A = {(1,]) €A:ieLUR,jeB uD} . Each arc (3, ) is associ-
ated with a travel distance d;; and travel time ¢;. We define
A =1j: (i,j) eA,ie \7} , which denotes the forward of i, and
A =1j :(j,i) eA,ie \7} , which denotes the backward of i.

3.1. The Energy Consumption
Model for the BETs

The battery energy consumption in our model is calculated
as follows. First, we determine the mechanical power P, using
the model presented in [29]. In mechanical power, it deter-
mines the energy consumption based on factors such as travel
distance, vehicle weight, speed, acceleration, and the like.
Second, the mechanical power Py, is translated into the electric
power Py that the electric motor needs to provide the required
amount of mechanical power. Third, the electric energy
needed by the electric motor is converted to the amount of
power that has been taken from the battery P; based on the
battery discharge efficiency [13].

The mechanical power Py, of BET is needed to overcome
rolling, drag and wind resistance, and gravitational force as
well as to enable the acceleration (a). With the rolling resis-
tance factor ¢, , the total vehicle mass M and the gravitational
constant g, and the gradient angle 6, the rolling resistance F,
can be determined as

Frzcr'M-g-cos(Q) Eq. (1)

For the aerodynamic resistance F,, we can combine the
speed v, the aerodynamic drag coefficienct ¢y, p, the air density,
and the frontal area A. Then, the aerodynamic resistance can
be calculated by

1

Fuzi-pu'A-cdm2 Eq.(2)

Therefore, the total mechanical power P, is:
P, =
1 , ,
M-a+5-cd-p-A-v +M-g-sm(9)+cr-M~g~cos(9) v

Eq. (3)

To calculate the mechanical power requirement P;; of the
BET on the linked level arc (i, j), we use the model presented
in [11, 13], which is a linear function of vehicle weight and a
quadratic form of vehicle speed. To simplify the problem,
we assume the total weight M = w + C;; where wand C; repre-
sent the curb weight and load carried by the BET, respectively,

the distance for the arc (i,j) is represented as d;;. Then, the
mechanical energy required by the BET is shown as follows:

P, <Py (d, Iv,)= Pidij =a,(w+C,)d, +pvid, Eq.(4)

[

where a;;=a + gsin 6;; + gC, cos 6;is an arc-specific constance
and 8 =0.5C,Ap is a vehicle-specific constant. In our problem,
we assume the vehicle speed is constant, and the result is
represented by kilowatt hour (kWh).

Hence, to compute the battery power demand on a graph,
the motor efficiency (eff,,) and battery discharging efficiency
(eff;) of a BET are taken into consideration in the model. The
electric energy consumption E;; for traveling this arc can
be calculated by:

g oo L _[%(WJFCﬁ)dﬁJ’ﬂV;dJ
ij_eﬁd'eﬁrm_ effy -eff,,

Eq. (5)

3.2. Mathematical
Formulation

The BET dispatching problem extends the classic EVRP-TW,
and the goal is to minimize the total energy consumption to
serve a set of customers, considering precedence constraint
(lastin, first out), cargo payload capacity, battery capacity, and
partial en route recharging policy. The variables and param-
eters used in this study are summarized in Table 2.

Thus, the BET dispatching problem can be formulated as
a mixed-integer program as follows:

min , Z Ex, Eq. (6)
ieNyUR,jeN, UR, i#j

Subject to:

Demand and flow balance constraints
injzl,je./\/uR Eq. (7)
iEA;
> x;=1 ie NUR Eq. (8)
jeA?

Z xij—xjizo,‘v’ieN’OuR Eq. (9)
JjeN' L UR,i#]
> x, =K Eq. (10)
ieA,
Z x; =K Eq. (11)
ieA;,

Vehicle constraints:

Yo=Q, VieNUR Eq. (12)
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TABLE 2 Variable definitions.

Variable Description

mg Set of BETs available at the depot

N Sets of customer vertices

L Sets of linehaul customer vertices

B Sets of backhaul customer vertices

K A total number of BETs in operation

R Recharging station(s)

r Recharging rate

dj Distance between vertices / and j

iy Travel time between vertices / and j

E; Energy consumption between vertices j and j

To Earliest departure time

Tp Latest return time

C Cargo payload capacity

Q BET maximum battery capacity

q; Demand at vertex (positive if pick-up, negative if
drop-off)

e Earliest start of service time at vertex /

/; Latest start of service time at vertex i

S; Service time at vertex /

7 Decision variable specifying the time of arrival at
vertex /

k; Decision variable specifying the visit to recharging
station vertex /. O if customer, 1if charging station

u; Decision variable specifying the remain cargo on
arrival at vertex /

Vi Current SOC for BET vz when arrive at vertex i

Y; Finish charging SOC for BET v; at vertex /

Xjj Binary decision variable. O if the route fromj toj is

not visited by BET v, 1 otherwise

Z Xo <my

o Eq. (13)
Recharging visit constraints:
x, <1, Vie R Eq. (14)
je(DUNUR)
Recharging time with time window:
Y -y,
T, <|t, +(1-k)s, +k -~ Ji x, <T,,
/ r I Eq. (15)
VieOUNUR, je(DUNUR), i#j
0<Y,<Min{60-r,80%-Q}, VieR Eq.(16)
Time window constraints:
Ti+(si+tij)xij_lo (l—x,./.)STj Eq. (17)

VieOUNUR, Vjeje(DUNUR),i=j
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e, <t,<l,VieN',, Eq. (18)
Demand constraints:
0<u <C Eq. (19)
0<u <u —gx,+Cll—x,
i ( ") Eq. (20)
VieOUNUR, VieDUNUR, i#j
Battery recharging constraints:
0<((1-k )y, +k Y, —h-E,
(( .z) yz' i 1. (x] ) ) ) Eq (21)
X, SQVieN,UR,jeN,UR, i#]
Binary decision variable:
x, {01}, VijeN',,, i#j Eq. (22)

The objective function of minimizing the total energy
consumption is defined in (6). Constraints (7), (10), and (8),
(11) impose the indegree and outdegree constraints for the
customers nodes and the charging stations. Constraint (9)
define the flow conservation constraints. Constraint (12)
ensures the BET is fully charged when departure at the depot.
Constraint (13) ensures that the operating BETs do not exceed
the maximum number of BETs available at the depot.
Constraints (14)-(16) define the en route recharging policy,
each BET is allowed to recharge at most once, considering
one-hour maximum recharging time as full charge may
slowly. Constraints (17) and (18) define the arrival time at each
vertex should satisfy the time windows. Constraints (19) and
(20) represent the capacity of each BET does not exceed the
maximum cargo payload when visiting each vertex, for both
inbound and outbound trips. Constraint (21) restricts the
battery SOC is non-negative when dispatching. Finally, condi-
tion (22) defines the binary decision variables.

4. Methodology

In this section, we have developed an ALNS algorithm to solve
the proposed BET dispatching problem. The ALNS first intro-
duced by [30], which extended the LNS [31], has been demon-
strated as a successful approach capable of solving the standard
vehicle routing problem with pick-up and delivery [21], the
electric vehicle routing problem with backhaul and time
windows [6], pollution routing problem [29], mixed fleet
vehicle routing problem [12], and the like.

The entire framework of the ALNS algorithm is described
in Algorithm 1. The algorithm is initialized with an energy-
feasible solution generated by a constructive heuristic,
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VAN LR [ BB Overview of the ALNS framework.

Input: An initial feasible solution S®! generated by initialization phase;

Output: a set of near-optimal solution S?

1: §¢ « generate_inital_solution()

2: §h=5%w =(@1,..,10); 0w =(@1,..,1

3:  while specified maximum runtime T is not reached do
4: {select a destroy operator {~ € I'” by P(w; )}

5: destroy current solution S¢ with destroy operator {~
6: S¢ « DestroyedOperator(S€)

7 {select a repair operator {* € I'* by P(w])}}

8: S¢ « RepairOperator(S¢')

9: if accept SA(S¢, S?) then
10: S§¢ « 8¢

11 if S is better than S® then

12 S§b « s¢

13 end if
14: end if
15: Update: the weight of destroy operators w™~ and repair operators w*

16: end while

17: return S?

© The Authors

described in Section 4.1. In line 2, at the beginning of the main
loop of ALNS improvement process, we regard an initial
feasible solution S¢ as the current best solution SP. Additionally,
we initialize the weight vectors (w™ and w") for the destroy and
repair operators (detailed in Section 4.3), denoted by '™ and
I, respectively. The main loop of the ALNS improvement
(lines 3-16) then starts and searches for a near-optimal
solution S until the termination criteria is met. To iteratively
improve the best solution, a set of destroy operators I'” and
repair operators I'* are used to modify the initial current
solution §¢and obtain a new solution . Section 4.2 describes
the solution improvement process in detail, including the
framework of ALNS, acceptance criteria, and termination
criteria.

VANl [ Construction of initial feasible solution.

4.1. Generation of Initial
Solution

A greedy constructive heuristic is used to generate an initial
feasible solution to the ALNS, similar to the method imple-
mented by [32]. Algorithm 2 shows the pseudocode for gener-
ating an initial feasible solution.

Initially, a candidate customer is randomly chosen from
a set of unvisited customers and inserted into the current
route. Next, during each iteration, an appropriate customer
is inserted into the current BET route greedily, leading to the
minimum increase in the total energy consumption. When
the current route becomes energy infeasible, we attempt to
insert a potential recharging schedule from a set of available

Input: A set of customers V' = {L, B}, recharging stations R,

Output: an energy-feasible solution Sta

1: NUm;isited «N

2:  Current route for BET K; € mg,i € {1,2,...,mp}

3:  while unvisited customer N UVisited = ¢ do

4: if a new route K; starts then

5: Random sample a candidate customer p from N U™isited and insert to K;

6: Update' NUm;isited - Nunvisited \p

7: ¢, i « Find a candidate customer ¢ and an insertion position i that generates the
lowest cost f(Simital)

8: Update: NUnvisited - NUnvisited \ c

9: if ¢ cannot be inserted in the current route K; since energy infeasible then

10: Find an insertion position and a recharging station from R that generates the

lowest cost f(Sinital)
11: else
12: Update: start new route for BET K;,i =i+ 1

13:  end while

14: return Sinital

© The Authors
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charging stations R. Therefore, the remaining unvisited
customers may be allowed to insert into the current route.

The current BET route terminates when there are no
vertices that can be visited by the current BET due to the
battery capacity, time windows, or cargo capacity violation.
At this point, a new BET route starts following the same
processes as described above, until all customers have
been visited.

4.2. ALNS Improvement

We next detail the ALNS procedure for solving the BET
dispatching problem, which includes a set of removal opera-

tors I~ :{g;,g;,...,g;b} to destroy vertices (i.e., a few
customers and CSs), and a set of repair operators
"= {éf,é’;,...,C;R} (detailed in Section 4.3) to reinsert
unvisited customers or CSs, where ND and NR represent the
number of destroy and repair operators, respectively. As the
feasible initial solution can be obtained in Section 4.1,
we define it as the current feasible solution §°. Then, the ALNS
procedure iteratively improves S¢ until the termination
criteria meet.

At each iteration, a removal operator {~ € I'"" and a rein-
sertion operator (* € I'* are applied to destroy and repair the
current solution S, respectively. Those operators are selected
dynamically and adaptively based on the roulette wheel prin-
ciple. To choose an operator in each iteration, we define two

weight vectors, o =0, ;,...,a);,DJ and
o =0 ,0,..., ;,R],to store the weight of a set of destroy

and repair operators, consecutively. Therefore, the probability
of choosing an operator { can be calculated by

. After the current solution S¢ is repaired,

then, we obtain a new solution .

In order to overcome the local optimal results, we use a
SA approach to accept or reject the new solution S generated
by the ALNS algorithm. There are three circumstances in an
iteration. If a new solution $¢ has been found to be better than
or equal to the global best solution S, we accept the new
solution §° as a new global best solution . If the new solution
is worse than the global best solution, a SA heuristic algorithm
will accept the worse solution with the probability e~ VT,
where f(X) is the total energy consumption of solution X, and
T is the current temperature of a SA heuristic. We predefine
an initial temperature T;,;,, which can be decreased at every
iteration by T = 6T, where the deteriorate rate § € (0,1).
Furthermore, in our ALNS framework, the algorithm termi-
nates when a specified maximum runtime T is reached. In
this study, we assume a maximum runtime of 1800 seconds
to ensure both solution quality and time efficiency.

Moreover, in the “adaptive” mechanism, the weight
vectors p~ and p* will be updated dynamically based on the
quality of new solution §°. A score variable ¥ = [¢;, ¢, 93, ¢,]
is employed to assess the performance of the ALNS improve-
ment. For example, a score ¢, denotes that a new solution N
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has been found. Similarly, a score ¢, is obtained when an
improved solution is found. ¢; indicates when a new solution
has been accepted by a SA heuristic, while the score ¢, is used
when the solution is rejected. At the end of each iteration, the
weight vector updates by w; = Aw; + (1 — 1)y, where A € (0, 1)
is a smooth variable to control the sensitivity of the
weight vector.

4.3. Destroy and Repair
Operators

The number of customers/vertices #n to remove is predefined
by the destroy rate ¢, where n = ¢ -\ . Then, the ALNS frame-
work employs four removal operators to find a set of removal
vertices based on the input n and store them in the removal
pool L™l The removal heuristics are detailed as follows:

¢ Random removal randomly removes some vertices from
the BET routes. The procedure terminates when n
customers/vertices have been removed.

* Random path removal destroys an entire consecutive
sub-path with » vertices.

* Worst removal iteratively removes n unfavorable
vertices based on their cost. This operator sorts the
insertion cost of all customers in descending order by
calculating ¢; = f(s) — f(s_;), where s_; is the route without
customer i and s is the route with customer i. During
each iteration, the worst vertex contributes the largest
insertion cost and will be removed to the unvisited list.

¢ Shaw removal removes a set of n customers according to
their similarity, which can be calculated by the
relatedness function

d. |qi_q'|
Alif)=¢—3 —e. . >
)™ a0

where the weight vector ¢ = (¢, §,, ¢;) is used to
normalize the relatedness function, d;; represents the
distance between customers i and j, e; — ej| is the
absolute difference between their arrival time, and

|q; — q;| is the absolute difference of their demand. At the
beginning of using the Shaw removal algorithm, a
customer i€ N is randomly selected as a candidate
customer to be removed, and we calculate the most
related customer je N \i. The customer with the
highest similarity to i is the one with the smallest value
of A(i,j). Next, we calculate the most similarly customer
and remove it by evaluate relatedness with j. Finally, this
operator terminates until n vertices have been removed.

After n vertices have been removed from a solution, the
repair heuristics are employed to rebuild a new solution by
inserting the removed n vertices into the incomplete solution.
During the reconstruction phase, we use three insertion
operators to find new routes or recharging schemes:

* Greedy insertion iteratively conducts a series of
insertions by selecting the best option. At each iteration,
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the operator selects one unassigned customer from the
removal pool L™, Then, it assesses the cost function
to determine whether the current insertion yields the
minimum cost. This insertion process continues until all
unvisited customers have been chosen.

* Regret insertion selects the customer with the highest
difference between the cost of the first and kth best
insertion and inserts it into its optimal position. The
regret-k value is calculated by reg; , = Af(i, pos; ;)

— Af(i, pos; 1), where Af(i, pos; ) represents the cost
improvement generated by the best insertion and
Af(i,pos; ) denotes the cost improvement generated by
the kth best insertion. At each iteration, the operator
finds the kth best insertion for customer #, which
generates the highest regret-k value. This approach
avoids the myopic behavior of the greedy insertion
algorithm by not necessarily selecting the task with the
lowest cost. In this study, we have implemented the
regret-2 insertion method.

* Greedy insertion with charging stations was introduced
in [14], a variation of the greedy insertion operator was
introduced to handle energy constraints in BET routes
that include CSs. This operator extends the general
greedy insertion approach, which assumes that BETs do
not visit en route CSs. Initially, this operator inserts
unvisited customers until the battery SOC violation.
Then, it computes a near-optimal charging scheme to
minimize the deviation from the original BET route,
allowing additional unvisited customers to be inserted.
However, if a feasible charging scheme cannot be found
in the current solution, the operator will terminate the
insertion process after adding the customers.

5. Case Study: A Real-
World BET Fleet
Dispatching Problem in
Southern California

This section presents the results of our numerical experiments
using a real-world case study from a logistics company in
Southern California. The goal is to find an energy-efficient
dispatching strategy and recharging scheme for the BET fleet.
To evaluate the performance of our proposed strategy,
we compare our results with the historical dispatching data.
The mathematical model in Section 3 is implemented in
Python 3.9, and all experiments are conducted on a server
with 32 GB RAM.

5.1. Data Description

Four instances ranging from 47 to 90 customers were used to
evaluate the proposed strategy. These instances were generated
from a real-world dataset, representing typical one-day

movements of a heavy-duty diesel truck fleet that operated in
the Riverside County and San Bernardino County of
California. Specifically, from the truck fleet perspective, each
truck has a historical dispatching data file that contains the
tractor ID, delivery and pick-up time stamps (from departure
to termination), service time windows, cargo weight informa-
tion, service addresses, and global positioning systems (GPS)
logs. From the customer perspective, the historical data
contains the customer ID, service types (delivery or pick-up),
address, longitude, latitude, demands, service time, and
time windows.

To assess the proposed dispatching problem, we create
four test instances using data from 266 customer orders,
which were fulfilled by 23 trucks. These instances include
geographic coordinates of customer locations as well as infor-
mation on the delivery types, required demands, time
windows, and service times. We randomly designate five
customer locations where a recharging station is equipped in
their parking lot. It is worth noting that the BET has the
flexibility to visit any of the charging stations during opera-
tions if required. Table 3 provides a summary of the charac-
teristics of the four instances.

To generate accurate distance and travel duration matrices
for the truck routes between customer locations, we utilized
the Direction Service Application Programming Interface
(DSAPI) provided by OpenRouteService [33]. The DSAPI
takes into consideration various real-world factors such as the
actual road network, speed limits, and restricted roads appli-
cable to heavy-duty trucks. By utilizing the DSAPI, we obtain
distance values that are more realistic and relevant compared
to using simple Euclidean distances. However, for the purpose
of simplifying the dispatching problem in our study, we do
not incorporate real-time traffic conditions. While traffic
conditions play a crucial role in route optimization, for the
scope of this research, we focus on other significant aspects
and do not consider the dynamic traffic conditions.

5.2. Problem Variables and
Parameter Tuning

In the numerical study, we use the problem parameter settings
presented in Table 4 based on a real-world scenario. The total
operation time is limited to 8 hours, including driving, idling
when recharging, and service time. In our study, we assume
a set of homogenous BETs in the fleet, with either short-range
battery capacity (300 kWh) or long-range battery capacity (452
kWh), to evaluate the effect of driving range.

TABLE 3 Summary of dataset characteristics.

# of # of # of
Instance Customers Linehauls Backhauls CSs
BETVRPBI 47 33 14 5
BETVRPB2 58 26 32 5
BETVRPB3 7 39 32 5
BETVRPB4 90 54 36 5

© The Authors
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TABLE 4 Summary of problem parameters.

Notation Description Value

A Frontal surface area of a BET [m?] 5

C Maximum BET cargo capacity [34] [Ib] 37,000

Q Maximum BET battery capacity [kWh] {300, 452}
eff,, Motor efficiency [13] 0.80

eff, Discharging efficiency [13] 0.90

Cr Unitless rolling resistance 0.01

Cy Coefficient of rolling drag 0.7

w Vehicle curb weight [Ib] 8,000

g Gravitational constant [m/s?] 9.81

Pa Air density [km/m?] 1.2041

0 Road angle 0°

a Acceleration [m/s?] 0

v Vehicle speed [mph] 68

S Loading/unloading time [hour] (0, 2]

[To, Tpl Working hour [8 am, 4 pm]
r Recharging rate [kWh/min] 3.96

A parameter tuning process has been conducted using
instance BETVRPB2 with a short-range BET fleet. First,
we follow a fair parameter tuning strategy by an ad hoc trial-
and-error phase conducted in [30]. We predefine a set of initial
parameters while developing the ALNS framework. The list
of initial parameters and the considered parameter settings
are shown in Table 5. This set of parameters is improved by
allowing one parameter to take different values while the rest
are fixed. Each parameter setting is restarted six times, and
the parameter showing the lowest average cost (in terms of
average deviation from the best observation) is chosen. This
process is repeated until all parameters have been tuned.

Moreover, we calibrate the parameters of the SA heuristic,
as they play a critical role in quantifying the performance
improvement of a new solution. In this article, this calibration
mainly focuses on the initial temperature and deterioration

TABLE 5 Summary of parameters in the experiment.

Variable Candidate value Final value
Score vector [15,9, 4, 3],[18,10, 5, [15,9, 4, 3]
v = [y, 0, @3, 04] 2]

Decay parameter 1 0.8, 0.85 0.8
Destroy percentage e 35%, 38% 38%,
Number of removal

T |0350] |038N ] [038MV]
Shaw removal weight  [0.5, 0.25, 0.25], [0.5, 0.25, 0.25]
vector [0.5, 0.30, 0.30]

¢ = (¢ d2 P3)

SA initial temperature 10, 20 10

Tinit

SA end temperature 0.5,0.8 0.5

SA deterioration rate § 0.99800, 0.99991 0.99800

Bold values indicate the initial values while developing the ALNS
framework.
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rate by implementing a 2 factory design. Those parameters
control the level of diversification when converging to the
solution. Figure 2 shows the calibration results based on four
parameter combinations (i.e., from pl to p4). The final value
of parameter setting shown in Table 5 is a combination leading
to the lowest objective value.

5.3. Performance in Real-
World Instances

In order to assess the performance of our BET dispatching
strategy, we apply the ALNS algorithm to solve the generated
real-world instances described in Section 5.1. We compare the
results with a baseline dispatching strategy from the logistics
company. The baseline strategy is provided by a routing solver
in the company, which has been implemented in real-world
freight operations. To make a fair comparison between the
baseline strategy and the proposed dispatching strategy,
we presume all historical movements were served by a BET
fleet and estimate the total energy consumption by the objec-
tive function (6) for the historical iterations using the same
distance matrices. Table 6 summarizes the historical iterations
as the baseline in our case study.

Using the problem parameter settings shown in Table 4,
we conducted 10 runs and recorded the best solution for each
run. To assess the effect of battery capacity on total energy
consumption, we conduct two case studies, each representing
adifferent level of battery capacity. The first case study involves
short-range BETs fitted with a 300 kWh battery, while the
second case study involves long-range BETs equipped with a
larger 452 kWh battery.

The results show that our dispatching strategy is able to
solve the BET dispatching problem for all generated instances
efficiently. We compare our strategy with the baseline strategy
using the relative percentage deviation (RPD, ,, ) with respect
to (a) total energy consumption, (b) total vehicle miles traveled,
and (c) total travel time. The formula used to calculate the
RPD, ,, . is shown as follows:

Cope (hist) —C.y. (opt)
Cope (hist)

RPD,, = x100%,

where C, , (hist) denotes the historical costand C, ;, [(opt)
denotes the solutions obtained from the dispatching
strategy.

As demonstrated in Tables 7 and 8, the proposed strategy
can reduce total energy consumption compared with the
baseline strategy. The reduction in total energy consumption
ranges from 11% to 40% across the different instances. The
columns “Total_dist” and “Total_time” provide information
on the total vehicle miles traveled and total travel time,
respectively, achieved through the implementation of
energy-efficient routes. It is noteworthy that when opti-
mizing for energy minimization, the total energy consump-
tion can be reduced by 27% and 28%, respectively, with
short-range battery and long-range battery. This reduction
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m The parameter calibration for the SA heuristic.

Parameter calibration for the simulated annealing heuristic

800 4

780 4

760 1

Objective value

740 A

720 4

!

pl_[10,0.99800]

p2 [10,0.99991]
Parameters

p3_[20,0.99800] p4 [20,0.99991]

Initial temperature Ty;;

Deterioration rate §

pl
p2
p3
p4

10
10
20
20

0.99800
0.99991
0.99800
0.99991
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in total energy consumption does not necessarily align
proportionally with the reduction in total vehicle miles
traveled. The discrepancy may be attributed to the distribu-
tion of cargo payload, which can impact the overall energy
consumption of the BET fleet.

Figure 3 shows the results under different battery
capacity BET fleets. In most instances, the long-range BET
fleet exhibited greater energy savings compared to the short-
range BET fleet, as there were potentially fewer detour trips
required to visit charging stations. Notably, the cargo weight

TABLE 6 Summary of real-world historical movements

Total
Instances # of BETs energy Total_dist Total_time
BETVRPB1 5 915 512 131
BETVRPB2 5 1094 490 13.7
BETVRPB3 5 1406 726 18.5
BETVRPB4 8 1062 657 22.7
Total 23 4477 2385 68.0

© The Authors

influences the energy consumption of BET, resulting in a
non-proportional relationship between energy consumption
and travel distance. For instance, in the BETVRPB2 scenario
involving 58 customers, deploying a short-range BET fleet
can lead to a significant reduction of 35% in total energy
consumption. However, the corresponding total travel
distance is reduced by a relatively smaller percentage of 23%.
This observation highlights the impact of cargo weight on
energy consumption and emphasizes the need to consider
other factors beyond travel distance when optimizing
energy efliciency.

5.4. Analysis of the Solution
Quality in ALNS

This section analyzes the effectiveness of considering the
solution quality during the search. We assess the solution
quality of the proposed ALNS framework (ALNS-SA) by
comparing the solution with other general metaheuristics
algorithms that are detailed as follows.
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TABLE 7 Results for the BET dispatching problem with short-range battery.

Instance # of BETs Total energy RPD,
BETVRPBI 5 751 18%
BETVRPB2 5 707 35%
BETVRPB3 5 845 40%
BETVRPB4 7 950 N%
Total 22 3253 27%

TABLE 8 Results for the BET dispatching problem with long-range battery.

Instance # of BETs Total energy RPD,
BETVRPBI 5 723 21%
BETVRPB2 5 701 36%
BETVRPB3 5 839 40%
BETVRPB4 7 942 N%
Total 22 3205 28%

e ALNS without SA (ALNS-noSA): The ALNS framework
is modified by adjusting the acceptance criteria, i.e., a SA
heuristic. Thus, a worse solution is always declined. The
parameter setting of the ALNS framework is described
in Table 5.

* LNS with SA (LNS-SA): We implement the LNS
framework as described in [30]. Following the simple
LNS heuristics, we utilize the Shaw removal operator
and the greedy insertion heuristic with charging station
operator as mentioned in Section 4.3. The parameter
settings of the Shaw removal operator and SA heuristic
are identical to those used in ALNS-SA.

For each problem instance, we perform six replications
on ALNS-SA, ALNS-noSA, and LNS-SA with the stopping
criteria of maximum time limit (i.e., 1800 seconds) presented
in Section 4.2. The best objective results and the average objec-
tive values are described in Table 9. Overall, the proposed
ALNS-SA outperforms other general metaheuristics algo-
rithms in terms of total energy consumption in five out of
eight instances. Additionally, these results demonstrate that
the SA procedure can improve the solution quality of our BET
dispatching problems.

5.5. Effect of Battery
Capacities on Total
Energy Consumption

To investigate the impact of battery capacities on the solution
of the BET dispatching problem, we conducted an experiment
in the problem instance BETVPRBI, where we varied the BET
battery capacities from 300 kWh to 500 kWh in 50 kWh incre-
ments. The results are presented in Figure 4.

From the results, we observed that increasing the battery
capacity from 300 kWh to 400 kWh in the BET fleet led to a
reduction of 28 kWh in total energy consumption and a
decrease of 8 miles in total vehicle distance traveled. Moreover,

Total_dist RPD,, Total_time RPD,
409 20% n.2 15%
379 23% 1.2 18%
462 36% 12.6 32%
584 1% 21.2 7%
1834 23% 56.2 17%
Total_dist RPD, Total_time RPD,
396 23% ni 15%
375 23% n.2 18%
457 37% 12.2 34%
582 N% 213 6%
1810 24% 55.8 18%

based on the heuristic solution, the total distance that the BET
fleet travels to serve the customers can decrease to 396 miles.
However, no further improvements were observed beyond a
400 kWh battery capacity in this particular scenario. This
suggests that all customers can be effectively served by the
BET fleet equipped with a 400 kWh battery capacity. Figure
5(a) and 5(b) show the visualization of the BET trips with
300 kWh and 400 kWh battery capacity, respectively. Each
colored curve represents a different BET route. The BET fleet
may detour to fulfill driving range limitations or visit charging
stations. Therefore, the total energy consumption may reduce
as the battery capacity increases.

6. Conclusion and
Discussion

This article presents an investigation into an energy-efficient
BET dispatching problem with backhauls and time windows.
Building upon the classic GVRP, our study focuses on a homo-
geneous BET fleet with limited cargo payload and battery
capacities, as well as precedence constraints for a customer
set comprising linehaul customers requiring deliveries and
backhaul customers requiring pickups within specific time
windows. Moreover, we incorporate an en route partial
recharging policy for the BET fleet, allowing partial recharging
at any available charging station based on the battery SOC
upon arrival.

We have formulated a MILP model to devise a dispatching
strategy for a BET fleet that satisfies order types and time
windows of all customers, while minimizing the total energy
consumption of the BET fleet, taking into account a realistic
energy consumption model specific to BETs. Notably, we have
highlighted the limitations of minimizing the total travel
distance alone, as it may underestimate the total energy
consumption due to the influence of cargo load on BETS’
energy usage.
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m Total energy consumption [in kWh] vs. battery capacity.

Total energy consumption from BET dispatching instances

1600

—_ =
[SS TN
(=1
S O

1094

800 723

D
(=3
S

40

S

Total energy consumption [kWh]

20

(=]

915
I 751

BETVRPBI1

m Historical data = Short-range BET fleet = Long-range BET fleet

To solve the proposed problem, we have developed a
metaheuristic algorithm based on the ALNS framework. In
order to evaluate the performance of our dispatching strategy,
we have applied the model to real-world operation data
obtained from a logistics company in Southern California.
The extensive experimental results demonstrate the effective-
ness and efficiency of our strategy, with computational time
comparable with that of the baseline strategy. Moreover,
we have assessed the performance of our ALNS framework
by comparing it with other metaheuristics, including standard
ALNS and LNS. The results show that the proposed dispatching
strategy outperforms the others in five out of eight instances.

It is important to discuss limitations of the proposed
dispatching strategy. First, the fine-tuning of parameter
settings plays a vital role in achieving the optimal results,
although it is time-consuming. In addition, due to the
problem being NP-hard, the proposed dispatching strategy
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1406
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becomes computationally intensive when attempting to find
favorable solutions to problem instances with hundreds or
more customers. Lastly, this study does not consider dynamic
or uncertain factors, such as traffic condition, vehicle energy
consumption, and charging behavior, which would pose
more challenges when formulating an effective
dispatching strategy.

In terms of future work, there are several directions worth
exploring. First, we can consider formulating additional
variants of the BET dispatching problem based on real-world
scenarios. For instance, incorporating variations and uncer-
tainties into the model to account for factors such as varying
service times at customer locations or dynamic traffic condi-
tions would be a valuable extension. Second, it would be bene-
ficial to incorporate a nonlinear charging function (e.g., [35])
into the existing model to better reflect more realistic charging
rate dynamics.

TABLE 9 The results of the BET dispatching problem of ALNS-SA, ALNS-noSA, and LNS-SA.

ALNS-SA ALNS-noSA LNS-SA
Instance Best Obj Ave Obj Best Obj Best Obj
Scenario-|
BETVRPBI 751 764 747 789 763 775
BETVRPB2 707 735 722 768 77 725
BETVRPB3 845 882 902 934 877 898
BETVRPB4 950 960 945 975 955 982
Total 3253 3341 3316 3466 3312 3380
Scenario-ll
BETVRPBI 723 755 755 784 738 754
BETVRPB2 701 761 710 738 709 737
BETVRPB3 839 860 834 854 846 865
BETVRPB4 942 968 942 987 954 987
Total 3205 3344 3241 3363 3247 3343

Bold values represent the best obtained objective value between ALNS-SA, ALNS-noSA, and LNS-SA.

© The Authors
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