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Abstract
The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to 
significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs 
have shorter driving range and lower payload capacity, which need to be taken into account when 
dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering 
backhauls and time windows. To optimize vehicle utilization, customers are categorized into two 
groups: linehaul customers requiring deliveries, where the deliveries need to be made following the 
last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine 
a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering 
factors such as limited driving range, payload capacity of BETs, and the possibility of en route 
recharging. We formulate the problem as a mixed-integer linear programming model and propose 
an algorithm that combines adaptive large neighborhood search and simulated annealing meta-
heuristics to solve it. The effectiveness of the proposed strategy is demonstrated through extensive 
experiments using a real-world case study from a logistics company in Southern California. The 
results indicate that the proposed strategy leads to a significant reduction in total energy consump-
tion compared to the baseline strategy, ranging from 11% to 40%, while maintaining reasonable 
computational time. In addition, the proposed strategy provides solutions that are better than or 
comparable with those obtained by other metaheuristics. This research contributes to the develop-
ment of sustainable transportation solutions in the freight sector by providing a novel approach for 
dispatching BET fleets. The findings emphasize the potential of deploying BETs to achieve energy 
savings and advance the goal of green logistics.

This article is part of a focus issue on Eco-Driving of Connected Electrified Vehicles in Intelligent Transportation Systems.

© 2024 The Authors. Published by SAE International. This Open Access article is published under the terms of the Creative 
Commons Attribution Non-Commercial, No Derivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which 
permits use, distribution, and reproduction in any medium, provided that the use is non-commercial, that no modifications or 
adaptations are made, and that the original author(s) and the source are credited..
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1. �Introduction

In recent decades, there has been an increase in greenhouse 
gas (GHG) emissions due to human activities [1]. Among 
various sectors, transportation is the leading contributor 

to GHG emissions. In the US, the transportation sector 
accounted for 28% of total GHG emissions in 2021, primarily 
attributed to the combustion of fossil fuels in vehicular trans-
portation and goods movements [2]. Specifically, heavy-duty 
vehicles contribute approximately 23% of GHG emissions 
within the transportation sector, placing them as the second-
largest contributor, surpassed only by light-duty vehicles [3]. 
To address the environmental and climate challenges posed 
by the freight transportation sector, efforts have been directed 
toward promoting the accelerated adoption of clean heavy-
duty vehicles, including zero-emission heavy-duty trucks, in 
the near future [4].

In recent years, the emergence of battery electric trucks 
(BETs) has shown promise in reducing GHG emissions in the 
transportation sector. However, the widespread adoption of 
BETs presents several challenges due to technological limita-
tions of BETs as compared to conventional diesel trucks. These 
limitations include shorter driving range, longer refueling 
(recharging) time, and lower payload capacity. Furthermore, 
the availability of public charging stations for BETs is currently 
very limited.

In this article, we consider a real-world fleet dispatching 
of a logistics company in Southern California, who aims to 
transition to a 100% BET fleet. Given the technological limita-
tions of BETs, as mentioned earlier, the company will need to 
adapt their fleet dispatching strategies, together with BET 
recharging strategies. Therefore, our study focuses on the BET 
dispatching problem with the objective of minimizing total 
energy consumption from dispatching and recharging opera-
tions. This problem can be seen as an extension of the green 
vehicle routing problem (GVRP) proposed by Erdoğan and 
Miller-Hooks [5].

To accurately estimate BET energy consumption, 
we propose a detailed energy consumption model for BETs in 
this study. This model takes into account various factors, such 
as varying cargo weight and driving speed. Additionally, 
we explore an en route partial recharging policy for the BET 
fleet, allowing BETs to recharge at any available charging 
stations along their routes. This approach is more practical in 
real-world scenarios compared to full recharging restrictions 
since a well-designed recharging schedule can reduce charging 
time and ensure adherence to customer time windows [6].

In addition to the requirements in the GVRP and the 
classic Electric Vehicle Routing Problem with Time Windows 
(EVRP-TW) [7], the BET dispatching problem under investi-
gation incorporates practical constraints that are crucial for 
real-world applicability. Specifically, we consider precedence 
and time window constraints to enhance the efficiency of BET 
utilization. In this context, the truck driver follows a prece-
dence strategy whereby deliveries are performed upon depar-
ture from the depot, followed by pickups during the backhaul 
trip. This strategy is known as Vehicle Routing Problem with 

Backhauls (VRP-B) [8]. The customers in the problem are 
divided into two distinct sets: linehaul customers who require 
deliveries, where the deliveries need to be made following the 
last-in-first-out principle, and backhaul customers who 
require pickups. There are several benefits for this approach 
from an economic and practical perspective. First, it reduces 
the occurrence of empty vehicle trips, thereby reducing energy 
consumption and mitigating the negative environmental 
impact associated with transportation [9]. Second, since 
trailers are often rear-loaded, the appropriate arrangement of 
cargo load or pallets can be established when departing from 
the depot to visit linehaul customers. This avoids the need for 
cargo rearrangement at each customer location [8].

In this article, we present a novel approach to address the 
energy-efficient BET dispatching problem with backhauls and 
time windows. We develop a mixed-integer linear program-
ming (MILP) model specifically tailored for this problem, 
which we refer to as the Green Vehicle Routing Problem with 
Backhauls, Partial Recharging, and Time Windows (GVRP-
B-PR-TW). To efficiently solve this model, we design and 
implement an adaptive large neighborhood search (ALNS)-
based metaheuristic algorithm. Extensive experimentation is 
conducted using realistic test instances, allowing us to evaluate 
the effectiveness and performance of our proposed approach.

This research makes significant contributions in the 
following areas:

	 1.	 Formulating an Energy-Efficient BET Dispatching 
Problem: This study addresses the need for sustainable 
freight transportation by formulating an energy-
efficient BET dispatching problem. The formulation 
extends the classic GVRP-TW by incorporating an 
energy consumption model, a partial recharging 
scheme, and a backhaul strategy. This comprehensive 
problem formulation enables the consideration of 
real-world operational constraints and 
optimization objectives.

	 2.	 Development of a Computationally Efficient Approach: 
To efficiently solve the proposed GVRP-B-PR-TW, an 
effective ALNS-based metaheuristic algorithm is 
employed. This algorithm utilizes a combination of 
exploration and exploitation strategies to find high-
quality solutions for the dispatching problem. By 
employing the ALNS framework, the algorithm can 
efficiently explore the solution space and provide 
near-optimal or improved solutions.

	 3.	 Validation with Real-World BET Fleet Dispatching 
Data: The proposed dispatching strategy is rigorously 
evaluated using real-world BET fleet dispatching data, 
including orders, itineraries, and routes. The 
experimental results demonstrate the efficacy of the 
proposed approach in significantly reducing total 
energy consumption when compared to the baseline 
strategy implemented in the real world. In addition, 
the proposed ALNS framework provides solutions 
that are better than or comparable with those 
obtained by other metaheuristics algorithms for our 
case study. Lastly, the effect of battery capacities is 
further evaluated.
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The remainder of this article is organized as follows. 
Section 2 provides a brief literature review on the GVRP and 
the VRP-B. In Section 3, we present the BET energy consump-
tion model and introduce a MILP model specifically designed 
for the BET dispatching problem. The methodology of the 
ALNS metaheuristics algorithm to solve the proposed problem 
is detailed in Section 4. To assess the performance of the 
proposed solution, Section 5 presents an evaluation based on 
a real-world case study. Finally, in Section 6, we conclude the 
article and discuss future directions for research.

2. �Related Literature
The past two decades have witnessed a growing research 
interest in solving the GVRP and its variants. In this section, 
we first briefly review GVRP-related models, which mainly 
focuses on alleviating the negative impacts on the environ-
ment when designing a routing strategy for electric vehicles 
(EVs) and considering the energy consumption models. 
Second, we discuss the related works focusing on the VRP-B, 
where the goal is to design the most-effective routes that satisfy 
the requirements of both linehaul and backhaul customers.

2.1. �Green Vehicle Routing 
Problem

In [5], GVRP was introduced as a variant of VRPs, involving 
alternative and greener fuel vehicles (e.g., EVs, biodiesel, 
ethanol, etc.) that have limited travel range and need to 
be recharged en route. The goal of this problem is to decrease 
the total energy consumption in fleet operations. The authors 
proposed two heuristic approaches, involving a modified 
Clarke and Wright saving (MCMS) and a density-based clus-
tering algorithm to solve this problem. In this study, the alter-
native fuel vehicles (AFVs) are incapacitated and the time 
windows and partial refueling are not considered. Extend to 
the GVRP [5], Schneider et al. [7] further investigated the 
Electric Vehicle Routing Problem with Time Windows (EVRP-
TW), considering time windows, limited driving range, and 
freight capacities during route planning. They developed a 
hybrid metaheuristic framework that combines a variable 
neighborhood search (VNS) and a tabu search (TS) to solve 
the EVRP-TW, and demonstrated the performance of the 
proposed algorithm based on the GVRP instances [5] and the 
Solomon VRP-TW instances [10]. Furthermore, Keskin and 
Çatay [6] studied en route partial recharge strategies for the 
EV fleet, which relax the full recharge restriction in [7]. The 
authors proposed an ALNS algorithm to solve the problem 
and demonstrated the efficiency of the partial recharging option.

However, the energy consumption of EVs is nonlinearly 
in realistic scenario [11]. Many studies have been proposed to 
investigate the EVRP (e.g., [5, 6, 7]) considering a more real-
istic energy consumption model of EV, where the energy 
consumption is nonlinearly proportional to travel distance. 
For instance, Goeke and Schneider [12] utilized a realistic 

energy consumption model considering speed, terrain 
gradient, and cargo payload in the routing strategy for both 
ECVs and ICCVs and evaluated the cost of battery replacement 
as one of the objective functions. In this study, the charging 
time varies depending on the battery state-of-charge (SOC) 
when the EV arrives at the CSs. Zhang et al. [13] introduced 
the electric vehicle routing problem with recharging stations 
for minimizing energy consumption, where the energy 
consumption model of ECV is similar to [11, 12]. The authors 
developed an ant colony (AC)-based metaheuristic algorithm 
and to address the proposed problem. In [14], Macrina et al. 
studied a GVRP with a mixed fleet composed with electrical 
and conventional vehicles. The authors proposed more real-
istic energy consumption models for both EVs and internal 
combustion engine vehicles (ICEVs) and investigated the 
effects of acceleration and deceleration on energy consump-
tion. Recently, Yu et al. [15] proposed an ALNS framework 
embedded with a dynamic programming procedure to address 
the green mixed fleet VRP and evaluate its potential for carbon 
emission reduction.

Few studies have considered a practical constraint, the 
pick-up and delivery sequence, in GVRPs. In [16], Granada-
Echeverri et al. introduced an EVRP with backhauls (EVRP-B) 
in logistics distribution, and an iterated local search heuristic 
algorithm was developed to solve the EVRP-B. Yang et al. [17] 
proposed an EVRP-TW with mixed backhauls and recharging 
strategies. The authors constructed a multidimensional 
network to represent the transportation process, and an 
augmented Lagrangian relaxation model is provided to solve 
the vehicle routing and recharging strategies. Moreover, Xiao 
et al. [18] proposed a diversity-enhanced memetic algorithm 
(DEMA) to solve the EVRP-TW with mixed backhauls.

Nevertheless, from the economic and sustainable perspec-
tives, cargo weight and visit sequence significantly impact 
energy consumption and transportation efficiency. In this 
study, we introduce the GVRP-B-PR-TW, which accounts for 
energy consumption characteristics of BETs, backhaul 
strategy, partial recharging policy, and time windows. In 
addition, the impact of cargo weight on electricity consump-
tion is also considered. We summarize the main differences 
between our work and the related literature in Table 1.

2.2. �Vehicle Routing Problem 
with Backhauls

The second strand of relevant literature focuses on solving the 
VRP-B, where the goal is to find a cost-effective routing plan 
for the linehaul and backhaul customers. The VPR-B was first 
introduced by Deif and Bodin [19] in the literature, an exten-
sion of the classic VRP. In this problem, the linehaul customers 
who request deliveries are first visited, and followed by the 
backhaul customers who request pickups. In [8], Toth and 
Vigo introduced a mixed-integer programming formulation 
for a general VRP-B and developed an exact branch-and-
bound algorithm to address the proposed problem.

Similarly, Mingozzi et al. [20] developed an exact method 
based on the set partitioning model to solve the vehicle routing 
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problem with backhauls. This approach computed a valid 
lower bound for the optimal solution by solving the dual of 
the LP-relaxation of its integer program. Compared with the 
classic VRP-B, Ropke and Pisinger [21] introduced a rich 
pick-up and delivery problem with time windows and 
proposed a unified heuristic solver to solve the VRP-B and its 
variants. They proposed an improved version of the large 
neighborhood search (LNS) algorithm to solve different types 
of VRP-B.

The VRP-B has many realistic applications in transporta-
tion and logistics. For example, Salhi et al. [22] presented the 
fleet size and mixed vehicle routing problem with backhauls, 
where the goal is to minimize the total travel cost, including 
the fixed cost of different types of vehicles and related traveling 
cost. In [23], Chávez et al. presented a multi-depot vehicle 
routing problem with backhauls, where the vehicle fleet is 
collecting after the delivering process. The authors proposed 
a multi-optimization approach based on an AC heuristic algo-
rithm to solve the proposed problem with respect to three 
objectives of travel distance, travel time, and total energy 
consumption. Recently, Lin et al. [24] investigated several 
real-world operational constraints for the VRP-B, including 
last-in, first-out precedence, order payload, vehicle types, and 
operation times. Inspired by a practical application with a 
major grocery chain, the authors formulated the proposed 

problem as a mixed-integer programming model. A greedy 
randomized adaptive search procedure (GRASP)-based algo-
rithm was developed to solve the proposed problem. In [25], 
Yu et al. introduced VRP with simultaneous pick-up and 
delivery and occasional drivers. A simulated annealing 
(SA)-based heuristic algorithm that incorporates a set of 
neighborhood operators is proposed to solve the model.

A general overview of the literature for the VRP-B was 
provided by [26] with a focus on the computational perfor-
mance of exact algorithms and heuristic algorithms. In [27], 
the authors provided a comprehensive review for the existing 
literature on VRP-Bs, including the mathematical formula-
tion, solution methodology, and industrial applications. 
Recently, from a sustainability perspective, Santos et al. [28] 
conducted a survey on the VRP-B, focusing on the effective-
ness of the economic and sustainable concerns.

3. �Problem Description 
and Formulation

The proposed EVRP-B-PR-TW concerns a set of clustered 
customers with known delivery types, demand, address, 
appointment time windows, and service times. The dispatching 

TABLE 1 Characteristic of GVRPs addressed in this article and related literature.

Reference
Solution 
approach

Energy  
cost 
function

Customer Fleet composition
Recharging 
strategy

Time 
windowsLinehaul Backhaul

Mixed 
backhaul Homogeneous Heterogeneous Full Partial

Erdoğan and 
Miller-Hooks 
(2012)

MCWS Linear • • • •

Schneider 
et al. (2014)

VNS+TS Linear • • • •

Goeke and 
Schneider 
(2015)

ALNS+LS Nonlinear • • • •

Keskin and 
Çatay (2016)

ALNS+SA Linear • • • •

Zhang et al. 
(2018)

AC+ALNS Nonlinear • • • •

Macrina et al. 
(2019)

ILS Linear • • • •

Granada-
Echeverri et al. 
(2020)

ILS Linear • • •

Yang et al. 
(2021)

ADMM Linear • • •

Yu et al. (2021) ALNS+DP Nonlinear • • • •

Xiao et al. 
(2023)

DEMA Linear • • • •

This article ALNS+SA Nonlinear • • • •

Note: AC, Ant Colony; ADMM, Alternating Direction Method of Multipliers; ALNS, Adaptive Large Neighborhood Search; DEMA, Diversity-
enhanced Memetic Algorithm; DP, Dynamic Programming; ILS, Iterated Local Search; LS, Local Search; MCWA, Modified Clarke and Wright 
Savings; SA, Simulated Annealing; TS, Tabu Search; VNS, Variable Neighborhood Search.

©
 T

he
 A

ut
ho

rs

Downloaded from SAE International by Univ of California-Riverside - CDL, Thursday, May 30, 2024



	 Peng et al. / SAE Int. J. Elect. Veh. / Volume 13, Issue 1, 2024	 111

center receives the customers’ information, then makes a 
precedence dispatching strategy and recharging schedule for 
a homogeneous fleet of BETs with limited cargo payload and 
battery capacity. To serve the integrated inbound–outbound 
logistics, the BET is fully recharged before departure at the 
depot, and is partially/fully loaded with the requested delivery 
orders for the linehaul customers. When arranging those 
delivery orders into the trailer, the ones that will be delivered 
later are loaded first and the ones that will be delivered sooner 
are loaded at the end. This last-in-first-out arrangement can 
reduce the cargo handling time when making delivery to the 
linehaul customers on the outbound trip. On the return trip 
to the depot, the BET visits the backhaul customers and loads 
the pick-up orders (within its capacity). As a result, a possible 
reduction in the number of BETs and the total travel distance 
for the BET fleet leads to less energy consumption.

Figure 1 graphically describes our dispatching problem 
involving seven linehaul customers (D1–D7) who request 
deliveries, four backhaul customers (P1–P4) who request 
pickups, two charging stations (CS1 and CS2), and a depot 

where the BET fleet is fully charged when starting the daily 
operation. The percentage value in each arc/flow shows the 
battery SOC when the BET arrives at each vertex or departs 
from the CS. It should be noted that the BET can visit the 
CS at most once and the maximum recharging time is 
one hour.

The BET dispatching problem can be  defined as a 
complete directed graph G N R A� � �� �O D, , , where  ′O D,  
denotes the vertices including all customers’ nodes   and 
depot (O, D), and   represents recharging stations. A set of 
customers   can be partitioned into two groups {L, B}, 
where the set L  =  (1, 2, …,   n) represents the linehaul 
customers, and the set B = (n + 1, n + 2, …,   n + m) denotes 
the backhaul customers. Each customer i∈  has an 
assigned delivery type with demand qi (positive if pick-up, 
negative if delivery), service time si, and time window [ei, li], 
where ei and li denotes the earliest and latest service starting 
times, respectively. All BETs should departure from the depot 
O and returns at D, with a maximum load capacity C and a 
battery capacity Q.

 FIGURE 1  Illustration of a feasible solution to the BET dispatching problem with backhauling.
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Extend the integer linear programming formulation and 
notation of [8], we define the set of arc  � � �A A A1 2 3. 
Specifically, let A i j A i L O j L1 � � �� � � � �� �, ,:   denote all 
forward flows (i.e., from the depot to the linehaul vertices), 
A i j A i B j B D2 � � �� � � � �� �, ,:   represent the backward 
flows include all backhauling vertices, and the interface arc 
A i j A i L j B D3 � � �� � � � �� �, ,:  . Each arc (i, j) is associ-
ated with a travel distance dij and travel time tij. We define 
�i j i j i V� � � �� �� �: , , , which denotes the forward of i, and 
�i j j i i V� � � �� �� �: , , , which denotes the backward of i.

3.1. �The Energy Consumption 
Model for the BETs

The battery energy consumption in our model is calculated 
as follows. First, we determine the mechanical power PM using 
the model presented in [29]. In mechanical power, it deter-
mines the energy consumption based on factors such as travel 
distance, vehicle weight, speed, acceleration, and the like. 
Second, the mechanical power PM is translated into the electric 
power PE that the electric motor needs to provide the required 
amount of mechanical power. Third, the electric energy 
needed by the electric motor is converted to the amount of 
power that has been taken from the battery PB based on the 
battery discharge efficiency [13].

The mechanical power PM of BET is needed to overcome 
rolling, drag and wind resistance, and gravitational force as 
well as to enable the acceleration (a). With the rolling resis-
tance factor cr , the total vehicle mass M and the gravitational 
constant g, and the gradient angle θ, the rolling resistance Fr 
can be determined as

	 F c M gr r� � � � � �cos � 	 Eq. (1)

For the aerodynamic resistance Fa, we can combine the 
speed v, the aerodynamic drag coefficienct cd, ρa the air density, 
and the frontal area A. Then, the aerodynamic resistance can 
be calculated by

	 F A c va a d� � � � �
1
2

2� 	 Eq. (2)

Therefore, the total mechanical power PM is:

	

P

M a c A v M g c M g

M

d r

�

� � � � � � � � � � � � � � � � ��
�
�

�
�
� �

1
2

2� � � �sin cos 	

Eq. (3)

To calculate the mechanical power requirement PE of the 
BET on the linked level arc (i, j), we use the model presented 
in [11, 13], which is a linear function of vehicle weight and a 
quadratic form of vehicle speed. To simplify the problem, 
we assume the total weight M = w + Cij where w and Cij repre-
sent the curb weight and load carried by the BET, respectively, 

the distance for the arc (i, j) is represented as dij. Then, the 
mechanical energy required by the BET is shown as follows:

P P d v
P d
v

w C d v dE M ij ij
M ij

ij
ij ij ij ij ijij

� � � � � �� � �/ � � 2 	 Eq. (4)

where αij = a + g sin θij + gCr cos θij is an arc-specific constance 
and β = 0.5CdAρ is a vehicle-specific constant. In our problem, 
we assume the vehicle speed is constant, and the result is 
represented by kilowatt hour (kWh).

Hence, to compute the battery power demand on a graph, 
the motor efficiency (effm) and battery discharging efficiency 
(effd) of a BET are taken into consideration in the model. The 
electric energy consumption Eij  for traveling this arc can 
be calculated by:

	 E
P

eff eff

w C d v d

eff effij
Eij

d m

ij ij ij ij ij

d m

�
�

�
�� � ��

�
�
�

�

� � 2

	 Eq. (5)

3.2. �Mathematical 
Formulation

The BET dispatching problem extends the classic EVRP-TW, 
and the goal is to minimize the total energy consumption to 
serve a set of customers, considering precedence constraint 
(last in, first out), cargo payload capacity, battery capacity, and 
partial en route recharging policy. The variables and param-
eters used in this study are summarized in Table 2.

Thus, the BET dispatching problem can be formulated as 
a mixed-integer program as follows:

	 min
, ,i j i j

ij ij

O D

E x
� � � � �� �

�
N R N R

	 Eq. (6)

Subject to:
Demand and flow balance constraints

	
i

ij

j

x j
� �
� � � �
�

1, N R 	 Eq. (7)

	
j

ij

i

x i
� �
� � � �
�

1, N R 	 Eq. (8)

	
j j

ij ji O
D

x x i
� � � �
� � � � � � �

N R

N R
,

,
i

0 	 Eq. (9)

	
i

ij

O

x K
� �
� �
�

	 Eq. (10)

	
i

ij

D

x K
� �
� �
�

	 Eq. (11)

Vehicle constraints:

	 y Q jO � � � �, N R 	 Eq. (12)
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j

Oj Bx m
� �
� �
N R

	 Eq. (13)

Recharging visit constraints:

	
j D

ijx i
� � �� �
� � � �
N R

R1, 	 Eq. (14)

Recharging time with time window:

T t k s k
Y y

r
x T

i O j D i

O ij i i i
i i

ij D� � �� � � �
��

�
�

�

�
� �

� � � � � � �� �

1 ,

, ,N R N R �� j
	 Eq. (15)

	 0 < , 80%Y M r Q ii � � �� � � �in 60 , 	 Eq. (16)

Time window constraints:

� �i i ij ij ij js t x l x

i O j j D i j

� �� � � �� � �
� � � � � � � � �� � �

0 1

N R N R, ,
	 Eq. (17)

	 e l ii i i O D� � � � �� , , 	 Eq. (18)

Demand constraints:

	 0 ≤ ≤u Co 	 Eq. (19)

	
0 1� � � � �� �

� � � � � � � � �

u u q x C x

i O j D i j
j i i ij ij

N R N R, ,
	Eq. (20)

Battery recharging constraints:

	
0 1� �� � � � � � �� �

� � � � � � �� �

k y k Y h E
x Q i j i j

i i i i ij

ij O D, , ,N R N R
	 Eq. (21)

Binary decision variable:

	 x i j i jij O D�� � � � � �0 1, , , ,, 	 Eq. (22)

The objective function of minimizing the total energy 
consumption is defined in (6). Constraints (7), (10), and (8), 
(11) impose the indegree and outdegree constraints for the 
customers nodes and the charging stations. Constraint (9) 
define the flow conservation constraints. Constraint (12) 
ensures the BET is fully charged when departure at the depot. 
Constraint (13) ensures that the operating BETs do not exceed 
the maximum number of BETs available at the depot. 
Constraints (14)–(16) define the en route recharging policy, 
each BET is allowed to recharge at most once, considering 
one-hour maximum recharging time as full charge may 
slowly. Constraints (17) and (18) define the arrival time at each 
vertex should satisfy the time windows. Constraints (19) and 
(20) represent the capacity of each BET does not exceed the 
maximum cargo payload when visiting each vertex, for both 
inbound and outbound trips. Constraint (21) restricts the 
battery SOC is non-negative when dispatching. Finally, condi-
tion (22) defines the binary decision variables.

4. �Methodology
In this section, we have developed an ALNS algorithm to solve 
the proposed BET dispatching problem. The ALNS first intro-
duced by [30], which extended the LNS [31], has been demon-
strated as a successful approach capable of solving the standard 
vehicle routing problem with pick-up and delivery [21], the 
electric vehicle routing problem with backhaul and time 
windows [6], pollution routing problem [29], mixed fleet 
vehicle routing problem [12], and the like.

The entire framework of the ALNS algorithm is described 
in Algorithm 1. The algorithm is initialized with an energy-
feasible solution generated by a constructive heuristic, 

TABLE 2 Variable definitions.

Variable Description
mB Set of BETs available at the depot

 Sets of customer vertices

L Sets of linehaul customer vertices

B Sets of backhaul customer vertices

K A total number of BETs in operation

 Recharging station(s)

r Recharging rate

dij Distance between vertices i and j

tij Travel time between vertices i and j

Eij Energy consumption between vertices i and j

TO Earliest departure time

TD Latest return time

C Cargo payload capacity

Q BET maximum battery capacity

qi Demand at vertex (positive if pick-up, negative if 
drop-off)

ei Earliest start of service time at vertex i

li Latest start of service time at vertex i

si Service time at vertex i

τi Decision variable specifying the time of arrival at 
vertex i

ki Decision variable specifying the visit to recharging 
station vertex i. 0 if customer, 1 if charging station

ui Decision variable specifying the remain cargo on 
arrival at vertex i

yi Current SOC for BET vB when arrive at vertex i

Yi Finish charging SOC for BET vB at vertex i

xij Binary decision variable. 0 if the route from i to j is 
not visited by BET vB, 1 otherwise©
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described in Section 4.1. In line 2, at the beginning of the main 
loop of ALNS improvement process, we  regard an initial 
feasible solution Sc as the current best solution Sb. Additionally, 
we initialize the weight vectors (ω− and ω+) for the destroy and 
repair operators (detailed in Section 4.3), denoted by Γ− and 
Γ+, respectively. The main loop of the ALNS improvement 
(lines 3–16) then starts and searches for a near-optimal 
solution Sb until the termination criteria is met. To iteratively 
improve the best solution, a set of destroy operators Γ− and 
repair operators Γ+ are used to modify the initial current 
solution Sc and obtain a new solution Sc′. Section 4.2 describes 
the solution improvement process in detail, including the 
framework of ALNS, acceptance criteria, and termination  
criteria.

4.1. �Generation of Initial 
Solution

A greedy constructive heuristic is used to generate an initial 
feasible solution to the ALNS, similar to the method imple-
mented by [32]. Algorithm 2 shows the pseudocode for gener-
ating an initial feasible solution.

Initially, a candidate customer is randomly chosen from 
a set of unvisited customers and inserted into the current 
route. Next, during each iteration, an appropriate customer 
is inserted into the current BET route greedily, leading to the 
minimum increase in the total energy consumption. When 
the current route becomes energy infeasible, we attempt to 
insert a potential recharging schedule from a set of available 

Input: An initial feasible solution generated by initialization phase;

Output: a set of near-optimal solution 

1: _ _ ( )

2: = ; = (1,… , 1); = (1,… , 1)

3: while specified maximum runtime is not reached do
4: {select a destroy operator by ( )}

5: destroy current solution with destroy operator 

6: DestroyedOperator( ) 

7: {select a repair operator by ( )}}

8: RepairOperator( )

9: if accept_SA( , ) then
10:

11 if is better than then
12

13 end if
14: end if
15: Update: the weight of destroy operators and repair operators 

16: end while
17: return 

 ALGORITHM 1  Overview of the ALNS framework.
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Input: A set of customers = { , }, recharging stations ;

Output: an energy-feasible solution 

1:

2: Current route for BET , {1, 2, … , }

3: while unvisited customer do
4: if a new route starts then
5: and insert to 

6: Update: 
7: , Find a candidate customer and an insertion position that generates the 

lowest cost ( )
8: Update: 
9: if cannot be inserted in the current route since energy infeasible then
10: Find an insertion position and a recharging station from that generates the 

lowest cost ( )
11: else
12: Update: start new route for BET , = + 1

13: end while
14: return 

 ALGORITHM 2  Construction of initial feasible solution.
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charging stations. Therefore, the remaining unvisited 
customers may be allowed to insert into the current route.

The current BET route terminates when there are no 
vertices that can be visited by the current BET due to the 
battery capacity, time windows, or cargo capacity violation. 
At this point, a new BET route starts following the same 
processes as described above, until all customers have 
been visited.

4.2. �ALNS Improvement
We next detail the ALNS procedure for solving the BET 
dispatching problem, which includes a set of removal opera-
tors �� � � �� �� �� � �1 2, , , ND  to destroy vertices (i.e., a few 
customers and CSs), and a set of repair operators 
�� � � �� �� �� � �1 2, , , NR  (detailed in Section 4.3) to reinsert 
unvisited customers or CSs, where ND and NR represent the 
number of destroy and repair operators, respectively. As the 
feasible initial solution can be  obtained in Section 4.1, 
we define it as the current feasible solution Sc. Then, the ALNS 
procedure iteratively improves Sc until the termination 
criteria meet.

At each iteration, a removal operator ζ− ∈ Γ− and a rein-
sertion operator ζ+ ∈ Γ+ are applied to destroy and repair the 
current solution Sc, respectively. Those operators are selected 
dynamically and adaptively based on the roulette wheel prin-
ciple. To choose an operator in each iteration, we define two 
w e i g h t  v e c t o r s ,  � � � �� � � �� ��� ��1 2, , , ND  a n d 
� � � �� � � �� ��� ��1 2, , , NR , to store the weight of a set of destroy 
and repair operators, consecutively. Therefore, the probability 
of choosing an operator ζ can be  calculated by 

Pt
i

j
j� � �� � �

�

�
��

�

�
��

�
�/
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�

. After the current solution Sc′ is repaired, 

then, we obtain a new solution Sc′.
In order to overcome the local optimal results, we use a 

SA approach to accept or reject the new solution Sc′ generated 
by the ALNS algorithm. There are three circumstances in an 
iteration. If a new solution Sc′ has been found to be better than 
or equal to the global best solution Sb, we accept the new 
solution Sc′ as a new global best solution Sb. If the new solution 
is worse than the global best solution, a SA heuristic algorithm 
will accept the worse solution with the probability e−(f(Sc′) − f(Sb))/T, 
where f(X) is the total energy consumption of solution X, and 
T is the current temperature of a SA heuristic. We predefine 
an initial temperature Tinit, which can be decreased at every 
iteration by T = δTinit, where the deteriorate rate δ ∈ (0, 1). 
Furthermore, in our ALNS framework, the algorithm termi-
nates when a specified maximum runtime Τ is reached. In 
this study, we assume a maximum runtime of 1800 seconds 
to ensure both solution quality and time efficiency.

Moreover, in the “adaptive” mechanism, the weight 
vectors ρ− and ρ+ will be updated dynamically based on the 
quality of new solution Sc′. A score variable ψ = [φ1, φ2, φ3, φ4] 
is employed to assess the performance of the ALNS improve-
ment. For example, a score φ1 denotes that a new solution Sb 

has been found. Similarly, a score φ2 is obtained when an 
improved solution is found. φ3 indicates when a new solution 
has been accepted by a SA heuristic, while the score φ4 is used 
when the solution is rejected. At the end of each iteration, the 
weight vector updates by ωi = λωi + (1 − λ)ψ, where λ ∈ (0, 1) 
is a smooth variable to control the sensitivity of the 
weight vector.

4.3. �Destroy and Repair 
Operators

The number of customers/vertices n to remove is predefined 
by the destroy rate ϵ, where n = ϵ ⋅ . Then, the ALNS frame-
work employs four removal operators to find a set of removal 
vertices based on the input n and store them in the removal 
pool Lremoval. The removal heuristics are detailed as follows:

•• Random removal randomly removes some vertices from 
the BET routes. The procedure terminates when n 
customers/vertices have been removed.

•• Random path removal destroys an entire consecutive 
sub-path with n vertices.

•• Worst removal iteratively removes n unfavorable 
vertices based on their cost. This operator sorts the 
insertion cost of all customers in descending order by 
calculating ci = f(s) − f(s−i), where s−i is the route without 
customer i and s is the route with customer i. During 
each iteration, the worst vertex contributes the largest 
insertion cost and will be removed to the unvisited list.

•• Shaw removal removes a set of n customers according to 
their similarity, which can be calculated by the 
relatedness function 

� i j
d

d
e e

q q

q
ij

i j ij
i j

i j

i i i

,� � � � �
� � �

�

� � �
� � �

� � �1 2 3max max min
,   

qqi� �
, 

where the weight vector ϕ = (ϕ1, ϕ2, ϕ3) is used to 
normalize the relatedness function, dij represents the 
distance between customers i and j, |ei − ej| is the 
absolute difference between their arrival time, and 
|qi − qj| is the absolute difference of their demand. At the 
beginning of using the Shaw removal algorithm, a 
customer i∈  is randomly selected as a candidate 
customer to be removed, and we calculate the most 
related customer j i∈ \ . The customer with the 
highest similarity to i is the one with the smallest value 
of Λ(i, j). Next, we calculate the most similarly customer 
and remove it by evaluate relatedness with j. Finally, this 
operator terminates until n vertices have been removed.

After n vertices have been removed from a solution, the 
repair heuristics are employed to rebuild a new solution by 
inserting the removed n vertices into the incomplete solution. 
During the reconstruction phase, we  use three insertion 
operators to find new routes or recharging schemes:

•• Greedy insertion iteratively conducts a series of 
insertions by selecting the best option. At each iteration, 
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the operator selects one unassigned customer from the 
removal pool Lremoval. Then, it assesses the cost function 
to determine whether the current insertion yields the 
minimum cost. This insertion process continues until all 
unvisited customers have been chosen.

•• Regret insertion selects the customer with the highest 
difference between the cost of the first and kth best 
insertion and inserts it into its optimal position. The 
regret-k value is calculated by regi, k = ∆ f(i, posi,1) 
− ∆ f(i, posi, k), where ∆ f(i, posi, 1) represents the cost 
improvement generated by the best insertion and 
∆ f(i, posi, k) denotes the cost improvement generated by 
the kth best insertion. At each iteration, the operator 
finds the kth best insertion for customer i, which 
generates the highest regret-k value. This approach 
avoids the myopic behavior of the greedy insertion 
algorithm by not necessarily selecting the task with the 
lowest cost. In this study, we have implemented the 
regret-2 insertion method.

•• Greedy insertion with charging stations was introduced 
in [14], a variation of the greedy insertion operator was 
introduced to handle energy constraints in BET routes 
that include CSs. This operator extends the general 
greedy insertion approach, which assumes that BETs do 
not visit en route CSs. Initially, this operator inserts 
unvisited customers until the battery SOC violation. 
Then, it computes a near-optimal charging scheme to 
minimize the deviation from the original BET route, 
allowing additional unvisited customers to be inserted. 
However, if a feasible charging scheme cannot be found 
in the current solution, the operator will terminate the 
insertion process after adding the customers.

5. �Case Study: A Real-
World BET Fleet 
Dispatching Problem in 
Southern California

This section presents the results of our numerical experiments 
using a real-world case study from a logistics company in 
Southern California. The goal is to find an energy-efficient 
dispatching strategy and recharging scheme for the BET fleet. 
To evaluate the performance of our proposed strategy, 
we compare our results with the historical dispatching data. 
The mathematical model in Section 3 is implemented in 
Python 3.9, and all experiments are conducted on a server 
with 32 GB RAM.

5.1. �Data Description
Four instances ranging from 47 to 90 customers were used to 
evaluate the proposed strategy. These instances were generated 
from a real-world dataset, representing typical one-day 

movements of a heavy-duty diesel truck fleet that operated in 
the Riverside County and San Bernardino County of 
California. Specifically, from the truck fleet perspective, each 
truck has a historical dispatching data file that contains the 
tractor ID, delivery and pick-up time stamps (from departure 
to termination), service time windows, cargo weight informa-
tion, service addresses, and global positioning systems (GPS) 
logs. From the customer perspective, the historical data 
contains the customer ID, service types (delivery or pick-up), 
address, longitude, latitude, demands, service time, and 
time windows.

To assess the proposed dispatching problem, we create 
four test instances using data from 266 customer orders, 
which were fulfilled by 23 trucks. These instances include 
geographic coordinates of customer locations as well as infor-
mation on the delivery types, required demands, time 
windows, and service times. We randomly designate five 
customer locations where a recharging station is equipped in 
their parking lot. It is worth noting that the BET has the 
flexibility to visit any of the charging stations during opera-
tions if required. Table 3 provides a summary of the charac-
teristics of the four instances.

To generate accurate distance and travel duration matrices 
for the truck routes between customer locations, we utilized 
the Direction Service Application Programming Interface 
(DSAPI) provided by OpenRouteService [33]. The DSAPI 
takes into consideration various real-world factors such as the 
actual road network, speed limits, and restricted roads appli-
cable to heavy-duty trucks. By utilizing the DSAPI, we obtain 
distance values that are more realistic and relevant compared 
to using simple Euclidean distances. However, for the purpose 
of simplifying the dispatching problem in our study, we do 
not incorporate real-time traffic conditions. While traffic 
conditions play a crucial role in route optimization, for the 
scope of this research, we focus on other significant aspects 
and do not consider the dynamic traffic conditions.

5.2. �Problem Variables and 
Parameter Tuning

In the numerical study, we use the problem parameter settings 
presented in Table 4 based on a real-world scenario. The total 
operation time is limited to 8 hours, including driving, idling 
when recharging, and service time. In our study, we assume 
a set of homogenous BETs in the fleet, with either short-range 
battery capacity (300 kWh) or long-range battery capacity (452 
kWh), to evaluate the effect of driving range.

TABLE 3 Summary of dataset characteristics.

Instance
# of 
Customers

# of 
Linehauls

# of 
Backhauls CSs

BETVRPB1 47 33 14 5

BETVRPB2 58 26 32 5

BETVRPB3 71 39 32 5

BETVRPB4 90 54 36 5
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A parameter tuning process has been conducted using 
instance BETVRPB2 with a short-range BET fleet. First, 
we follow a fair parameter tuning strategy by an ad hoc trial-
and-error phase conducted in [30]. We predefine a set of initial 
parameters while developing the ALNS framework. The list 
of initial parameters and the considered parameter settings 
are shown in Table 5. This set of parameters is improved by 
allowing one parameter to take different values while the rest 
are fixed. Each parameter setting is restarted six times, and 
the parameter showing the lowest average cost (in terms of 
average deviation from the best observation) is chosen. This 
process is repeated until all parameters have been tuned.

Moreover, we calibrate the parameters of the SA heuristic, 
as they play a critical role in quantifying the performance 
improvement of a new solution. In this article, this calibration 
mainly focuses on the initial temperature and deterioration 

rate by implementing a 2k factory design. Those parameters 
control the level of diversification when converging to the 
solution. Figure 2 shows the calibration results based on four 
parameter combinations (i.e., from p1 to p4). The final value 
of parameter setting shown in Table 5 is a combination leading 
to the lowest objective value.

5.3. �Performance in Real-
World Instances

In order to assess the performance of our BET dispatching 
strategy, we apply the ALNS algorithm to solve the generated 
real-world instances described in Section 5.1. We compare the 
results with a baseline dispatching strategy from the logistics 
company. The baseline strategy is provided by a routing solver 
in the company, which has been implemented in real-world 
freight operations. To make a fair comparison between the 
baseline strategy and the proposed dispatching strategy, 
we presume all historical movements were served by a BET 
fleet and estimate the total energy consumption by the objec-
tive function (6) for the historical iterations using the same 
distance matrices. Table 6 summarizes the historical iterations 
as the baseline in our case study.

Using the problem parameter settings shown in Table 4, 
we conducted 10 runs and recorded the best solution for each 
run. To assess the effect of battery capacity on total energy 
consumption, we conduct two case studies, each representing 
a different level of battery capacity. The first case study involves 
short-range BETs fitted with a 300 kWh battery, while the 
second case study involves long-range BETs equipped with a 
larger 452 kWh battery.

The results show that our dispatching strategy is able to 
solve the BET dispatching problem for all generated instances 
efficiently. We compare our strategy with the baseline strategy 
using the relative percentage deviation (RPDa, b, c) with respect 
to (a) total energy consumption, (b) total vehicle miles traveled, 
and (c) total travel time. The formula used to calculate the 
RPDa, b, c is shown as follows:

	 RPD
C hist C opt

C hista b c
a b c a b c

a b c
, ,

, , , ,

, ,

%,�
� � � � �

� �
�100 	

where Ca, b, c(hist) denotes the historical cost and Ca, b, c(opt) 
denotes the solutions obtained from the dispatching  
strategy.

As demonstrated in Tables 7 and 8, the proposed strategy 
can reduce total energy consumption compared with the 
baseline strategy. The reduction in total energy consumption 
ranges from 11% to 40% across the different instances. The 
columns “Total_dist” and “Total_time” provide information 
on the total vehicle miles traveled and total travel time, 
respectively, achieved through the implementation of 
energy-efficient routes. It is noteworthy that when opti-
mizing for energy minimization, the total energy consump-
tion can be  reduced by 27% and 28%, respectively, with 
short-range battery and long-range battery. This reduction 

TABLE 4 Summary of problem parameters.

Notation Description Value
A Frontal surface area of a BET [m2] 5

C Maximum BET cargo capacity [34] [lb] 37,000

Q Maximum BET battery capacity [kWh] {300, 452}

effm Motor efficiency [13] 0.80

effd Discharging efficiency [13] 0.90

cr Unitless rolling resistance 0.01

cd Coefficient of rolling drag 0.7

w Vehicle curb weight [lb] 8,000

g Gravitational constant [m/s2] 9.81

ρa Air density [km/m3] 1.2041

θ Road angle 0°

a Acceleration [m/s2] 0

ν Vehicle speed [mph] 68

s Loading/unloading time [hour] (0, 2]

[TO, TD] Working hour [8 am, 4 pm]

r Recharging rate [kWh/min] 3.96©
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TABLE 5 Summary of parameters in the experiment.

Variable Candidate value Final value
Score vector 
ψ = [ω1, ω2, ω3, ω4]

[15, 9, 4, 3], [18, 10, 5, 
2]

[15, 9, 4, 3]

Decay parameter λ 0.8, 0.85 0.8

Destroy percentage ϵ 35%, 38% 38%,

Number of removal 
vertices

  .0 35 , 
  0.38   0.38

Shaw removal weight 
vector

ϕ = (ϕ1, ϕ2, ϕ3)

[0.5, 0.25, 0.25], 
[0.5, 0.30, 0.30]

[0.5, 0.25, 0.25]

SA initial temperature 
Tinit

10, 20 10

SA end temperature 0.5, 0.8 0.5

SA deterioration rate δ 0.99800, 0.99991 0.99800

Bold values indicate the initial values while developing the ALNS 
framework.
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in total energy consumption does not necessarily align 
proportionally with the reduction in total vehicle miles 
traveled. The discrepancy may be attributed to the distribu-
tion of cargo payload, which can impact the overall energy 
consumption of the BET fleet.

Figure 3 shows the results under different battery 
capacity BET fleets. In most instances, the long-range BET 
fleet exhibited greater energy savings compared to the short-
range BET fleet, as there were potentially fewer detour trips 
required to visit charging stations. Notably, the cargo weight 

influences the energy consumption of BET, resulting in a 
non-proportional relationship between energy consumption 
and travel distance. For instance, in the BETVRPB2 scenario 
involving 58 customers, deploying a short-range BET fleet 
can lead to a significant reduction of 35% in total energy 
consumption. However, the corresponding total travel 
distance is reduced by a relatively smaller percentage of 23%. 
This observation highlights the impact of cargo weight on 
energy consumption and emphasizes the need to consider 
other factors beyond travel distance when optimizing 
energy efficiency.

5.4. �Analysis of the Solution 
Quality in ALNS

This section analyzes the effectiveness of considering the 
solution quality during the search. We assess the solution 
quality of the proposed ALNS framework (ALNS-SA) by 
comparing the solution with other general metaheuristics 
algorithms that are detailed as follows.

 FIGURE 2  The parameter calibration for the SA heuristic.
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TABLE 6 Summary of real-world historical movements

Instances # of BETs
Total 
energy Total_dist Total_time

BETVRPB1 5 915 512 13.1

BETVRPB2 5 1094 490 13.7

BETVRPB3 5 1406 726 18.5

BETVRPB4 8 1062 657 22.7

Total 23 4477 2385 68.0 ©
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•• ALNS without SA (ALNS-noSA): The ALNS framework 
is modified by adjusting the acceptance criteria, i.e., a SA 
heuristic. Thus, a worse solution is always declined. The 
parameter setting of the ALNS framework is described 
in Table 5.

•• LNS with SA (LNS-SA): We implement the LNS 
framework as described in [30]. Following the simple 
LNS heuristics, we utilize the Shaw removal operator 
and the greedy insertion heuristic with charging station 
operator as mentioned in Section 4.3. The parameter 
settings of the Shaw removal operator and SA heuristic 
are identical to those used in ALNS-SA.

For each problem instance, we perform six replications 
on ALNS-SA, ALNS-noSA, and LNS-SA with the stopping 
criteria of maximum time limit (i.e., 1800 seconds) presented 
in Section 4.2. The best objective results and the average objec-
tive values are described in Table 9. Overall, the proposed 
ALNS-SA outperforms other general metaheuristics algo-
rithms in terms of total energy consumption in five out of 
eight instances. Additionally, these results demonstrate that 
the SA procedure can improve the solution quality of our BET 
dispatching problems.

5.5. �Effect of Battery 
Capacities on Total 
Energy Consumption

To investigate the impact of battery capacities on the solution 
of the BET dispatching problem, we conducted an experiment 
in the problem instance BETVPRB1, where we varied the BET 
battery capacities from 300 kWh to 500 kWh in 50 kWh incre-
ments. The results are presented in Figure 4.

From the results, we observed that increasing the battery 
capacity from 300 kWh to 400 kWh in the BET fleet led to a 
reduction of 28  kWh in total energy consumption and a 
decrease of 8 miles in total vehicle distance traveled. Moreover, 

based on the heuristic solution, the total distance that the BET 
fleet travels to serve the customers can decrease to 396 miles. 
However, no further improvements were observed beyond a 
400 kWh battery capacity in this particular scenario. This 
suggests that all customers can be effectively served by the 
BET fleet equipped with a 400 kWh battery capacity. Figure 
5(a) and 5(b) show the visualization of the BET trips with 
300 kWh and 400 kWh battery capacity, respectively. Each 
colored curve represents a different BET route. The BET fleet 
may detour to fulfill driving range limitations or visit charging 
stations. Therefore, the total energy consumption may reduce 
as the battery capacity increases.

6. �Conclusion and 
Discussion

This article presents an investigation into an energy-efficient 
BET dispatching problem with backhauls and time windows. 
Building upon the classic GVRP, our study focuses on a homo-
geneous BET fleet with limited cargo payload and battery 
capacities, as well as precedence constraints for a customer 
set comprising linehaul customers requiring deliveries and 
backhaul customers requiring pickups within specific time 
windows. Moreover, we  incorporate an en route partial 
recharging policy for the BET fleet, allowing partial recharging 
at any available charging station based on the battery SOC 
upon arrival.

We have formulated a MILP model to devise a dispatching 
strategy for a BET fleet that satisfies order types and time 
windows of all customers, while minimizing the total energy 
consumption of the BET fleet, taking into account a realistic 
energy consumption model specific to BETs. Notably, we have 
highlighted the limitations of minimizing the total travel 
distance alone, as it may underestimate the total energy 
consumption due to the influence of cargo load on BETs’ 
energy usage.

TABLE 7 Results for the BET dispatching problem with short-range battery.

Instance # of BETs Total energy RPDa Total_dist RPDb Total_time RPDc

BETVRPB1 5 751 18% 409 20% 11.2 15%

BETVRPB2 5 707 35% 379 23% 11.2 18%

BETVRPB3 5 845 40% 462 36% 12.6 32%

BETVRPB4 7 950 11% 584 11% 21.2 7%

Total 22 3253 27% 1834 23% 56.2 17%©
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TABLE 8 Results for the BET dispatching problem with long-range battery.

Instance # of BETs Total energy RPDa Total_dist RPDb Total_time RPDc

BETVRPB1 5 723 21% 396 23% 11.1 15%

BETVRPB2 5 701 36% 375 23% 11.2 18%

BETVRPB3 5 839 40% 457 37% 12.2 34%

BETVRPB4 7 942 11% 582 11% 21.3 6%

Total 22 3205 28% 1810 24% 55.8 18%©
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ut
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rs

Downloaded from SAE International by Univ of California-Riverside - CDL, Thursday, May 30, 2024



120	 Peng et al. / SAE Int. J. Elect. Veh. / Volume 13, Issue 1, 2024

To solve the proposed problem, we have developed a 
metaheuristic algorithm based on the ALNS framework. In 
order to evaluate the performance of our dispatching strategy, 
we  have applied the model to real-world operation data 
obtained from a logistics company in Southern California. 
The extensive experimental results demonstrate the effective-
ness and efficiency of our strategy, with computational time 
comparable with that of the baseline strategy. Moreover, 
we have assessed the performance of our ALNS framework 
by comparing it with other metaheuristics, including standard 
ALNS and LNS. The results show that the proposed dispatching 
strategy outperforms the others in five out of eight instances.

It is important to discuss limitations of the proposed 
dispatching strategy. First, the fine-tuning of parameter 
settings plays a vital role in achieving the optimal results, 
although it is time-consuming. In addition, due to the 
problem being NP-hard, the proposed dispatching strategy 

becomes computationally intensive when attempting to find 
favorable solutions to problem instances with hundreds or 
more customers. Lastly, this study does not consider dynamic 
or uncertain factors, such as traffic condition, vehicle energy 
consumption, and charging behavior, which would pose 
more cha l lenges when formulat ing an ef fect ive 
dispatching strategy.

In terms of future work, there are several directions worth 
exploring. First, we  can consider formulating additional 
variants of the BET dispatching problem based on real-world 
scenarios. For instance, incorporating variations and uncer-
tainties into the model to account for factors such as varying 
service times at customer locations or dynamic traffic condi-
tions would be a valuable extension. Second, it would be bene-
ficial to incorporate a nonlinear charging function (e.g., [35]) 
into the existing model to better reflect more realistic charging 
rate dynamics.

 FIGURE 3  Total energy consumption [in kWh] vs. battery capacity.
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TABLE 9 The results of the BET dispatching problem of ALNS-SA, ALNS-noSA, and LNS-SA.

Instance
ALNS-SA ALNS-noSA LNS-SA
Best Obj Ave Obj Best Obj Ave Obj Best Obj Ave Obj

Scenario-I

BETVRPB1 751 764 747 789 763 775

BETVRPB2 707 735 722 768 717 725

BETVRPB3 845 882 902 934 877 898

BETVRPB4 950 960 945 975 955 982

Total 3253 3341 3316 3466 3312 3380

Scenario-II

BETVRPB1 723 755 755 784 738 754

BETVRPB2 701 761 710 738 709 737

BETVRPB3 839 860 834 854 846 865

BETVRPB4 942 968 942 987 954 987

Total 3205 3344 3241 3363 3247 3343

Bold values represent the best obtained objective value between ALNS-SA, ALNS-noSA, and LNS-SA.
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 FIGURE 4  Effect of BET battery capacities on total energy consumption.
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 FIGURE 5  Visualization of the dispatching solution.
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