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Abstract—Despite numerous studies on trajectory
prediction, existing approaches often fail to adequately
capture the multifaceted and individual nature of driving
behavior. In recognition of this gap and based on DenseTNT,
an end-to-end and goal-based trajectory prediction method,
our study developed a new version of DenseTNT that
incorporates personalized nodes within the graph neural
network in VectorNet as context encoder. Throughout the
neural network computations, these nodes represent
individual driver labels, allowing a more granular
understanding of diverse driving behaviors to be gained.
Based on comparative analysis, our model has a 11.4%
reduction in minADE when compared to baseline models that
do not have personalized labels.
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1. INTRODUCTION

A. Background

Connected and Automated Vehicles (CAVs) are rapidly
emerging as transformative elements in modern
transportation, promising significant advancements in road
safety, efficiency, and convenience [1, 2]. As their adoption
surges, the future of transportation is expected to involve not
only CAVs but also the simultaneous presence of human-
driven vehicles and other road users [3, 4], this coexistence
demands a profound understanding of diverse driving
behaviors.

Due to the unique nature of driving, generic trajectory
prediction algorithms face significant challenges. These
algorithms, such as DenseTNT [5], designed for a broad
spectrum of drivers, often operate under the assumption that

driving behaviors are generally uniform across the board [6].

In consequence, while they may perform adequately at a
macroscopic level, their predictions may be misaligned
when applied to specific drivers with unique characteristics.

As a result of this realization, it is imperative to develop
more personalized prediction algorithms in place of one-
size-fits-all models. The central contribution of this paper is
to bridge this existing gap. We aim to customize the
trajectory prediction model by introducing personalized
nodes representing individual driver labels into the
DenseTNT algorithm. In summary, this paper makes several
contributions:

e We introduce an enhanced version of the DenseTNT
trajectory prediction method that incorporates
personalized nodes within the graph neural network.
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e We conduct experiments on a SUMO/Unity
simulation platform, equipped with Logitech driving
sets, to collect a personalized dataset.

e Qualitative analysis show that our personalized
model outperforms traditional trajectory prediction
models, particularly for specific drivers.

II.  RELATED WORK

A. Trajectory Prediction

Latent-variable-sampling-based Approach. Future
predictions in the context of autonomous driving are
inherently uncertain due to the unknown intents and
behaviors of agents [7, 8]. Social GAN [9] incorporates
adversarial learning to enhance the realism of predictions.

Goal-based Approach. TNT [10] predicts goals on lane
centerlines and generates trajectories based on these goals,
using predefined sparse anchors as references. Social-
LSTM [11] is a recurrent neural network-based approach
that models social interactions between agents to predict
their future trajectories.

B. Personalized Driving Behavior Modeling

Abdelraouf et al. [12] presents a novel personalized
trajectory prediction model that leverages temporal graph
neural networks, combining GCN and LSTM networks to
capture intricate  spatio-temporal interactions. For
personalized lane-change behaviors, some researchers
pioneered the concept of a Driver Digital Twin (DDT) [13],
it allows CAVs to anticipate the actions of surrounding
vehicles with the assistance of digital twin technology.

Recognizing driver preferences needs vehicle states,
surrounding context as well as vehicular interactions. To
capture the intricacies of human behavior, Ziebart et al. [14]
employed Inverse Reinforcement Learning (IRL), under the
assumption that human actions are driven by the
optimization of an undisclosed reward function.

III. METHODOLOGY

A. Specification and Assumptions

To maintain the focus and relevance of our experiments,
we've established certain specifications and assumptions:

e We employ the proposed method concentrating on
detecting and analyzing ramp-merging scenarios.

e We assume that a driver's preferences remain
relatively consistent over time.

e All our experiments take place in a simulated
environment, and we plan to explore real-world
applicability in future research.

B. Personalized Behavior Modeling Process

In DenseTNT algorithm, VectorNet [15] serves as the
sparse context encoding method. In this paper, we introduce
personalized nodes seamlessly within the graph neural

979-8-3503-9574-7/23/$31.00 ©2023 IEEE 288
DOI 10.1109/IRC59093.2023.00054
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 30,2024 at 18:09:49 UTC from IEEE Xplore. Restrictions apply.



Input Vectors Polyline Subgraphs

Global Interaction Graph

DenseTNT Trajectory Prediction

Context Encoding

I:>

Lane —»

Agent —»

Agent features with .
personalized node

Fig. 1. The framework of proposed personalized modeling.

network component in VectorNet, as shown in Fig.1. These
personalized nodes, during neural network computations,
serve as unique driver labels. In the following trajectory
prediction algorithm, each personalized node represents the
driving characteristics, preferences, and idiosyncrasies of a
specific driver, thereby creating a comprehensive driver
behavior model.

C. Trajectory Prediction Based on DenseTNT

In this study, we use DenseTNT [5] as the prediction
head, Fig.2 illustrates the personalized driving behavior
prediction framework, which introduces the overall
structure of proposed model. It begins by employing a
sparse encoding technique, which captures the essential
structural features of maps. VectorNet is used in this part
because of its outstanding ability to add nodes with
personalized characteristics. The following goal set
predictor uses the probability distribution of goals to
generate s set of direct goals, which then produce a diverse
set of trajectory predictions.

1) Dense Goal Probability Estimation: Initially, the 2D
coordinates of the goals are encoded using a multi-layer
perceptron (MLP) to obtain the initial feature matrix F .
The local information between the goals and the lanes can
be obtained by attention mechanism:

O=FWC . K=LW*V=LW" 6

A(Q,K,V):softmax(QKT ) 4 (2)

NEA

where W2, WX | " e R%*% are the matrices for linear
projection, d, is the dimension of query / key / value

vectors, and F', L are feature matrices of the dense goal
candidates and all map elements respectively. The predicted

score of the i” goal can be written as:

exp(g(F))
> exp(g(F,))

By optimizing the loss term, the model can effectively
update the parameters of the MLP and improve its ability to
estimate the dense probabilities of the goals:

Lgoa/ = z £CE (¢z > l//z) (4)

¢ = 3)

where ¢ is the predicted goal scores and y is the ground
truth goal scores.

2) Goal Set Predictor: Our objective is to identify the
most probable goals across various modalities by
identifying distinctive peaks in the heatmap generated by
dense probability estimation. These peaks correspond to
locations with high probabilities, indicating potential
positions for the final trajectories.

The goal set predictor in DenseTNT employs multiple
heads for simultaneous prediction of N goal sets. During
inference, we take the head with the highest confidence as
the output of the goal set predictor.

3) Training Procedure: During training, a teacher
forcing technique [16] is employed in DenseTNT by
providing the ground truth goal as input during the training
process. The loss term is then calculated as the difference or
offset between the predicted trajectory § and the ground
truth trajectory s :

T A
Ec‘ompl@tiun = ZZ:] Erﬁg (SZ H S/) (5)
where £, is the smooth ¢, loss between two points.

D. Simulation and Data Collection

Building on previous research [17, 18], we've
implemented a ramp-merging model in a human-in-the-loop
co-simulation platform [19] (Fig. 3 a and b). This platform
seamlessly integrates a real-world track created in Unity,
with mixed traffic flows generated using SUMO, including
conventional and CAVs. Logitech driving sets in Unity
enable human input for immersive simulations, offering
insights into mixed traffic scenarios with varying CAV
penetration and congestion levels. To model merging
behavior accurately, we collected personalized driving data
from two drivers, each contributing data from 20 ramp-to-
mainline merging trips, with 5-second prediction windows
at a frequency of 50Hz for performance evaluation.

E. Map Representation

We transfer ramp-merging maps into two formats:
Vector Map and Rasterized Map.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 30,2024 at 18:09:49 UTC from IEEE Xplore. Restrictions apply.



Trajectory Prediction based
on DenseTNT

Personalized Node within
VectorNet as encoder

Personalized
Driving Dataset

Personalized
Driving Dataset

Personalized
Driving Dataset

(Driver 1) (Driver N)
Detecting
Driver ID
Training General Final Trajectory
Process Model (General)
bl Personalized
. Model for
Dhhatil Driver N

L\ny

Final Trajectory
(Personalized))

Performance Analysis
and Improvement

Fig.2. The framework of the personalized driving behavior prediction.

Vector Map. In Fig. 3(c), our Vector Map creation
process revolves around "Nodes" and "Ways". "Nodes" are
pivotal points within linear features like roads, while
"Ways" represent road axes formed by ordered sequences of
"Nodes", each with unique attributes like traffic
specifications and neighboring lanes.

Rasterized Map. Conversely, the Rasterized Map
focuses on binary drivable area labels at one-meter grid
resolution, distinguishing drivable zones from non-drivable
ones.

IV. RESULTS AND ANALYSIS

A. Metrics

We assess our models with three key metrics: minADE
(average displacement error), minFDE (minimum final
displacement error), and MR (Miss Rate). These metrics
evaluate trajectory prediction accuracy by measuring the
average displacement between predicted and ground-truth
points (minADE), the minimum displacement to the actual
endpoint (minFDE), and cases where predicted trajectories
don't fall within a 2.0-meter threshold of the true final
position (MR), reflecting prediction precision.

B. Trajectory Prediction Results

We trained the model on the personalized dataset
collected from our ramp-merging simulation model on
SUMO/Unity. Three different models are generated:
personalized model for Driver A, Driver B and a generic
model. To compare the different between two driving
behaviors, we present the visualized trajectory prediction
results, two different runs for each driver, which are shown
in Fig. 4.

From the visualized trajectory prediction, we can easily
learn different behaviors between two drivers when ramp-
merging scenario occurs. In the next section, we will show
the performance of the generic trajectory prediction as well
as improvement when using the personalized driving model
other than the generic model.

(a) Unity engine and driving set.
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=

(c) Ramp-merging vector map.
Fig. 3. Ramp-merging simulation platform.

C. Performance Analysis

In Table I, we initially present an overview of the
prediction  results' overall performance. Crucial
performance metrics such as minADE, minFDE, and MR
exhibit a gradual stabilization trend. This observed trend
signifies that the proposed model's performance is
improving, indicating a higher level of accuracy and
reliability. Furthermore, the results indicate that in all the
metrics, the performance of personalized DenseTNT model
outruns the generic model, which proves that it is essential
to use personalized model for specific driver.

TABLE 1. OVERALL MODEL PERFORMANCE
Metrics
Method N 5
minADE minFDE MR
Generic DenseTNT 1.808 2.449 0.274
Personalized Dense TNT 1.653 2.303 0.269

Personalized models can fit and only be used on a
specific driver. In the study, our main goal is to evaluate the
new version of DenseTNT can detect different driving
behavior and achieves a better performance when using the
personalized model for a specific driver. The accuracy and
improvement evaluation is shown in Table II. The
prediction of Driver B is better than Diver A using either the
generic model or personalized model. The improvement of
Driver A is not as significate as Driver B since the behavior
is more predictable. Overall, all the metrics improves using
personalized model, minADE improves the most, by 11.4%
on average.

TABLE II. ACCURACY AND IMPROVEMENT EVALUATION
Driver Metrics Generic Personalized Improvement

minADE 1.952 1.833 6.1%
Driver A | minFDE 2.791 2.663 4.6%
MR 0.294 0.290 1.3%

minADE 1.663 1.473 11.4%
Driver B minFDE 2.107 1.943 7.8%
MR 0.254 0.248 2.2%
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(b) Predicted trajectory (two different runs) for Driver B.

Fig. 4. Visualization of predicted trajectories: Driver A in red stars, Driver B in blue stars and ground truth in green.

V.

This paper presents an enhanced iteration of the
DenseTNT trajectory prediction method, incorporating
personalized nodes into VectorNet's graph neural network
within the DenseTNT algorithm. This approach improves
trajectory prediction by up to 11.4% on average, with a
focus on ramp-merging scenarios. However, further
research is needed to extend the model's applicability to
complex scenarios like intersections. Additionally, refining
the collection of personalized datasets to better simulate
real-world driving conditions is crucial for increasing public
trust and expanding the utility of personalized driving
behavior models.

CONCLUSION AND FUTURE WORK
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