
Abstract—Despite numerous studies on trajectory 
prediction, existing approaches often fail to adequately 
capture the multifaceted and individual nature of driving 
behavior. In recognition of this gap and based on DenseTNT, 
an end-to-end and goal-based trajectory prediction method, 
our study developed a new version of DenseTNT that 
incorporates personalized nodes within the graph neural 
network in VectorNet as context encoder. Throughout the 
neural network computations, these nodes represent 
individual driver labels, allowing a more granular 
understanding of diverse driving behaviors to be gained. 
Based on comparative analysis, our model has a 11.4% 
reduction in minADE when compared to baseline models that 
do not have personalized labels.  

Keywords—connected and automated vehicles (CAV), 
trajectory prediction, personalized driving behavior, ramp 
merging  

I. INTRODUCTION  

A. Background 
Connected and Automated Vehicles (CAVs) are rapidly 

emerging as transformative elements in modern 
transportation, promising significant advancements in road 
safety, efficiency, and convenience [1, 2]. As their adoption 
surges, the future of transportation is expected to involve not 
only CAVs but also the simultaneous presence of human-
driven vehicles and other road users [3, 4], this coexistence 
demands a profound understanding of diverse driving 
behaviors.  

Due to the unique nature of driving, generic trajectory 
prediction algorithms face significant challenges. These 
algorithms, such as DenseTNT [5], designed for a broad 
spectrum of drivers, often operate under the assumption that 
driving behaviors are generally uniform across the board [6]. 
In consequence, while they may perform adequately at a 
macroscopic level, their predictions may be misaligned 
when applied to specific drivers with unique characteristics.  

As a result of this realization, it is imperative to develop 
more personalized prediction algorithms in place of one-
size-fits-all models. The central contribution of this paper is 
to bridge this existing gap. We aim to customize the 
trajectory prediction model by introducing personalized 
nodes representing individual driver labels into the 
DenseTNT algorithm. In summary, this paper makes several 
contributions:  

� We introduce an enhanced version of the DenseTNT 
trajectory prediction method that incorporates  
personalized nodes within the graph neural network.  

� We conduct experiments on a SUMO/Unity 
simulation platform, equipped with Logitech driving 
sets, to collect a personalized dataset.  

� Qualitative analysis show that our personalized 
model outperforms traditional trajectory prediction 
models, particularly for specific drivers.  

II. RELATED WORK 

A. Trajectory Prediction 
Latent-variable-sampling-based Approach. Future 

predictions in the context of autonomous driving are 
inherently uncertain due to the unknown intents and 
behaviors of agents [7, 8]. SocialGAN [9] incorporates 
adversarial learning to enhance the realism of predictions.  

Goal-based Approach. TNT [10] predicts goals on lane 
centerlines and generates trajectories based on these goals, 
using predefined sparse anchors as references. Social-
LSTM [11] is a recurrent neural network-based approach 
that models social interactions between agents to predict 
their future trajectories.  

B. Personalized Driving Behavior Modeling 
Abdelraouf et al. [12] presents a novel personalized 

trajectory prediction model that leverages temporal graph 
neural networks, combining GCN and LSTM networks to 
capture intricate spatio-temporal interactions. For 
personalized lane-change behaviors, some researchers 
pioneered the concept of a Driver Digital Twin (DDT) [13], 
it allows CAVs to anticipate the actions of surrounding 
vehicles with the assistance of digital twin technology.  

Recognizing driver preferences needs vehicle states, 
surrounding context as well as vehicular interactions. To 
capture the intricacies of human behavior, Ziebart et al. [14] 
employed Inverse Reinforcement Learning (IRL), under the 
assumption that human actions are driven by the 
optimization of an undisclosed reward function.  

III. METHODOLOGY 

A. Specification and Assumptions 
To maintain the focus and relevance of our experiments, 

we've established certain specifications and assumptions:  

� We employ the proposed method concentrating on 
detecting and analyzing ramp-merging scenarios.  

� We assume that a driver's preferences remain 
relatively consistent over time.  

� All our experiments take place in a simulated 
environment, and we plan to explore real-world 
applicability in future research.  

B. Personalized Behavior Modeling Process 
In DenseTNT algorithm, VectorNet [15] serves as the 

sparse context encoding method. In this paper, we introduce  
personalized nodes seamlessly within the graph neural  
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Fig. 1. The framework of proposed personalized modeling.  

network component in VectorNet, as shown in Fig.1. These 
personalized nodes, during neural network computations, 
serve as unique driver labels. In the following trajectory 
prediction algorithm, each personalized node represents the 
driving characteristics, preferences, and idiosyncrasies of a 
specific driver, thereby creating a comprehensive driver 
behavior model.  

C. Trajectory Prediction Based on DenseTNT 
In this study, we use DenseTNT [5] as the prediction 

head, Fig.2 illustrates the personalized driving behavior 
prediction framework, which introduces the overall 
structure of proposed model. It begins by employing a 
sparse encoding technique, which captures the essential 
structural features of  maps. VectorNet is used in this part 
because of its outstanding  ability to add nodes with 
personalized characteristics. The following goal set 
predictor uses the probability distribution of goals to 
generate s set of direct goals, which then produce a diverse 
set of trajectory predictions.  

1) Dense Goal Probability Estimation: Initially, the 2D 
coordinates of the goals are encoded using a multi-layer 

perceptron (MLP) to obtain the initial feature matrix F  . 
The local information between the goals and the lanes can 
be obtained by attention mechanism:  
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By optimizing the loss term, the model can effectively 
update the parameters of the MLP and improve its ability to 
estimate the dense probabilities of the goals:  

( , )goal CE i i
i

� 
�	 ( , )goal CE i i( ,ii( ,,�	   (4) 

where �  is the predicted goal scores and 
  is the ground 

truth goal scores.  

2) Goal Set Predictor: Our objective is to identify the 
most probable goals across various modalities by 
identifying distinctive peaks in the heatmap generated by 
dense probability estimation. These peaks correspond to 
locations with high probabilities, indicating potential 
positions for the final trajectories.  

The goal set predictor in DenseTNT employs multiple 

heads for simultaneous prediction of N  goal sets. During 

inference, we take the head with the highest confidence as 
the output of the goal set predictor.  

3) Training Procedure: During training, a teacher 
forcing technique [16] is employed in DenseTNT by 
providing the ground truth goal as input during the training 
process. The loss term is then calculated as the difference or 

offset between the predicted trajectory ŝ  and the ground 

truth trajectory s :  

1
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where regreg  is the smooth 
11

  loss between two points.  

D. Simulation and Data Collection 
Building on previous research [17, 18], we've 

implemented a ramp-merging model in a human-in-the-loop 
co-simulation platform [19] (Fig. 3 a and b). This platform 
seamlessly integrates a real-world track created in Unity, 
with mixed traffic flows generated using SUMO, including 
conventional and CAVs. Logitech driving sets in Unity 
enable human input for immersive simulations, offering 
insights into mixed traffic scenarios with varying CAV 
penetration and congestion levels. To model merging 
behavior accurately, we collected personalized driving data 
from two drivers, each contributing data from 20 ramp-to-
mainline merging trips, with 5-second prediction windows 
at a frequency of 50Hz for performance evaluation.  

E. Map Representation 
We transfer ramp-merging maps into two formats: 

Vector Map and Rasterized Map.  
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Fig.2. The framework of the personalized driving behavior prediction. 

Vector Map. In Fig. 3(c), our Vector Map creation 
process revolves around "Nodes" and "Ways". "Nodes" are 
pivotal points within linear features like roads, while 
"Ways" represent road axes formed by ordered sequences of 
"Nodes", each with unique attributes like traffic 
specifications and neighboring lanes.  

Rasterized Map. Conversely, the Rasterized Map 
focuses on binary drivable area labels at one-meter grid 
resolution, distinguishing drivable zones from non-drivable 
ones.  

IV. RESULTS AND ANALYSIS 

A. Metrics 
We assess our models with three key metrics: minADE 

(average displacement error), minFDE (minimum final 
displacement error), and MR (Miss Rate). These metrics 
evaluate trajectory prediction accuracy by measuring the 
average displacement between predicted and ground-truth 
points (minADE), the minimum displacement to the actual 
endpoint (minFDE), and cases where predicted trajectories 
don't fall within a 2.0-meter threshold of the true final 
position (MR), reflecting prediction precision.  

B. Trajectory Prediction Results 
We trained the model on the personalized dataset 

collected from our ramp-merging simulation model on 
SUMO/Unity. Three different models are generated: 
personalized model for Driver A, Driver B and a generic 
model. To compare the different between two driving 
behaviors, we present the visualized trajectory prediction 
results, two different runs for each driver, which are shown 
in Fig. 4.  

From the visualized trajectory prediction, we can easily 
learn different behaviors between two drivers when ramp-
merging scenario occurs. In the next section, we will show 
the performance of the generic trajectory prediction as well 
as improvement when using the personalized driving model 
other than the generic model.  

(a) Unity engine and driving set.  

(b) SUMO platform.  

(c) Ramp-merging vector map.  

Fig. 3. Ramp-merging simulation platform. 

C. Performance Analysis 
In Table I, we initially present an overview of the 

prediction results' overall performance. Crucial 
performance metrics such as minADE, minFDE, and MR 
exhibit a gradual stabilization trend. This observed trend 
signifies that the proposed model's performance is 
improving, indicating a higher level of accuracy and 
reliability. Furthermore, the results indicate that in all the 
metrics, the performance of personalized DenseTNT model 
outruns the generic model, which proves that it is essential 
to use personalized model for specific driver.  

TABLE I.  OVERALL MODEL PERFORMANCE  

Method 
Metrics 

minADE minFDE MR 

 Generic DenseTNT  1.808 2.449 0.274 

Personalized DenseTNT 1.653 2.303 0.269 

 

Personalized models can fit and only be used on a 
specific driver. In the study, our main goal is to evaluate the 
new version of DenseTNT can detect different driving 
behavior and achieves a better performance when using the 
personalized model for a specific driver. The accuracy and 
improvement evaluation is shown in Table II. The 
prediction of Driver B is better than Diver A using either the 
generic model or personalized model. The improvement of 
Driver A is not as significate as Driver B since the behavior 
is more predictable. Overall, all the metrics  improves using 
personalized model, minADE improves the most, by 11.4% 
on average.  

TABLE II.  ACCURACY AND IMPROVEMENT EVALUATION 

Driver Metrics Generic Personalized Improvement 

Driver A 

minADE 1.952 1.833 6.1% 

minFDE 2.791 2.663 4.6% 

MR 0.294 0.290 1.3% 

Driver B 

minADE 1.663 1.473 11.4% 

minFDE 2.107 1.943 7.8% 

MR 0.254 0.248 2.2% 
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(a) Predicted trajectory (two different runs) for Driver A. 

(b) Predicted trajectory (two different runs) for Driver B. 

Fig. 4. Visualization of predicted trajectories: Driver A in red stars, Driver B in blue stars and ground truth in green.  

V. CONCLUSION AND FUTURE WORK 

This paper presents an enhanced iteration of the 
DenseTNT trajectory prediction method, incorporating 
personalized nodes into VectorNet's graph neural network 
within the DenseTNT algorithm. This approach improves 
trajectory prediction by up to 11.4% on average, with a 
focus on ramp-merging scenarios. However, further 
research is needed to extend the model's applicability to 
complex scenarios like intersections. Additionally, refining 
the collection of personalized datasets to better simulate 
real-world driving conditions is crucial for increasing public 
trust and expanding the utility of personalized driving 
behavior models.  
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