IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 5, MAY 2024

4527

Overtaking-Enabled Eco-Approach Control at
Signalized Intersections for Connected and
Automated Vehicles

Haoxuan Dong™, Weichao Zhuang™, Member, IEEE, Guoyuan Wu*~, Senior Member, IEEE,
Zhaojian Li™, Senior Member, IEEE, Guodong Yin"~, Senior Member, IEEE,
and Ziyou Song, Senior Member, IEEE

Abstract— Preceding vehicles typically dominate the movement
of following vehicles in traffic systems, thereby significantly
influencing the efficacy of eco-driving control that concentrates
on vehicle speed optimization. To potentially mitigate the neg-
ative effect of preceding vehicles on eco-driving control at
the signalized intersection, this study proposes an overtaking-
enabled eco-approach control (OEAC) strategy. It combines
driving lane planning and speed optimization for connected and
automated vehicles to relax the first-in-first-out queuing policy at
the signalized intersection, minimizing the host vehicle’s energy
consumption and travel delay. The OEAC adopts a two-stage
receding horizon control framework to derive optimal driving
trajectories for adapting to dynamic traffic conditions. In the
first stage, the driving lane optimization problem is formulated
as a Markov decision process and solved using dynamic pro-
gramming, which takes into account the uncertain disturbance
from preceding vehicles. In the second stage, the vehicle’s speed
trajectory with the minimal driving cost is optimized rapidly
using Pontryagin’s minimum principle to obtain the closed-form
analytical optimal solution. Extensive simulations are conducted
to evaluate the effectiveness of the OEAC. The results show that
the OEAC is excellent in driving cost reduction over constant
speed and regular eco-approach and departure strategies in
various traffic scenarios, with an average improvement of 20.91%
and 5.62%, respectively.

Index Terms— Eco-driving, connected and automated vehicles,
Markov decision process, Pontryagin’s minimum principle, lane-
changing, speed optimization.
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I. INTRODUCTION

HE growth of urbanization and the increasing vehicle

ownership have led to an increase in the number of
vehicles in urban traffic [1], [2], raising concerns about green-
house gas emissions and traffic congestion [3]. Fortunately,
by connecting vehicles and road infrastructure, the emerging
connected and automated vehicle (CAV) technologies pro-
vide possibilities to further improve vehicle energy efficiency
and traffic throughput [4], [5]. In this context, a variety
of eco-friendly methods have been proposed from road or
vehicle perspectives to improve energy efficiency and traffic
efficiency. One such method is to optimize the traffic light
signal phase and timing for prioritization of a single vehicle or
a platoon approaching the intersection [6]. Another approach
involves economically controlling the vehicle speed drive to
pass through the intersection, known as eco-approach and
departure (EAD) control in some literature [7].

The EAD utilizes look-ahead information on traffic lights
and surrounding vehicles [7], [8], to facilitate smooth vehicle
pass through signalized intersections and avoid stop-and-go
behavior. A simple EAD is green light optimized speed advi-
sory system, which uses deterministic traffic light signal phase
and timing, speed limits, and vehicle kinematics to calculate
the speed range that ensures the vehicle can pass through an
intersection without stopping [9]. Considering the uncertain
signal phase and timing of actuated traffic lights, Mahler
and Vahidi [10] introduced a prediction model to determine
the probability of green signals at each time step, then the
vehicle energy-optimal speed trajectory was derived aiming to
maximize the likelihood of passing through an intersection.
In real-world traffic, the vehicle speed may be impacted by
the preceding vehicle or the queue waiting at the intersection.
Therefore, Hao et al. [8], Bai et al. [11], and Ye et al. [12]
designed the EAD strategies considering preceding vehicle
movement information obtained using onboard radar, vehicle-
to-vehicle communication, or prediction model. Dong et al.
[13] and Sun et al. [14] proposed enhanced EAD to allow
the vehicle to drive through the intersection without a stop by
considering the discharging time of the vehicle queue, where
the vehicle kinematics and traffic shockwave theory were
utilized to estimate the vehicle queue movement. Other EAD
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strategies were proposed by Wang et al. [15], Han et al. [16],
and Dong et al. [17]. These strategies are based on designing
multiple intersection-based EAD controller that incorporates
the spatial-temporal correlation among signalized corridors.
Ma et al. [18], Li et al. [19], and Jiang et al. [20] proposed
vehicle platoon-based EAD approaches aimed at improving
the energy efficiency of multiple vehicles passing through the
signalized intersection.

Most EAD research has focused on optimizing vehicle
speed to control its longitudinal movement. However, the host
vehicle (HV) may encounter slow-moving vehicles ahead in
some scenarios. If the HV does not overtake the preced-
ing vehicle, the HV speed optimization is restricted to the
car-following mode, resulting in degraded efficacy of EAD
control. Earlier vehicle overtaking research concentrated on
lane-changing decision and trajectory optimization, Zhou et al.
[21] and Li et al. [22] formulated optimal lane-changing strate-
gies that consider HVs and other vehicles in their vicinity to
improve driving comfort, safety, and lane-changing efficiency
in complex driving environments. These studies, however,
omit the vehicle energy-saving objective, which could lead
to a reduction in vehicle energy efficiency when frequent lane
changes are present. To address this issue, Gu et al. [23] and
Dong et al. [24] developed a flexible eco-cruising strategy with
efficient driving lane planning and speed optimization capabili-
ties simultaneously for CAVs. Chen et al. [25] derived time and
energy-optimal lane-changing control policies that cooperate
with neighboring CAVs, the maneuver time subject to safety
constraints and associated surrogate energy consumption of all
cooperating vehicles was minimized.

The studies mentioned above focus on overtaking-enabled
eco-cruising control on highways; however, the offered solu-
tions may not apply to urban traffic due to the presence of
traffic lights. Lane-changing in urban traffic is not only for
achieving the goals of improving vehicle energy efficiency
and reducing travel delay by considering the impact of pre-
ceding vehicles as in a highway scenario, but also to ensure
vehicles pass through signalized intersections without stop-
and-go operation during the green window of traffic light.
Currently, there are few investigations of overtaking-enabled
EAD. Yang et al. [26] designed a less-disturbed EAD strategy
that integrates offline energy-efficient speed planning and
online speed tracking with overtaking ability. Nevertheless, the
less-disturbed EAD does not achieve an energy-saving control
globally since lane changing is not considered in vehicle speed
planning. Guo et al. [27] developed a hybrid deep Q-learning
and policy gradient-based EAD under a full CAVs environ-
ment, where both speed optimization and lane-changing order
were considered. However, because the fully connected envi-
ronment can only be realized in the distant future [28], [29]
and the proposed approach does not take vehicle lane-changing
trajectory into consideration, this approach is not practical
in real-world traffic. Moreover, Hu et al. [30] proposed an
enhanced EAD controller to cut through the traffic and catch
green signals by overtaking slow-moving vehicles for real-time
application in a partially connected environment. However, this
study formulated a nonlinear optimal control problem based on
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Fig. 1. A general signalized intersection route.

a simplified vehicle model that ignored the vehicle powertrain
model. The resulting solution could be different from reality.

This study proposes an overtaking-enabled eco-approach
control (OEAC) strategy for CAVs, which is capable of
relaxing the first-in-first-out queuing policy at a signalized
intersection, while minimizing vehicle energy consumption
and travel delay in a computationally efficient manner. The
major contributions are threefold:

1) An overtaking-enabled EAD optimal control problem
is formulated to cooperate with driving lane planning and
speed optimization while considering the constraints posed
by traffic lights and preceding vehicles. The unified monetary
counterpart objectives of energy consumption and travel time
are used to balance vehicle energy and traffic efficiency.

2) A real-time optimal driving trajectory is derived through
a two-stage receding horizon control framework. In the first
stage, the driving lane decision is formulated as a Markov
decision process (MDP), and dynamic programming is adopted
to solve this problem while considering the uncertain distur-
bance of preceding vehicles. In the second stage, the speed
trajectory is optimized using Pontryagin’s minimum principle
(PMP) algorithm with minimal driving costs, leading to rapid
optimization.

3) The simulation of stochastic traffic scenarios and typical
case studies are investigated to verify the effectiveness of
the proposed OEAC strategy. Furthermore, the sensitivity of
OEAC:’s effectiveness to traffic flow conditions and traffic light
initial states is inspected.

The remainder of this paper is organized as follows.
Section II formulates the intersection crossing scenario and
vehicle model. In Section III, the EAD optimal control prob-
lem and the OEAC framework are defined. Section IV provides
the methodology of the OEAC in detail. The performance of
the OEAC is comprehensively evaluated in Section V. Finally,
Section VI concludes this paper.

II. INTERSECTION CROSSING SCENARIO
AND VEHICLE MODEL

A. Intersection Crossing Scenario

We consider a general three-lane urban route with a
fixed-timing traffic light, as shown in Fig. 1.

The route is defined as a set O, = {Sy, D¢,Dy,
Ni, Dy, Vinaxs Vimin}. Su 1is the location of the stop line at
the intersection, D., is the communication zone, D;, is the
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lane-changing coordinator zone, which is related to D, and
the length of no lane-changing zone near the intersection stop
line. N; is the total number of lanes in the same driving
direction as the HV, where the lane numbers from the outside
to the inside of the road are i = 1,2, --- , N;. Dy, is the width
of the lane, and V,,,, and V,,;, are maximum and minimum
speed limits, respectively.

The information on traffic lights is defined by a set O; =
{TZS, Iin, Ty, T,e}, where Tj; is the initial transition time of
the traffic light indication when the HV is approaching the
communication zone, [;, is the initial indication of the traffic
light with I;;, = 1 and [I;; = 0 denoting the green and red
signals, respectively, and T, and 7. are the time interval of
green and red signals, respectively. Note that the yellow signal
is lumped into the red for driving safety concerns.

The set of surrounding vehicles is given by Oy =
{Nsv. 5s.j, vs,j» L, j }. Specifically, Ny, is the number of sur-
rounding vehicles, where we specify vehicle serial numbers as
j=1,2,---, Ngy, in the order of proximity to the intersection
and being from the innermost lane to the outermost lane. s; ;,
vy, j, and Ly ; are the position, speed, and driving lane of jth
surrounding vehicle, respectively. The surrounding vehicle can
be classified into three types by their relative position for the
HV in the longitudinal direction: the vehicle in front of the
HV is the preceding vehicle, the vehicle driving side by side
with the HV is the side vehicle, and the vehicle behind the
HYV is the rear vehicles.

It is also assumed that the HV is equipped with a vehicle-
to-infrastructure communication device (4G cellular network)
and can access instantaneous traffic information. The HV can
modify its speed in the communication zone and change the
driving lane in the lane change coordinator zone. Note that
the lane-changing rule is constructed to only permit the HV
to drive in the current lane or change to the adjacent lanes,
as shown in Fig. 1. Therefore, the maximum permissible lane
shift is only one, and the lane-changing index L. has only
three values, i.e., L, = [—1, 0, 1], corresponding to changing
lanes to the left, driving in the current lane, and changing lanes
to the right, respectively.

B. Vehicle Model

When vehicles change lanes, we assume that the steering
action is mild, the speed is moderate, and the wheels do not
slip at their contact point with the ground, so the vehicle com-
plies with the dynamics and movement geometry constraints.
The bicycle model with an Ackerman steering design is used
to explain vehicle lateral and longitudinal movements [30],
as expressed in (1),

Sy cosy
sy | = siny v @))
y tang,, / L

where v is the speed, y is the yaw angle, 8, is the front-wheel
steering angle, L is the vehicle body length, and s, and s, are
the longitudinal and lateral positions, respectively.

We focus on the EAD control of an electric vehicle that is
powered by a centralized electric motor. Ignoring the electric
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wire loss, the battery power is calculated by (2),
+ Pun, ! 2)

where n;, is the battery efficiency, P, is the vehicle acces-
sory power, and P,, is the motor power. The approximated
closed-form expression of motor power [31] is used to reduce
the computational burden, as expressed in (3),

Pb — Pmnb_Sign(Pm)

P, :mev—}—KT,ﬁ 3)

where @ and « are the empirical coefficients, i.e., @ =
iglo/ry and k = Ry, / w?. R,, is the motor armature resistance,
( is the motor speed constant, and 7, is the motor torque,
as defined in (4) [32],

(mgf cos® + mg sin0+0.5Cp Apv> + msv) ry,

I = sign(Ty,)
t

— “)

lgion
where m is the vehicle mass, g is the gravity acceleration,
f is the rolling resistance coefficient, Cp is the aerodynamic
drag coefficient, A is the frontal area, p is the air density, §
is the vehicle rotational inertia coefficient, r,, is the radius of
the vehicle tire, i,is the transmission ratio, i is the final drive
ratio, 1, is the driveline efficiency, 6 is the road slope, and
sign () is the signum function.

III. PROBLEM FORMULATION AND
CONTROL FRAMEWORK

A. EAD Problem Analysis

EAD control is recognized as a promising approach to
reducing vehicle energy consumption and travel delay at
signalized intersections [4]. Regular EAD (READ) uses traffic
light and preceding vehicle information, as shown in the blue
solid line in Fig. 2, to calculate the speed to pass through the
signalized intersection without stopping. While approaching
the preceding vehicle, the HV must adhere to the first-in-first-
out queuing policy, which may increase the travel time when
encountering a slow-moving preceding vehicle. Additionally,
due to the blocking effect of the preceding vehicle, the speed
of READ may not be optimal.

In this context, to realize a more efficient vehicle control
system, this study proposes an overtaking-enabled EAD strat-
egy, referred to as OEAC, for safely and efficiently passing
through the signalized intersection by combining driving lane
planning and speed optimization. As shown in the green solid
and dotted lines in Fig. 2, the HV with OEAC can overtake the
slower vehicle, therefore relaxing the first-in-first-out queuing
policy to reduce vehicle energy consumption and travel delay
effectively.

B. Optimization Control Problem

The objective of the proposed OEAC is to maneuver the
vehicle efficiently passing through the signalized intersection
with a minimal driving cost. The controller must determine the
optimal driving lane and speed for the HV, considering relevant
vehicle and traffic constraints, to reach the destination with the
shortest amount of time and reduced energy consumption.

We define the state variable x as including vehicle speed
and longitudinal position, i.e., x = [v, s¢]7. We assume
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Fig. 2. Schematic diagram of a vehicle crossing the signalized intersection

with READ and OEAC strategies. Here, the HV initially drives in lane 2
before changing to lane 1.

no mechanical brake force is actuated in order to increase
the vehicle energy efficiency while taking into account the
requirements for maximum deceleration and the available
motor torque [33]. Then, the control inputu includes motor
torque and lane-changing index, i.e., u = [T}, LY. Since
the dimension of quantity in terms of energy consumption
and travel time are not uniform [24], a monetary counterpart
normalized objective of vehicle energy and travel time is
established to calculate the driving cost. Consequently, the
overtaking-enabled EAD optimal control problem is formu-
lated in (5) and (6a), with the goal of minimizing driving cost
(see (5)), under muti-constraints, i.e., speed limits (see (6a)),
motor torque bounds (see (6b)), lane change integer constraint
(see (6¢)), safety intervehicle distance (see (6d)), traffic light
control policy (see (6¢)), and initial and final states constraints

(see (6f)),

Ty
min J (x, u) = / Py + 5 dt 5)
uel T,

subject to 1 Viyin < v < Viax (6a)
Tmmin = Tm = Tmmax (6b)
L.e[-1,0,1] (6¢)
ds,j - (Ss,j >0 (6d)

v=0 ifsx = S[l — S[s and P =0
. (6e)

v#EOQ ifsy=8;— S and P =1
given: x (Ty) = [V;,01,sx (Tf) =Su (6D

where T is the initial time, T is the final time at which
the HV reaches the destination, which is variable. ¢, and ¢
are coefficients that convert the electricity and time costs into
their monetary counterpart, respectively. Vs and Vs are the
vehicle’s initial and final speeds, respectively. Tp,min < 0 and
Tumax = 0 are the motor maximum generation and propulsion
torque, respectively. d ; is the distance between the HV and
the jth vehicle. §; ; is the minimum safe gap between the HV
and the jth vehicle, which is defined by using an intelligent
driver model [34]. S;s is the standstill space between HV and
the intersection stop line. P is the traffic light indication, in the
initial traffic light cycle P = I;,, following P is determined
from the traffic light model [17].

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 5, MAY 2024

Feedback of states of surrounding vehicles and traffic light

0 .'.Trafﬁc & vehicle ,’ . Overtaking-enabled eco-approach
Ll information m control strategy
Road geometry Driving lane planner Speed optimizer
Lateral distance (m) Speed (km/h)
Speed limits

Tongitudinal distance (m)
Driving lane Lop
optimization problem

Time (s)
Speed optimization
problem
v

Traffic light signal
phase and timing

States of surrounding Wiy s Pontryagin's

TEEE pro:ess mmlmum*pnnmple
i ——_— \ Driving lane planning Speed optimizing
ittt i g |
Feedback of states of host vehicle
Fig. 3. The two-stage receding horizon control framework of the OEAC.

Step 1 Step 2

Fig. 4. A tree representation of the driving lane from God’s eye point of
view. Here the green solid and black dotted lanes donate the optimal and
feasible driving lane sequences, respectively.

C. Control Framework

The overtaking-enabled EAD optimal control problem is
a complicated nonlinear time-varying optimization problem
with multiscale objectives and various types of constraints,
which is difficult to solve directly. Furthermore, the states
of the surrounding vehicles are dynamically changeable, and
difficult to forecast properly, which significantly affects the
EAD control performance.

As a result, this study proposes OEAC with a two-stage
receding horizon control framework (see Fig. 3): the driving
lane and speed are optimized in the first and second stages,
respectively. Then, the overtaking-enabled EAD optimal con-
trol problem can be decomposed into driving lane planning
and speed optimization problems, and solved using MDP
theory and PMP algorithm, respectively. Benefitting from the
efficient optimization algorithm and receding horizon control
framework, the OEAC is able to calculate the vehicle optimal
driving trajectory in real-time and adapt to dynamic traffic
conditions.

IV. OVERTAKING-ENABLED ECO-APPROACH
CONTROL STRATEGY

A. Efficient Driving Lane Planning

1) Driving Lane Optimization Problem: Fig. 4 illustrates a
tree graph to represent how the vehicle changes lanes while
driving. The entire trip may be segmented into N steps in the
spatial domain, each of which necessitates choosing whether
to change lanes or stay in the same lane. In lane-changing and
lane-keeping operations, the travel period At,, longitudinal
distance interval Asy ., and lateral distance interval As, , are
different. Note that the subscript z =1, 2, ..., N indicates the
receding optimization step numbers.

This study employs a receding horizon framework and
assumes that the HV lane-changing operation continues once
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it begins until it enters the target lane. Given the state variable
Xl = [tz, Sx.z sy,z] and control input u; ; = L. ;. Then, the
driving lane optimization problem is formulated in (7),

N
min J; (X u1.2) = D (GePpz + 8) At

uy €U
z=1

subject to: L., € [—1,0,1]

ds,j,z - 8s,j,z = 0
Iz+1 t; + At;
X241 = | Sxz+1 | = | Sx,z + Asy ; @)
Sy, z+1 Sy,z + Asy ,

where Ar, € {Afe., An ), Asy: € {Asez, Asyz}, and
Asy; € {syc,z, Asyk,z}. At.; and Afy , are time intervals
of lane-changing and lane-keeping, respectively. Asy., and
Asx ; denote the longitudinal distances of lane-changing and
lane-keeping, respectively. sy., and Asy; , are the lateral
distances of lane-changing and lane-keeping, respectively.
Then At.; = Asex,z/Vn; and Aty ; = Asix,z/ Vn,z, Where
Vi, is the speed of HV at the beginning of zth step. Note
that At;, Asyc,, and Asy., are related to lane-changing
trajectories. Here we choose the third-order polynomial based
lane-changing trajectory model [24], which has the advantages
of a closed form and smooth curvature.

2) Safety Concerns During Lane-Changing: The opera-
tion of changing lanes offers a larger risk to safety than
lane-keeping because the lateral displacement of the vehicle
during lane-changing disrupts the flow of traffic in the adjacent
lanes. The potential collision scenarios in the target lane can
be categorized into two groups: rear-end collision caused by a
slower preceding vehicle or a faster rear vehicle; and side col-
lision attributable to the side vehicle driving at the same speed
as the HV. We define the flags that allow HV changes to the
left or right lanes as v; and v, respectively, and the values
1 and O indicate that the lane can and cannot be changed.
Then, the safety lane-changing criteria are summarized in (8).

-1 wcl,z =1
L..=10 Ve, =0and ¥, =0 (8)
1 cr,z = 1

The lane-changing flags are determined by the safety clear-
ance between HV and the nearest preceding, rear, or side
vehicles, which is calculated by geometric methods [34],
as given in (9),

4 vz (2 = vs,.2) ©)
2 faminmax

where H; is the standstill distance between the HV and

the nearest vehicle, Tj, is the safety time headway, vy ; ; is

the speed of the nearest surrounding vehicles, and a,,;, and

amayx are maximum deceleration and acceleration considering

driving comfort, respectively.

3) Efficient Driving Lane Planning Using MDP Theory:
The movement of surrounding vehicles greatly influences the
lane-changing decision of HV. Most research on lane-changing
control assumes the movement of surrounding vehicles can be

8s,j.= Hs + max(O, Ty,
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accurately accessed [21] or predicted [26]. However, accu-
rate prediction is more challenging because of the random
behaviors of surrounding vehicles. In this context, this study
employs MDP to find the optimal driving lane considering the
uncertainties of surrounding vehicles.

The driving lane optimization problem is a deterministic
problem, which is transformed as an MDP [35], as indexed
by M = {W,U, P, R, &}, where W is the state space, U is
the action space, P is the state transition probability from the
current state to the next, R is the reward function, and & is
the discount factor. The following provides the definitions for
all parameters.

The one-step reward r (x;,2, u;,;) is defined as driving cost,
which is associated with a particular action, as listed in (10).

r (%2 urz) = = (LePy, + &) AL, (10)

We define & as an exponential decay factor so that
long-term and short-term rewards can be balanced. Then, the
R (xl,z, ul,z) is calculated by (11).

R (xrzourz) =r (X141, Ui z41) + Er (X1,242, u1,242)

+§2r (xl,z+3,ul,z+3) + ... (11

The state transition probability is defined by using the
probability model P (Xl,z+1 | x1.2, ul,z) € {Pd,z, Per.zs sz,z}
for the predicted optimal driving costs C,p,,, and predicted
actual driving costs (i.e., C¢,; and C,., for left and right
turning, respectively), as listed in (12) — (14), shown at the
bottom of the next page, where P ;, Per;, and Py . are
the probabilities of changing lane to the left, changing lane
to the right, and lane-keeping, respectively. It should be noted
that improvements in energy efficiency for eco-driving often
do not surpass 100% [4], thus we set the probability of lane-
changing to O when actual driving cost surpasses optimal
driving cost by a factor of two.

The Cppy,; is related to the feasible maximum time Tppayx,;
and minimum time Tpuin,; to pass through the intersection.
Tpmax,z and Ty, can be calculated by considering the speed
limits, vehicle position, and traffic light model [17]. Then,
Copr,; is calculated by using (15),

Tpmin,z

Z (CePb + Ct) Tpmin,z
ty

Tpn1in,z+At

Z &Py +¢1) (Tpmin,z + At)

Copr,; = min 15 (15)

Tpmax 2

Z ({ePb + ;t) Tpmax,z

f

where f; is the start time of the zth step, and At = 0.1s is the
time interval. The actual driving costs depend on the driving
operations and are affected by the movement of surrounding
vehicles. Taking into account the impacts of stochastic traffic
environments, this study proposes a heuristic driving cost pre-
diction method. The proposed method divides the challenging
task of evaluating the driving cost within a long horizon into
two parts: present driving cost and foresighted driving cost,
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as presented in (16)—(18),

Ccl,z = Cclp,z + Cclf,z (16)
Ccr,z = Ccrp,z + Ccrf,z (17)
Cik,z = Cirp,z + Cirf,; (18)

where Ccp 7, Cerp,z, and Cyip . are the present driving costs
for changing lane to the left, changing lane to the right, and
lane-keeping, respectively, and Cf,;, Cerfz, and Cyy,, are
the foresighted driving costs.

The present driving cost may be estimated more precisely
since the traffic condition remains relatively constant for a
short period. The costs of changing lanes to the left or right
is the same, and the present driving costs can be calculated
using (19) and (20).

19)
(20)

Cclp,z = Ccrp,z = §ePbAtc,z + §1Atc,z
Clkp,z = gePbAtk,z + {lAtk,Z

In the calculation of foresighted driving costs, only the
existing state of the preceding vehicle after the current driving
lane selection operation is carried out, and the number of pre-
ceding vehicles is not evaluated. If the HV and the preceding
vehicle do not collide, it is defined as lane-keeping mode;
if the HV encounters the preceding vehicle upstream of the
intersection, the timing and position of the encounter moment
are estimated. In this situation, the HV will keep cruise-driving
until encountering the preceding vehicle, and then follow the
preceding vehicle. Therefore, the Cef,7, Cerf,z, and Ciy,, are
calculated using (21)—(23),

CePp+ &) (tearz +tepr,z) 9 =1

Py St — Asye 21
Ceif,z (P +C)) 1l Sxe,z 9 =0 (21)
Vh,z
(gePb + é-t) (tcdr,z + tcfr,z) v =1
R O R e
V.2

St — Asxi,
Citse = (CePy+ ) = —— (23)
h,z

where ¢ is the existing state of the preceding vehicle, ¥ =
1 denotes that existing the preceding vehicle on the target lane,
and HV can encounter the preceding vehicle before it reaches
the intersection stop line; on the contrary, ¥ = 0 denotes
the absence of the preceding vehicle or the preceding vehicle
moving faster than HV. #.4; ; and 7.4, , are the cruise-driving
time when HV catches up with the preceding vehicle by
changing lanes to the left or right, respectively. #.f; . and
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fefr,; are the time of car-following after encounters preceding
vehicles by changing lanes to the left or right, respectively.

The derivation for changing lanes to the left is demonstrated
in the following; as the derivation for changing lanes to the
right is identical, it is omitted. fcq; ; and #.f; . are calculated
using (24) and (25), respectively,

d d
I Ty s
tedi; =1 Ve — Vpz Vi — Vo2 (24)
0 others
S;l — Asxc,z - Vh,ztcdl,z ifT(;p]’Z - dhp‘z
tefl,z = Vp,z Vh,z - Vp,z
0 others
(25)

where dy,, ; is the distance between HV and the preceding
vehicle, Teprz = (Su— Sxp.z — Vp,zAle) / V2 is the time
for the preceding vehicle to pass through the intersection. V), ;
and sy, , are the speed and position of the preceding vehicle,
respectively.

Then, the optimal solution of value function V (xlyz) and
control policy 7 (x;,;) satisfies (26) and (27).

Vv (xl,z) = urlnfgj R (xl,zs ul,z)

+ Z P (X141 | X120 u1,2) V (%1,241)
xl,z+1

b4 (xlyz) = argmax R (xl,z, ulgz)
u; €U

+ Z P (xrzv1 1%z, ur2) V (x1,241)
xl,z+1

(26)

27)

Dynamic programming is utilized to resolve the MDP
problem [36] and determine the optimal driving lane L, ;.

B. Energy-Saving Speed Optimization

1) Speed Optimization Problem: To get a real-time analyt-
ical solution, the speed optimization problem is formulated
in (28) based on some assumptions. We define the driveline
and battery system efficiencies as constant, i.e., n; = 0.9 and
np = 0.9 [37]. In urban traffic, the vehicle moves at modest
speeds to generate less air resistance, therefore air resistance
is ignored [38]. In addition, as urban roads are often level, this
study does not evaluate the impact of road slopes. To ensure a
viable initial state, we assume the state constraints are inactive

Ccl,z -C

opt,z
Ve, = land Cg; < 2Cp1,
Pcl,z = Ccl,z+ Ccr,z +Clk,z_3copt,z o s ot (12)
0 Ve, =0 o0r Cy 2(2) zzcopt,z
Ccr,z - Cupt z
d r.=land C., < 2C,
Pare = | CarntCore  Clte—3Copre 7% e s (13)
0 1ﬁcr,z =0or Ccr,z = 2Copt,z
7le,z =1- 7Dcl,z - 7)cr.,z (14)
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at the beginning.

. ' 2 Pq
min Js (x, uy) = st (wvus—i—/cus) nb+77_ Cedt
t b

uselU

usigion:  gf
—=— — = (6a), (6b
méry ) (6a), (6b)

given : x (t;) = [vy, 5517 . s (tf) =5f

subject to: sy = v,V =
(28)

where u; is the control input, that is, ug; = T,,. t; is the initial
time of the current step, ¢ is the estimated intersection passing
time calculated using (24) and (25).

2) Analytical Solution Using PMP Algorithm: Different
types of constraints are included in the speed optimization
problem. According to the PMP solution criteria, the uncon-
strained solution is formed first, which is the basis to derive
a constrained solution. The Hamiltonian in the unconstrained
condition is given as (29),

2 Py
H (x,ug,t) = (zzrvus + /cus) np + 77_ Le + Ppv
b
+ ¢_s (usigiont _ gf)
1) mry,

where ¢, and ¢; are the position and speed co-state variables,
respectively. Following the Euler-Lagrange theory, the neces-
sary conditions for optimality are given in (30)—(32).

(29)

OH igi
— (v + 2y moge + LV _ g (30

dug méry,

0" _ ¢, =0 (31)

ax P

9H .

E = —¢; = wnpleus + ¢p = 0 (32)

Since <;5,, = 0 yields ¢, v = vy + (usigion' — %) t, and

mory
Uy = — w‘f)i Z (from (32), ¢y = Owhen 1 = tr), the optimal
control input u}, speed v*, and longitudinal position s; can be
calculated by using vehicle dynamics and (30)—(32), as shown
in (33)—(35),

W = Agt + Ay (33)
Agiol Apigi t
o = algloMe tz + blgloN: —of) i te, (34)
2méry, mry, 1)
Aqigion Apigion; 12
* ag 3 8
=" 7"y —_— — — t 35
Sx 6méry, + ( Mrey gf 25 + eyt +e5 (35)
with
1 Ppigion;
A = — - Sl
“= 23 (wgf t mrwmte
1 ..
y = — L (o, 4 Poision
2K moérynple

where e, and e; are the constants of integration, which are
determined by boundary conditions.

The optimal solution, which respects the speed and control
constraints, can be obtained from the unconstrained optimal
solution. Since the speed limits are pure state inequality
constraints that are independent of the control input, we adjoin
them in the Hamiltonian using the indirect method [39], which
adjoins the p™ order state constraint indirectly up until the
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control input is explicitly present. As a result, the explicit
control input for the speed limits has to be included in one
differential computation. As such, we define AP (x, ug, t) as
the adjoining function of speed and control input constraints,
as expressed in (36)—(39).

e
A (e, ug, ) = < (m - gf) (36)
1) mry,
Lo
AL w1y = — (L op (37)
1) mry,
Ag()) (x, us, t) = ug — Tumax (33)
AV (x, g, 1) = Tyumin — u (39)

The resulting Lagrangian is formed as (40),

L(x,ug, )= H (x, us, )+ @1 AV (x, g, 1) + 02A3 (x, s, 1)
0 0
+6AY O us, 1) +8AY (v g, 1) (40)

wherep and & are the co-states of speed and control input
constraints. Note that the values of ¢ and & are always zero
when the speed and control input constraints are not active,
but they are not zero when the constraints are triggered.

Considering AP (x, uy,t) < 0 does not prevent the speed
and torque trajectories from exceeding the boundaries, then,
the tangency conditions [40] of p™ order state constraints at
the junction time must be added, as defined in (41),

v (T) - Vmax
Vmin -V (T)
Us (7:) - Tmmax
Tonmin — us (T)

B (x,us,t) = =0 41

where 7 is the entry time of the constraint.
The jump conditions derived from interior-point constraints
at each relevant moment are defined in (42)—(44),

¢y (t7) =95 (zF) = z;:; ;G (x*, 1) (42)
¢ () =90 () = 20 6 () @)
H(x")—H(") = Z;:; 7,GY (k) (44)

where 7; is a Lagrange multiplier determined to satisfy
constraints, and T~ and t are the time instances just before
and after time t. Our previous research has revealed that
the position co-state, speed co-state, Hamiltonian, and control
input are continuous at t = t when the states and control input
constraints are triggered independently [41].

Let F be the constraint violated flag set, consisting of
four bits representing the states of maximum speed, minimum
speed, maximum control input, and minimum control input
constraints, respectively. A value of 1 indicates that the con-
straint has been activated, while a value of O indicates that it
has not. For example, 7 = [1, 0, 0, 0] indicates that only the
maximum speed constraint is activated. Then, the closed-form
analytical solution of each state and control input constraints
activation at ¢t € [t1, 2] for the optimal control input u},
states (v* and s}), and co-state variables (@1, @2, &1, &)
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are calculated by (45)—(48).

3
8T _11,0,0,0)
lg}(‘)(;’][
mgfory _
Tinmax F =10,0,1,0]
Toumin F =10,0,0,1]
S 2k
(m:_m rwnbé‘e.(.w'v-‘r KM;)_d)S F=11,0,0,0]
rums e (570 2cuy)
wv Ku
2:m rwnbé? : s +¢g .7-':[0,1,0,0]
LgloMe ..
Slz—nb;‘e(wv—i_z’(ub)_w .7:2[0,0,1,0]
p Ty
igl
Ez:nbé‘e (wv-ﬁ-ZKuS)-i-Lont —7:=[Os 07 011]
méry,
(46)
Vinax F =1[1,0,0,0]
Vmin ‘F = [Os 1,0, O]
[ olon: T, t
ot — (lgloﬂt mmax —gf)—+ev F =10,0,1,0]
mry, $
PRLY/TY A t
(M_gf)_HU F=10.0,0, 1]
mry 8
47)
Vinax (2 — t1) + e F =11,0,0,0]
Vinin (t2 — 11) + e F=10,1,0,0]
.o T t2
sp=q (B mmax N F 10,0, 1,0]
mry, 28
.o T ) tZ
LI Emmin _ o Y0 F—10,0,0,1]
mry 25

(48)

Typically, the unconstrained optimal solution is calculated
first, and the speed optimization problem is then solved by
combining the solutions to the constrained and unconstrained
problems if the unconstrained optimal solution violates any
of the constraints. The procedure is continued until no more
constraints are triggered by the solution. However, the large
number of repeated calculations raises the computational cost.
In this context, the active conditions of state and control
input constraints are implemented based on the findings of
Dong et al. [41] and Mahbub and Malikopoulos [42], to elim-
inate some constraints. For example, the control constraints
only exist in the first phase of the optimal control sequence.
Therefore, only state constraints rather than control input
constraints may be activated later if the initial phase focuses
on the unconstrained optimal solution.

The optimal control sequence depends on the order in which
the vehicle state and control constraints are activated. For each
case, the optimal control input, states, and entry time yield a
set of two-point boundary value problem algebraic equations,
which must be simultaneously solved while considering all
constraints. Finally, a series of control input and states variable
(i.e., uf, v*, ands}) within the prediction horizon can be
obtained by using PMP in each receding optimization.
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Fig. 5. Map of test route.
TABLE I
VEHICLE PARAMETERS

Parameter Value Parameter Value
Air density p 1.206kg/m* [Motor loss coefficient M, 0.873
Air drag coefficient C;, 0.3 Rotational inertia § 1.022
Auxiliary power P, 300W Rolling resistance f 0.015
Front area A 2.02m? Tire radius 7,, 0.280m
Final drive ratio i, 3.789 Transmission ratio i, 2.80
Gravity acceleration g 9.8m/s? Vehicle mass m 1005kg
Max1murp /s Motor maximum 67Nm
acceleration @, propulsion torque Tp,ax
Max1murp 2m/s2 Motor maximum -44Nm
deceleration a,,;, generation torque Ty min

In summary, in the zth receding optimization, the optimal
control Zyp;, 7, speed V-, longitudinal position Syopr, ;. lat-
eral position Sy,,;,; are derived based on the £, ;. During the
lane-changing process, Vopr,; = Vi,z» Topt,; = mgfrw/igion:,
and Syopr,; and Syopr,; are calculated by using vehicle
kinematics and lane-changing trajectory models. In the lane-
keeping process, the lateral position is not changed, therefore
Syopt,z = 0. The derived optimal control input and state
variables at the first step are then applied, that is, Zyopr, =
w (1), Vopr.e = v* (1), and Syopr; = 57 (1).

V. SIMULATION AND RESULTS

A. Simulation Setup

The vehicle parameters are taken from the Chery Little-
Ant, as listed in Table I. Note that the motor maximum
propulsion and generation torque are determined by consider-
ing the maximum acceleration/deceleration [43], speed limits,
the motor torque bounds, and vehicle longitudinal dynamics.
Referring to Pan et al. [44], the coefficients that convert
the energy consumption and travel time into the monetary
counterpart are 0.12USD/kWh and 24USD/hour, respectively.
The traffic system is simulated using the real-world urban
route as shown in Fig. 5, i.e., the intersection of Shuanglong
Avenue and Jiyin Avenue, Nanjing, China, with the parameters
listed in Table II. The intelligent driver model is employed
as the car-following model to imitate the driving behavior
of surrounding vehicles, and the LC2013 model is used to
simulate vehicle lane-changing decisions [45]. The simulation
is performed in MATLAB (version 9.13, 2022b) on a PC with
Intel Core 19-12900k @ 3.20GHz CPU and 64GB RAM. The
sampling time is 0.01s in simulation.

B. Benchmark Strategy

To evaluate the performance of the OEAC, the constant
speed (CS) and READ strategies are used as benchmarks. In a
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TABLE I

ROADWAY NETWORK AND TRAFFIC PARAMETERS
Parameter Value  |Parameter Value
Communication range D.,, 500m  |Road slope 8 0
Coordinator zone Dy, 470m Standstill distance H 2m
Location of stop line S;; 500m Safety time headway T}, 1.25s
Maximum speed V., 70km/h | Time of red signal T, S1s
Minimum speed V,,;,, 20km/h | Time of green signal Tg,- 35s
Number of lanes N; 3 Width of lane D, 3.5m

Initial transition time (s)

30 60
Number of vehicles

(b) OEAC versus READ.

90 120

Number of vehicles

(a) OEAC versus CS.

Fig. 6. Heat map of driving cost reduction of stochastic simulations, here
the initial indication of the traffic light is green.

free-driving situation, the CS generally maintains a constant
speed for the vehicle [13]. In addition, the READ generates
an energy-efficient speed profile using the PMP algorithm
while only considering lane-keeping operation [41]. When a
preceding vehicle appears in front of the HV, the car-following
strategy is activated in both CS and READ to keep a safe
distance. The car-following driving behavior is modeled by
the intelligent driver model.

C. Simulation Results

1) Performance Verification in Stochastic Traffic Scenarios:
The stochastic simulation is conducted to evaluate the driving
cost reduction effectiveness of OEAC. The HV is initially
located in the middle lane, and 10000 individual simulation
trials are conducted with constant Sy;, D¢r, Diry Vinin, Vinaxs
Tgr, and T,.. The parameters of the HV initial speed, traffic
light initial states (i.e., [;, (0 or 1) and T;; (1-T, or 1-T;.)),
traffic flow conditions (i.e., vehicle density (0-240veh/km),
and initial position and speed of surrounding vehicles are all
randomized in the simulation for a thorough investigation.
Note that V; is equal to the average traffic flow speed and
is related to vehicle density.

The heat maps of the driving cost reduction of stochastic
tests are depicted in Figs. 6 and 7. We point out that each
grid of the heat map represents the average improvement of
the different traffic scenarios with various speeds and positions
of surrounding vehicles. Table III compares the driving cost
reduction and computational time of the OEAC in each step.

Figs. 6 and 7 display the distribution of driving cost
reduction for the OEAC under various traffic conditions. The
minimum and maximum driving cost reduction of the OEAC
are 0% and 59.97%, respectively, when compared to the CS.
In comparison to the READ, the OEAC can cut the driving
cost usage by up to 59.02%. On average, the OEAC performs
significantly better than the CS and READ, achieving a driving
cost reduction of 20.91% and 5.62%, respectively. The findings
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2
)

Efficiency (%)

30 60 90 120
Number of vehicles

(b) OEAC versus READ.

0 30

6
Number of vehicles

(a) OEAC versus CS.
Fig. 7. Heatmap of driving cost reduction of stochastic simulations, here the

initial indication of the traffic light is red.

TABLE III
RESULTS OF STOCHASTIC SIMULATION

Computational
time in each step
of OEAC

Driving cost reduction

Strategies — -
Minimum Maximum Average

OEAC versus CS 0% 59.97%  2091% 0 2ms (average)
OEAC versus READ 0% 59.02%  5.62% 9-3ms (maximum)
TABLE IV

PARAMETERS OF THREE TYPICAL CASES

Parameters Case A Case B Case C
Vehicle density 8veh/km  108veh/km 240veh/km
Average speed of traffic flow 70km/h 48km/h 20km/h
Initial transition time of traffic light 35s 20s 20s
Initial indication of traffic light Green Red Green

indicate that the OEAC is remarkably effective in urban traffic.
Although the driving cost reduction is similar to that of CS
and READ in some scenarios, in most situations, the OEAC
can effectively lower the driving cost. In addition, the initial
states of traffic lights and traffic flow conditions have an
impact on how well the OEAC performs in terms of reducing
driving costs. Further investigation into this will be conducted
below.

Furthermore, as shown in Table III, the average and max-
imum computational time in each step of the OEAC are
0.2ms and 9.3ms, respectively, both of which are less than the
sampling time (10ms). These results show that the proposed
OEAC is computationally efficient and has the potential to be
deployed in real-time.

2) Typical Cases Analysis: The stochastic simulation results
allow for the selection of three typical cases with different
vehicle density conditions: Cases A (free-flow), B (moderate-
flow), and C (congested-flow). Table IV lists the parameters
of three cases. A typical case analysis is then conducted to
show the vehicle driving trajectories of three control strate-
gies, enabling the further demonstration of the driving cost
reduction by the OEAC. Figs. 8-10 show the vehicle speed,
position, driving lane, and acceleration trajectories in three
cases. Table V provides the vehicle driving cost, travel time,
and energy consumption data for the OEAC and benchmark
strategies. For a fair comparison, the energy consumption
includes kinetic energy change between the starting and final
positions and battery energy usage.

As illustrated in Fig. 8 and Table V, all three strategies
enable HV to reach the destination without the need for lane
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Fig. 10. Simulation results of Case C. Here, the HV keeps driving in lane 2 of CS, READ, and OEAC strategies.

TABLE V
SIMULATION RESULTS OF THREE TYPICAL CASES

Parameters Case A Case B Case C
CS 0.24USD 0.85USD 1.37USD
Driving cost READ 0.23USD 0.83USD 1.36USD
OEAC 0.23USD 0.39USD 1.36USD
CS 25.80s 114.30s 191.71s
Travel time READ 30.02s 114.20s 192.01s
OEAC 30.02s 50.37s 192.01s
CS 202.95kJ 305.41kJ 279.17kJ
co}iﬁiﬂi{ion READ 162.59k] 283.26kJ 263.73KJ
OEAC 162.59kJ 194.15kJ 263.73kJ

change operations (Fig. 8(c)), while also remaining unaffected
by preceding vehicles. As a consequence, both OEAC and
READ strategies yield the same solution. Although OEAC
and READ have longer travel times compared to the CS, they
save vehicle energy consumption. When compared with the
CS strategy, the OEAC and READ can reduce the driving cost
by 4.17%. This is due to the capacity of OEAC and READ
to leverage traffic light information to optimize smoothly
changing speed and acceleration (see Figs. 8(a) and 8(d)) so
that the HV passes through the signalized intersection at the

least driving cost. According to the findings, the OEAC offers
no benefit over the READ and provides only a slight driving
cost reduction over the CS in the free-flow traffic condition
due to the nature of this situation.

Fig. 9 illustrates that both the CS and READ need the
controlled HV to pass through the signalized intersection at
the second traffic light green signal window (see Fig. 9(b))
because the preceding vehicles hinder the movement of HV.
As a result, see Table V, the driving cost of CS and READ
increases as vehicle energy usage and travel time rise. In con-
trast, the OEAC changes the driving lane from lane 2 to lane 3
(see Fig. 9(d)), allowing the HV to pass through the signalized
intersection during the first traffic light green signal window
(see Fig. 9(c)), thereby reducing the driving cost. Compared
to the CS and READ, the OEAC effectively optimizes the
vehicle driving lane and speed in moderate-flow conditions,
resulting in a decrease of 55.93%/55.89%, 36.43%/31.46%,
and 54.12%/53.01% in travel time, energy consumption, and
driving cost, respectively. This reveals that the energy and
travel time of the HV are more affected by the preceding
vehicles in moderate-flow. The OEAC performs effectively in
moderate-flow conditions by optimizing the vehicle driving
lane and speed, lowering vehicle energy consumption and
travel time to reduce driving costs.

In congested-flow conditions, as shown in Fig. 10, the HV
with OEAC passes through the signalized intersection without
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lane-changing operation. Because there are more vehicles on
the road, the average speed of the traffic flow is slower,
and the spacing between vehicles is smaller; hence, there is
no appropriate lane-changing opportunity for HV to reduce
travel time and energy consumption. The OEAC and READ
strategies have identical driving trajectories, so their energy
consumption, travel time, and driving cost are identical (see
Table V).

3) Sensitive Analysis for the OFEAC: According to the
findings of the stochastic traffic scenarios simulation and
typical case analysis, the effectiveness of OEAC is influenced
by many factors. This subsection provides a comprehensive
investigation of various factors that impact the performance
improvement of OEAC, particularly concerning traffic flow
conditions and initial states of traffic lights.

In free-flow conditions, HV is unaffected by the preceding
vehicles in all lanes, then the probability of lane-changing of
HV is 0. The OEAC and READ have the same performance
and are better than CS. As shown in Fig. 9(b), the degree
of OEAC’s superiority over CS depends on the traffic light’s
initial states. For example, if the average traffic flow speed
is 70km/h, HV arrives at the intersection at the 25.71s under
CS control. As a result, if the initial indication is red, the
HV has a stop-and-go operation at the intersection under CS
control if the initial transition time exceeds 25.71s. However,
OEAC can avoid the stop-and-go operation by optimizing the
vehicle speed. Because the operation of stop-and-go consumes
more energy, the energy efficiency of OEAC is preferable to
CS. In addition, the travel time difference between OEAC
and CS is small, as both are impacted by the initial traffic
light states. Therefore, the advantage of OEAC over CS in
driving cost reduction is mostly from the reduced energy
usage brought about by the optimized free-driving speed.
Consequently, in the free-flow condition, the effectiveness of
OEAC results is due to speed optimization and is sensitive to
traffic light initial states (see Figs. 6(a) and 7(a)).

In congested-flow conditions, the effectiveness of OEAC is
similar to CS and READ as there is limited safe clearance for
lane-changing due to slower preceding vehicles. In contrast to
the free-flow condition, the effectiveness of OEAC over CS
in the congested-flow condition is sensitive to the surrounding
vehicle condition, because CS, READ, and OEAC strategies
are all run in car-following mode (see Fig. 10(b)). The advan-
tage of OEAC over CS in driving cost reduction is primarily
due to the optimized car-following speed, which leads to lower
energy. Thus, the driving cost reduction of OEAC over CS is
more spread with different traffic light initial states, as shown
in Figs. 6(a) and 7(a).

In moderate-flow conditions, the HV has more possibilities
to change lane, hence the advantage of OEAC is obvious in
reducing driving costs. Under the control of OEAV, HV can
choose the lane that allows for the fastest passage through
the signalized intersection while optimizing the driving speed
to reduce travel time and energy consumption. As shown in
Figs. 6 and 7, the OEAC outperforms the CS and READ in
terms of driving cost reduction in the vehicle density range
of 20-220veh/km. In addition, the improvements are more
uniformly distributed, as the probability of lane-changing is
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sensitive to both the surrounding vehicle conditions and the
initial states of traffic lights.

VI. CONCLUSION

This study proposes an overtaking-enabled EAD control
strategy for CAVs, namely OEAC, which efficiently reduces
driving costs by combining driving lane planning and speed
optimization. An overtaking-enabled EAD optimal control
problem is formulated with unified monetary counterpart
objectives of energy consumption and travel time while
accounting for the traffic light and preceding vehicle con-
straints. The OEAC utilizes the two-stage receding horizon
control framework to solve the optimal control problems in
real-time, resulting in an optimal driving trajectory. In the
first stage, the MDP theory is adopted to plan an efficient
driving lane while accounting for the uncertain disturbance of
preceding vehicles. In the second stage, the speed trajectory is
optimized with the PMP algorithm to minimize driving costs
with the minimized computational cost.

The stochastic traffic scenarios simulation and typical case
study are investigated to verify the effectiveness of the OEAC.
The results demonstrate that the OEAC outperforms CS and
READ strategies in various traffic environments, with an
average improvement of 20.91% and 5.62%, respectively.
Furthermore, the sensitivity analysis findings manifest that
OEAC'’s capability of lowering driving costs is mainly affected
by the initial states of traffic lights in free flow, surrounding
vehicle conditions in moderate flow, and both surrounding
vehicle conditions and the initial states of traffic lights in
congested flow.

Future research will incorporate robust optimization theory
into a lane-changing enabled eco-driving control framework
to take into account more uncertainty disturbance in terms of
traffic, vehicle, pedestrian, and communication.
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