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Abstract-Connected and automated vehicles (CAVs) provide
various valuable and advanced services to manufacturers, owners,
mobility service providers, and transportation authorities. As a
result, a large number of CAV applications have been proposed to
improve the safety, mobility, and sustainability of the transporta-
tion system. With the increasing connectivity and automation, cy-
bersecurity of the connected and automated transportation system
(CATS) has raised attention to the transportation community in
recent years. Vulnerabilities in CAVs can lead to breakdowns in
the transportation system and compromise safety (c.g., causing
crashes), performance (e.g., increasing congestion and reducing
capacity),and fairness (e.g., vehicles fooling traffic signals). This pa-
per presents our perspective on CATS cybersecurity via surveying
recent pertinent studies focusing on the transportation system level,
ranging from individual and multiple vehicles to the traffic network
(including infrastructure). It also higWights threat analysis and risk
assessment (TARA) tools and evaluation platforms, particularly for
analyzing the CATS cybersecurity problem. Finally, this paper will
provide valuable insights into developing secure CAV applications
and investigating remaining open cybersecurity challenges that
must be addressed.

Index Terms-Connected and automated vehicles, cybersecurity,
risk assessment, cvaluation platform, cyber attack, defense
strategies.

I. INTRODUCTION

Y LEVERAGING advanced sensing technology, edge
B computing, and wireless communications, connected and
automated vehicles (CAVs) will merge the capabilities of both
Connected Vehicles (CVs) and Autonomous Vehicles (AVs).
As a result, CAVs can not only perceive their surrounding
environments with perception sensors such as cameras, radars,
and LiDARs but also communicate with other equipped vehi-
cles, roadside infrastructure, active road users (e.g., bicyclists,
pedestrians), and the cloud via vehicle-to-everything (V2X)
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communications. This enables CAVs and other road users to
cooperate more efficiently and collaboratively. Toward this end,
CAVs have been regarded as a disruptive solution to many ex-
isting issues in our current transportation system, e.g., reducing
trafficaccidents,improving accessibility forseniorsand disabled
people, mitigating traffic congestion, and enhancing air quality.

Nevertheless, cybersecurity is a critical concern to guarantee
theaforementioned benefits from CAVs. Many researchers have
realized thisissue and performed pertinent research over the past

decade. Most existing studies on automotive cybersecurity have
been focused on in-vehicle networks, such as Controller Area
Network (CAN bus) [1], Electronic Control Units (ECUs) [2],
Global Navigation Satellite Systems (GNSS) [3], and onboard
sensors (e.g., radar, camera, LIDAR and ultrasonic) [4]. This
is of particular importance for autonomous vehicles. Recent
development and deployment efforts inconnected vehicle appli-
cations attract much attention to the cybersecurity problems of
V2X communications. Due to connectivity, cyber-attacks may
lead to breakdowns of the entire system on a much larger scale,
resulting in more significant negative impacts. For example, a
public report on automotive cyber incidents by Upstream [5]
disclosed that in the years 2020 and 2021, cyber threats to
vehicles' communication channels increased by 89.3%, and
threats to vehicle data/code increased by 87.7%. Compared to
AVs and CVs, CAVs are prone to be much more vulnerable
to cyber threats from malicious attackers due to their increas-
ing system complexity and more attack surfaces (e.g., sensing
and communication systems) [6], [7], [8], [9], [10]. Therefore,
reviewing the state-of-the-art cybersecurity on CAVs or, more
broadly, on Connected and Automated Transportation Systems
(CATS), identifying open gaps, and sketching future research
paths becomes imperative and challenging.

There are several surveys on the cybersecurity of AVs, Ve-
hicular Ad-hoc NETworks (VANETS), or CAVs [11], [12]. For
instance, Ju et al. [13] reviewed attack detection and resilience
for CAVs on both intra-vehicle and inter-vehicle communica-
tions from vehicle dynamics and control perspectives. However,
few provide a comprehensive review from the transportation
system perspective, ranging from an individual vehicle to ve-
hicle strings and the entire transportation system (including
roadside infrastructure such as traffic signals). Furthermore,
most of these surveys only emphasize vehicle-level cyber at-
tacks (e.g., GPS spoofing, denial-of-service) and cyber defenses
(such as Security Credential Management System, blockchain,
and anomaly detection) but ignore risk assessment and cyber

2379-8858 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 30,2024 at 18:17:39 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-6508-7715
https://orcid.org/0000-0001-7073-6927
https://orcid.org/0000-0001-6707-6366
https://orcid.org/0000-0001-5656-3222
mailto:aabdo003@ucr.edu
mailto:xzhao094@ucr.edu
mailto:gywu@cert.ucr.edu
http://www.ieee.org/publications/rights/index.html

ABDO et al.: CYBERSECURITY ON CONNECTED AND AUTOMATED TRANSPORTATIONSYSTEMS: A SURVEY

attack/defense at the CAY application level. For example, Sun
et al. [14] summarized cyber risks and safety standards. Han et
al. [15] reviewed attack, defense and cyber forensics evidence
reconstruction based on vehicle platforms with regard to cyber
threats for modem transportation systems. However, in both
papers, approaches to threat analysis and tools/platforms for
resilience validation are absent. To address these gaps, we make
the following contributions in this paper:

»  We investigate the cybersecurity problem, not only at the
single-vehicle level, but also at the multi-vehicle level
as well as at the transportation system level, including
infrastructure.

* We provide a comprehensive review on the threat analysis
and risk assessment approaches, which are usually ignored
inexisting review studies.

* We summarize useful evaluation platforms for different
types (vehicle, traffic, communication)of CAT cybersecu-
rity research.

Il. BACKGROUND

Inthis section, we first present some background information
for CAVs, including communication technologies. Then, we
briefly introduce the streamlined presentation of this survey.

A. CAVs Communication Technologies

CAVs are based on different protocols that consist of infor-
mation sharing, application management, security algorithms,
and messaging. The main goal of these protocols is to fit the
required connectivity solutions for V2X services.

Wireless Access in Vehicular Environments (WAVE) [16] isa
communication protocol that is used in Dedicated Short-Range
Communications (DSRC) technology. WAVE operates in the
5.9 GHz frequency band and enables communication among
vehicles and between vehicles and infrastructure, such as traffic
signals and signs. WAVE uses the SAE 12735 [17] standard
to define the message sets, data frames, and data clements
used for communication. This technology is being explored for
various applications, including collision avoidance, intersection
safety, and traveler information. WAVEcan potentially improve
roadway safety and efficiency by providing real-time informa-
tion about traffic conditions and potential hazards. However,
deployment of WAVE may require further regulatory and policy
development to address issues such as privacy, security, and
spectrum allocation. On the other hand, LTE, or Long-Term
Evolution [18], is a cellular communication technology that is
beingexplored for V2X. LTE offers high data rates, low latency,
and secure communication, which could benefit safety-critical
applications such as collision avoidance and intersection safety.
One advantage of using LTE in V2X is that it would leverage
existing cellular infrastructure, potentially reducing the need for
additional dedicated infrastructure investment. However, there
are alsochallenges associated with using LTEin V2X, including
concerns about interference and the need for standardization
to ensure interoperability with other communication systems.
Overall, LTE is one potential technology that could be used to
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enhance the capabilities of V2X for improving roadway safety
and efficiency.

B. CAV Applications

Over the past decade, numerous CAY applications have been
developed toimprove transportationsystem safety, mobility, and
environmental sustainability. Safety is the basis of all trans-
portation system operations and, thus, a primary focus of the
CAY applications. Safety is usually considered in the motion
prediction and planning stage at the individual vehicle level
with risk evaluations based on conflicting trajectories [19] and
surrogate safety assessment measures [20]. Data from CAV
onboard sensors are uWized to build a driving environment
with static and dynamic objects as the input to the planning
module. At themulti-vehicle level, vehicle-to-vehicle(V2V) and
vehicle-to-infrastructure (V2I) communications become essen-
tial to information exchange and coordinate maneuvers among
CAVs. Representative safety applications that rely upon V2V
communications include forwardcollision warning (FCW) [21],
blind spot/lane changing warning (BSW/LCW) [22], and emer-
gency electronic brake light (EEBL). Safety applications that
are based on V2I communications include red light violation
warnings, curve speed warnings, and reduced speed/work zone
warnings [23], etc. In addition, V2I-based safety applications
also include providing advisory information to vulnerable road
users (VRUs), such as pedestrian collision warning [24].

In addition to safety, efficiency is another major objective of
the transportation system operation, and CAY technologies can
help improve mobility significantly. A number of representative
CV applications are initiated by the USDOT's Dynamic Mo-
bility Applications (OMA) program [25], under which several
research prototypes have been developed, such as Enable Ad-
vanced Traveler Information Systems (EnableATIS) and Mul-
timodal Intelligent Traffic Signal System (MMITSS). Its goal
is to leverage multi-sourced data from CVs and transportation
infrastructure and demonstrate their performance in terms of
mobility, along with associated benefits and costs. Combining
V2I communication with automation, other mobility-oriented
applications have been proposed, such as speed harmoniza-
tion [26], spatial-temporal intersection control [27], [28], and
cooperative ramp merging [29].

The third primary goalof thetransportationsystem is environ-
mental sustainability[30], for which CAY technologies can help
reduce fuel consumption and traffic-relatedemissions. Two rep-
resentative applications arevehicleplatooning andeco-approach
and departure (EAD). Vehicle platooning or cooperative adap-
tive cruise control (CACC) uWizes both onboard sensors (e.g.,
radar) and V2Vcommunicationstosynchronize longitudinal be-
haviors of astringof vehicles, which can improve stringstability
and reduceheadway forhighway driving. Inaddition, platooning
can significantly improve the fuel efficiency of the following
vehicles (especially for trucks) due to reduced aerodynamic
resistance [31] and also increase road capacity due to reduced
headway [32]. On the other hand, EAD applications applied
at signalized intersections use information (e.g., road map and
traffic signal status) received from the infrastructure via 12V
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disrupt the communication between the vehicle and other con-
nected devices, causing traffic accidents, traffic congestion, and
Fig. 1. Overall CAY cyber vulnerabilities. even vehicle crashes. For example, if an attacker manipulates
traffic signals, they could cause chaos on the roads, leading to
accidents and fatalities.

Furthermore, connected vehicles are also at risk of physical
attacks. Adetermined attackercould breakintothe vehicle'ssys-
tems physically, bypassing anycybersecurity measures thathave
been put in place. Physical attacks can include tampering with
the vehicle's sensors or devices or using devices like jarnmers
or signal boosters to interfere with the vehicle's communication
channels.

communications. Upon receiving the upcoming traffic signals'
data in real time, the equipped CAV can adjust its longitudinal
speed to reduce acceleration and deceleration fluctuations for
energy savings. This technology has been widely tested under
the GlidePath program at USDOT [33], [34] and GLOSA [35]
program at EU.

C. CAV Cyber Vulnerabilities

Modern vehicles [36] can be considered as mobile computers  D. Survey Structure

containing over 100 million lines of computer code in the Elec- To streamline the presentation, as shown in Fig. 2, the sur-
tronic Control Units (ECUS) that regulate vehicle Maneuvers, ey starts with threat analysis and risk assessment in Sec-
such as brakesand steering. Moreover, connected vehicles offera ill, which supports the existing framework for identifying
lot of conveniences and advanced intelligent features. However, cyber threats and developing countermeasures to mitigate those
as with any technology that connects to other devices and the 1 eats. Then specific cyber attack and cyber defense method-
internet, connected vehicles are vulnerable to cyber-attacks.  jogies are reviewed at both individual vehicle level and CAV
These security vulnerabilities can lead to remote exploitation, application level in Sections IV and V, respectively, two critical
unauthorl.zed access to data, communication channel attacks, steps in the risk assessment framework in Section ill. Finally,
and physical attacks. as shown in Fig. 1. existing CAV cybersecurity research platforms and tools are

One of the connected vehicles' most significant security reyiewed in Section VI, which provides environments for evalu-
vulnerabilities is the risk of remote exploitation. This is when ating theimpactsofcyberattacksinSection IVand validating the
an attacker gains unauthorized access to the vehicle's systems e ffectiveness of respective cyber defense strategies in Section V.
and can manipulate them remotely. This type of attack can  The sections can also be considered as different steps in the

be used to steal data from the vehicle, take control of it, or = gecurity analysis, which is summarized in a flowchart as shown
even cause it to crash. Remote exploitation can occur through ;, Fig. 3.

several methods, including exploiting software vulnerabilities,
using fake firmware updates,or evenexploiting unsecured Wi-Fi
connections.

Another vulnerability is the potential for unauthorized access Threat analysis and risk assessment (TARA) evaluates the
to the vehicle's data. Connected vehicles store vast amounts likelihood and impact of attacks and combines them to derive
of data, including GPS data, driver behavior data, and vehicle the system risks. To further understand the difference between
diagnostics. This data is often stored in the cloud and can be TARA approaches, Fig. 4 provides a schematic representation
accessed remotely. If an attacker gains access to this data, they of the systematic engineering procedures of various TARA
can use it tostealsensitive information or eventrack thevehicle's approaches. The process commences with system definition,
movements. This is particularly concerning regarding location ~which lays the foundation for subsequent steps in the TARA
data, as it can reveal information about where the driver lives method. Then, it is followed by a bifurcation, which leads to
and works. different types based on the path chosen. Subsequently, the

Connected vehicles also face the risk of cyber attacks that process makes the transition to threat and attack modeling,
target the vehicle's communication channels. These attacks can ~ which constructs potential threats and attack scenarios. Next,

III. THREAT ANALYSIS AND RISK ASSESSMENT
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based on how to fonnulate the risk, TARA approaches can be
further divided into two categories: qualitative approaches and
quantitative approaches in therisk detennination stage, as shown
in Fig. 5. Qualitative approaches take advantage of experience
from experts to evaluate cyber risks and define the severity
of risks at different levels: high, medium, and low, or with
a risk index. These approaches provide convincing, reliable,
and explainable results but cannot handle risks without prior
knowledge. Quantitative approaches, instead, leverage different
models to assess the threats and risks likelihood of the system
based on probability theory and statistics. The results can be
casily compared with other risks. However, these methods are
usually quite data-demanding, which is a major challenge in the
real world.

A. Qualitative Approaches

In thequalitative approach, weclassify it from the perspective
of victims and attackers based on the process after system
definition. On the victim side, we assess threats and risks based
on the severity of the damage inflicted on the victim. Unlike
the victim-oriented approaches, the assessment method from
the attacker's perspective cares more about the attacker's profile
and tradeoffs between the costs and benefits to the attacker.
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1) Victim-Oriented Approaches: Further investigation of the
victim-oriented approaches results in two aspects: asset and
vulnerability, both of which start with defining the system and
the problem. However, they diverge in their next steps. An
asset-based approach focuses on what needs to be protected in
the system, such as data, software, or hardware. It prioritizes
the system assets identification and then evaluates their possi-
ble threats. On the other hand, a vulnerability-based approach
starts with identifying weaknesses or vulnerabilities ina system,
then proceeds to analyze what failures these vulnerabilities or
weaknesses could cause [37]. For more infonnation on the
characteristics of the victim-oriented approaches, please refer
to Table I.

Asset-based: Agood instance of an Asset-based method is the
E-safety Vehicle Intrusion Protected Applications (EVITA) that
provides a cost-effective security architecture and facilitates the
design, verification, and prototyping of vehicle networks [38].
From the attacked assets perspective, security threats can be
analyzed by four objectives: operational, safety, privacy, and
financial. A qualitative risk level from O to 6 can be asso-
ciated with three parameters: severity, attack probability, and
controllability, similar to the Automotive Safety Integrity Level
(ASIL). The Healing Vulnerabilities to Enhance Software Se-
curity and Safety (HEAVENS) model analyzes threats based on
Microsoft's STRIDE approach [39], which is a threat modeling
method that categorizes cyber threats into six types: spoofing
identity, tampering with data, repudiation threats, information
disclosure, denial of service, and elevation of privileges [40].
In addition, the HEAVENS method ranks the risks based on
three factors: threat level, impact level, and security level,
which establish a direct mapping between security attributes
and threats. By investigating security guidewords, the Security
Guide-word Method (SGM) can help identify possible attack
scenarios, such as disclosure, disconnection, delay, deletion, and
stopping. For each guide word, respective protection goals are
clearly defined, such as confidentiality, integrity, and availabil-
ity [41]. The Security-Aware Hazard Analysis and Risk Assess-
ment (SAHARA) is an expansion of hazard analysis and risk
assessment (HARA), which is an inductive analysis method and
also includes the STRIDE threat model [39]. SAHARA defines
various securitylevels basedonattackers' knowledge, resources,
and threat criticality. The Systems-Theoretic Process Analysis
forSecurity (STPA-Sec) can output a listof systematic scenarios
with potential security threats [42]. TheSTPA-SafeSec analysis
system is an extension of STPA-Sec, integrating with physical
and infonnational safety and security analysis. The Unified
Safety and Security (US2) uses a simple security level to assess
safety hazards and safety threats in parallel and derives safety
and security requirements effectively [43]. The NHTSA threat
modeling is a hybrid method characterizing potential threats for
automotive control systems [44]. It combines the benefits from
STRIDE [39], Trike, and Microsoft ASF and then selects their
common elements to establish the ensemble threat modeling.

Vulnerability-based: Asa typical vulnerability-basedmethod,
the Vehicles Risk Analysis (VeRA) is suitable for evaluating the
risks of attacks on AVs and CAVs [45]. When conducting a
safety risk analysis, it considers human capabilities and vehicle
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1386

L Vicim-Osicntod

Vulnerability-Based

I

System Vulnerability Analysis

System Asset Identification

Threat and A

System Definition

System Asset Identification

System Vulnerability Analysis

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL.9, NO.1, JANUARY 2024

Attacker Analysis

Cost-Benefit Analysis

ttack Modeling

Mittgation Strateg

Fig.4. Systematic engineering procedures of various TARA approaches.

Threat Analysis and Risk Assessment (TARA

Qualitative Approaches|

ictim-Onented

It.::J1t]
|.Bal
LIVIH .

Fig.5.

W

Structure of threat analysis and risk assessment section.

automation levels. As a result of thesimplified analysis process,
the required analysis time is significantly reduced without com-
promising analysis accuracy. TheFailure Mode, Vulnerabilities,
and Effect Analysis (FMVEA) is an extension of the Failure
Model and Effects Analysis (FMEA) with security-related threat
modes [46]. It can evaluate the likelihood and severity of a sys-
tem's safety and security risks.The Combined Harm Analysis of
Safety and Security for Information Systems (CHASSIS) [47] is
a systematic method to analyze safety and security interactively
by using Hazard and Operability Study (HAZOP) guidewords.
CHASSIS combines safety and security assessment and gener-
ates mitigation measures.

2) Attacker-Oriented Approaches: The Risk Assessment for
Cooperative Automated Driving (RACAD) is an innovative
application-based threat enumeration andanalysis approach that
can handle different AD applications across varying levels of
automation [48]. It evaluates the attack risk by the risk vector
computed from weighted linear combinations of the threat ma-
trix parameters. The likelihood of the result vector is split up

into motivation and attack potential, which give a better under-
standing of medium likelihood threats. TheSecurity Automotive

Risk Analysis (SARA) is a systematic threat analysis and risk
assessment framework, including improved threat models, the
latest attack method/asset map, attackers' involvement in the
attack tree, and a new driving system observation index [49]. In
addition, SARA offers a comprehensive threat analysiscoverage
for human negligence to consider recent concerns about the
trustworthiness and privacy of CAVs. The TARA+ security

analysis framework for CAVs combines ISO standards and
considers the levels of automation defined by SAE and the
type of fault-tolerant system design [50]. The Security Abstrac-
tion Model (SAM) integrates security management and safety
modeling as a co-engineering process with the principles of
automotive software engineering [51].The Attack Tree Analysis
(ATA) is similar to thesafety Fault Tree Analysis (FTA) and can
adequately exploit combinations of threat patterns. However,
it requires detailed information on the system design, which
is inappropriate for TARA in early development phases [52].
ATA can be used forevaluating cybersecurity at different levels,
depending on the scope of the specific system being analyzed.
HAZOP is a well-known method that uses a list of guide-words,
including fault andcybersecurity guide-words, to identify poten-
tially hazardous situations and cybersecurity threats. HAZOP
can be adapted to various ITS applications. Ref. [53]. More
details of attacker-oriented approaches can be found in Table II.

B. Quantitative Approaches

As aforementioned, quantitative approaches rely on the data
and provide numerical results for comparison, and details of
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TABLE I

SUMMARY OF QUALITXTIVE RISK ASSESSMENT APPROACHES (VICTIM-ORIENTED)

Evaluation Approaches Risk Assessment 511:1( Lev- Objectives Suitable Systems Ref.
Severity, attack Operational, safet ri-
EVITA probability,  and | 6 pera - Salety, p V!, MV? [38]
controllability vacy, and financial.
Threat level, impact Safety, tinancial, opera-
HEAVENS level, and security | 5 tional, and privacy and | IV,MV, TN® [59]
level legislation
Severity, the occur-
W SGM 1'§:nce'()l operational 5 Safety TV, MV, TN [41]
'3 situation and con-
e ° trollability
5 Reqlpred resources, Auvailability, financial, pri-
< SAHARA required know-how, | 5 vacy. safet ’ IV,MV, TN [60]
" and threat level Y, satety
Attack potential,
N threat criticality, Security, safety, severity,
PR I US2 and driving | 4 exposure, and controlla- | IV [43]
_5_ .5 <'“ automatjon  levels bility
e e focus
[ el Attack,  acclaent, | LISIOI sys-
< < STPA-Sec vulnerability, temlevel Safety and security TV,MV, TN [42]
o ; control, hazard scenarios
% Ve vulneraoulty, alll-
0 NHTSA Clll,ty of implemen- Casualty, financial, and
tation, attack see- | 3 L v [441
method . privacy, operator
E nario, resources re-
> quired, and outcome
:Cl seventy, system
' AT 7
| rmvea ;‘;;;iﬂﬁ'i’s‘q“ty* hreat | Risk rating | Safety and security IV, MV, TN [46]
0-"_ . probability
';g,. " users, tunctions,
< services, textual
"B CHASSIS deSCl‘lpllOnS,. List risks Safety and security IV,MV [47]
sequence diagram,
misuse case
diagram
= Attack  prooaomty,
6. VeRA severity, vehicle au- 3 Safety, privacy, financial, IV.MV [45]
C tomation level, and operational ’
human control
" Ind1vldual Vehicle! Multi-vehicles,’ Traffic Network
TABLE II
SUMMARY OF QUAUD\TIVE RISK ASSESSMENT APPROACHES (ATTACKER-ORIENTED)
. . o Risk L .
Evaluation Approaches Risk Assessment Levels Objectives Suitable Systems Ref.
Attack scenario, motivation, Result . L 1 ) 3
RACAD impact, and attack potential vector Financial, privacy, safety IV, MV~ TN [48]
‘el e Attacker profile, attack like- Authenticity, mtegrity,
¥ @ lihood. attack | severit Rish non-repudiation,
20 & | sara 00d, aftack goal severity, | RISk confidentiality, v [49]
P attack goal observation and | score thorizati
B 5 labilit authorization,
1 C contro y unlinkability, trustworthy
< "¢ tAi(?r:/:rSzgéckigf;k rg“:;:/a_ Privacy, financial, func-
0. ] sam ? . property, 5 tionality, vulnerability, se- | IV [51]
) N abstract failure, environment, .
i and vehicle feature curity
Possible attacker actions and | Tree Protecting vulnerable state
C= 1 < ATA possible attack path model of the system V.MV, TN [52]
Attack potential, attack rm- Severity. operational. fi-
TARA+ pact, attack controllability, | 5 nty. opera ? IV, MV [50]
and automation level nancial, and privacy
Attack scenario, motivation, Keswt . . R .
HAWP impact, and attack potential vector Financial, privacy, safety IV,MV, TN [53]
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TABLEIll
SUMMARY OP QUANITIATIVE RISK ASSESSMENT APPROACHES

Evaluation Approaches Risk Assessment Risk Levels Objectives Suitable Systems Ref.
oy - -
Probabilistic attack analy- 'Ider}tl ymng bu§ 1SS ob
ij sis, regression analysis, and jectives, identifying se-
U_ PASTA - reer . SIS, Risk level curity and compliance vl Mv2, TN3 (54]
-=, threat. intelligence correla- : .
: tion requirements and impact
e analysis
¢ 1Sayeslan tmvuonmental ractors,
- network-based threat level, threat | Threat index Safety, environment IV, MV, TN (55]
s method capabilities
% Autnentication,
~ TYRA Attack likelihood, attack Risk level avallablllt‘y,' IV. MV, TN (56]
impact confidentiality, and
\ﬁ privacy
'i Bavesian Stack- Impact, likelihood, impact, Probability of attacks.
—_ lby at.tack resources, and TN | Optimal actions optimizing defense ac- | IV, MV, TN (57)
—c) | ¢Pcresame information tions
Based on the
PDRAFCAV Risk profile, and user pro- selected risk | Based onneedsof share- IV, MV, TN (58]
file assessment holders
method
" Indivtdual Vehicle, Multi vehicles, ! Traffic Network

quantitative approaches are listed in Table III. The Process for
Attack Simulation and Threat Analysis (PASTA) is a risk-centric
framework handling process for attack simulation and threat
analysis [54]. Bayesian network (BN) based method is a proba-
bilisticgraphical model thatrepresents a setof random variables
and their conditional dependencies via a directed acyclic graph,
which can quantitatively evaluate the risk level with analyzed
parameters of the network [55]. BN can be mathematically
defined by:

N = (G =(V.E).p), (M

where acyclic graph G consists of a set of nodes)” and a set of
edges E between nodes, and p is the set of probability distribu-
tions. Based on sufficient data, parameters can be estimated by
maximizing the expectation of O,

Q(0*10) =1Ee {logP(X10)*)1 D} 2)

where P is the density function of node X, D is the learning
data, and 8* is the updated posterior parameters. The Threat,
Vulnerability,and Risk Analysis (TYRA) model analyzes assets
in the system and the associated threats by modeling the likeli-
hood of attack occurrence and the impact of attacks [56]. As a
result, TYRA can generate a quantitative systematic asset risk
measure to minimize system risks. The Bayesian Stackelberg
game methodology is a resource-aware approach that aims to
provide the optimal detection load distribution strategy for the
traffic management center (TMC) used in the transportation
network. This can minimize the impact of attacks and improve
their detection [57]. To achieve this, the researchers defined the
objective function of the attacker and TMC to maximize their
expected payoffs by choosing the optimal response strategy:

Maximize L L%Jx;yJ

ajEA d;ED

Maximize LL L pquix,; yJ

d;ED gEQ a;EA

G)

4)

(Cybcrattacks on CAVS

[Vehicle Le, e

EEIVING|&++++IF

Fig.6. Structureof cyberattacks on CAVs section.
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where yJ is the probability that the attacker of type g chooses
action gj, xi is the probability that the TMC chooses action
di, YaJ and ui are the payoffs of the attacker and TMC,
respectively, 4 and D are action sets of the attacker and TMC,
respectively. O is thesetof possible attacker types, and pq is the
a priori probability distribution vector containing values for all

attack types g in Q. They are both constrained by the following
inequality:

0::; (aq- L%)xz) (- M Vai EA

d;ED

&)

where M is a predetermined maximum value used to limit
the number of attack actions the attacker can choose and ag
represents the number of attack actions the attacker can choose.
The Profile-driven Dynamic Risk Assessment Framework for
Connected and Automated Vehicles (PDRAFCAV) manages
data regarding CAY systems through a dynamic risk manage-
ment framework. This framework provides an effective cycle
of "selecting risk profiles, training and updating models and
collecting data" [58].

IV. CYBER ATTACKS ONCAVS
The structure of this section is shown in Fig. 6. In this

section, we first highlight cyber attacks targeting CAVs through
sensors and peripherals, including cameras, radar, Lidar, and
GPS. Recentcyber attacks toward multi-sensor fusion(MSF)are
also reviewed. Then, we discuss some of the applied attacks that
negatively affect various CAY applications in terms of safety,
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TABLEN
ATTACKS TARGETING CAV SENSORS

Sensor Attack Target Attack Method Reference
CMOS/CCD Sensors Light Influence [62]. [63], [64]
veep Learmng Model m General- CAV 10)], 1001, [01J

C 17,na-to-ena unvmg system - CA\V 4J, IMI

amera Object Detection system - CAV Adversarial Anack 67], [69]
Multl-UOJect TracKmg System - CAV [1UJ
Automatea Lane centenng - CAV Ltlj
Radar sensor only Replay and spoofing [72]
Radar -
bnd-to-end onvmg system with radar as only source ot :Spoonng [1-7
perception input
LiDAR LiDAR sensor and the deep learning model Ql(éversanal attack and spoof- | [74]
3D-printed adversarial exam- [75], [76], [77]
pies
LUJAK sensor aoa me aeep learnmg moael wim LUJAK :spoorer aoa "'uversar- | L1SJ
decision-level merging cooperative perception ial examples

GPS Message communication Man-in-the-middle (79]

GPS Signal Override GPS spoonng 30], [81]

Multi-Sensor Fusion Camera and LIDAR Ad ial Anack 82]

(MSF) TTOAR, UT-S, MU versarial Anaci —

mobility, and environment. Note that at the vehicle level, we
exclude the intra-vehicle network attacks to be more focused.
Interested readers can refer to [14] fora comprehensive review.

A. Cyber Attacks on Vehicle Level

Standard sensor setup in a CAY usually includes a camera,
mill wave radar, Light Detection and Ranging (LiDAR), and
GPS [61]. The first three types of sensors, utilized within the
perception module of a CAY while the GPS is mainly used for
vehicle localization, contribute to the attack surfaces. Table JV
summarizes previous work targeting onboard sensors.

1) Attack on Camera: The camera output is image data con-
structed by pixels, and machine learning models are usually
applied to it for information extraction. Accurate information
retrieval from camera image data is vital to CAY's perfor-
mance. For example, lane feature extraction is important for
the localization of ego vehicles, as mentioned in [83]. Ma-
nipulation of the output of image-based perception results oc-
curs on either the inference or the image source part. Attacks
targeting the camera usually use other light sources to influ-
encethecamera's Complementary Metal-Oxide-Semiconductor
(CMOS)/Charge-Coupled Device (CCD) sensors. A study [62]
showed a jamming attack targeting the camera using a laser
beam, whichcanalsolead topermanent damage when a stronger
beam or longer attack time is executed. Disturbances targeting
the camera can affect the performance of the vision-based per-
ception module in a CAY system, as shown in [63] and [64].
These attacks aim to maximize prediction errors of the computer
vision module, which may further influence thedecision module
of a CAYsystem.Moreover, the physical attackcan permanently
damage the camera sensor itself. This irreversible damage can
cause high replacement and fixing costs.

Attacks targeting computer-vision-based perception affect
machine learning models involved in the perception module
through adversarial samples focusing on object detection, clas-
sification, and tracking [67]. 1n[69], a set of adversarial attacks
targeting the traffic light classification model was proposed.

In this research, spatial, one-pixel, CarlirLi & Wagner (C&W),
and boundary attacks were deployed to test the robustness of
the traffic light classification model. Jia et al. [70] proposed
an adversarial attack targeting multiple object tracking (MOT),
which isessential in autonomous driving. This work utilizes the
optimization method to generate adversarial examples that can
fool MOT algorithms. The optimization method achieved two
goals: (a) to minimize the target class probability and (b) toshift
adversarial bounding boxes to desired locations. Sato et al. [71]
proposed a real-world physical adversarial attack through road
patches. An optimization method was used to generate a mali-
cious patch that can be applied on the road. The proposed attack
was evaluated ona production-level Automated Lane Centering
(ALC) system, with a successful attack rate of over 97.5%. The
successful attack led to a collision with 100% probability. Also,
for end-to-end autonomous driving systems, adversarial attacks
were studied to evaluate the effect on system performance.
In [68], researchers generated adversarial perturbations to fool
thecamera sensors and maximize steering-angle errors. Such an
attack was also evaluated in the real world by[4], and the results
showed that the average errors of thesteering angle could reach
up to 26.44 degrees.

2) Attack on Radar: Compared withattack studies oncamera
sensors, research targeting radar is comparatively less. This is
partly because the radar information extraction process does
not rely on deep learning and neural network-based classifiers,
where adversarial attacks cannot be performed. There aresome
studies about performing spoofing attacks on the radar sensor.
Researchers in [72]executed replay attacks and spoofing attacks
targeting mmWave radar. In [73], the victim vehicle was as-
sumed to make turning decisions only based on the radar-based
perception module. The attack aimed to spoof the perception
module in the victim's vehicle, eventually influencing the turn-
ing decision.

3) Attack on LiDAR: A LiDAR utilizes lasers to measure
the distance of target objects by receiving returned laser signals
reflected from objects. It has been shown in [74] that directly
shooting a laser beam at LIDAR does not affectits performance.
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However, strategically generated adversarial examples may be
able to fool machine learning models. Following this direction,
Cao et al. [74] formulated the generation of spoofing attacks
as an optimization problem and designed the perturbation and
objective functions. Another study tried to produce 3D objects
with shapes that eventually fool the deep learning model, which
processed the LIDAR point cloud [75]. Similarly, Sun et al. [76]
proposed aspoofing method tofindfeature mapsof the perturbed
point cloud so that the target module could wrongly detect the
perturbed object as a vehicle. In contrast with the goals in [75]
and [76], Tu et al. [77] proposed an algorithm to generate
3D objects with the shape that makes vehicles invisible from
the deep learning-based inference model. A recent work [78]
considers attacking the LiDAR perception systems under the
cooperative perception setting. This study proposes spoofing
attacks, physical removal attacks, and adversarial attacks as
threat models. Spoofing attacks aim to create non-existing ob-
jects in the point cloud detection with LiDAR spoofers, physical
removal attacks aim to use spoofers to hide real objects from
LiDAR detection results, and adversarial attacks aim to create
objects in the point cloud thatDL-based inference models cannot
recognize.

4) Attack on GPS: The most common attack type of GPS
is spoofing. One form of GPS spoofing attack is from a net-
work communication perspective. This kind of attack utilizes
a man-in-the-middle attack and hijacks the global coordination
for vehicle localization [79]. Most GPS spoofing attacks use
a GPS spoofer to perform signal override. The GPS spoofer
provides a malicious signal with a usually higher power density
so that the targeted receiver chooses to lock onto the malicious
signal instead of the benign one [80]. Even with the same
attack vector, different works propose different attack targets
and scenarios. Ref. [81] proposed a GPS spoofing attack that
affects the localization first but also affects the computation
of the absolute coordinate of surrounding objects. The coor-
dination conversion from an ego-vehicle-centric to world co-
ordinate requires the accurate localization of the ego vehicle
itself.

5) Attack on Multi Sensor Fusion (MSF): A common belief
is that multi-sensor fusion (MSF) is necessary to enhance the
cybersecurity of modem CAY systems since attacking multiple
sensors is much more difficult in real-world settings [82]. Dif-
ferent sources and information can provide cross-validationand
also serve as a backup when one sensor is compromised. How-
ever, recent research showed that a multi-sensor fusion-based
perception system could also be compromised [3], [82]. o [82],
researchers penetrated the MSF algorithm using an adversarial
attack targeting LIDAR and the camera. Another study attacked
an MSF-based localization algorithm that utilized LiDAR, GPS,
and IMU information by only spoofing data in GPS signals [3].
An optimization model was developed to maximize the distance
between the spoofing distance and the output of the MSF algo-
rithm without attack. These recent studies show that there sW1
exist potential attack surfaces for MSF algorithms. Therefore,
MSF should not be considered an ultimate defense solution for
the CAY perception module.

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL.9, NO.1, JANUARY 2024

B. Cyber Attacks on CAV Applications

Cyber attacks on CAY applications mainly focus on the
system layer, which affects functionalities of a particular ap-
plication such as cooperative adaptive cruise control (CACC)
beaconing or message exchange in the Y2X environment [84],
[85]. Io this section, we will focus on the cyber attacks that
affect the overall perfonnance of CATS based on three primary
performance areas; safety, mobility, and environmental impact.
Some representative studies are summarized below and shown
in Table Y.

1) Safety Impact: The safety impact concerns the potential
conflict and collision between vehicles. Mani et al. [86] used
radio jamming to disrupt all communications within the pla-
toon. As a result, the space gap of the CACC vehicle stream
decreased, which compromised thesafety of the whole platoon.
Moreover, because there were nosecurity features implemented
in vehicles, the falsified beacons were accepted and used for
longitudinal control, leading to string instability; the resultant
disturbance magnifies through the stream over time. Abdo et
al. [6] performed a detailed analysis of CACC and used this
analysis to classify the types of vulnerabilities.

Resultsshowed that their attackscould increase averagespeed
difference and reduce Time-to-Collision (ITC) [87], leading to
higher risks in car crashes for specific scenarios. Hu et al. [8]
perfonned a security analysis to make the discovery ofDoS (De-
nial of Service) vulnerabilities automatically in the IEEE 1609
protocol family and CACC applications. They found that their
attacks could fully eliminate the benefits of CAY applications
(e.g.,Forward Collision Warning (FCW)) and increase thespeed
standard by 43%, introducing instability to the upstream traffic.
Koley et al. [9] created an attack that can cause collisions as
well as impair performance by compromising traffic efficiency.
An example from their study demonstrated a safety-violating
attack scenario where the space between vehicles was reduced,
resulting in a collision.

2) Mobilty Impact: Most studies focus on a reduction in
averagespeed or a dropinroadwaycapacity in tenns of mobility.
Abdo et al. [6] illustrated that their attack strategies for various
CAY applications could cause speed reduction and excessive
lane change maneuvers, which highly affected the system mo-
bility performance. Chen et al. [7] and Huang et al. [88] ana-
lyzed the system design and identified data spoofing strategies
that can potentially influence traffic control in the Intelligent
Traffic Signal System (I-SIG). Using the data spoofing strategy
and knowing the planning stage configuration, the traffic got
congested, and the total delay increased by 94.0% and 38.2%
on average, which completely reversed the mobility benefits of
using the I-SIG system. Haydari et al. [89] proposed an attack
that manipulated a traffic signal control system that relied on
a Deep Reinforcement Learning (DRL) system. It turned out
the proposed attacks affected the Deep Neural Network policies
and degraded the performance of the traffic signal controllers in
terms of average waiting time. Yen et al. [90] proposed anattack
strategy targeting a back pressure-based signal controller, which
could maximize the number of disrupted phases, thus increasing

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 30,2024 at 18:17:39 UTC from|EEE Xplore. Restrictions apply.



ABDO et al.: CYBERSECURITY ON CONNECTED AND AUTOMATED TRANSPORTATIONSYSTEMS: A SURVEY

1391

TABLEV
SUMMARY OFCYBER ATTACKS ON AIIfOMATED CAYS APPLICATIONS

Paper Applications Attack Type Studied Traffic Metrics
raJsuymg :spoonng Keply LJO.) Moornty tmvrronmental :Satety
[86] cAcc!
6 CACC
7 ITS'
8 CACC
9 CACC
[10] CRM'
' Cooperative adapatlve cruise control, ' Intelligent Traffic Signal System;' Cooperative Ramp Merging
Cyberdefonse or CAV proposed a defen§e method by using adyersarlal example de-
tection. A new distance metric was designed to describe the
differences between twoobjectdetection results.Theadversarial
“1@5;]_111]1]11- olli v examples were detected by using the new evaluation metric and
monitoring the variance of a temporal inconsistency. A similar

Fig. 7. Structure of cyber defense on CAVs section.

average traffic delays and disrupting fairness. Results from Zhao
et al. [10] showed that mobility performance decreased by up to
55.19% for the cooperative ramp merging scenario when their
spoofing attacks were implemented.

3) Environmental Impact: There is a minimal amount of
research considering the environmental impacts due to cyber
attacks. Zhao et al. [10] analyzed energy consumption and
pollutant emissions impacts from the cyber attacks on both
mainlineand on-rampvehicles.Inaddition, resultsdemonstrated
that with the increase in theCAY penetration rate (i.e., the attack
ratio), fuel consumption and CO2 emissions are significantly
decreased.

V. CYBER DEFENSE ON CAVs

Cyber defense refers to policies, practices, technologies, and
infrastructure that are put in place to prevent or mitigate attacks
via unauthorized access to a device, data, or network infrastruc-
ture as a whole [91]. Similar to cyber attacks, the cyber defense
studies on CAVs are also reviewed at an individual vehicle level
and CAY application level, as shown in Fig. 7. Cyber defense
models at the vehicle level correspond tocyber attacks, in which
four different sensor types are considered. We mainly focus
on implementing SCMS and misbehavior detection at the CAY
application level.

A. Defense on Vehicle Level

Regarding cyber defense studies on CAV sensors, many
studies focus on defending against adversarial attacks toward
camera images. Deng et al. [92] analyzed four defense methods
against adversarial attacks, including adversarial training, de-
fensive distillation, anomaly detection, and feature squeezing.
The defense methods were applied to different driving models
against five different adversarial attacks. Two defense methods
were proposed against the adversarial attacks on traffic light
detection in [69]. The proposed defense methods were adver-
sarial training and defensive distillation. Li and Velipasalar [93]

method was also proposed in [94], in which a new weighted
frame-wise distance metric was proposed to evaluate similar-
ities between the detected object and ground truth. Another
work proposed by [95] utilized physical constraints between
stereo-images from the left and right cameras. The researchers
used an optimization method to minimize the effect of the
adversarial perturbation on a given stereco 3D object detector.
The proposed defense method was effective against adversarial
attacks.

Existing defense studies on radar and LiDAR are limited,
partially due to insufficient pertinent cyber attack research.Most
studies that attack radar mainly focus on interfering with wave
signals. To mitigate the signal interference, Chen et al. [97]
proposed to utilize Generative Adversarial Network (GAN) to
recover the wave signal in the frequency domain. Such a method
can address missing sensor signal problems due tospoofing and
jamming attacks. A study by Sun et al. [76] showed a poten-
tial defense method against spoofing attacks targeting LiDAR.
This work utilized physics-informed anomaly detection as a
defense method. Laser penetration detection was used to detect
abnormal point clouds and findspoofed fake vehicles. Under the
cooperative perception Lidar setting, [78] also proposed several
defense methods from a decision-level merging perspective.
The verification and identification process is done considering
the occupied area created by objects. Then, affected agents are
identified with cross-validation from observation results from
other agents, and suspicious points are removed. The region
occupied by adversarial samples is also marked as an unsafe
region and will further support the object detection process
of other agents. A summary of defense work on sensors is
summarized in Table VI.

B. Defense on CAV Applications

To ensure that CAV technologies operate in a safe, secure, and
privacy-protective manner, a proof-of-concept (POC) security
system was designed and implemented to enable vehicles to
trust each other and the whole system. The Security Credential
Management System (SCMS) is a security solution for vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-
nications. Fig. 8 gives an overview of the system architecture.
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TABLE VI
SUMMARY OF DEFENSE METHODS ON SINGLE AtrrOMATED VEHICLE SENSORS
Sensor Defense Target Defense Method Reference
Adversarial training, defensive distillation (69]
Adversarial Iterative Targeted Fast Gradient Sign Method (ITFGSM), Optimization-based method
Camera ‘Attack (Opt), AdvGAN, universal adversarial perturbation (Opt uni), AdvGAN universal (92]
ttac adversarial perturbation (AdvGAN uni)
Adversarial example detection (93]. [94]
Detection usmg physical constrams L:>]
Modular verificallon model 10J
Radar Signal Generative Adversarial Network (GAN) based signal recovery [97]
Interference
. Spoofing Attack Physics-informed anormality detection [76]
LiDAR
:spoonng  attack
and Adversarial Unsafe region identification with cross-validation from other agents (78]
attack
Man-in-the- . L
GPS middle Encryption and authentication [79]
GPS spoofing Misbehavior detection gg]]’ [81],

Frequentlye Security Credential

;;c;:ﬁg Management System
BSMstoone (SCMS) as a trust anchor
to, trackingp
I
| i ferify messages!
M that will results
- in warnings or
collisions
—\]'_
|digital signature LT -
— to grantee - -
=3 @
Fig.8. SCMS ecosystem.

It relies on digital certificates and public-key cryptography to
authenticate andencrypt messages, which require a trustedentity
to manage the distribution and revocation of these certificates.
The SCMS serves as this trusted entity, managing the digital
certificates and cryptographic keys used by vehicles and infras-
tructure tocommunicate securely by obtaining credentials from
certificate authorities (CAs) and attaching those certificates to
their messages, such as basic safety messages (BSMs), as part
of a digital signature. In addition, it ensures that only authorized
devices are allowed to participate in the communication and
that messages are protected against tampering, interception, and
replay attacks. The SCMS is designed to be highly scalable,
manage large numbers of certificates, and support a wide range
of security policies and trust models. It has misbehavior de-
tection as an essential feature to identify and respond to any
malicious or abnormal behavior that may compromise the se-
curity and safety of the V2X network. Misbehavior can include
message tampering, denial of service attacks, and false message
generation. Misbehavior detection involves identifying patterns
of behavior that are inconsistent with the expected behavior of a
device. At thesame time, reputation-basedsystems usefeedback
from otherdevices to assess thetrustworthinessofa device.Once
SCMS receives misbehavior information about some devices, it
will add these devices' certificates to the certificate revocation
list (CRL) and distribute it to other devices so that it will no

longer be considered a trusted source for sending and receiving
messages.

In addition to SCMS, many other methods have been devel-
oped for misbehavior and anomaly detection over the years.
For example, utilizing cross-validation with data from other
sources, falsified trajectories could be identified [99], [100],
[101], [102]. Other studies focused more on abnormal route
detection [103], [104], where routes with excessive length were
identified as outliers. Misbehavior detection is also applied
to GPS spoofing attacks to determine whether the received
trajectory is in accordance with the vehicle's kinematic prop-
erties and surrounding road network [98]. In [105], [106], an
embedding trajectory model inspired by the word embedding
model from the natural language process (NLP) is proposed
to create vector representations of trajectory points. Then, a
clustering model is developed to conduct a majority vote to
differentiate abnormal trajectories from normal ones. In recent
years, a variety of machine learning techniques have been ap-
plied to misbehavior and anomaly detection, such as cluster-
ing [107], [108], inverse reinforcement learning [109], genera-
tive adversarial network (GAN) [110], and recurrent neural net-
work(RNN) including thelongshort term memory (LSTM) neu-
ral network [111], [112]. Table VII summarizes these emerging
solutions.

There also have been some defense work against adversarial
attack targeting theCAY applications. Dinget al. [113] proposed
a defense method against adversarial attacks onencrypted traffic
data using both passive and active defense methods. Denoising
autoencoder with image reconstruction was used in the passive
defense phase, and adversarial training was applied in the active
defense phase. Both methods couldsignificant]y improve classi-
fication performance and were regarded as a feasible solution to
adversarial attacks on encrypted traffic data. Haydar et al. [89]
proposed a defense method using ensemble methods against
attack targeting Deep Reinforcement Learning-based Traffic
Signal Control (TSC) modules. The proposed defense method
outperformed other listed methods by detection accuracy. Yen et
al. [90] proposed an auction-based and hybrid-based algorithm
for attack mitigation when the backpressure-based TSC module
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Mitigated attacks Solution Key | Authentication Reference
Spooling Semi-analytical expression (100], (99]
Sybil Physics-based trust propagation scheme [101]
Falsification Computing similarity (102
Spoofing Classification and mapping [104
Bogus, replay, collusion Traffic flow model 111 ]
Spoofing Physical layer plausibility checks [11S]
Falsification, sybil Physical signal tracking and RSSJ validation 116
Falsification, sybil Extended Kalman Filter (EKF) 117
Falsification, sybil Classifying 118
Sybil KNN and SVM 119]
Falsification Natural language processing and hierarchical clustering (105], (106]
Falsification Game theory [120]
Adversarial Deep reinforcement learning [89]
Fake, replay, stealthy Plausibility check Interacting Multiple Model (IMM) and [114]
reinforcement learning
Falsification Blockchain and unsupervised learning (121]
Spoofing, bad mouthing, | Blockchain [122
sybil voting
TABLEVIII
SUMMARY OF EVALUATION PLATFORMS
Evaluation Platforms Pros Cons Literature
chlistic 3D Sccnarios.' various sensors, GF’U com- | dware requirements
SVL puting, various customized sensors modelling, sim- N 7 (123] [71]
Individual Vehicle plified precise vehicle dynamics, open source lack of off-road scenarios
Oriented . Rcz}Iistic .ID SCENanos, vanous sensors, GPU com- Hardware requirements, (126] [127]
CARLA puting, various customized sensors modelling, sim- lack of off-road scenarios 1287 1129
plified precise vehicle dynamics, open source acic ob off-road scenarios (128] [129]
Keanst,c jrs scenanos, extremely precise physical ‘I1me-consummg bul lamg
Gazebo models and vehicle dynamics, various customized 3D models, less realism | (131][132]
sensors modelling, open-source environment
MATLAB Details plotting tools, clear logic boxes, precise vetu- | Limia:o visualizatmn,
/Simulink cle dynamics, various customized sensors modelling commercial (133] [134] [88)
SUMO ﬁ‘:llct'";crm(’(i::u?‘:e““o“ interface, open-source, |\ 31y yicualization (1351 [137][138]
Traffic Oriented nofess Tonal-graac, Binll-m models, jz; vlsuallzallon,
VIJSSIM easy coding Commercial (139] [140] [7]
IVIAILAH uetal Is plothng tools, user-friendly GUI No bmll-m mOdels P41J 11431
) nqesslonal-grade, bujlt-m_ mOdels, }mpl]clt?/ m ere- Commercial. cumbersome
Aimsun ating network and animation, 3D visualization, ex- . ’ (144][145]
tension interface, Mic/mes/macroscopic capable coding
Communication OMNeT-++ quglar and ﬂexlbl;. act}lve cgmmumty. GUI for Complex to learn and use | (146][147][148]
Network Simulators géllgﬁ% A Vé?%%‘ilgrlngfglrmI%lrzgcl:gggalc simulations,
and Co-simulation NS-3 wide range of networking protocols and models, I"lmltcd‘m custornizabil- (149][150][156]
simple programming interface ity, no GUI
VENTOS Integration of SUMO and OMNET++ gglbyle d it‘)f;fn"lﬁmcalfi‘jf“ (15t [152]
CAKMA Integration ol :;UMO, N:'ijj, andCARLA Hardware requtrements [157])

had been attacked. The defense performance was evaluated by a
delay of distribution, number of scheduled phases, and fairness.
By using such evaluation matrices, the attack's impact was suc-
cessfully mitigated by applying the proposed defense method.
Abdoet al. relied on physically modeling the vehicles and their
interactions using dynamics and state estimation filters as well
as reinforcement learning [114]. It combined these observations
with knowledge of applicable rules and guidelines to capture
logic deviations. As a result, their defense could accurately and
promptly detect attacks with low false positive ratesover a range
of attack scenarios for different CV applications. Table VII
summarizes the major studies on the cyber defense of CAV
applications.

VI. EVALUATION PLATFORMS

Emerging simulators and testbeds can provide cost-effective
alternatives to quantify the impacts of cyber attacks and evaluate
the performance of cyber defense on connected and automated
transportation systems (CATS). This section further discusses
these evaluation platforms as shown in Fig. 9.

Simulation platforms for cybersecurity can be categorized
into two major types: individual vehicle-oriented and traffic-
oriented. Individual vehicle-oriented platforms leverage vehicle
dynamics and onboard sensing, while traffic-orientedsimulators
focus on the interactions between CAVs and other road users as
well as roadside infrastructure to analyze impacts on the entire
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Fig.9. Structure of evaluation platforms section.

transportationsystem. Moreover, communication network simu-
lators that model wireless communications between CAVs may
be introduced as co-simulation platforms by integrating with
other platforms/modules to further exploit CATS performance
in a more realistic environment.

A. Individual Vehicle-Oriented

At the individual vehicle level, the high-fidelity simulator
SVL takes advantage of the game engine Unity to model ve-
hicle dynamics, photo-realistic 3D virtual environment, traffic
simulations for vehicles and pedestrians, and multiple sensors
including camera, LiDAR, GPS, IMU, and radar [123]. The
simulator can create a basic dynamic vehicle model for the
ego vehicle and accommodate external third-party models via a
Functional Mockup Interface. A realisticenvironment, including
roads, buildings, and weather conditions, can help evaluate
and train vision-based perception algorithms. The simulator
can provide communication bridges for messages exchanged
between the Automated Driving (AD) stack and the simulator,
which can be used with Autoware [124] or Baidu Apollo [125].
In addition, sensors allow intrinsic and extrinsic parameter
customization. Virtual ground truth sensors are supported to
provide labeled information for sensor-relatedcyber attacks and
cyber defense validation. Researchers usedsoftware-in-the-loop
(SiL) evaluation with SVL to evaluate the safety impact of a
DNN-based Automated Lane Centering (ALC) system. They
also designed a physical-world adversarial attack called Dirty
Road Patch (DRP) to test thesystem's robustness.[71]. CARLA
is an Unreal Engine-based, open-source simulator developed
for autonomous driving research [126]. Similar to SVL, a vari-
ety of sensors and high-quality environments are supported. It
leverages the OpenDRIVE standard to define roads and urban
settings, which can automatically generate a road grid with
traffic lights and signs.The simulator can support many built-in
automation functions such as perception, mapping, positioning,
and vehicle control, enabling end-to-end testing and training
of CAV algorithms [127]. Recent work claimed that CARLA
could reduce the time between digitally crafting a perturbation
and testing it with realistic scenarios [128]. Additionally, the
reproducibility of the CARLA simulator and the variety of
environmental conditions can also enable researchers to craft
new perturbations with realistic constraints so that they can
have a better understanding of the efficacy of different at-
tacks [129]. Gazebo is another open-source, scalable, flexible,
and multi-robot 3D simulator that relies on three main libraries:
physics, rendering, and communication libraries. It can provide
high-precision physics for robotics-related simulation [130].
Swanson et al. created a hardware-in-the-loop (HiL) simulator
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and indicated that although ROS already included a graphical
interface RViz for visualization,Gazebo was necessary because
it could model much more accurate physics. Besides, ROS has

a significant amount of support for stand-alone system depen-
dency of Gazebo [131]. The listener and publisher constitute
a scalable architecture that allows multiple nodes to control
agents, which provides more attack surfaces for evaluation.
Zhang et al. developed a Gazebo-based vehicle-to-everything
(V2X) platform for the simulation of CAY environments [130].
On top of Gazebo, they extended a communication module re-
ceiving and sending information between vehicles and roadside
units (RSU). They leveraged Gazebo to provide precise vehicle
dynamics and construct each CAY as an independent robot
model with multiple parts, such as state listener and publisher,
to enable system status monitoring.

MATI.AB/Simulink: is suitable for model-based systems eval-
uation and analysis. It includes the Automated Driving Toolbox
(ADT), which provides tools that can help with the design,
simulation, andtesting of Advanced Driving Assistance Systems
(ADAS) and automated driving systems [132]. HERE's HD
live map data and OpenDRIVE road networks can be easily
imported. MATLAB/Simulink allows researchers to simulate
a real-time model of the target system. The model contains
both continuous vehicle dynamics and discrete vehicular com-
munication network behaviors [133]. It also allows users to
use the Ground Truth Labeler app to automatically label ob-
jects. Giiven<; and Kura! used multiple-drivers-in-the-loopsim-
ulation in adaptive cruise control tests using MATLAB and
Simulink [134]. Recent work evaluated the impact of falsified
data attacks on I-SIG via 20 hours MATLAB simulation [88].

B. Traffic-Oriented

Although the 3D engines mentioned above can provide re-
alistic vehicle dynamics and high-fidelity environments, high
computational demands are required when they are used for
multiple vehicles or traffic simulations. Unlike individual ve-
hicle simulators, microscopic traffic simulation platforms treat
vehicles as moving boxes, which compromises modeling accu-
racy in physics but significantly reduces computational loads.
Simulation of Urban Mobility (SUMO) is an open-source
microscopic traffic simulator for a variety of transportation
applications, such as dynamic navigation, traffic surveillance
systems evaluation, and traffic signal control algorithm develop-
ment [135]. In addition, SUMO provides Application Program-
ming Interfaces (APIs), called Traffic Control Interface (TraCl),
to establish the connection with external applications through
a socket connection for the access of network topology, signal
control, and vehiclebehavior [136].Ina recentstudy, researchers
proposed a simulation-based fault injector (SUFI) that was ca-
pable of injecting faults intoADAS features using SUMO [137].
Dasgupta et al. developed a "slow poisoning" attack generation
strategy foran adaptive traffic signal controller and a prediction-
based "slow poisoning" attack detection strategy [138]. They
modeled the attack strategy using SUMO and used the simu-
lated data to develop the attack detection model. VISSIM is
a commercial microscopic traffic simulator developed by PTV
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Group, modeling motorway traffic as well as urban traffic opera-
tions[139].The toolcan be used to investigate private and public
transportation as well as pedestrian movements. In addition, it
provides a structure of one-way links, called connectors, for
constructing road networks [140]. Like SUMO, VISSIM pro-
vides a component object model (COM) programming interface
with user-developed algorithms and enables modeling complex
control logic and V2X applications. Chen et al. deployed data
spoofing attacks towards the I-SIG system, targeting both algo-
rithm design issues and field implementation limitations in the
adaptive signal control algorithm [7]. MATLAB is a coding-
based interactive system for numerical computation [141]. It
provides useful toolboxes with wide customization freedom
for researchers to build various models. Besides toolboxes,
MATLAB SimEvents is a discrete-event simulation software
tool that is designed for modeling and simulating dynamic
systems, which can provide a visual environment for building
simulation models using block diagrams, similar to Simulink..
Researchers analyzed the causes of congestion using a queuing
model built using MATLAB SimEvents based on observations
and traffic data analysis [142]. Moreover, MATLAB has built-in
functions for working with traffic data analysis, such as traffic
volume, speed, and occupancy, to evaluate the impact of cyber
attacks on traffic. This can involve processing and visualizing
large datasets to identify patterns and trends and evaluate traffic
management strategies' performance. MATLAB can be used
for vehicle longitudinally microscopic behavior modeling and
trajectory generation toevaluate cyber attacks' influence on the
longitudinal safety of CAVs [143]. Aimsun is a full-featured
and widely used commercial traffic simulation with the ability
to simulate the detailed behavior of each individual vehicle in
the traffic network ona time scale ofless than one second [144].
Aimsun is also very extendable and customizable by interfacing
with external codes through various available APis. Reilly et
al. constructed benchmark scenarios using Aimsun to identify
the potential cyber vulnerabilities of ramp metering forfreeway
traffic control [145].

C. Communication Network Simulators and Co-Simulation

Network simulation is particularly important for cybersecu-
rity research on CATS, as more realistic models are required to
assess the impacts of connectivity-related attacks and defense
strategies. There are a few state-of-the-art network simulators,
as described below. OMNeT++ is an open-source, modular,
component-based C++ simulation library and framework that
can be used to simulate complex communication networks with
high fidelity [146]. It can perform network attack and threat
analysis in a simulation environment. For example, the data
recording function in OMNeT++ can reflect the impact of dif-
ferent types of attacks on the network and generate datasets
for learning-based cybersecurity models. For example, a previ-
ous study deployed a DDoS attack to jam the communication
channel in a VANET via OMNET++ [147]. Another recent
study investigated the self-reported location anomaly detection
problem for CAVs with OMNeT++ [148]. NS-3 provides sup-
portfor creating virtual nodes and implementing point-to-point,
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wireless, or CSMA (Carrier Sense Multiple Access) connections
between nodes [149]. It is suitablefor the VANET (Vehicular Ad
hoc Network) environment because it supports multiple modem
standards and routing protocols such as WAVE (Wireless Ac-
cess for Vehicular environment) standards and AODV (Ad-hoc
On-Demand Distance Vector) routing protocol. Acbarya et al.
implemented their blackhole attack prevention scheme in the
NS-3 simulator under WAVE standards with AODV routing
protocol [150]. Many researchers realized that even though
each simulator bas its own advantages and focused arena, more
than a single simulator is needed for comprehensively mod-
eling and evaluating cybersecurity problems as well as estab-
lishing a realistic testing environment. As a result, emerging
co-simulators and integrated platforms provide more options to
researchers. VEhicular NeTwork Open Simulator (VENTOS)
is an integrated C++ simulator for modeling vehicular traffic
flows, cooperative driving, and interactions among CAVs or
between CAVs and infrastructure equipped with DSRC [151].
It takes advantage of the microscopic simulator SUMO and
network communication simulator OMNET++ to provide re-
alistic traffic modeling and network simulation. Kumar et al.
assessed the impact of various attacks on cooperative driving
use cases such as cooperative adaptive cruise control (CACC)
via VENTOS [152]. Zhao et al. utilized VENTOS to reveal the
cybersecurity risks of cooperative highway on-ramp merging
in a mixed traffic environment [153]. Another open-source
co-simulation platform CARMA [154] developed by the U.S.
Department of Transportation integrates CARLA, SUMO, and
NS-3 to establish everything-in-the-loop (XiL) simulation to
evaluatecooperative automated driving. Thiscould bea potential
tool forcybersecurity researchbetween the vehicle and vehicular
network levels. Some early studies targeted vehicle-level cyber-
security with CARLA [68]and network-level cybersecurity with
NS-3[155].

VII. CURRENT GAP AND FU'TuRE RESEARCH DIRECTION

In this paper, we reviewed recent cybersecurity studies on
CATS from four perspectives, including risk assessment, cyber
attacks, cyber defense, and evaluation platforms at both the in-
dividual vehicle and CAY application levels. Below, we discuss
current gaps and challenges in the existing literature and future
research directions, summarized in Table IX.

A. Threat Analysis and Risk Assessment

Most of the analytical approaches assessing risks and threats
of CAY applications are qualitative and highly dependent on
subjective opinions and specific use cases. Therefore, these
methods are not ready to be scaled up, and the results are
hardly compared. On the other hand, quantitative approaches
adapt to different risks and provide measurable results that are
easily compared. With the development of more data-driven or
learning-based evaluation methods, there is an increasing de-
mand forspecialized and large-scale datasets, which iscritical to
guarantee high accuracy and confidence. As a result, data-driven
TARA approaches should gain more attention.
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TABLE IX
CURRENT GAP AND FIJnJRE RESEARCH DIRECTION SUMMARY

ol

o Direct
TreTeSey DHrection

Threat Analysis and Risk Assessment

Using specialized and large-scale datasets, i.e. data-driven TARA approaches.

Limited research on attacking multi-sensor fusion (MSF) models.

Cyber Atlack TnvesITgatmg complex anct ume-consummg cyber attacks.
Investigating vulnerabilities of ainerent CAVs applications m terms of security and safety.
More defenses agamst L1dar-based adversarial attacks.

Cyber Defense unexplored cyber aerense under a cooperal lve perception envrronment.

Investigating more confidentiality, non-repudiation, and authentication solullons in CAVs.

Invest,gatmg the system's reshence anct mItIgatl00 solut,00s.

Tnvestigating the impact of cyber attacks and defense services.

Evaluation platforms

B. Cyber Attack

For deep-learning-based perception systems, current attack
methods mainly focus on degrading the performance of the
perception system by lowering the detection accuracy. For non-
deep-leaming-based perception systems, existing research on
attacks focuses on interfering with the physical signals received.
It is important to investigate the impacts of the sensor attacks at
the multi-vehicle and/or transportation system level since vehi-
cles, in essence, need to interact with each other. Considering
the cyber-physical nature of CATS, how to launch attacks that
can cause permanent physical damage without contacting the
sensor remains a question. There is also very limited research
on attacking multi-sensor fusion (MSF) models. There only
exist two current works addressing MSF as a target, one for
localization module [3], theother for multi-sensor fusion [82].It
should benoted thatmultiple types ofMSFmodelsapply toCAY
deployment [158], [159], [160], and the current investigation
is far from sufficient. Such models are considered one of the
most common defense methods against cyber attacks on a CAY
perception system. Recent research targeting attacks towards
MSF only focuses on a specific CAY platform, which can not
be generalized in other CATS.

At the CAY application level, the adversary uses message
falsification (modification) and spoofing (masquerading) or re-
play attacks to affect the vehicle stream maliciously. These
attacks can be easily detected using state estimation or machine
learning mitigation algorithms. However, the most complex and
time-consuming cyber attacks still need to be made easier to
pull off. These sophisticated attacks can be adversarial adaptive
attacks, stealthy attacks, frog-boiling attacks, etc. For example,
in stealthy or frog-boiling attacks, the attack can be used to
disrupt the whole CAY network by continuously lying to all
the connected nodes without being noticed by injecting small
offsets. The goal is to move some victim CAYs to arbitrary
coordinates far from the rest of the traffic. The adaptive attack is
specifically designed to target a given CAY mitigationscheme.lt
can bedone through different methodsforgenerating adversarial
examples. Themostwidely adoptedapproachis gradient descent
because it does not require knowledge of the machine learning
model's architecture or parameters. Instead, the attack only
needs to be able to query the model and compute its gradient
with respect to the input data. Moreover, as the number of CAY's
is expected to grow significantly, more efforts are needed to
investigate vulnerabilities of differentCAY applications in terms

Investigating human-in-the-Toop simulation.
USIng rea. I-world [estbeds tor TA VS Cybersecunty.

of security andsafety. Attacks mustbegeneralized and not target
just one or two CAY applications.

C. Cyber Defense

Defense methods for CAY onboard sensors mainly focus on
protecting against adversarial attacks (camera), signal inference
(radar), and spoofing attacks (LiDAR and GPS). With the grow-
ing usage of Deep Neural Networks (DNN) in inferring Lidar
point cloud data, defense againstLidar-basedadversarial attacks
is an important future research topic. For non-DNN-based in-
ference models, a possible defense method would be targeting
information recovery. Given thespoofed signals from thesensor,
a keyquestion is how the ground truth information can be recov-
ered. In addition, the majority of existing studies only consider
sensors of a single CAY. Although there had been work about
creating cooperative perception for CAYs [161] and utilizing
cooperative perception information for other applications like
motion planning[162],or consideringcommunication issues un-
dersuch assumption [163], thecyberdefense under acooperative
perception environment is a largely unexplored area, as we only
observe oneresearch work address the cyber-defense under such
assumption [78]. Other research gaps for the defense against
cyber attacks on CAY onboard sensors include the systems'
resilience and mitigation solutions.

In general, most of the existing research in the transportation
domain lies within the region of information integrity and avail-
ability. However, other essential factors are not yet discussed
in this domain regarding cybersecurity. These factors include
confidentiality, non-repudiation, and authentication. Investiga-
tion of these factors should be another critical future research
direction.

Finally, revocation is a huge security concern. Given the po-
tential damage a malicious user could causein a CATS, a mecha-
nism that deactivates a malicious user's credentials and renders
the user unable to send messages is required. Unfortunately,
revocation solutions involving a central pseudonym certificate
revocation list(PCRL) are not ideal because the pseudonym cer-
tificates' short lifespan necessitates a large and highly dynamic
PCRL. Furthermore, thecommunication complexity required to
keep all vehicles up to date on PCRL would be enormous.

D. Evaluation Platforms

Current cybersecurity evaluation platforms focus on three
types of simulation, i.e., traffic, communication, and individual
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vehicle simulation. Although many emerging co-simulators are
trying to integrate multiple platforms and exploit their advan-
tages, a comprehensive simulation platform to systematically
study theimpact of cyber attacks and defense servicesstill needs
to be present. Besides, human-in-the-loop simulation is also
worth investigating, as it is valuable to study human reactions
related to reduced safety and/orcomfort caused bycyber-attacks.
It should be noted that although real-world testbeds for CAV
cybersecurity are costly and dangerous, they can provide a much
more realistic environment.

Note that the research gaps identified above are not an
exhaustive list. In addition, as new research and deploy-
ment efforts continue, new gaps will emerge and need to be
acknowledged.

VIII. CONCLUSION

CAVshavegreat potential to transform our current transporta-
tion system into a safer, less congested, and more eco-friendly
arena. But, in the meantime, there are a growing number of
cybersecurity risks or even threats faced byCAVs that may intro-
duce massive compromise from the perspective of individual ve-
hicles, fleets, or even entire traffic flows. Many researchers have
made tremendous progress investigating CATS cyber attacks and
mitigation strategies. However, this review indicates that there
are still gaps before claiming the current CAV applications are
safe and resilient. Some questions that need to be addressed
include how to prevent an attacker from obtaining a batch from
SCMS and whether or not a compromised RSU would affect
other neighboring RSUs. To answer these questions, innovative
frameworks or approaches to vulnerability analysis and security
assessment of CATS need to be further explored, and various
resilient designs have to be considered.
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