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Abstract-Connected and automated vehicles (CAVs) provide 
various valuable and advanced services to manufacturers, owners, 
mobility service providers, and transportation authorities. As a 
result, a large number of CAV applications have been proposed to 
improve the safety, mobility, and sustainability of the transporta­ 
tion system. With the increasing connectivity and automation, cy­ 
bersecurity of the connected and automated transportation system 
(CATS) has raised attention to the transportation community in 
recent years. Vulnerabilities in CAVs can lead to breakdowns in 
the transportation system and compromise safety (e.g., causing 
crashes), performance (e.g., increasing congestion and reducing 
capacity),and fairness (e.g., vehicles fooling traffic signals). This pa­ 
per presents our perspective on CATS cybersecurity via surveying 
recent pertinent studies focusing on the transportation system level, 
ranging from individual and multiple vehicles to the traffic network 
(including infrastructure). It also higWights threat analysis and risk 
assessment (TARA) tools and evaluation platforms, particularly for 
analyzing the CATS cybersecurity problem. Finally, this paper will 
provide valuable insights into developing secure CAV applications 
and investigating remaining open cybersecurity challenges that 
must be addressed. 

Index Terms-Connected and automated vehicles, cybersecurity, 
risk assessment, evaluation platform, cyber attack, defense 
strategies. 

 
 

I. INTRODUCTION 

Y LEVERAGING advanced sensing technology, edge 
computing, and wireless communications, connected and 

automated vehicles (CAVs) will merge the capabilities of both 
Connected Vehicles (CVs) and Autonomous Vehicles (AVs). 
As a result, CAVs can not only perceive their surrounding 
environments with perception sensors such as cameras, radars, 
and LiDARs but also communicate with other equipped vehi­ 
cles, roadside infrastructure, active road users (e.g., bicyclists, 
pedestrians), and the cloud via vehicle-to-everything (V2X) 
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communications. This enables CAVs and other road users to 
cooperate more efficiently and collaboratively. Toward this end, 
CAVs have been regarded as a disruptive solution to many ex­ 
isting issues in our current transportation system, e.g., reducing 
trafficaccidents,improving accessibility forseniorsand disabled 

people, mitigating traffic congestion, and enhancing air quality. 
Nevertheless, cybersecurity is a critical concern to guarantee 

theaforementioned benefits from CAVs. Many researchers have 
realized this issue and performed pertinent research over the past 
decade. Most existing studies on automotive cybersecurity have 
been focused on in-vehicle networks, such as Controller Area 
Network (CAN bus) [1], Electronic Control Units (ECUs) [2], 
Global Navigation Satellite Systems (GNSS) [3], and onboard 
sensors (e.g., radar, camera, LiDAR and ultrasonic) [4]. This 

is of particular importance for autonomous vehicles. Recent 
development and deployment efforts inconnected vehicle appli­ 
cations attract much attention to the cybersecurity problems of 
V2X communications. Due to connectivity, cyber-attacks may 
lead to breakdowns of the entire system on a much larger scale, 
resulting in more significant negative impacts. For example, a 
public report on automotive cyber incidents by Upstream [5] 

disclosed that in the years 2020 and 2021, cyber threats to 
vehicles' communication channels increased by 89.3%, and 
threats to vehicle data/code increased by 87.7%. Compared to 
AVs and CVs, CAVs are prone to be much more vulnerable 
to cyber threats from malicious attackers due to their increas­ 

ing system complexity and more attack surfaces (e.g., sensing 
and communication systems) [6], [7], [8], [9], [10]. Therefore, 
reviewing the state-of-the-art cybersecurity on CAVs or, more 
broadly, on Connected and Automated Transportation Systems 
(CATS), identifying open gaps, and sketching future research 
paths becomes imperative and challenging. 

There are several surveys on the cybersecurity of AVs, Ve­ 
hicular Ad-hoc NETworks (VANETs), or CAVs [l l], [12]. For 
instance, Ju et al. [13] reviewed attack detection and resilience 
for CAVs on both intra-vehicle and inter-vehicle communica­ 
tions from vehicle dynamics and control perspectives. However, 
few provide a comprehensive review from the transportation 
system perspective, ranging from an individual vehicle to ve­ 
hicle strings and the entire transportation system (including 
roadside infrastructure such as traffic signals). Furthermore, 
most of these surveys only emphasize vehicle-level cyber at­ 
tacks (e.g., GPS spoofing, denial-of-service) and cyber defenses 
(such as Security Credential Management System, blockchain, 
and anomaly detection) but ignore risk assessment and cyber 

 
2379-8858 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 

See https://www.ieee.org/publications/rights/index.html for more information. 

B 

https://orcid.org/0000-0001-6508-7715
https://orcid.org/0000-0001-7073-6927
https://orcid.org/0000-0001-6707-6366
https://orcid.org/0000-0001-5656-3222
mailto:aabdo003@ucr.edu
mailto:xzhao094@ucr.edu
mailto:gywu@cert.ucr.edu
http://www.ieee.org/publications/rights/index.html


ABDO et al.: CYBERSECURITY ON CONNECTED AND AUTOMATED TRANSPORTATIONSYSTEMS: A SURVEY 1383 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 30,2024 at 18:17:39 UTC from IEEE Xplore. Restrictions apply. 

 

 

 
attack/defense at the CAY application level. For example, Sun 
et al. [14] summarized cyber risks and safety standards. Han et 
al. [15] reviewed attack, defense and cyber forensics evidence 
reconstruction based on vehicle platforms with regard to cyber 
threats for modem transportation systems. However, in both 
papers, approaches to threat analysis and tools/platforms for 
resilience validation are absent. To address these gaps, we make 
the following contributions in this paper: 

•  We investigate the cybersecurity problem, not only at the 
single-vehicle level, but also at the multi-vehicle level 
as well as at the transportation system level, including 
infrastructure. 

•  We provide a comprehensive review on the threat analysis 
and risk assessment approaches, which are usually ignored 
inexisting review studies. 

• We summarize useful evaluation platforms for different 
types (vehicle, traffic, communication)of CAT cybersecu­ 
rity research. 

 
II. BACKGROUND 

Inthis section, we first present some background information 
for CAVs, including communication technologies. Then, we 
briefly introduce the streamlined presentation of this survey. 

 
A. CAVs Communication Technologies 

CAVs are based on different protocols that consist of infor­ 
mation sharing, application management, security algorithms, 
and messaging. The main goal of these protocols is to fit the 
required connectivity solutions for V2X services. 

Wireless Access in Vehicular Environments (WAVE) [16] isa 
communication protocol that is used in Dedicated Short-Range 
Communications (DSRC) technology. WAVE operates in the 
5.9 GHz frequency band and enables communication among 
vehicles and between vehicles and infrastructure, such as traffic 
signals and signs. WAVE uses the SAE 12735 [17] standard 
to define the message sets, data frames, and data elements 
used for communication. This technology is being explored for 
various applications, including collision avoidance, intersection 
safety, and traveler information. WAVEcan potentially improve 
roadway safety and efficiency by providing real-time informa­ 
tion about traffic conditions and potential hazards. However, 
deployment of WAVE may require further regulatory and policy 
development to address issues such as privacy, security, and 
spectrum allocation. On the other hand, LTE, or Long-Term 
Evolution [18], is a cellular communication technology that is 
beingexplored for V2X. LTE offers high data rates, low latency, 
and secure communication, which could benefit safety-critical 
applications such as collision avoidance and intersection safety. 
One advantage of using LTE in V2X is that it would leverage 
existing cellular infrastructure, potentially reducing the need for 
additional dedicated infrastructure investment. However, there 
are alsochallenges associated with using LTEin V2X, including 
concerns about interference and the need for standardization 
to ensure interoperability with other communication systems. 
Overall, LTE is one potential technology that could be used to 

enhance the capabilities of V2X for improving roadway safety 
and efficiency. 

 
B. CAV Applications 

Over the past decade, numerous CAY applications have been 
developed toimprove transportationsystem safety, mobility, and 
environmental sustainability. Safety is the basis of all trans­ 
portation system operations and, thus, a primary focus of the 
CAY applications. Safety is usually considered in the motion 
prediction and planning stage at the individual vehicle level 
with risk evaluations based on conflicting trajectories [19] and 
surrogate safety assessment measures [20]. Data from CAV 
onboard sensors are uWized to build a driving environment 
with static and dynamic objects as the input to the planning 
module. At themulti-vehicle level, vehicle-to-vehicle(V2V) and 
vehicle-to-infrastructure (V2I) communications become essen­ 
tial to information exchange and coordinate maneuvers among 
CAVs. Representative safety applications that rely upon V2V 
communications include forwardcollision warning (FCW) [21], 
blind spot/lane changing warning (BSW/LCW) [22], and emer­ 
gency electronic brake light (EEBL). Safety applications that 
are based on V2I communications include red light violation 
warnings, curve speed warnings, and reduced speed/work zone 
warnings [23], etc. In addition, V2I-based safety applications 
also include providing advisory information to vulnerable road 
users (VRUs), such as pedestrian collision warning [24]. 

In addition to safety, efficiency is another major objective of 
the transportation system operation, and CAY technologies can 
help improve mobility significantly. A number of representative 
CV applications are initiated by the USDOT's Dynamic Mo­ 
bility Applications (OMA) program [25], under which several 
research prototypes have been developed, such as Enable Ad­ 
vanced Traveler Information Systems (EnableATIS) and Mul­ 
timodal Intelligent Traffic Signal System (MMITSS). Its goal 
is to leverage multi-sourced data from CVs and transportation 
infrastructure and demonstrate their performance in terms of 
mobility, along with associated benefits and costs. Combining 
V2I communication with automation, other mobility-oriented 
applications have been proposed, such as speed harmoniza­ 
tion [26], spatial-temporal intersection control [27], [28], and 
cooperative ramp merging [29]. 

The third primary goalof thetransportationsystem is environ­ 
mental sustainability[30], for which CAY technologies can help 
reduce fuel consumption and traffic-relatedemissions. Two rep­ 
resentative applications arevehicleplatooning andeco-approach 
and departure (EAD). Vehicle platooning or cooperative adap­ 
tive cruise control (CACC) uWizes both onboard sensors (e.g., 
radar) and V2Vcommunicationstosynchronize longitudinal be­ 
haviors of astringof vehicles, which can improve stringstability 
and reduceheadway forhighway driving. Inaddition, platooning 
can significantly improve the fuel efficiency of the following 
vehicles (especially for trucks) due to reduced aerodynamic 
resistance [31] and also increase road capacity due to reduced 
headway [32]. On the other hand, EAD applications applied 
at signalized intersections use information (e.g., road map and 
traffic signal status) received from the infrastructure via 12V 
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Fig. l.  Overall CAY cyber vulnerabilities. 
 
 

communications. Upon receiving the upcoming traffic signals' 
data in real time, the equipped CAV can adjust its longitudinal 
speed to reduce acceleration and deceleration fluctuations for 
energy savings. This technology has been widely tested under 
the GlidePath program at USDOT [33], [34] and GLOSA [35] 
program at EU. 

 
C. CAV Cyber Vulnerabilities 

Modern vehicles [36] can be considered as mobile computers 
containing over 100 million lines of computer code in the Elec­ 
tronic Control Units (ECUs) that regulate vehicle maneuvers, 
such as brakesand steering. Moreover, connected vehicles offer a 
lot of conveniences and advanced intelligent features. However, 
as with any technology that connects to other devices and the 
internet, connected vehicles are vulnerable to cyber-attacks. 
These security vulnerabilities can lead to remote exploitation, 
unauthorized access to data, communication channel attacks, 
and physical attacks. as shown in Fig. 1. 

One of the connected vehicles' most significant security 
vulnerabilities is the risk of remote exploitation. This is when 
an attacker gains unauthorized access to the vehicle's systems 
and can manipulate them remotely. This type of attack can 
be used to steal data from the vehicle, take control of it, or 
even cause it to crash. Remote exploitation can occur through 
several methods, including exploiting software vulnerabilities, 
using fake firmware updates,or evenexploiting unsecured Wi-Fi 
connections. 

Another vulnerability is the potential for unauthorized access 
to the vehicle's data. Connected vehicles store vast amounts 
of data, including GPS data, driver behavior data, and vehicle 
diagnostics. This data is often stored in the cloud and can be 
accessed remotely. If an attacker gains access to this data, they 
can use it tostealsensitive information or eventrack thevehicle's 
movements. This is particularly concerning regarding location 
data, as it can reveal information about where the driver lives 
and works. 

Connected vehicles also face the risk of cyber attacks that 
target the vehicle's communication channels. These attacks can 

Evaluat10n Platforms and Vahdat1on Tools 

 
Fig. 2.  Structure of this survey. 

 
 
 

disrupt the communication between the vehicle and other con­ 
nected devices, causing traffic accidents, traffic congestion, and 
even vehicle crashes. For example, if an attacker manipulates 
traffic signals, they could cause chaos on the roads, leading to 
accidents and fatalities. 

Furthermore, connected vehicles are also at risk of physical 
attacks. Adetermined attackercould breakintothe vehicle'ssys­ 
tems physically, bypassing anycybersecurity measures thathave 
been put in place. Physical attacks can include tampering with 
the vehicle's sensors or devices or using devices like jarnmers 
or signal boosters to interfere with the vehicle's communication 
channels. 

 
D. Survey Structure 

To streamline the presentation, as shown in Fig. 2, the sur­ 
vey starts with threat analysis and risk assessment in Sec­ 
tion ill, which supports the existing framework for identifying 
cyber threats and developing countermeasures to mitigate those 
threats. Then specific cyber attack and cyber defense method­ 
ologies are reviewed at both individual vehicle level and CAV 
application level in Sections IV and V, respectively, two critical 
steps in the risk assessment framework in Section ill. Finally, 
existing CAV cybersecurity research platforms and tools are 
reviewed in Section VI, which provides environments for evalu­ 
ating theimpactsofcyberattacksinSection IVand validating the 
effectiveness of respective cyber defense strategies in Section V. 
The sections can also be considered as different steps in the 
security analysis, which is summarized in a flowchart as shown 
in Fig. 3. 

 
III. THREAT ANALYSIS AND RISK ASSESSMENT 

Threat analysis and risk assessment (TARA) evaluates the 
likelihood and impact of attacks and combines them to derive 
the system risks. To further understand the difference between 
TARA approaches, Fig. 4 provides a schematic representation 
of the systematic engineering procedures of various TARA 
approaches. The process commences with system definition, 
which lays the foundation for subsequent steps in the TARA 
method. Then, it is followed by a bifurcation, which leads to 
different types based on the path chosen. Subsequently, the 
process makes the transition to threat and attack modeling, 
which constructs potential threats and attack scenarios. Next, 
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Fig. 3.  Flowchart of this survey. 

 
 

based on how to fonnulate the risk, TARA approaches can be 
further divided into two categories: qualitative approaches and 
quantitative approaches in therisk detennination stage, as shown 
in Fig. 5. Qualitative approaches take advantage of experience 
from experts to evaluate cyber risks and define the severity 
of risks at different levels: high, medium, and low, or with 
a risk index. These approaches provide convincing, reliable, 
and explainable results but cannot handle risks without prior 
knowledge. Quantitative approaches, instead, leverage different 
models to assess the threats and risks likelihood of the system 
based on probability theory and statistics. The results can be 
easily compared with other risks. However, these methods are 
usually quite data-demanding, which is a major challenge in the 
real world. 

 
A. Qualitative Approaches 

In thequalitative approach, weclassify it from the perspective 
of victims and attackers based on the process after system 
definition. On the victim side, we assess threats and risks based 
on the severity of the damage inflicted on the victim. Unlike 
the victim-oriented approaches, the assessment method from 
the attacker's perspective cares more about the attacker's profile 
and tradeoffs between the costs and benefits to the attacker. 

I) Victim-Oriented Approaches: Further investigation of the 
victim-oriented approaches results in two aspects: asset and 
vulnerability, both of which start with defining the system and 
the problem. However, they diverge in their next steps. An 
asset-based approach focuses on what needs to be protected in 
the system, such as data, software, or hardware. It prioritizes 
the system assets identification and then evaluates their possi­ 
ble threats. On the other hand, a vulnerability-based approach 
starts with identifying weaknesses or vulnerabilities ina system, 
then proceeds to analyze what failures these vulnerabilities or 
weaknesses could cause [37]. For more infonnation on the 
characteristics of the victim-oriented approaches, please refer 
to Table I. 

Asset-based: Agood instance of an Asset-based method is the 
E-safety Vehicle Intrusion Protected Applications (EVITA) that 
provides a cost-effective security architecture and facilitates the 
design, verification, and prototyping of vehicle networks [38]. 
From the attacked assets perspective, security threats can be 
analyzed by four objectives: operational, safety, privacy, and 
financial. A qualitative risk level from O to 6 can be asso­ 
ciated with three parameters: severity, attack probability, and 
controllability, similar to the Automotive Safety Integrity Level 
(ASIL). The Healing Vulnerabilities to Enhance Software Se­ 
curity and Safety (HEAVENS) model analyzes threats based on 
Microsoft's STRIDE approach [39], which is a threat modeling 
method that categorizes cyber threats into six types: spoofing 
identity, tampering with data, repudiation threats, information 
disclosure, denial of service, and elevation of privileges [40]. 
In addition, the HEAVENS method ranks the risks based on 
three factors: threat level, impact level, and security level, 
which establish a direct mapping between security attributes 
and threats. By investigating security guidewords, the Security 
Guide-word Method (SGM) can help identify possible attack 
scenarios, such as disclosure, disconnection, delay, deletion, and 
stopping. For each guide word, respective protection goals are 
clearly defined, such as confidentiality, integrity, and availabil 
ity [41]. The Security-Aware Hazard Analysis and Risk Assess­ 
ment (SAHARA) is an expansion of hazard analysis and risk 
assessment (HARA), which is an inductive analysis method and 
also includes the STRIDE threat model [39]. SAHARA defines 
various securitylevels basedonattackers' knowledge, resources, 
and threat criticality. The Systems-Theoretic Process Analysis 
forSecurity (STPA-Sec) can output a listof systematic scenarios 
with potential security threats [42]. TheSTPA-SafeSec analysis 
system is an extension of STPA-Sec, integrating with physical 
and infonnational safety and security analysis. The Unified 
Safety and Security (US2) uses a simple security level to assess 
safety hazards and safety threats in parallel and derives safety 
and security requirements effectively [43]. The NHTSA threat 
modeling is a hybrid method characterizing potential threats for 
automotive control systems [44]. It combines the benefits from 
STRIDE [39], Trike, and Microsoft ASF and then selects their 
common elements to establish the ensemble threat modeling. 

Vulnerability-based: Asa typical vulnerability-basedmethod, 
the Vehicles Risk Analysis (VeRA) is suitable for evaluating the 
risks of attacks on AVs and CAVs [45]. When conducting a 
safety risk analysis, it considers human capabilities and vehicle 
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Fig. 4.  Systematic engineering procedures of various TARA approaches. 

 

Threat Analysis and Risk Assessment (TARA) 
into motivation and attack potential, which give a better under­ 
standing of medium likelihood threats. TheSecurity Automotive 

Qualitative Approaches 

Victim-Onented I.Bal 
IMHHEW 

lt.;:Jltl Risk Analysis (SARA) is a systematic threat analysis and risk 
assessment framework, including improved threat models, the 
latest attack method/asset map, attackers' involvement in the 
attack tree, and a new driving system observation index [49]. In 
addition, SARA offers a comprehensive threat analysiscoverage 
for human negligence to consider recent concerns about the 
trustworthiness and privacy of CAVs. The TARA+ security 

Fig. 5.  Structure of threat analysis and risk assessment section. 
 

 
automation levels. As a result of thesimplified analysis process, 
the required analysis time is significantly reduced without com­ 
promising analysis accuracy. TheFailure Mode, Vulnerabilities, 
and Effect Analysis (FMVEA) is an extension of the Failure 
Model and Effects Analysis (FMEA) with security-related threat 
modes [46]. It can evaluate the likelihood and severity of a sys­ 
tem's safety and security risks.The Combined Harm Analysis of 
Safety and Security for Information Systems (CHASSIS) [47] is 
a systematic method to analyze safety and security interactively 
by using Hazard and Operability Study (HAZOP) guidewords. 
CHASSIS combines safety and security assessment and gener­ 
ates mitigation measures. 

2) Attacker-Oriented Approaches: The Risk Assessment for 
Cooperative Automated Driving (RACAD) is an innovative 
application-based threat enumeration andanalysis approach that 
can handle different AD applications across varying levels of 
automation [48]. It evaluates the attack risk by the risk vector 
computed from weighted linear combinations of the threat ma­ 
trix parameters. The likelihood of the result vector is split up 

analysis framework for CAVs combines ISO standards and 
considers the levels of automation defined by SAE and the 
type of fault-tolerant system design [50]. The Security Abstrac­ 
tion Model (SAM) integrates security management and safety 
modeling as a co-engineering process with the principles of 
automotive software engineering [51].The Attack Tree Analysis 
(ATA) is similar to thesafety Fault Tree Analysis (FTA) and can 
adequately exploit combinations of threat patterns. However, 
it requires detailed information on the system design, which 
is inappropriate for TARA in early development phases [52]. 
ATA can be used forevaluating cybersecurity at different levels, 
depending on the scope of the specific system being analyzed. 
HAZOP is a well-known method that uses a list of guide-words, 
including fault andcybersecurity guide-words, to identify poten­ 
tially hazardous situations and cybersecurity threats. HAZOP 
can be adapted to various ITS applications. Ref. [53]. More 
details of attacker-oriented approaches can be found in Table II. 

 
B. Quantitative Approaches 

As aforementioned, quantitative approaches rely on the data 
and provide numerical results for comparison, and details of 
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TABLE I 

SUMMARY OF QUALITXTIVE RISK ASSESSMENT APPROACHES (VICTIM-ORIENTED) 
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TABLE II 

SUMMARY OF QUAUD\TIVE RISK ASSESSMENT APPROACHES (ATTACKER-ORIENTED) 
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TABLE ill 

SUMMARY OP QUANlTIATIVE RISK ASSESSMENT APPROACHES 
 

Evaluation Approaches Risk Assessment Risk Levels Objectives Suitable Systems Ref. 
 
 

ij 
-e<=. J  

C. 

-.... 
=;; 
< 
·.c 
.\'l 
i 

=Cl 

 
 

PASTA 

Probabilistic attack analy- 
sis, regression analysis, and 
threat. intelligence correla- 
tion 

 
 

Risk level 

Identifying business ob- 
jectives, identifying se- 
curity and compliance 
requirements and impact 
analysis 

 
IV1, MV2, TN3 

 
(54] 

1Sayes1an 
network-based 
method 

tmvuonmental ractors, 
threat level, threat 
capabilities 

Threat index Safety, environment IV, MV, TN (55] 

 
TYRA 

 
Attack likelihood, attack 
impact 

 
Risk level 

Autnentication, 
availability, 
confidentiality, and 
privacy 

 
IV, MV, TN 

 
(56] 

Bayesian Stack- 
elberg game 

Impact, likelihood, impact, 
at.tack resources, and TN 
information 

Optimal actions 
ProbabiIity of attacks. 
optimizing defense ac- 
tions 

IV, MV, TN (57J 

 
PDRAFCAV Risk profile, and user pro- 

file 

Based  on  the 
selected risk 
assessment 

 method  

Based on needs of share- 
holders 

 
IV, MV, TN 

 
(58] 

l Indivtdual Vehicle,  Multi vehicles, Traffic Network 
 

quantitative approaches are listed in Table III. The Process for 
Attack Simulation and Threat Analysis (PASTA) is a risk-centric 
framework handling process for attack simulation and threat 
analysis [54]. Bayesian network (BN) based method is a proba­ 
bilisticgraphical model thatrepresents a setof random variables 
and their conditional dependencies via a directed acyclic graph, 
which can quantitatively evaluate the risk level with analyzed 
parameters of the network [55]. BN can be mathematically 
defined by: 

 
Cybcrattacks on CAVs 
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Fig. 6.  Structure of cyber attacks on CAVs section. 

 
 
 

where yJ is the probability that the attacker of type q chooses 
N = (G = (V,E),p), (1) action qj,  xi is the probability that the TMC chooses action 

di, ¼J and ui are the payoffs of the attacker and TMC, 
where acyclic graph G consists of a set of nodesV and a set of 
edges E between nodes, and p is the set of probability distribu­ 
tions. Based on sufficient data, parameters can be estimated by 
maximizing the expectation of Q, 

respectively, A and D are action sets of the attacker and TMC, 
respectively. Q is thesetof possible attacker types, and pq is the 
a priori probability distribution vector containing values for all 
attack types q in Q. They are both constrained by the following 
inequality: 

Q(0*10) = lEe{logP(X10)*)1D} (2) 

where P is the density function of node X, D is the learning 
data, and 8* is the updated posterior parameters. The Threat, 
Vulnerability,and Risk Analysis (TYRA) model analyzes assets 
in the system and the associated threats by modeling the likeli­ 
hood of attack occurrence and the impact of attacks [56]. As a 
result, TYRA can generate a quantitative systematic asset risk 
measure to minimize system risks. The Bayesian Stackelberg 
game methodology is a resource-aware approach that aims to 
provide the optimal detection load distribution strategy for the 
traffic management center (TMC) used in the transportation 
network. This can minimize the impact of attacks and improve 
their detection [57]. To achieve this, the researchers defined the 
objective function of the attacker and TMC to maximize their 
expected payoffs by choosing the optimal response strategy: 

0 :::; (aq -  L¼)xi) ::; (1 - yJ)M Vai E A (5) 
d;ED 

where M is a predetermined maximum value used to limit 
the number of attack actions the attacker can choose and aq 

represents the number of attack actions the attacker can choose. 
The Profile-driven Dynamic Risk Assessment Framework for 

Connected and Automated Vehicles (PDRAFCAV) manages 
data regarding CAY systems through a dynamic risk manage­ 
ment framework. This framework provides an effective cycle 
of "selecting risk profiles, training and updating models and 

collecting data" [58]. 
 

IV. CYBER ATTACKS ON CAVs 
The structure of this section is shown in Fig. 6. In this 

Maximize L L¼Jx;yJ 
a1EA d;ED 

Maximize LL L pquix;yJ 
d;ED qEQ a;EA 

(3) 

 
(4) 

section, we first highlight cyber attacks targeting CAVs through 
sensors and peripherals, including cameras, radar, Lidar, and 
GPS. Recentcyber attacks toward multi-sensor fusion(MSF)are 
also reviewed. Then, we discuss some of the applied attacks that 
negatively affect various CAY applications in terms of safety, 
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TABLEN 

ATTACKS TARGETING CAV SENSORS 
 

Sensor Attack Target Attack Method Reference 
 
 

Camera 

CMOS/CCD Sensors Light Influence [62]. [63], [64] 
veep Learmng Model m General- CAV 

 
Adversarial Anack 

10)], 1001, [01J 
1:,na-to-ena unvmg system - C/\V [4J, IMI 
Object Detection system - CAV [67], [69] 
Mult1-UOJect TracKmg System - CAV [IUJ 
Automatea Lane centenng - C/\V Lt lj 

Radar Radar sensor only Replay and spoofing [72] 
bnd-to-end onvmg system with radar as only source ot 
perception input 

:Spoonng [1-'J 

LiDAR LiDAR sensor and the deep learning model Adversarial attack and spoof- 
ing 

[74] 

3D-printed adversarial exam- 
pies 

[75], [76], [77] 

LUJAK sensor aoa me aeep 1earnmg moae1 w1m 
decision-level merging cooperative perception 

LUJAK :spoorer aoa "'uversar- 
ial examples 

L/lSJ 

GPS Message communication Man-in-the-middle (79] 
GPS Signal Override GPS spoonng [80], [81] 

Multi-Sensor Fusion 
(MSF) 

Camera and LiDAR Adversarial Anack [82] 
LJUAK, Ut':S, !MU 1-'1 

 

mobility, and environment. Note that at the vehicle level, we 
exclude the intra-vehicle network attacks to be more focused. 
Interested readers can refer to [14] for a comprehensive review. 

 
A. Cyber Attacks on Vehicle Level 

Standard sensor setup in a CAY usually includes a camera, 
mill wave radar, Light Detection and Ranging (LiDAR), and 
GPS [61]. The first three types of sensors, utilized within the 
perception module of a CAY while the GPS is mainly used for 
vehicle localization, contribute to the attack surfaces. Table JV 
summarizes previous work targeting onboard sensors. 

1) Attack on Camera: The camera output is image data con­ 
structed by pixels, and machine learning models are usually 
applied to it for information extraction. Accurate information 
retrieval from camera image data is vital to CAY's perfor­ 
mance. For example, lane feature extraction is important for 
the localization of ego vehicles, as mentioned in [83]. Ma­ 
nipulation of the output of image-based perception results oc­ 
curs on either the inference or the image source part. Attacks 
targeting the camera usually use other light sources to influ­ 
encethecamera's Complementary Metal-Oxide-Semiconductor 
(CMOS)/Charge-Coupled Device (CCD) sensors. A study [62] 
showed a jamming attack targeting the camera using a laser 
beam, whichcanalsolead topermanent damage when a stronger 
beam or longer attack time is executed. Disturbances targeting 
the camera can affect the performance of the vision-based per­ 
ception module in a CAY system, as shown in [63] and [64]. 
These attacks aim to maximize prediction errors of the computer 
vision module, which may further influence thedecision module 
of a CAYsystem.Moreover, the physical attackcan permanently 
damage the camera sensor itself. This irreversible damage can 
cause high replacement and fixing costs. 

Attacks targeting computer-vision-based perception affect 
machine learning models involved in the perception module 
through adversarial samples focusing on object detection, clas­ 
sification, and tracking [67]. 1n[69], a set of adversarial attacks 
targeting the traffic light classification model was proposed. 

In this research, spatial, one-pixel, CarlirLi & Wagner (C&W), 
and boundary attacks were deployed to test the robustness of 
the traffic light classification model. Jia et al. [70] proposed 
an adversarial attack targeting multiple object tracking (MOT), 
which isessential in autonomous driving. This work utilizes the 
optimization method to generate adversarial examples that can 
fool MOT algorithms. The optimization method achieved two 
goals: (a) to minimize the target class probability and (b) toshift 
adversarial bounding boxes to desired locations. Sato et al. [71] 
proposed a real-world physical adversarial attack through road 
patches. An optimization method was used to generate a mali­ 
cious patch that can be applied on the road. The proposed attack 
was evaluated ona production-level Automated Lane Centering 
(ALC) system, with a successful attack rate of over 97.5%. The 
successful attack led to a collision with 100% probability. Also, 
for end-to-end autonomous driving systems, adversarial attacks 
were studied to evaluate the effect on system performance. 
In [68], researchers generated adversarial perturbations to fool 
thecamera sensors and maximize steering-angle errors. Such an 
attack was also evaluated in the real world by[4], and the results 
showed that the average errors of thesteering angle could reach 
up to 26.44 degrees. 

2) Attack on Radar: Compared withattack studies oncamera 
sensors, research targeting radar is comparatively less. This is 
partly because the radar information extraction process does 
not rely on deep learning and neural network-based classifiers, 
where adversarial attacks cannot be performed. There aresome 
studies about performing spoofing attacks on the radar sensor. 
Researchers in [72]executed replay attacks and spoofing attacks 
targeting mmWave radar. In [73], the victim vehicle was as­ 
sumed to make turning decisions only based on the radar-based 
perception module. The attack aimed to spoof the perception 
module in the victim's vehicle, eventually influencing the turn­ 
ing decision. 

3) Attack on LiDAR: A LiDAR utilizes lasers to measure 
the distance of target objects by receiving returned laser signals 
reflected from objects. It has been shown in [74] that directly 
shooting a laser beam at LiDAR does not affect its performance. 
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However, strategically generated adversarial examples may be 
able to fool machine learning models. Following this direction, 
Cao et al. [74] formulated the generation of spoofing attacks 
as an optimization problem and designed the perturbation and 
objective functions. Another study tried to produce 3D objects 
with shapes that eventually fool the deep learning model, which 
processed the LiDAR point cloud [75]. Similarly, Sun et al. [76] 
proposed aspoofing method tofindfeature mapsof the perturbed 
point cloud so that the target module could wrongly detect the 
perturbed object as a vehicle. In contrast with the goals in [75] 
and [76], Tu et al. [77] proposed an algorithm to generate 
3D objects with the shape that makes vehicles invisible from 
the deep learning-based inference model. A recent work [78] 
considers attacking the LiDAR perception systems under the 
cooperative perception setting. This study proposes spoofing 
attacks, physical removal attacks, and adversarial attacks as 
threat models. Spoofing attacks aim to create non-existing ob­ 
jects in the point cloud detection with LiDAR spoofers, physical 
removal attacks aim to use spoofers to hide real objects from 
LiDAR detection results, and adversarial attacks aim to create 
objects in the point cloud thatDL-based inference models cannot 
recognize. 

4) Attack on GPS: The most common attack type of GPS 
is spoofing. One form of GPS spoofing attack is from a net­ 
work communication perspective. This kind of attack utilizes 
a man-in-the-middle attack and hijacks the global coordination 
for vehicle localization [79]. Most GPS spoofing attacks use 
a GPS spoofer to perform signal override. The GPS spoofer 
provides a malicious signal with a usually higher power density 
so that the targeted receiver chooses to lock onto the malicious 
signal instead of the benign one [80]. Even with the same 
attack vector, different works propose different attack targets 
and scenarios. Ref. [81] proposed a GPS spoofing attack that 
affects the localization first but also affects the computation 
of the absolute coordinate of surrounding objects. The coor­ 
dination conversion from an ego-vehicle-centric to world co­ 
ordinate requires the accurate localization of the ego vehicle 
itself. 

5) Attack on Multi Sensor Fusion (MSF): A common belief 
is that multi-sensor fusion (MSF) is necessary to enhance the 
cybersecurity of modem CAY systems since attacking multiple 
sensors is much more difficult in real-world settings [82]. Dif­ 
ferent sources and information can provide cross-validationand 
also serve as a backup when one sensor is compromised. How­ 
ever, recent research showed that a multi-sensor fusion-based 
perception system could also be compromised [3], [82]. Io [82], 
researchers penetrated the MSF algorithm using an adversarial 
attack targeting LiDAR and the camera. Another study attacked 
an MSF-based localization algorithm that utilized LiDAR, GPS, 
and IMU information by only spoofing data in GPS signals [3]. 
An optimization model was developed to maximize the distance 
between the spoofing distance and the output of the MSF algo­ 
rithm without attack. These recent studies show that there sWl 
exist potential attack surfaces for MSF algorithms. Therefore, 
MSF should not be considered an ultimate defense solution for 
the CAY perception module. 

 
B. Cyber Attacks on CAV Applications 

Cyber attacks on CAY applications mainly focus on the 
system layer, which affects functionalities of a particular ap­ 
plication such as cooperative adaptive cruise control (CACC) 
beaconing or message exchange in the Y2X environment [84], 
[85]. Io this section, we will focus on the cyber attacks that 
affect the overall perfonnance of CATS based on three primary 
performance areas; safety, mobility, and environmental impact. 
Some representative studies are summarized below and shown 
in Table Y. 

1) Safety Impact: The safety impact concerns the potential 
conflict and collision between vehicles. Mani et al. [86] used 
radio jamming to disrupt all communications within the pla­ 
toon. As a result, the space gap of the CACC vehicle stream 
decreased, which compromised thesafety of the whole platoon. 
Moreover, because there were nosecurity features implemented 
in vehicles, the falsified beacons were accepted and used for 
longitudinal control, leading to string instability; the resultant 
disturbance magnifies through the stream over time. Abdo et 
al. [6] performed a detailed analysis of CACC and used this 
analysis to classify the types of vulnerabilities. 

Resultsshowed that their attackscould increase averagespeed 
difference and reduce Time-to-Collision (ITC) [87], leading to 
higher risks in car crashes for specific scenarios. Hu et al. [8] 
perfonned a security analysis to make the discovery ofDoS (De­ 
nial of Service) vulnerabilities automatically in the IEEE 1609 
protocol family and CACC applications. They found that their 
attacks could fully eliminate the benefits of CAY applications 
(e.g.,Forward Collision Warning (FCW)) and increase thespeed 
standard by 43%, introducing instability to the upstream traffic. 
Koley et al. [9] created an attack that can cause collisions as 
well as impair performance by compromising traffic efficiency. 
An example from their study demonstrated a safety-violating 
attack scenario where the space between vehicles was reduced, 
resulting in a collision. 

2) Mobilty Impact: Most studies focus on a reduction in 
averagespeed or a dropinroadwaycapacity in tenns of mobility. 
Abdo et al. [6] illustrated that their attack strategies for various 
CAY applications could cause speed reduction and excessive 
lane change maneuvers, which highly affected the system mo­ 
bility performance. Chen et al. [7] and Huang et al. [88] ana­ 
lyzed the system design and identified data spoofing strategies 
that can potentially influence traffic control in the Intelligent 
Traffic Signal System (I-SIG). Using the data spoofing strategy 
and knowing the planning stage configuration, the traffic got 
congested, and the total delay increased by 94.0% and 38.2% 
on average, which completely reversed the mobility benefits of 
using the I-SIG system. Haydari et al. [89] proposed an attack 
that manipulated a traffic signal control system that relied on 
a Deep Reinforcement Learning (DRL) system. It turned out 
the proposed attacks affected the Deep Neural Network policies 
and degraded the performance of the traffic signal controllers in 
terms of average waiting time. Yen et al. [90] proposed anattack 
strategy targeting a back pressure-based signal controller, which 
could maximize the number of disrupted phases, thus increasing 
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SUMMARY OFCYBER ATTACKS ON AlJfOMATED CAYS APPLICATIONS 
 

Paper Applications Attack Type Studied Traffic Metrics 
raJsuymg :spoonng Keply LJO.) Moornty tmvrronmental :Satety 

[86] cAcc1        

[6] CACC        

[7] ITS'        

[8] CACC        

[9] CACC        

[10] CRM'        

' Cooperative adapat1ve cruise control, ' Intelligent Traffic Signal System;' Cooperative Ramp Merging 
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Fig. 7.  Structure of cyber defense on CAVs section. 

 
 

 
average traffic delays and disrupting fairness. Results from Zhao 
et al. [10] showed that mobility performance decreased by up to 
55.19% for the cooperative ramp merging scenario when their 
spoofing attacks were implemented. 

3) Environmental Impact: There is a minimal amount of 
research considering the environmental impacts due to cyber 
attacks. Zhao et al. [10] analyzed energy consumption and 
pollutant emissions impacts from the cyber attacks on both 
mainlineand on-rampvehicles.Inaddition, resultsdemonstrated 
that with the increase in theCAY penetration rate (i.e., the attack 
ratio), fuel consumption and CO2 emissions are significantly 
decreased. 

 
V. CYBER DEFENSE ON CAVs 

Cyber defense refers to policies, practices, technologies, and 
infrastructure that are put in place to prevent or mitigate attacks 
via unauthorized access to a device, data, or network infrastruc­ 
ture as a whole [91]. Similar to cyber attacks, the cyber defense 
studies on CAVs are also reviewed at an individual vehicle level 
and CAY application level, as shown in Fig. 7. Cyber defense 
models at the vehicle level correspond tocyber attacks, in which 
four different sensor types are considered. We mainly focus 
on implementing SCMS and misbehavior detection at the CAY 
application level. 

 
A. Defense on Vehicle Level 

Regarding cyber defense studies on CAV sensors, many 
studies focus on defending against adversarial attacks toward 
camera images. Deng et al. [92] analyzed four defense methods 
against adversarial attacks, including adversarial training, de­ 
fensive distillation, anomaly detection, and feature squeezing. 
The defense methods were applied to different driving models 
against five different adversarial attacks. Two defense methods 
were proposed against the adversarial attacks on traffic light 
detection in [69]. The proposed defense methods were adver­ 
sarial training and defensive distillation. Li and Velipasalar [93] 

proposed a defense method by using adversarial example de­ 
tection. A new distance metric was designed to describe the 
differences between twoobjectdetection results.Theadversarial 
examples were detected by using the new evaluation metric and 
monitoring the variance of a temporal inconsistency. A similar 
method was also proposed in [94], in which a new weighted 
frame-wise distance metric was proposed to evaluate similar­ 
ities between the detected object and ground truth. Another 
work proposed by [95] utilized physical constraints between 
stereo-images from the left and right cameras. The researchers 
used an optimization method to minimize the effect of the 
adversarial perturbation on a given stereo 3D object detector. 
The proposed defense method was effective against adversarial 
attacks. 

Existing defense studies on radar and LiDAR are limited, 
partially due to insufficient pertinent cyber attack research.Most 
studies that attack radar mainly focus on interfering with wave 
signals. To mitigate the signal interference, Chen et al. [97] 
proposed to utilize Generative Adversarial Network (GAN) to 
recover the wave signal in the frequency domain. Such a method 
can address missing sensor signal problems due tospoofing and 
jamming attacks. A study by Sun et al. [76] showed a poten­ 
tial defense method against spoofing attacks targeting LiDAR. 
This work utilized physics-informed anomaly detection as a 
defense method. Laser penetration detection was used to detect 
abnormal point clouds and findspoofed fake vehicles. Under the 
cooperative perception Lidar setting, [78] also proposed several 
defense methods from a decision-level merging perspective. 
The verification and identification process is done considering 
the occupied area created by objects. Then, affected agents are 
identified with cross-validation from observation results from 
other agents, and suspicious points are removed. The region 
occupied by adversarial samples is also marked as an unsafe 
region and will further support the object detection process 
of other agents. A summary of defense work on sensors is 
summarized in Table VI. 

 
 

B. Defense on CAV Applications 

To ensure that CAV technologies operate in a safe, secure, and 
privacy-protective manner, a proof-of-concept (POC) security 
system was designed and implemented to enable vehicles to 
trust each other and the whole system. The Security Credential 
Management System (SCMS) is a security solution for vehicle­ 
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) commu­ 
nications. Fig. 8 gives an overview of the system architecture. 
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TABLE VI 

SUMMARY OF DEFENSE METHODS ON SINGLE AtrrOMATED VEHICLE SENSORS 
 

Sensor Defense Target Defense Method Reference 
 
 

Camera 

 
Adversarial 
Attack 

Adversarial training, defensive distillation (69] 
Iterative Targeted Fast Gradient Sign Method (ITFGSM), Optimization-based method 
(Opt), AdvGAN, universal adversarial perturbation (Opt uni), AdvGAN universal 
adversarial perturbation (AdvGAN uni) 

(92] 

Adversarial example detection (93]. [94] 
Detection usmg physical constrams L :>] 
Modular verifical!on model l OJ 

Radar Signal 
Interference Generative Adversarial Network (GAN) based signal recovery [97] 

LiDAR Spoofing Attack Physics-informed anormality detection [76] 
:spoonng  attack 
and Adversarial 
attack 

Unsafe region identification with cross-validation from other agents (78] 

GPS 
Man-in-the- 
middle Encryption and authentication [79] 

GPS spoofing Misbehavior detection [80],  [81], 
[98] 
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Fig. 8.  SCMS ecosystem. 

 

 
It relies on digital certificates and public-key cryptography to 
authenticate andencrypt messages, which require a trustedentity 
to manage the distribution and revocation of these certificates. 
The SCMS serves as this trusted entity, managing the digital 
certificates and cryptographic keys used by vehicles and infras­ 
tructure tocommunicate securely by obtaining credentials from 
certificate authorities (CAs) and attaching those certificates to 
their messages, such as basic safety messages (BSMs), as part 
of a digital signature. In addition, it ensures that only authorized 
devices are allowed to participate in the communication and 
that messages are protected against tampering, interception, and 
replay attacks. The SCMS is designed to be highly scalable, 
manage large numbers of certificates, and support a wide range 
of security policies and trust models. It has misbehavior de­ 
tection as an essential feature to identify and respond to any 
malicious or abnormal behavior that may compromise the se­ 
curity and safety of the V2X network. Misbehavior can include 
message tampering, denial of service attacks, and false message 
generation. Misbehavior detection involves identifying patterns 
of behavior that are inconsistent with the expected behavior of a 
device. At thesame time, reputation-basedsystems usefeedback 
from otherdevices to assess thetrustworthinessofa device.Once 
SCMS receives misbehavior information about some devices, it 
will add these devices' certificates to the certificate revocation 
list (CRL) and distribute it to other devices so that it will no 

longer be considered a trusted source for sending and receiving 
messages. 

In addition to SCMS, many other methods have been devel­ 
oped for misbehavior and anomaly detection over the years. 
For example, utilizing cross-validation with data from other 
sources, falsified trajectories could be identified [99], [100], 
[101], [102]. Other studies focused more on abnormal route 
detection [103], [104], where routes with excessive length were 
identified as outliers. Misbehavior detection is also applied 
to GPS spoofing attacks to determine whether the received 
trajectory is in accordance with the vehicle's kinematic prop­ 
erties and surrounding road network [98]. In [105], [106], an 
embedding trajectory model inspired by the word embedding 
model from the natural language process (NLP) is proposed 
to create vector representations of trajectory points. Then, a 
clustering model is developed to conduct a majority vote to 
differentiate abnormal trajectories from normal ones. In recent 
years, a variety of machine learning techniques have been ap­ 
plied to misbehavior and anomaly detection, such as cluster­ 
ing [107], [108], inverse reinforcement learning [109], genera­ 
tive adversarial network (GAN) [110], and recurrent neural net­ 
work(RNN) including thelongshort term memory (LSTM) neu­ 
ral network [111], [112]. Table VII summarizes these emerging 
solutions. 

There also have been some defense work against adversarial 
attack targeting theCAY applications. Dinget al. [113] proposed 
a defense method against adversarial attacks onencrypted traffic 
data using both passive and active defense methods. Denoising 
autoencoder with image reconstruction was used in the passive 
defense phase, and adversarial training was applied in the active 
defense phase. Both methods couldsignificant]y improve classi­ 
fication performance and were regarded as a feasible solution to 
adversarial attacks on encrypted traffic data. Haydar et al. [89] 
proposed a defense method using ensemble methods against 
attack targeting Deep Reinforcement Learning-based Traffic 
Signal Control (TSC) modules. The proposed defense method 
outperformed other listed methods by detection accuracy. Yen et 
al. [90] proposed an auction-based and hybrid-based algorithm 
for attack mitigation when the backpressure-based TSC module 
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TABLEVIl 
SUMMARY OF CYBER DEFENSES ON CAV APPLICATIONS 
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TABLEVIIl 
SUMMARY OF EVALUATION PLATFORMS 

 
Evaluation Platforms Pros Cons Literature 

 
 

Individual Vehicle 
Oriented 

 
SVL 

Realistic 3D scenarios, various sensors, GPU com- 
puting, various customized sensors modelling, sim- 
plified precise vehicle dynamics, open source 

Hardware requirements, 
lack of off-road scenarios 

 
(123] [71] 

CARLA 
Realistic JD scenanos, vanous sensors, GPU com- 
puting, various customized sensors modelling, sim- 
plified precise vehicle dynamics, open source 

Hardware requirements, 
lack of off-road scenarios 

(126] [127] 
(128] [129] 

Gazebo 
Keanst,c jLJ scenanos, extremely precise physical 
models and vehicle dynamics, various customized 
sensors modelling, open-source 

• 11me-consummg bu11amg 
3D models, less realism 
environment 

(131] [132] 

MATLAB 
/Simulink 

Details plotting tools, clear logic boxes, precise vetu- 
cle dynamics, various customized sensors modelling 

Limia:o visualizatmn, 
commercial (133] [134] [88) 

 
Traffic Oriented 

SUMO Built-in models, extension interface, open-source, 
large user community noiess1ona1-graae, bmll-m models, jLJ v1sua11za11on, 

No 3D visualization (135] [137] [138] 

VJSSJM easy coding Commercial (139] [140] [7] 

IVIAILAH ueta11s plothng tools, user-friendly GUI No bmll-m mOdels P41J l143I 

Aimsun 
noress1ona1-grade, built-m mOdels, 1mpllc1ty m ere- 
ating network and animation, 3D visualization, ex- 
tension interface, Mic/mes/macroscopic capable 

Commercial, cumbersome 
coding (144] [145] 

Communication 
Network Simulators 
and Co-simulation 

OMNeT++ Modular and flexible, active community, GUI for 
building and visualizing simulations Scalable and efficient for large-scale simulations, 

Complex to learn and use (146] [147] [148] 

NS-3 wide range of networking protocols and models, 
simple programming interface 

Limited in custornizabil- 
ity, no GUI (149] [150] [156] 

VENTOS Integration of SUMO and OMNET++ Only  support U:SKC- 
enabled communication (15t J [ t52J 

CAKMA Integration oI :;UMO, N:'.ij, andCARLA Hardware requtrements [157J 

 
had been attacked. The defense performance was evaluated by a 
delay of distribution, number of scheduled phases, and fairness. 
By using such evaluation matrices, the attack's impact was suc­ 
cessfully mitigated by applying the proposed defense method. 
Abdoet al. relied on physically modeling the vehicles and their 
interactions using dynamics and state estimation filters as well 
as reinforcement learning [114]. It combined these observations 
with knowledge of applicable rules and guidelines to capture 
logic deviations. As a result, their defense could accurately and 
promptly detect attacks with low false positive ratesover a range 
of attack scenarios for different CV applications. Table VII 
summarizes the major studies on the cyber defense of CAV 
applications. 

 
VI. EVALUATION PLATFORMS 

Emerging simulators and testbeds can provide cost-effective 
alternatives to quantify the impacts of cyber attacks and evaluate 
the performance of cyber defense on connected and automated 
transportation systems (CATS). This section further discusses 
these evaluation platforms as shown in Fig. 9. 

Simulation platforms for cybersecurity can be categorized 
into two major types: individual vehicle-oriented and traffic­ 
oriented. Individual vehicle-oriented platforms leverage vehicle 
dynamics and onboard sensing, while traffic-orientedsimulators 
focus on the interactions between CAVs and other road users as 
well as roadside infrastructure to analyze impacts on the entire 

Spooling Semi-analytical expression  (100], (99] 
Sybil Physics-based trust propagation scheme  [101] 
Falsification Computing similarity  (102] 
Spoofing Classification and mapping  [104] 
Bogus, replay, collusion Traffic flow model  [Ill] 
Spoofing Physical layer plausibility checks  [llS] 
Falsification, sybil Physical signal tracking and RSSJ validation  [116] 
Falsification, sybil Extended Kalman Filter (EKF)  [ll7] 
Falsification, sybil Classifying  [118] 
Sybil KNN and SVM  [I 19] 
Falsification Natural language processing and hierarchical clustering  (105], (106] 
Falsification Game theory  [120] 
Adversarial Deep reinforcement learning  [89] 
Fake, replay, stealthy Plausibility check Interacting Multiple Model (IMM) and 

reinforcement learning 
 [114] 

Falsification Blockchain and unsupervised learning  (121] 
Spoofing,  bad  mouthing, 
sybil voting 

Blockchain  [122] 
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Evaluation Platforms ,,,,,  and indicated that although ROS already included a graphical 

interface RViz for visualization,Gazebo was necessary because 
it could model much more accurate physics. Besides, ROS has 

 
Onented 

Commumcatmn   
Network-Oriented a significant amount of support for stand-alone system depen­ 

dency of Gazebo [131]. The listener and publisher constitute 
Fig. 9.  Structure of evaluation platforms section. 

 

 
transportationsystem. Moreover, communication network simu­ 
lators that model wireless communications between CAVs may 
be introduced as co-simulation platforms by integrating with 
other platforms/modules to further exploit CATS performance 
in a more realistic environment. 

 
A. Individual Vehicle-Oriented 

At the individual vehicle level, the high-fidelity simulator 
SVL takes advantage of the game engine Unity to model ve­ 
hicle dynamics, photo-realistic 3D virtual environment, traffic 
simulations for vehicles and pedestrians, and multiple sensors 
including camera, LiDAR, GPS, IMU, and radar [123]. The 
simulator can create a basic dynamic vehicle model for the 
ego vehicle and accommodate external third-party models via a 
Functional Mockup Interface. A realisticenvironment, including 
roads, buildings, and weather conditions, can help evaluate 
and train vision-based perception algorithms. The simulator 
can provide communication bridges for messages exchanged 
between the Automated Driving (AD) stack and the simulator, 
which can be used with Autoware [124] or Baidu Apollo [125]. 
In addition, sensors allow intrinsic and extrinsic parameter 
customization. Virtual ground truth sensors are supported to 
provide labeled information for sensor-relatedcyber attacks and 
cyber defense validation. Researchers usedsoftware-in-the-loop 
(SiL) evaluation with SVL to evaluate the safety impact of a 
DNN-based Automated Lane Centering (ALC) system. They 
also designed a physical-world adversarial attack called Dirty 
Road Patch (DRP) to test thesystem's robustness.[71]. CARLA 
is an Unreal Engine-based, open-source simulator developed 
for autonomous driving research [126]. Similar to SVL, a vari­ 
ety of sensors and high-quality environments are supported. It 
leverages the OpenDRIVE standard to define roads and urban 
settings, which can automatically generate a road grid with 
traffic lights and signs.The simulator can support many built-in 
automation functions such as perception, mapping, positioning, 
and vehicle control, enabling end-to-end testing and training 
of CAV algorithms [127]. Recent work claimed that CARLA 
could reduce the time between digitally crafting a perturbation 
and testing it with realistic scenarios [128]. Additionally, the 
reproducibility of the CARLA simulator and the variety of 
environmental conditions can also enable researchers to craft 
new perturbations with realistic constraints so that they can 
have a better understanding of the efficacy of different at­ 
tacks [129]. Gazebo is another open-source, scalable, flexible, 
and multi-robot 3D simulator that relies on three main libraries: 
physics, rendering, and communication libraries. It can provide 
high-precision physics for robotics-related simulation [130]. 
Swanson et al. created a hardware-in-the-loop (HiL) simulator 

a scalable architecture that allows multiple nodes to control 
agents, which provides more attack surfaces for evaluation. 
Zhang et al. developed a Gazebo-based vehicle-to-everything 
(V2X) platform for the simulation of CAY environments [130]. 
On top of Gazebo, they extended a communication module re­ 
ceiving and sending information between vehicles and roadside 
units (RSU). They leveraged Gazebo to provide precise vehicle 
dynamics and construct each CAY as an independent robot 
model with multiple parts, such as state listener and publisher, 
to enable system status monitoring. 

MATI.AB/Simulink: is suitable for model-based systems eval­ 
uation and analysis. It includes the Automated Driving Toolbox 
(ADT), which provides tools that can help with the design, 
simulation, andtesting of Advanced Driving Assistance Systems 
(ADAS) and automated driving systems [132]. HERE's HD 
live map data and OpenDRIVE road networks can be easily 
imported. MATLAB/Simulink allows researchers to simulate 
a real-time model of the target system. The model contains 
both continuous vehicle dynamics and discrete vehicular com­ 
munication network behaviors [133]. It also allows users to 
use the Ground Truth Labeler app to automatically label ob­ 
jects. Giiven<; and Kura! used multiple-drivers-in-the-loopsim­ 
ulation in adaptive cruise control tests using MATLAB and 
Simulink [134]. Recent work evaluated the impact of falsified 
data attacks on I-SIG via 20 hours MATLAB simulation [88]. 

 
B. Traffic-Oriented 

Although the 3D engines mentioned above can provide re­ 
alistic vehicle dynamics and high-fidelity environments, high 
computational demands are required when they are used for 
multiple vehicles or traffic simulations. Unlike individual ve­ 
hicle simulators, microscopic traffic simulation platforms treat 
vehicles as moving boxes, which compromises modeling accu­ 
racy in physics but significantly reduces computational loads. 
Simulation of Urban Mobility (SUMO) is an open-source 
microscopic traffic simulator for a variety of transportation 
applications, such as dynamic navigation, traffic surveillance 
systems evaluation, and traffic signal control algorithm develop­ 
ment [135]. In addition, SUMO provides Application Program 
ming Interfaces (APls), called Traffic Control Interface (TraCI), 
to establish the connection with external applications through 
a socket connection for the access of network topology, signal 
control, and vehiclebehavior [136].Ina recentstudy, researchers 
proposed a simulation-based fault injector (SUFI) that was ca­ 
pable of injecting faults intoADAS features using SUMO [137]. 
Dasgupta et al. developed a "slow poisoning" attack generation 
strategy foran adaptive traffic signal controller and a prediction­ 
based "slow poisoning" attack detection strategy [138]. They 
modeled the attack strategy using SUMO and used the simu­ 
lated data to develop the attack detection model. VISSIM is 
a commercial microscopic traffic simulator developed by PTV 

Ind1v1dual Veh1cle­ 19\i·Mii 
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Group, modeling motorway traffic as well as urban traffic opera­ 
tions[139].The toolcan be used to investigate private and public 
transportation as well as pedestrian movements. In addition, it 
provides a structure of one-way links, called connectors, for 
constructing road networks [140]. Like SUMO, VISSIM pro­ 
vides a component object model (COM) programming interface 
with user-developed algorithms and enables modeling complex 
control logic and V2X applications. Chen et al. deployed data 
spoofing attacks towards the I-SIG system, targeting both algo­ 
rithm design issues and field implementation limitations in the 
adaptive signal control algorithm [7]. MATLAB is a coding­ 
based interactive system for numerical computation [141]. It 
provides useful toolboxes with wide customization freedom 
for researchers to build various models. Besides toolboxes, 
MATLAB SimEvents is a discrete-event simulation software 
tool that is designed for modeling and simulating dynamic 
systems, which can provide a visual environment for building 
simulation models using block diagrams, similar to Simulink.. 
Researchers analyzed the causes of congestion using a queuing 
model built using MATLAB SimEvents based on observations 
and traffic data analysis [142]. Moreover, MATLAB has built-in 
functions for working with traffic data analysis, such as traffic 
volume, speed, and occupancy, to evaluate the impact of cyber 
attacks on traffic. This can involve processing and visualizing 
large datasets to identify patterns and trends and evaluate traffic 
management strategies' performance. MATLAB can be used 
for vehicle longitudinally microscopic behavior modeling and 
trajectory generation toevaluate cyber attacks' influence on the 
longitudinal safety of CAVs [143]. Aimsun is a full-featured 
and widely used commercial traffic simulation with the ability 
to simulate the detailed behavior of each individual vehicle in 
the traffic network ona time scale ofless than one second [144]. 
Aimsun is also very extendable and customizable by interfacing 
with external codes through various available APis. Reilly et 
al. constructed benchmark scenarios using Aimsun to identify 
the potential cyber vulnerabilities of ramp metering forfreeway 
traffic control [145]. 

 
C. Communication Network Simulators and Co-Simulation 

Network simulation is particularly important for cybersecu­ 
rity research on CATS, as more realistic models are required to 
assess the impacts of connectivity-related attacks and defense 
strategies. There are a few state-of-the-art network simulators, 
as described below. OMNeT++ is an open-source, modular, 
component-based C++ simulation library and framework that 
can be used to simulate complex communication networks with 
high fidelity [146]. It can perform network attack and threat 
analysis in a simulation environment. For example, the data 
recording function in OMNeT++ can reflect the impact of dif­ 
ferent types of attacks on the network and generate datasets 
for learning-based cybersecurity models. For example, a previ­ 
ous study deployed a DDoS attack to jam the communication 
channel in a VANET via OMNET++ [147]. Another recent 
study investigated the self-reported location anomaly detection 
problem for CAVs with OMNeT++ [148]. NS-3 provides sup­ 
port for creating virtual nodes and implementing point-to-point, 

wireless, or CSMA (Carrier Sense Multiple Access) connections 
between nodes [149]. It is suitablefor the VANET (Vehicular Ad 
hoc Network) environment because it supports multiple modem 
standards and routing protocols such as WAVE (Wireless Ac­ 
cess for Vehicular environment) standards and AODV (Ad-hoc 
On-Demand Distance Vector) routing protocol. Acbarya et al. 
implemented their blackhole attack prevention scheme in the 
NS-3 simulator under WAVE standards with AODV routing 
protocol [150]. Many researchers realized that even though 
each simulator bas its own advantages and focused arena, more 
than a single simulator is needed for comprehensively mod­ 
eling and evaluating cybersecurity problems as well as estab­ 
lishing a realistic testing environment. As a result, emerging 
co-simulators and integrated platforms provide more options to 
researchers. VEhicular NeTwork Open Simulator (VENTOS) 
is an integrated C++ simulator for modeling vehicular traffic 
flows, cooperative driving, and interactions among CAVs or 
between CAVs and infrastructure equipped with DSRC [151]. 
It takes advantage of the microscopic simulator SUMO and 
network communication simulator OMNET++ to provide re­ 
alistic traffic modeling and network simulation. Kumar et al. 
assessed the impact of various attacks on cooperative driving 
use cases such as cooperative adaptive cruise control (CACC) 
via VENTOS [152]. Zhao et al. utilized VENTOS to reveal the 
cybersecurity risks of cooperative highway on-ramp merging 
in a mixed traffic environment [153]. Another open-source 
co-simulation platform CARMA [154] developed by the U.S. 
Department of Transportation integrates CARLA, SUMO, and 
NS-3 to establish everything-in-the-loop (XiL) simulation to 
evaluatecooperative automated driving.Thiscould bea potential 
tool forcybersecurity researchbetween the vehicle and vehicular 
network levels. Some early studies targeted vehicle-level cyber­ 
security with CARLA [68]and network-level cybersecurity with 
NS-3 [155]. 

 
VII. CURRENT GAP AND FU'ruRE RESEARCH DIRECTION 

In this paper, we reviewed recent cybersecurity studies on 
CATS from four perspectives, including risk assessment, cyber 
attacks, cyber defense, and evaluation platforms at both the in­ 
dividual vehicle and CAY application levels. Below, we discuss 
current gaps and challenges in the existing literature and future 
research directions, summarized in Table IX. 

 
A. Threat Analysis and Risk Assessment 

Most of the analytical approaches assessing risks and threats 
of CAY applications are qualitative and highly dependent on 
subjective opinions and specific use cases. Therefore, these 
methods are not ready to be scaled up, and the results are 
hardly compared. On the other hand, quantitative approaches 
adapt to different risks and provide measurable results that are 
easily compared. With the development of more data-driven or 
learning-based evaluation methods, there is an increasing de­ 
mand forspecialized and large-scale datasets, which iscritical to 
guarantee high accuracy and confidence. As a result, data-driven 
TARA approaches should gain more attention. 
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TABLE IX 

CURRENT GAP AND FIJnJRE RESEARCH DIRECTION SUMMARY 
 

Field gap Direction 
 
 
 
 
 
 
 
 
 

B. Cyber Attack 
For deep-learning-based perception systems, current attack 

methods mainly focus on degrading the performance of the 
perception system by lowering the detection accuracy. For non­ 
deep-leaming-based perception systems, existing research on 
attacks focuses on interfering with the physical signals received. 
It is important to investigate the impacts of the sensor attacks at 
the multi-vehicle and/or transportation system level since vehi­ 
cles, in essence, need to interact with each other. Considering 
the cyber-physical nature of CATS, how to launch attacks that 
can cause permanent physical damage without contacting the 
sensor remains a question. There is also very limited research 
on attacking multi-sensor fusion (MSF) models. There only 
exist two current works addressing MSF as a target, one for 
localization module [3], theother for multi-sensor fusion [82].It 
should benoted thatmultiple types ofMSFmodelsapply toCAY 
deployment [158], [159], [160], and the current investigation 
is far from sufficient. Such models are considered one of the 
most common defense methods against cyber attacks on a CAY 
perception system. Recent research targeting attacks towards 
MSF only focuses on a specific CAY platform, which can not 
be generalized in other CATS. 

At the CAY application level, the adversary uses message 
falsification (modification) and spoofing (masquerading) or re­ 
play attacks to affect the vehicle stream maliciously. These 
attacks can be easily detected using state estimation or machine 
learning mitigation algorithms. However, the most complex and 
time-consuming cyber attacks still need to be made easier to 
pull off.These sophisticated attacks can be adversarial adaptive 
attacks, stealthy attacks, frog-boiling attacks, etc. For example, 
in stealthy or frog-boiling attacks, the attack can be used to 
disrupt the whole CAY network by continuously lying to all 
the connected nodes without being noticed by injecting small 
offsets. The goal is to move some victim CAYs to arbitrary 
coordinates far from the rest of the traffic. The adaptive attack is 
specifically designed to target a given CAY mitigationscheme.It 
can bedone through different methodsforgenerating adversarial 
examples.Themostwidely adoptedapproachis gradient descent 
because it does not require knowledge of the machine learning 
model's architecture or parameters. Instead, the attack only 
needs to be able to query the model and compute its gradient 
with respect to the input data. Moreover, as the number of CAYs 
is expected to grow significantly, more efforts are needed to 
investigate vulnerabilities of differentCAY applications in terms 

of security andsafety. Attacks must begeneralized and not target 
just one or two CAY applications. 

C. Cyber Defense 

Defense methods for CAY onboard sensors mainly focus on 
protecting against adversarial attacks (camera), signal inference 
(radar), and spoofing attacks (LiDAR and GPS). With the grow­ 
ing usage of Deep Neural Networks (DNN) in inferring Lidar 
point cloud data, defense againstLidar-basedadversarial attacks 
is an important future research topic. For non-DNN-based in­ 
ference models, a possible defense method would be targeting 
information recovery. Given thespoofed signals from thesensor, 
a keyquestion is how the ground truth information can be recov­ 
ered. In addition, the majority of existing studies only consider 
sensors of a single CAY. Although there had been work about 
creating cooperative perception for CAYs [161] and utilizing 
cooperative perception information for other applications like 
motion planning[162],or consideringcommunication issues un­ 
dersuch assumption [163], thecyberdefense under acooperative 
perception environment is a largely unexplored area, as we only 
observe oneresearch work address the cyber-defense under such 
assumption [78]. Other research gaps for the defense against 
cyber attacks on CAY onboard sensors include the systems' 
resilience and mitigation solutions. 

In general, most of the existing research in the transportation 
domain lies within the region of information integrity and avail­ 
ability. However, other essential factors are not yet discussed 
in this domain regarding cybersecurity. These factors include 
confidentiality, non-repudiation, and authentication. Investiga­ 
tion of these factors should be another critical future research 
direction. 

Finally, revocation is a huge security concern. Given the po­ 
tential damage a malicious user could causein a CATS, a mecha­ 
nism that deactivates a malicious user's credentials and renders 
the user unable to send messages is required. Unfortunately, 
revocation solutions involving a central pseudonym certificate 
revocation list(PCRL) are not ideal because the pseudonym cer­ 
tificates' short lifespan necessitates a large and highly dynamic 
PCRL. Furthermore, thecommunication complexity required to 
keep all vehicles up to date on PCRL would be enormous. 

 
D. Evaluation Platforms 

Current cybersecurity evaluation platforms focus on three 
types of simulation, i.e., traffic, communication, and individual 

  

Threat Analysis and Risk Assessment Using specialized and large-scale datasets, i.e. data-driven TARA approaches. 
 

Cyber Atlack 
Limited research on attacking multi-sensor fusion (MSF) models. 
1nves11gatmg complex anct ume-consummg cyber attacks. 
Investigating vulnerabilities of ainerent CAVs applications m terms of security and safety. 

 
Cyber Defense 

More defenses agamst L1dar-based adversarial attacks. 
unexplored cyber aerense under a coopera11ve perception envrronment. 
Investigating more confidentiality, non-repudiation, and authentication solullons in CAVs. 
lnvest,gatmg the system's res1hence anct m1t1gat100 solut,oos. 

Evaluation platforms 
Investigating the impact of cyber attacks and defense services. 
Investigating human-in-the-loop simulation. 
Using rea.1-world testbeds tor CAVs cybersecunty. 
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vehicle simulation. Although many emerging co-simulators are 
trying to integrate multiple platforms and exploit their advan­ 
tages, a comprehensive simulation platform to systematically 
study theimpact of cyber attacks and defense servicesstill needs 
to be present. Besides, human-in-the-loop simulation is also 
worth investigating, as it is valuable to study human reactions 
related to reduced safety and/orcomfort caused bycyber-attacks. 
It should be noted that although real-world testbeds for CAV 
cybersecurity are costly and dangerous, they can provide a much 
more realistic environment. 

Note that the research gaps identified above are not an 
exhaustive list. ln addition, as new research and deploy­ 
ment efforts continue, new gaps will emerge and need to be 
acknowledged. 

 
VIII. CONCLUSION 

CAVshavegreat potential to transform our current transporta­ 
tion system into a safer, less congested, and more eco-friendly 
arena. But, in the meantime, there are a growing number of 
cybersecurity risks or even threats faced byCAVs that may intro­ 
duce massive compromise from the perspective of individual ve­ 
hicles, fleets, or even entire traffic flows. Many researchers have 
made tremendous progress investigating CATS cyber attacks and 
mitigation strategies. However, this review indicates that there 
are still gaps before claiming the current CAV applications are 
safe and resilient. Some questions that need to be addressed 
include how to prevent an attacker from obtaining a batch from 
SCMS and whether or not a compromised RSU would affect 
other neighboring RSUs. To answer these questions, innovative 
frameworks or approaches to vulnerability analysis and security 
assessment of CATS need to be further explored, and various 
resilient designs have to be considered. 
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