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Abstract—Interest in cooperative perception is growing quickly
due to its remarkable performance in improving perception
capabilities for connected and automated vehicles. This im-
provement is crucial, especially for automated driving scenarios
in which perception performance is one of the main bottle-
necks to the development of safety and efficiency. However,
current cooperative perception methods typically assume that all
collaborating vehicles have enough communication bandwidth
to share all features with an identical spatial size, which is
impractical for real-world scenarios. In this paper, we propose
Adaptive Cooperative Perception, a new cooperative perception
framework that is not limited by the aforementioned assumptions,
aiming to enable cooperative perception under more realistic
and challenging conditions. To support this, a novel feature
encoder is proposed and named Pillar Attention Encoder. A pillar
attention mechanism is designed to extract the feature data while
considering its significance for the perception task. An adaptive
feature filter is proposed to adjust the size of the feature data
for sharing by considering the importance value of the feature.
Experiments are conducted for cooperative object detection from
multiple vehicle-based and infrastructure-based LiDAR sensors
under various communication conditions. Results demonstrate
that our method can successfully handle dynamic communication
conditions and improve the mean Average Precision by 10.18%
when compared with the state-of-the-art feature encoder.

Index Terms—Cooperative Perception, Transformer, Feature
Filtering, 3D Object Detection, Connected and Automated Vehi-
cles

I. INTRODUCTION

OMPREHENDING the surrounding environment is one

of the key objectives for computer vision systems, which
can be used to empower various autonomous systems such
as automated driving vehicles [1]. This requires intelligent
entities to be able to sense the environment under different
conditions with a comprehensive field of view (FOV). To
enhance the perception capability, more sensors with different
modalities (e.g., RGBD camera, LiDAR, Radar, etc.) tend
to be equipped on these entities to build a panoramic ego-
perception system [2]. Meanwhile, to support the development
of these deep-learning models, various types of datasets have
been collected and labeled from sensor platforms with different
sensor configurations and modalities [3].

Although remarkable performance has been demonstrated
by state-of-the-art perception models to enable a panoramic
perception view [4]-[6], it is still a key challenge to unlock the
perception bottleneck caused by physical occlusion and limited
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Fig. 1. The conceptual illustration for the proposed Adaptive Cooperative
Perception. The top part shows the basic pipeline for stat-of-the-art CP
methods, which require limited feature-sharing strategies. The bottom part
shows our method that can support more adaptive cooperative conditions.

sensing range [7]. A recent trend to overcome this is to fuse the
perception information from spatially separated entities, which
is named cooperative perception or collaborative perception
(CP). For instance, automated vehicles can enhance safety
by receiving detection information for occluded pedestrians
from an infrastructure-based perception system [8]. Recent CP
approaches [9]-[18] have demonstrated significant potential
to enhance perception capabilities by improving perception
accuracy and enlarging the field of view.

To fuse the perception data from others, a fundamental
process for a CP system is to share the sensing data. Different
types of sensing data can be shared, which ends up with
different types of fusion methods including early fusion,
intermediate fusion, and late fusion [7]. Early fusion requires
the sharing of raw sensor data to directly enlarge the sensing
range [9]-[11] while late fusion needs the sharing of percep-
tion results, e.g., the detected object list [12]. For intermediate
fusion, feature data from a specific layer within the perception
model is shared and fused [13]-[15]. Among these fusion
schemes, intermediate-fusion-based CP approaches [15]-[18]
have shown a significant performance improvement by fusing
the features generated from Deep Neural Networks (DNNs).

However, these CP approaches bypass a crucial assump-
tion that should not be circumvented in realistic conditions,
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i.e., the adaptivity of their CP models. Specifically, feature
data requires a large amount of communication bandwidth
for transmission. However, as shown in Figure 1, current
intermediate-fusion-based CP methods [13], [15]-[18] require
that all CP entities must transmit 100% of their feature data
with identical spatial shape to enable their fused models, which
is nearly impractical due to differences in communication
capacities for different entities and uncertainties of wireless
communication [19].

In this paper, as shown in Figure 1, we aim to solve the
aforementioned issue by designing a CP approach that allows
entities to share feature data adaptively based on the actual
communication capacity and to fuse the feature data with
different spatial shapes. Our contributions can be summarized
below:

Proposing a new CP framework called Adaptive Cooper-
ative Perception (ACP).

Proposing a new adaptive feature encoder named Pillar
Attention Encoder (PAE) which extracts the feature data
based on the attention mechanism and adaptively reduces
the data amount for sharing based on the exact commu-
nication bandwidth.

Developing an open-source platform for model training
and testing under CP environments.

To the best of our knowledge, there is still no study
conducted on this topic, so we introduce several baselines
based on the heuristic design to investigate the performance
of different methods by numerical analysis and visualization
interpretation. The remainder of the paper is organized as
follows. Related work is briefly summarized in Section II. Sec-
tion III presents the methodology, followed by the simulation
experiments in Section IV. Section V concludes the paper and
gives future insights.

II. RELATED WORK
A. Cooperative Perception

The core idea of cooperative perception is to enhance
the single-node perception capacity by leveraging the per-
ception information from another spatially separated entities.
These entities can be vehicle-based perception nodes and/or
infrastructure-based perception nodes. Hence, in this section,
three types of cooperative perception schemes are categorized
as 1) vehicle-based CP, 2) infrastructure-based CP, and 3)
vehicle-infrastructure-based CP.

1) Vehicle-based CP: Enabled by vehicular networks,
Vehicle-to-Vehicle (V2V) cooperative perception has been
demonstrated as a promising approach to enhance ego-vehicle
perception capabilities through collaborative information shar-
ing among vehicles [20]-[22].

Recent V2V cooperative perception methods significantly
explored the usage of deep neural networks for extracting and
fusing perception information. For instance, F-Cooper [13]
achieved cooperation by 1) extracting hidden features from
sensor data via Convolutional Neural Networks (CNNs) at
each vehicle, i.e., V-PN; and 2) generating perception results
based on cross-vehicle feature data sharing. Additionally,
Transformers also became an emerging backbone for feature
extraction and fusion for cooperative perception [23].

2) Infrastructure-based CP: Equipped with roadside sen-
sors, transportation infrastructure can be a key factor to unlock
existing bottlenecks for automated driving, especially in a
mixed traffic environment via cooperative perception [24].
Due to the innate attributes of the static and higher pose,
infrastructure-based perception entities can achieve better
sensing range and field-of-view compared with onboard sens-
ing vehicles [3]. Specifically, a single infrastructure-based
perception entity equipped with communication devices can be
used for enhancing the perception capacity of vulnerable road
users or vehicles with connectivity under certain scenarios,
such as the recent real-world prototype system Cyber Mobility
Mirror [25] and CARMA platform [8].

Furthermore, combining multiple infrastructure entities can
significantly improve the perception range. By leveraging the
sensing information from multiple roadside cameras with RGB
and Depth (RGB-D) information, Arnold et al. [26] proposed
a cooperative 3D object detection approach to mainly enhance
the sensing range and field of view. Specifically, pseudo-point
clouds were generated from the RGB-D camera images and
the VoxelNet [27] was applied to fuse all the sensing data to
generate the cooperative detection results.

3) Vehicle-Infrastructure-based CP: By leveraging both on-
board perception and infrastructure-based perception, vehicle-
to-everything (V2X) based cooperative object perception is
considered to be the most promising pathway towards tap-
ping the full potential of Cooperative Driving Automation
(CDA) [7]. Xu et al. [17] proposed a V2X-based cooperative
perception (CP) method considering the heterogeneity of ve-
hicle and infrastructure nodes and multi-scale receptive fields.
Lou et al. [8] conducted the Proof-of-Concept of CP in the
real world by applying V2X to enable entities to share their
sensing results. The program demonstrated the CP system can
significantly improve the perception capability of the involved
entities.

B. Cooperative Feature Sharing

For cooperative perception, one of the most fundamental
components is cooperative feature sharing — sharing the feature
data among the entities. In terms of the fusion scheme applied
in the cooperative perception method, different types of feature
data will be generated and shared [7].

Specifically, cooperative feature fusion can be classified
into three categories: 1) Early Fusion, which involves fusing
raw data during the preprocessing stage [9]-[11]; 2) Late
Fusion, which entails fusing perception results during the post-
processing stage [26], [28]; and 3) Deep Fusion/Intermediate
Fusion, which involves fusing hidden features from the deep
neural networks that designed for feature extraction and fusion.

For early fusion-based CP methods, raw sensor data is
designed to be shared with other entities. This enables the
direct expansion of the sensing range and field of view.
By carefully calculating the relative pose information, both
LiDAR data and camera data can be converted to a common
coordinate by transformation or projection, such as Cooper [9],
AutoCast [11], and AVR [10]. However, transmitting raw
data requires an extremely high communication bandwidth to
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Fig. 2. The diagram depicting the overall framework of the adaptive cooperative perception.

support cooperative perception in the context of automated
driving (e.g., A 64-channel LiDAR with 10Hz has a data
generating rate of around 20MBps [29]).

Conversely, the data required to be shared by late fusion
methods is the semantic textual information, such as the
object list containing the 3D object location, rotation, and
classification information. For instance, the detection bound-
ing boxes are shared and aligned according to the relative
pose estimation, and then these bounding boxes are fused
by Non-Maximum Suppression [28] or machine learning-
based refining methods [26]. Taking advantage of the semantic
data, the bandwidth requirement could be easily achieved for
late fusion-based cooperative data sharing. However, these
methods can usually provide very limited perception accuracy
(e.g. in terms of mean Average Precision or mAP), compared
with early fusion and deep fusion as mentioned below.

Deep fusion takes the intermediate features as its input and
then outputs the features that combine the hidden feature from
different entities. A widely applied methodology is to share the
hidden feature extracted from a CNN, such as [13], [15], [16],
[30], [31]. Recently, Transformers attracted lots of interest
to be the deep feature extractor [17], [18], [23] due to their
capability to extract features with larger receptive fields.

Although remarkable perception accuracy is demonstrated
by deep fusion-based CP methods, compressing intermediate
features is indispensable to deploy the system with realistic
communication capacities [7]. Data compression techniques,
such as CNN-based channel-wise compression [17] or dedi-
cated Encoder-Decoder methods [15], are commonly used to
reduce data volume.

However, these approaches lack the flexibility to support
cooperative perception among nodes with distinct communi-
cation capacities, where different amounts of data need to be
shared for diverse perception nodes. For instance, the fusion
of features with varying channels (e.g., a feature map with size
(h,w,¢1) is going to be fused with a feature map with size
(h,w, c2)) becomes problematic, and employing all different
decoders for decompression from distinct encoders is also
impractical.

I11. METHODOLOGY
A. Adaptive Cooperative Perception Framework

In order to enable cooperative perception with more dy-
namic scenarios, we propose the Adaptive Cooperative Percep-
tion framework which is composed of five main components
as shown in Figure 2.

Specifically, the framework can be briefly described as
follows:

« Cooperative Data Preprocessing: This component aims
to apply proper transformation and geo-fencing to prepare
the raw sensor data for processing.

« Cooperative Feature Encoding: This component aims
to extract the feature information from the pre-processed
sensor data, which will be used for multi-node feature
fusion.

« Adaptive Feature Filtering: This component aims to
adaptively filter the feature for sharing according to the
specific communication bandwidth.

» Deep Feature Aggregator: This component aims to fuse
the features retrieved from multiple perception nodes and
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generate the final feature map for specific downstream
tasks, e.g., object detection.

Object Perception Network: This component aims to
generate detailed perception results based on specific
tasks, such as object detection, tracking, classification,
motion detection, etc.

B. Cooperative Data Preprocessing

To fuse perception data from spatially separated sensing
nodes, coordinate transformation is a necessary step to align
the perception information. This alignment can happen in
different stages along the perception pipeline. Sensor data
can be aligned from its original coordinate to the collab-
orator’s coordinate by applying transformation according to
their relative pose estimation, such as the work in AVR [9],
[10], [15]. This alignment can also be designed at the end of
the perception pipeline, which is mostly used in late-fusion-
based CP methods [28]. For feature-based CP methods, the
alignment can also be designed after the feature extraction
layer [13].

It is noted that aligning the feature after the feature ex-
traction can lead to a spatially matching issue. Because the
extracted feature maps from different entities are grid-like
structures, which are hard to be perfectly aligned with others.
Thus, specific matching resolution approaches need to be
considered [13]. A natural way to circumvent this challenge
is to align the raw data before sending it to the feature ex-
tractor. Specifically, rather than calculating the hidden feature
directly on data collected with respect to (w.r.t.) vehicle’s own
coordinate, transforming the raw data w.r.t. the coordinate
of the cooperative nodes can finally avoid the occurrence of
mismatching of the feature maps [17], [18].

However, simply transforming the raw data from coopera-
tive nodes to the ego vehicle’s coordinate w.r.t. their relative
pose estimation will lead to another severe problem under
practical scenarios in which vehicles are not only sending out
their feature data but also receiving from others. Transfor-
mation according to the relative pose will cause an
complexity for those coordinate transformations (i.e., each
vehicle needs to apply times coordinate transformations
according to the relative pose w.r.t.  cooperative nodes).

Thus, for cooperative perception, we propose to use global
coordinate transformation rather than relative coordinate trans-
formation to avoid duplicated data transformation [16], [30].
In this study, we consider point cloud data as an example
since LiDAR is assumed to be our main sensor for cooperative
perception. PCD is assembled on a 3D Cartesian coordinate
w.r.t. the geometric center of the LiDAR sensor. So, coopera-
tive data preprocessing aims to align PCD from different local
coordinates into a global reference coordinate. Specifically, the
PCD can be formulated as:

ey

Then, the 6-D pose estimation for each sensor is estimated
as:

SLaP 2

where , , , , ,and represent the 3D location along
axis, axis,  axis; and the pitch, yaw, and roll angles
of the sensors in the global coordinate, respectively.
Next, alignment to the reference coordinate is calculated by:

(3
where s s , and represent the rotation matrix
along axis, axis, axis, and the translation matrix from

ego-coordinate to global reference coordinate, respectively.
and represent the raw data before and after the
transformation.

C. Pillar Attention Encoder

As mentioned in Section II, existing deep fusion-based
CP methods require a fixed spatial size of the feature map
to enable the fusion [13], [15], [17], [18], [23]. In other
words, the feature data generated from different perception
nodes must have the same spatial size so that the deep fusion
network is able to fuse them. This significantly limits the
flexibility of the cooperation among perception nodes with
different computing power and communication bandwidths.
This limitation mainly comes from the use of dense feature
data to share their cooperative feature, i.e., a deep neural
network is applied to extracting the cooperative feature data
which has a fixed number of feature channels, height of the
feature map, and width of the feature map, respectively.

To unlock this limitation, we propose the Pillar Attention
Encoder which extracts the cooperative feature into a format
that does not rely on the spatial shape of the feature map.
Additionally, a multi-head point attention method is designed
to generate stronger representations of the given raw data (i.e.,
PCD in this paper) which can significantly outperform the
original CNN encoder. Figure 3 depicts the main design of
the proposed PAE.
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Fig. 3. The diagram depicting the process of the Pillar Attention Encoder.

1) Multi-Head Point Attention: The first step to encode
the PCD is to pillarize the 3D point clouds into pillars of
points [32] so that the 3D PCD can be reorganized into a
pseudo-2D pillar map. The process can be described below.

“4)
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®)

is the set of pillars of points with the size of
. Specifically, and represent the number of
pillars and the maximum number of points within a pillar,
respectively. at the 2D voxelized spatial location

in the range of and |, representing the spatial size
of the pillar map. Then, for each pillar of points, every point
can be formulated as:

where

(6)

where and are the 3D locations and the intensity of
the reflected point, respectively. So, the set of the point feature
in a single pillar can be described as:

(7

For each point feature, we extend its original feature
by adding relative geometric features, such as the distance
to the arithmetic center of all points in the pillar
(the subscript means the -th point in this pillar) and the
geometrical center of the pillar , which has the size of
and are shown as:

®)

Specifically, we define the original 3D location feature as
which will be mainly used as the position embedding for the
point feature vector in the attention calculation.

€))

Now, the pillar-wise feature can be generated by combining
the point feature mentioned above, which can be described as:

(10)

where and have the feature size of and .
Then, three independent linear layers s , and
are designed to convert the original pillar feature

to and  as below.

(1)

where and have the size of . Specifically,
represents the channels of the hidden feature, which is set as
in this paper.

The positional embedding with the size of is then
calculated via a multi-layer perceptron (MLP) as described by
(for more details about positional embedding, please refer to
Section III-C2):

MLP (12)

By applying the multi-head self-attention mechanism ,
and positional embedding  are then divided into s
,and , with the size of where

represents the number of heads.

Thus, the multi-head point attention is formulated as:

13)

where is the Softmax operation and the feature from each
attention head has the size of . Then attention

features from all attention heads are combined and fed
into a LayerNorm layer to generate the pillar attention feature
with the size of

LayerNorm (14)

The last step is to perform the channel-wise operation
to the pillar feature to achieve the final extracted pillar
feature with the size of

5)
(16)

2) Positional Embedding: Self-attention model is innately
designed for calculating the association between the Query
and Key [33]. To achieve it, the position information for each
Query is essential to inject the spatial distance information
into the attention calculation. Thus, most of the state-of-the-
art attention-based models have their specifically designed
positional encoding or positional embedding methods. To be
clear, positional encoding means adding predefined position
information (e.g., sinusoidal positional encoding [33]) to the
input feature before the MHSA block. However, positional
embedding means embedding positional information as hidden
features, which is learnable while the positional encoding is
fixed.

In the context of computer vision tasks, the designing of
positional embedding is relatively more abstract than designing
it in natural language tasks. As the latter provides explicit rel-
ative positional information between words, while the former
has data that are highly structured [34].

However, for LIDAR point cloud data, the positional infor-
mation is naturally provided from the raw data, which is the
3D location w.r.t. the sensor’s coordinate. Thus, the positional
embedding design for the proposed multi-head point attention
can follow a natural way by decomposing the core of attention
weights between the Query point and Key point , which
can be described as:

7)

Thus, we can embed the positional information to by:

— (18)
where means the MLP is applied to the natural location
feature and the positional information is embedded in
the term . Furthermore, by extending the

equation above from a single point level to all points within
a pillar, we can have:

where , and have the size of and the has the
size of . Considering the multi-head decomposition [33],

the attention feature map for multiple attention heads can be
formulated as:

(20)
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have the size of and the
. which will be multiplied by to get

where and
has the size of
Equation 13.

D. Adaptive Feature Filtering

As mentioned earlier, feature-based CP methods performed
remarkable perception accuracy by fusing the hidden features
from different perception nodes. However, the massive amount
of feature data makes these models hard to implement under
real-world conditions where limited and dynamic commu-
nication bandwidths exist. Meanwhile, data compression is
helpful in reducing the data amount to transmit with low
communication bandwidth. But it is nearly impractical to
simply use data compression to handle dynamic situations.

Instead of data compression, another straightforward way to
reduce the amount of data is filtering out the data points that
have less value to the perception task. The main challenging
issue for this ideology is how to define the “value” of data
points. Based on the process of self-attention calculation, we
can use the “the most eminent attention value” generated from
the Pillar Attention Encoder for each pillar feature as the
“significance value” of this feature in terms of the perception
task.

The prerequisite to filter the feature cells within a feature
map is the independence of the feature cells. Otherwise,
filtering and reassembling dependent feature cells will impact
the integrity of the data representation. For instance, most
of the current feature-based cooperative perception methods
use the feature after a deep neural network backbone — a
convolution neural network or a transformer network. Due to
the fundamental calculation mechanism, every feature cell in
the feature map after the backbone network (i.e., one feature
cell with the size of (1, C) out of the whole feature map
with the size of (n, C)) will contain the information from
the adjacent cells (convolution-based backbone) or the whole
feature map (transformer-based backbone).

As shown in Fig.3, the whole process of generating each
pillar feature — — is independent of the data outside of this
pillar. In other words, each pillar feature is generated solely
from its independent data, which gives it the property to be
easily reassembled and filtered without impacting the integrity
of the data representation. In other words, our proposed Pillar
Attention Encoder can inherently support the requirement of
adaptive feature filtering.

In this study, we formulate the adaptive feature filtering as a
three-step process. The first step is to extract the most eminent
attention value  for each pillar feature by Eq. 21:

ey

where  represents the value of -th pillar feature by
max-pooling the most significant value among its channel.

The second step is to generate an affordable number of pillar
features, , that can be transmitted with the communication
capacity. Specifically, the number of total pillar features gen-
erated from the encoder can be defined as

Thus, the final step is to generate
pillar features with the top-k highest
as:

App by selecting the
value, which is defined

(22)

E. Deep Feature Aggregator

In the ACP framework, as shown in Figure 2, a deep feature
aggregator is designed to fuse the feature data shared from
different perception nodes. In the context of adaptivity, the
feature aggregator needs to be able to absorb features with
different spatial shapes and features from different numbers of
perception nodes. For example, the feature sizes of different
vehicles may vary due to the difference in communication ca-
pabilities in the onboard devices. Additionally, the number of
vehicles or infrastructures that are involved in the cooperative
perception system may be dynamic as well.

To enable feature fusion under dynamic, scalable, and het-
erogeneous conditions, a two-stream neural network is adopted
to fuse pillar features from different perception nodes [30]. As
shown in Fig. 4, the network consists of three components:
an infrastructure-based feature aggregator, a vehicle-based
feature aggregator, and an infrastructure-vehicle-based feature
aggregator.

Infrastructure Feature Fusion Stream
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Fig. 4. Diagram illustration for the deep feature aggregator

In this paper, the feature generated for cooperation is the
pillar attention feature  aspr which has a spatial shape of
where and  represent the exact number of pillar
features (e.g., reees in Fig. 4) and the number of
channels for each pillar feature, respectively. Specifically,
as is the adaptive threshold according to the
communication capacity. Hence, if ;¢ infrastructure nodes
and e, vehicle nodes are involved in the ACP system, the
infrastructure feature fusion stream will take in ;¢ different
apr With different spatial sizes. Then these pillar features
are projected to a pseudo-bird-eye-view feature map which
has a feature shape of iy . Then, maxpooling
layer is applied to aggregating these data along the first
dimension and the aggregated feature will have a spatial shape
of . Similarly, the vehicle-based feature fusion
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stream will generate another feature map with

specifically based on the onboard features. Lastly, these two
feature maps are aggregated by a concatenation layer followed
by a convolution layer. So the final output has a normal spatial
shape of

FE. Object Perception Network

After the feature fusion, theoretically, perception networks
that can be used for single-sensor-based features are also
able to work on this fused feature. Meanwhile, the perception
network can be designed for different types of downstream
perception tasks, such as detection, tracking, segmentation,
etc. In this paper, we simply applied a widely used 3D object
detector consisting of a feature pyramid network and a 3D
anchor-based detection head [35].
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Fig. 5. Deep neural network backbone for hidden feature extraction.

The structure of the detector is briefly introduced below
to help illustrate the whole network structure utilized in this
paper. Specifically, Figure 5 depicts the structure of the feature
pyramid network. The feature downsampling blocks consist of
convolution layers. Each Conv2D block consists of one con-
volution layer with the kernel of , followed by several
convolution layers with kernels of . Specifically, the
numbers of convolution layers in each block are , , and ,
respectively. The deconvolution layers (DeConv2D) are then
applied to upsampling the feature map from different stages
of the feature pyramid to include the feature with different
receptive fields.

As the main task in this paper is object detection, an anchor-
based 3D object detection head [32] is applied to generate the
object-level prediction including 3D location, dimensions of
the bounding box, yaw angle, and class information.

IV. EXPERIMENTS
A. Experimental Details

1) Dataset for Adaptive Cooperative 3D Object Detection:
The “CARTI” (i.e., CARla-kiTtI) platform [36] is applied to
collect the LiDAR sensor data and 3D ground truth labels
for training and testing the models. Specifically, two infras-
tructure nodes and three vehicle nodes are deployed for data
collection. A total of frames of 3D point clouds are
collected ( samples if counting perception nodes in all
frames), including frames for training, frames for
validation, and frames for testing.

The specification of the sensors applied is shown in Table I
and two different LiDAR settings are used based on our
previous work in the real world [37]. To make the simulated
point cloud data closer to the realistic conditions, we configure

TABLE I
SENSOR SPECIFICATION FOR THE DATASETS COLLECTED IN THIS STUDY.

Sensor Specification

LiDAR Channels
LiDAR Height
LiDAR Sensing Range
LiDAR Rotation Frequency Hz
Upper FOV
Lower FOV
Noise for Points Per Beam
Missing Reflection Rate
Intensity Dropoff Range

\ Setting [onboard/roadside]

the simulated LiDAR with certain noise settings including
standard deviation of the noise for points per beam, missing
reflection rate, and intensity dropoff range, which are also
specified in Table I. The computing platform for collecting
the simulation data and model training is introduced below.

2) Training Details: The training and testing platform
consists of an Intel® Core™ i7-10700K CPU and an NVIDIA
RTX 3090 GPU. The training pipeline is designed with
160 epochs with batchsize of 2. The voxel size is set as
[ ] and the maximum number of pillars
per node is set as . Specifically, during the training
stage, — the number of pillar features that are able to
transmit with others — is randomly varying from the range

. It is noted that different nodes in the same
frame will be assigned various values to emulate the
dynamic conditions in the real world.

3) Evaluation Details: It is noticeable that the evaluations
under different communication bandwidth limitations (i.e.,
different ) are conducted WITHOUT any further fine-tuning.
This zero-shot setting allows us to evaluate the model under
more critical but realistic conditions.

The detection performance is measured with Average Pre-
cision (AP) at Intersection-over-Union (IoU) thresholds of
0.7 for cars and 0.25 for pedestrians. Furthermore, based
on the Minimum number of Points (MP) reflected by the
ground target, each evaluation class is further divided into
three categories: Easy (MP 10), Medium (MP 5), and Hard
(MP 1), respectively, to investigate the performance of CP
methods at different difficulty levels.

To evaluate the models in a dynamic environment, we
tested the models with several different dynamic ranges of
communication capacities. To make the evaluation represen-
tative and efficient, we evaluate the models under different
conditions including: s s
and . It needs to be mentioned that all
the models are NOT fine-tuned by any of those thresholds
designed above while testing.

4) Feature Encoder Baselines: To compare the perfor-
mance, we choose one of the most popular feature encoders
for PCD-based object detectors — Pillar Feature Encoder
(PFE) as our baseline, which is proposed in PointPillar [32].
Additionally, in the later experiment, our method will be noted
as PAE (Pillar Attention Encoder).
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5) Adaptive Filtering Baselines: Since adaptive filtering is a
new concept in this field, we consider several heuristic feature
filtering methods including:

K-Nearest Neighbor (KNN): Sorting the features with
respect to (w.r.t.) the distance between the pillar feature
and the location of the sensor itself. We next select top-K
nearest features, since we might assume that the model
will have higher confidence in the feature closer to it.
K-Farthest Neighbor (KFN): A converse method w.r.t. the
KNN by selecting the farthest feature first.

K-Random Sampling (KRS): A random sampling method
among the pillar features.

Specifically, for calculating the distance between the spatial
location of the feature cell and the sensor, Manhattan Distance
is applied to calculating the priorities with better computa-
tional efficiency (when compared with Euclidean Distance),
which is defined as below:

(23)
where is the Manhattan distance between the feature
location and the sensor location . Specifically,

our adaptive filtering method is noted as KFV (K-Feature
Value).

TABLE II
AP PERFORMANCE COMPARISON UNDER DIFFERENT ADAPTIVE
TRANSMITTING RATES OF THE ORIGINAL FEATURE SIZE (TR:
TRANSMISSION RATE).

TABLE III
AP PERFORMANCE COMPARISON UNDER FULLY DYNAMIC TRANSMITTING
RATES (1% - 100%).

Methods i Encoders i Car@IoU=0.7 i Pedestrian@IoU=0.25

I || Easy Medium  Hard || Easy Medium Hard

w/ PFE 26.67 26.58 26.52 8.28 7.58 6.87

K-NN w/ PAE (Ours) 26.78 26.71 26.68 12.84 12.21 11.55
Imp. 0.41% 0.49% 0.60% 55.07% 61.08% 68.12%

w/ PFE 45.40 45.42 45.39 15.19 18.13 19.25

K-FN w/ PAE (Ours) 50.36 50.37 50.28 12.00 15.27 17.37
Imp. 10.93% 10.90% 10.77% -21.00% -15.77% -9.77%

w/ PFE 49.96 45.96 45.85 15.64 16.97 15.74

K-RS w/ PAE (Ours) 52.20 51.73 51.37 15.92 17.20 16.30
Imp. 4.48% 12.55% 12.04% 1.79% 1.36% 3.56%

w/ PFE 65.42 62.07 61.96 22.20 24.08 25.33

K-FV w/ PAE (Ours) 70.91 70.70 70.52 23.64 25.50 26.36
Imp. 8.39% 13.90% 13.82% 6.49% 5.90% 4.07%

and interpret the methods. All models are evaluated in terms
of 3D object detection for cars and pedestrians. The average
precision (AP) is applied to assess the performance.

1) Quantitative Results and Analysis: Table Il shows the
AP performance comparison for different methods under var-
ious adaptive transmitting rates of the original feature
size. The table also highlights the improvement of our method
compared with the K-PFE method which uses the PFE as the
encoder and our KFV as filter. It shows that our method (K-
PAE) outperforms the baseline under all testing scenarios.

Specifically, with 10% - 20% transmitting rates, our method
can improve the AP for car detection by 24% to 32% ap-
proximately compared with the baseline. Under the 50% to
100% transmitting rates, our method can improve the AP for
pedestrians by 24% to 41% approximately.

TR [ 1% ‘ Methods ‘ Car@IoU=0.7 H Pedestrian@loU=0.25
| Basy Medium  Hard [[ Easy Medium  Hard For adaptive feature filters, from Table II, our KFV method
KNN 18.67 17.56 17.53 11.75 11.89 10.57 . .
KEN 1596 1614 1616 1031 1142 1204 significantly outperforms others (KNN, KFN, and KRS) by a
KRS 17.01 16.11 16.04 2.20 243 2.13 . . .
1% - 10% B 186 3098 3054 513 1607 165, large margin. The performance improvement can be explained
K-PAE (Ours) 35.98 34.19 34.04 19.71 19.55 17.01 1 1 ] 1 ]
P S8kl e B 9 701 as that features. with higher values.w1.ll. hgve higher domman.ce
RNN 792 1789 1787 | 1106 105 909  for the perception results. Thus, prioritizing those features with
KFN 33.01 33.06 33.00 9.20 11.90 13.59 . . .
10% - 209 KRS 3779 3585 3575 || 1313 1365 1257  higher values and transmitting them before the features with
v ° K-PFE 50.11 48.51 46.85 21.99 22.63 22.11
1 lues can lead to better performance
K-PAE (Ours) 62.4 62.11 61.87 252 26.68 24.89 ower va P .
Imp. 24.53% 28.04% 32.06% 14.60% 17.90% 12.57%
e e o e To further compare the performance between PFE and our
KEN 4090 4986 4974 | 1562 1885 2112 PAE, we test both encoders for all different filtering methods,
20% - 30% KRS 51.31 50.60 50.02 15.93 17.15 16.03 .
: K-PFE 7089 7073 7059 211 2502 2638 as shown in Table III. In Table III, for three of the four feature
K-PAE (Ours) 79.84 79.61 79.29 23.85 26.49 27.58 . .
Imp. 1263%  1255% 1232% || 787%  sss%  455%  filtering methods, PAE can improve the performance by up to
KNN 3491 28.75 28.74 13.53 13.31 11.96 . . . : :
KEN 5065 5055 so42 lo2s 1901 29 08% with testing under the fully dynamic environment with
. KRS 60.41 59.81 59.35 13.32 14.96 14.69 1
30% - 40% K-PFE 79.72 79.55 79.35 21.77 24.7 26.74 transmlttlng rates.
K-PAE (Ours) 86.43 86.19 79.76 24.24 27.16 29.56
Imp. 8.42% 8.35% 0.52% 11.35% 9.96% 10.55%
KNN 1355 38.02 37.99 16.35 16.73 1457 TABLE IV
KFN 68.51 68.23 65.25 12.89 16.68 19.69
0% - 00k KRS 69.18 68.46 65.72 1456 1731 17.06 AP PERFORMANCE COMPARISON UNDER DIFFERENT TRANSMITTING
° ° K-PFE 80.07 79.99 79.91 16.98 20.15 2249 RATES.
K-PAE (Ours) 88.16 87.33 86.87 23.47 27.33 29.81
Imp. 10.10% 9.18% 8.71% 38.22% 35.63% 32.55% N
KNN 6214 5689 5687 2163 2342 21.99 TRW Il Encoders Car@IoU=0.7 | Pedestrian@IoU=0.25
KFN 7499 7492 69.61 1486 1892 2261 Al | Easy Medum  Had || Fasy Medum  Hard
50% - 100% KRS 79.03 78.88 78.73 16.21 19.66 21.46
K-PFE 86.54 79.99 79.94 16.54 19.96 22.37 PFE 50.11 48.51 46.85 21.99 22.63 22.11
K-PAE (Ours) 87.07 87.08 83.23 234 26.41 27.75 1/20 PAE (Ours) 5291 50.23 49.97 21.42 22.18 23.48
Imp. 0.61% 8.86% 4.12% 41.48% 32.31% 24.05% Imp. 5.59% 3.55% 6.66% -2.59% -1.99% 6.20%
PFE 6124 6084 6055 202 2433 2503
115 PAE (Ours) || 69.90  69.62  69.40 2398 2583 2674
Imp. 14.14% 14.43% 14.62% 8.90% 6.17% 6.83%
PFE 7054 7041 70.27 2164 2433 2603
B. E ' A 7 1/10 PAE (Ours) 85.26 79.75 79.67 25.25 27.61 28.36
Valuatlon and nalyszs Imp. 20.87% 13.27% 13.38% 16.68% 13.25% 8.95%
In this section, we evaluate dynamic feature-sharing ap- s AR fgum) A S I U o
proaches from two perspectives: 1) quantitative results and Imp. 10.69%  10.17%  10.11% || 45.97%  37.11%  33.60%

analysis to show the numerical results of the methods; and 2)
qualitative results and analysis to visualize the performance

Besides the dynamic environment in which different nodes
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Fig. 6. Visualization of the filtered feature and 3D object detection results for different ACP methods (better zoom-in). From the left, the three columns

show: 1) the filtered features from infrastructure nodes, 2) the filtered feature from vehicle nodes, and 3) the 3D detection results (blue and

bounding

boxes represent cars and pedestrians), respectively. Specifically, different nodes with the same type are grouped together for conciseness.

may have different transmitting rates, we also tested the
methods under homogeneous transmitting rates as shown in
Table IV. By transmitting out of the original features,
our method can outperform the PFE method by 6+% under
the Hard condition for both car and pedestrian detection.
Under the transmitting rate of s , conditions, our
method can improve the performance by 10% to 21% for car
detection and 6% to 46% for pedestrian detection, respectively.

Additionally, the upper bound of the detection performance
of the model is % when , which is in
this paper. According to Table IV. we can conclude that our
method can achieve 97% and 94% of the AP performance
while reducing the transmitting data by and . For the
PFE baseline, it can only remain the AP performance by 88%
and 78%, respectively.

2) Qualitative Results and Analysis: To further investigate
the performance of different ACP methods, Figure 6 shows
the visualization of filtered features and the corresponding

visualization of 3D object detection results. Heatmaps are ap-
plied to visualize the most-eminent feature value of the filtered
feature for different methods. Literally, each node should have
its own feature map visualization, but for conciseness, we
combined the features from nodes with the same type, e.g.,
features from all vehicle nodes are combined into one feature
map for visualization. This operation is only used for efficient
visualization and each point in the figure represents a pillar
feature.

By comparing the visualized feature maps, several interest-
ing findings can be identified. The distribution of the filtered
features shows a strong correlation with the corresponding
adaptive feature filtering methods. For instance, filtered fea-
tures from the KNN method are mainly the features around
the sensors, while the KFN-based filtered features are mainly
the features that are away from the sensors. But based on the
numerical evaluation mentioned above, looking for faraway
features seems to have a better performance than looking for
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Fig. 7. Visual interpretation for filtered features from the PFE method (left w/ blue windows) and our PAE method (right w/ ).

nearby features, which could be counter-intuitive. The filtered
features from KRS are distributed like down-sampled point
cloud data.

On the other hand, features filtered by KFV-based methods
are more concentrated on the region of interest (Rol), the area
where we want the features to be transmitted. Specifically, the
features (points in Figure 6) of (d) KFV-PFE and (e) KFV-PAE
are mainly the features generated from the PCD reflected by
the objects we want to detect. Thus, by looking at the right
column in Figure 6, KFV-based methods have evidently better
detection results than the three baselines.

To interpret the performance improvement of our PAE
compared with the PFE, we visualized the filtered feature map
with zoom-in windows for KFV-PAE and KFV-PFE, as shown
in Figure 7. These zoom-in windows demonstrate that the PAE
method can better differentiate the features that are very close
to the Rol features, and the features coming from the objects.
It is clearly shown from the top zoom-in window and lower-
right zoom-in window that PAE has much fewer features left
near the objects. However, the PFE remains significantly more
features on the ground that are valueless for the perception
task and will waste the bandwidth for sending that worthless
information. The effect of this can also be observed from the
lower-left zoom-in window of Figure 7. Sending less number
of invaluable features, our PAE method can transmit more
valuable features to support better perception performance. For
instance, in this area, PFE has no features left while our PAE
has for Rol objects. In other words, our PAE can enable the
ACP methods to filter features better by mainly focusing on
the innate significance of the features rather than their spatial

distributions.

3) Ablation Study: To further investigate the proposed
model, ablation studies are conducted to analyze the time
consumption and model complexity., which is shown in Ta-
ble V. For time consumption, although the PAE consumes
approximately 5x more processing time, the overall impact on
the whole inference pipeline is trivial. The PFE-based pipeline
has an inference speed of 13.84 Hz while PAE only slows the
speed by roughly 1Hz. Considering that a common setting for
the data rate of LiDAR sensors is 10 Hz [7], both methods
can provide real-time inference capability while our method
delivers higher mAP performance.

Table V also demonstrates the model complexity. Despite
the parameter of PAE is significantly more than the PFE,
PAE only increases the total network parameter by 0.31%
(since the backbone contributes the major part of parameters).
This reveals another advantage of using shallow features for
cooperative perception rather than the features after backbone
(e.g., dense features used in previous works [13], [15], [17],
etc.) — low computation complexity for generating the sharing
information and the whole cooperative perception system,
which is discussed in depth in one of our previous work [30].

Based on the core design of the attention mechanism [33],
multi-head attention enables the model to focus on different
parts of the input sequence simultaneously. Each head can
learn different aspects or relationships within the data, which
improves the performance of the model to capture more
complex patterns and dependencies. Thus, PAE involves the
multi-head attention design. In this paper, compared with
single-head-based PAE, the design of multi-head attention
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TABLE V
ANALYSIS FOR TIME CONSUMPTION AND MODEL COMPLEXITY.

Model || Time consumption [ms] | Frame Rate [Hz] | Encoder Parameter | Total Parameter | mean Average Precision [1%-100%TR]
PFE 1.41 13.84 704 4,264,368 43.51

PAE (Ours) H 8.17 12.75 7,218 4,277,396 47.94

Difference || +479.43% | -7.88% | +925.28% | +0.31% | +10.18%

improves the mAP performance by 2.83% with the same  [5] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S. Han,

model Complexity. “Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view
representation,” in [EEE International Conference on Robotics and
Automation (ICRA), 2023.

V. CONCLUSIONS AND FUTURE WORK [6] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai,
: ; . ; “Bevformer: Learning bird’s-eye-view representation from multi-camera
In this paper, we propose A'dap tive Cooperative Per?ep tion, images via spatioter%lporal trz}llnsformersp,)” in Computer Vision—-ECCV

a new framework that is deSIgned to enable cooperative per- 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022,

ception under more challenging and realistic conditions. A new Proceedings, Part IX. Springer, 2022, pp. 1-18.

feature encoder Pillar Attention Encoder (PAE) is proposed for ~ [71 Z. Bai, G. Wu, M. J. Barth, Y. Liu, E. A. Sisbot, K. Oguchi,

. . . . . and Z. Huang, “A survey and framework of cooperative perception:
enabling adaptive cooperative perception. An adaptive feature From heterogeneous singleton to hierarchical cooperation,” ArXiv, vol.

filtering method is proposed to adjust the amount of features abs/2208.10590, 2022.
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allowing the feature filter to retain more valuable information Rep., 2022.

within a limited feature size. Experiments demonstrate that  [°1 Q Chen,S. Tang, Q. Yang, and S. Fu, “Cooper: Cooperative perception

.. i for connected autonomous vehicles based on 3d point clouds,” in 20719
our method significantly outperforms baseline methods under IEEE 39th International Conference on Distributed Computing Systems

various testing cases. Specifically, under a full-range adaptive (ICDCS). 1EEE, 2019, pp. 514-524.
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