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A NEW TYPE OF SUPERORTHOGONALITY

PHILIP T. GRESSMAN, LILLIAN B. PIERCE, JORIS ROOS, AND PO-LAM YUNG

(Communicated by Dmitriy Bilyk)

Abstract. We provide a simple criterion on a family of functions that implies
a square function estimate on Lp for every even integer p ≥ 2. This defines
a new type of superorthogonality that is verified by checking a less restrictive
criterion than any other type of superorthogonality that is currently known.

1. Statement of the results

1.1. Square function estimate. Let {fj}j∈J be a family of complex-valued func-
tions on a measure space (X, dμ), with indices ranging over a countable set J . Here
and in all that follows, Lp norms indicate Lp(X, dμ). A square function estimate
of the form

‖
∑
j∈J

fj‖Lp ≤ Cp‖(
∑
j∈J

|fj |2)
1
2 ‖Lp

is an essential ingredient in many methods in harmonic analysis. We prove a simple
criterion under which this square function estimate holds for each even integer p ≥ 2.

Theorem 1. Let r ≥ 1 be an integer. Suppose a family {fj}j∈J of functions has
the property that

(1)

∫
fj1 · · · fjrfjr+1

· · · fj2r = 0

whenever j1, . . . , j2r are all distinct. If (
∑

j∈J |fj |2)
1
2 belongs to L2r, the series∑

j∈J fj converges unconditionally in L2r, and

(2) ‖
∑
j∈J

fj‖L2r ≤ Cr‖(
∑
j∈J

|fj |2)
1
2 ‖L2r .

In particular, we may take Cr = 1 for r = 1 and Cr ≤ 21/2((2r)!− 1)1/2 for r ≥ 2.

Note that in our terminology, a family of functions could be an ordered sequence
{fj}j∈N, but we also allow {fj}j∈J where J is an unordered countable set.
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666 GRESSMAN, PIERCE, ROOS, AND YUNG

Theorem 1 immediately implies that any family of functions satisfying the hy-
pothesis of the theorem obeys an L2r�2 decoupling estimate,

‖
∑
j∈J

fj‖L2r ≤ Cr(
∑
j∈J

‖fj‖2L2r)1/2

for the same constant Cr as in (2), since by Minkowski’s inequality for Lp norms
the square function norm is majorized by the right-hand side shown above.

We prove the theorem via an application of a pointwise inequality, which may
be stated in terms of sequences of complex numbers.

Proposition 2. Let k ≥ 2 be an integer and suppose a1, . . . , ak are finite or abso-
lutely convergent infinite sequences of complex numbers with the terms of ai denoted
aij, where j ranges over a set J of indices. Let s denote the sum operation,

(3) s(ai) :=
∑
j∈J

aij

and let
Qk(a

1, . . . , ak) :=
∑

j1,...,jk∈J
j1,...,jk distinct

a1j1 · · · a
k
jk
.

Let

A := max
i=1,...,k

|s(ai)|,

B := max
i=1,...,k

‖ai‖�2 .

Then

(4)

∣∣∣∣∣Qk(a
1, . . . , ak)−

k∏
i=1

s(ai)

∣∣∣∣∣ ≤ (k!− 1)B2 (max{A,B})k−2 .

It is important in our application that the term A is not the �1 norm, but instead
the sum operation (3), which does not take absolute values inside the sum. In

particular, to deduce Theorem 1, we will apply the consequence that if
∏k

i=1 s(a
i)

is known to be real, then (4) implies

(5)
k∏

i=1

s(ai) ≤ (k!− 1)B2 (max{A,B})k−2 + �(Qk(a
1, . . . , ak)).

1.2. Superorthogonality. Theorem 1 identifies a new type of superorthogonality
that is broader than any previously identified type, in the sense that it is verified
by checking a less stringent criterion than any previously identified type. A family
of functions {fj}j∈J is said to be superorthogonal for 2r-tuples of a certain type if

(6)

∫
fj1 · · · fjrfjr+1

· · · fj2r = 0

whenever the tuple of indices j1, . . . , j2r lies in a certain subset of J2r. The frame-
work of superorthogonality was developed in [Pie21], which identified several types:

• Type I*: (6) vanishes when j1, . . . , jr is not a permutation of jr+1, . . . , j2r;
• Type I: (6) vanishes when an index ji appears an odd number of times in
j1, . . . , j2r;

• Type II: (6) vanishes when an index ji appears precisely once in j1, . . . , j2r.
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A NEW TYPE OF SUPERORTHOGONALITY 667

When the indices are positive integers, one can also define:

• Type III: (6) vanishes when an index ji is strictly larger than all other
indices in j1, . . . , j2r.

For example, the Rademacher functions {rj}j satisfy the Type I condition for 2r-
tuples for all integers r ≥ 1 [Pie21, §2.1]. Any family {fj}j∈J in which the members
fj are mutually independent random variables, and each has mean zero, satisfies
the Type II condition for 2r-tuples for all integers r ≥ 1 [Pie21, §1]. Let {wj}j
denote the sequence of Walsh-Paley functions, and let Pjf =

∑
2j−1≤m<2j c(f)wj

denote a dyadic partial sum of the Walsh-Paley expansion for a given function f .
Then the dyadic partial sums {Pjf}j satisfy the Type III condition for 2r-tuples
for all integers r ≥ 1 [Pie21, §4.3].

Any family of functions that is Type I*, I, or II for 2r-tuples satisfies a square
function estimate on L2r. See [Pie21], which also observed that any family of
functions that is Type III for 2r-tuples and obeys two auxiliary properties (e.g. a
maximal estimate, motivated by a method due to Paley) satisfies a square function
estimate on L2r. In fact, proving that a family of Type I* functions satisfies a
square function estimate (with Cr ≤ (r!)1/2r) is quite simple. As the set of indices
upon which the type assumes (6) vanishes shrinks, the abstract verification of the
square function estimate becomes more tricky.

The principle of using superorthogonality to prove a square function estimate can
be traced, retrospectively, through a wide variety of papers over the past 90 years;
[Pie21] identified its role in: Rademacher functions and Khintchine’s inequality
(an application of Type I); Paley’s proof [Pal32] of the Lp-norm convergence of
Walsh-Paley series (Type III); Ionescu and Wainger’s influential method [IW06] for
bounding discrete singular Radon transforms (Type II); the recent work [GGP+21]
on square function estimates for non-degenerate curves such as the moment curve
(Type I*); results in number theory such as Burgess’s celebrated bound [Bur63]
for short character sums (Type II); and Fouvry-Kowalski-Michel’s striking proof
[FKM15] of square-root cancellation for sums of products of trace functions, as a
consequence of the proof of the Weil conjectures (Type I).

1.3. Type IV superorthogonality. The present work identifies a new type of
superothogonality:

• Type IV: (6) vanishes when all indices j1, . . . , j2r are distinct.

Theorem 1 proves unconditionally that any family of functions that is superorthog-
onal of Type IV for 2r-tuples satisfies a square function estimate on L2r.

It is striking that the criterion for Type IV is the least restrictive of any previously
identified type. That is to say, if J is the index set of the sequence {fj}j∈J and
Z(Type) ⊂ J2r denotes the set of tuples for which (6) must vanish for that type to
hold, then

Z(IV) � Z(III) � Z(II) � Z(I) � Z(I∗).

Equivalently,

{fj}j∈J of Type I* ⇒ Type I ⇒ Type II ⇒ Type III ⇒ Type IV.

(Of course, if the indices are not positive integers, Type III is omitted.) In par-
ticular, as a result of Theorem 1, it is now unconditionally true that any family
of functions that is Type III superorthogonal satisfies the square function estimate
(2).
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668 GRESSMAN, PIERCE, ROOS, AND YUNG

We exhibit several families of real-valued functions that are Type IV but not any
other type. We first remark that there is an elementary construction of a sequence
of N real-valued functions f1, . . . , fN such that∫

[0,1]

fj1fj2 · · · fjN = 0

precisely when j1, j2, . . . , jN are distinct. To see this, divide the unit interval into
N subintervals Ij = [j/N, (j + 1)/N). Define fj = χcIj where the complement is
defined with respect to the unit interval, that is cIj = [0, 1] \ Ij . Then the sequence

{fj}N−1
j=0 of N functions is Type IV superorthogonal on [0, 1] for N -tuples.

Our next theorem enhances this construction using Rademacher functions to
create an infinite sequence of functions on R that is Type IV for 2k-tuples.

Theorem 3. Fix any positive integer k. There exist real-valued, piecewise-constant
functions {fi}∞i=1 on R such that

• For each i ∈ N, fi ∈ L2k(R).
• If i1, . . . , i2k ∈ N and is 	= is′ whenever s 	= s′, then

(7)

∫
R

fi1(t) · · · fi2k(t) dt = 0.

• If i1, . . . , i2k ∈ N and is = is′ for some s 	= s′, then

(8)

∫
R

fi1(t) · · · fi2k(t) dt > 0.

Another interesting example is given by Haar functions. Let D denote the set
of standard dyadic intervals I = [2k�, 2k(� + 1)) in R with k, � ∈ Z. Each I ∈ D is
associated with the Haar function

(9) ψI = |I|−1/2(1Il − 1Ir),

where Il, Ir ∈ D denote the left and right children of I, respectively.

Proposition 4. The family of Haar functions {ψI}I∈D, indexed by the set of dyadic
intervals, is superorthogonal of Type IV on R for 2r-tuples, for each integer r ≥ 1. It
is not superorthogonal of Type II or III on R for 2r-tuples, for any r ≥ 2. However,
the subfamily of Haar functions associated with dyadic intervals contained in a given
compact interval is superorthogonal of Type III for 2r-tuples, for each r ≥ 1.

Consequently, applying Theorem 1 for a given integer r ≥ 1 to Haar functions
one recovers the classical square function estimate

(10) ‖f‖Lp �
∥∥∥(∑

k∈Z

|Dkf |2
)1/2∥∥∥

Lp

for p = 2r, where Dkf denotes the dyadic martingale differences

Dkf =
∑

I∈D,|I|=2−k

〈f, ψI〉ψI .

The estimate (10) holds for all p ∈ (1,∞) and is usually proved via Calderón–
Zygmund theory and the reverse square function estimate (see e.g. [Per01, p. 14,
Thm. 1.27]).
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A NEW TYPE OF SUPERORTHOGONALITY 669

2. Proof of Proposition 2

The pointwise inequality in Proposition 2 may be proved as follows. When k = 2,
the proposition is essentially a minor variation on Cauchy-Schwarz because∣∣∣∣∣∣

∑
j1,j2∈J,j1 �=j2

a1j1a
2
j2 −

∑
j1,j2∈J

a1j1a
2
j2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j1∈J

a1j1a
2
j1

∣∣∣∣∣∣ ≤ ‖a1‖�2‖a2‖�2 ≤ B2.

For larger values of k, scaling implies that one may assume without loss of generality
that ‖ai‖�2 ≤ 1 for each i with equality for at least one i (since ‖ai‖�2 = 0 for all i
is a trivial case). Under this normalization assumption, it suffices to prove that∣∣∣∣∣Qk(a

1, . . . , ak)−
k∏

i=1

s(ai)

∣∣∣∣∣ ≤ Ck

(
max{1, |s(a1)|, . . . , |s(ak)|}

)k−2

for each k > 2 and Ck = k! − 1. The quantities Qk+1 and Qk are related by the
recursive identity

Qk+1(a
1, . . . , ak+1) = Qk(a

1, . . . , ak)s(ak+1)−Qk(a
1ak+1, a2, . . . , ak)

− · · · −Qk(a
1, . . . , akak+1)

when k ≥ 2. (Here, for sequences a = {a1, a2, . . .} and b = {b1, b2, . . .} we let ab
denote the sequence {a1b1, a2b2, . . .}.) By induction and the triangle inequality,

|Qk(a
1ak+1, a2, . . . , ak)| ≤ |s(a1ak+1)||s(a2)| · · · |s(ak)|

+ Ck

(
max{1, |s(a1ak+1)|, |s(a2)|, . . . , |s(ak)|}

)k−2
.

By the normalization condition on each ai, |s(a1ak+1)| ≤ 1, so the right-hand side
is

≤ |s(a2)| · · · |s(ak)|+ Ck

(
max{1, |s(a2)|, . . . , |s(ak)|}

)k−2
.

We can conclude that certainly

|Qk(a
1ak+1, a2, . . . , ak)| ≤ (Ck + 1)

(
max{1, |s(a1)|, . . . , |s(ak+1)|}

)k−1

and likewise for |Qk(a
1, a2ak+1, . . . , ak)|, etc. It follows by the triangle inequality

that ∣∣∣∣∣Qk+1(a
1, . . . , ak+1)−

k+1∏
i=1

s(ai)

∣∣∣∣∣ ≤
|s(ak+1)|

∣∣∣∣∣Qk(a
1, . . . , ak)−

k∏
i=1

s(ai)

∣∣∣∣∣
+k(Ck + 1)

(
max{1, |s(a1)|, . . . , |s(ak+1)|}

)k−1
.

By induction, it follows for each k ≥ 2 that∣∣∣∣∣Qk+1(a
1, . . . , ak+1)−

k+1∏
i=1

s(ai)

∣∣∣∣∣
≤ ((k + 1)Ck + k)

(
max{1, |s(a1)|, . . . , |s(ak+1)|}

)k−1
.

Fixing C2 := 1 and recursively taking Ck+1 := (k + 1)Ck + k proves (4) with
Ck = k!− 1. This completes the proof of the proposition.
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670 GRESSMAN, PIERCE, ROOS, AND YUNG

3. Proof of Theorem 1

To prove the theorem, we apply the pointwise inequality (5) with k = 2r. For
simplicity, assume temporarily that the collection J is finite. For a fixed x ∈ X,
each sequence ai with 1 ≤ i ≤ r is chosen to be the sequence {fj(x)}j∈J ; each

sequence ai with r + 1 ≤ i ≤ 2r is chosen to be the sequence {fj(x)}j∈J . For each
x ∈ X we may then apply the real inequality (5). By integrating the pointwise
inequality (5) over X we obtain

‖
∑
j∈J

fj‖2rL2r(X,dμ) ≤ ((2r)!− 1)

∫
(B2r +B2A2r−2)

+ �(
∑

j1,...,j2r∈J
j1,...,j2r distinct

∫
fj1 · · · fjrfjr+1

· · · fj2r).

The last term vanishes, by hypothesis. By the definition of A,B we conclude that

(11) ‖
∑
j∈J

fj‖2rL2r(X,dμ) ≤ ((2r)!− 1)

⎛
⎝∫

(
∑
j∈J

|fj |2)r +
∫
(
∑
j∈J

|fj |2)|
∑
j∈J

fj |2r−2

⎞
⎠ .

The first term on the right-hand side is already of the form ‖(
∑

j∈J |fj |2)1/2‖2rL2r .
The second term on the right-hand side is bounded by

εr/(r−1)

r/(r − 1)
‖
∑
j∈J

fj‖2rL2r +
1

εrr
‖(
∑
j∈J

|fj |2)1/2‖2rL2r

for all ε > 0. This follows from applying Young’s inequality for products to the
integrand, which shows that for real a, b ≥ 0 and ε > 0,

ab ≤ 1

εrr
ar +

εr
′

r′
br

′
,

where r′ = r
r−1 . Here we notice that we have recovered a term of the form

‖
∑

j∈J fj‖2rL2r on the right hand side, and by choosing ε sufficiently small, we

can subtract this term harmlessly from the left-hand side of (11). Upon choosing
ε so that

εr/(r−1)

r/(r − 1)
((2r)!− 1) ≤ 1/2,

say, we conclude that

1

2
‖
∑
j∈J

fj‖2rL2r(X,dμ) ≤ ((2r)!− 1)

(
1 +

1

εrr

)
‖(
∑
j∈J

|fj |2)1/2‖2rL2r .

This proves the theorem for finite J . In particular we can observe that this proof
allows Cr ≤ 21/2((2r)!− 1)1/2. Indeed, the inequality above shows

C2r
r ≤ 2((2r)!− 1)

[
1 +

1

εrr

]

where we can take εr =
[

1
2((2r)!−1)

r
r−1

]r−1

. This gives

C2r
r ≤ [2((2r)!− 1)]r

[
1

(2((2r)!− 1))r−1
+

(r − 1)r−1

rr

]
.
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A NEW TYPE OF SUPERORTHOGONALITY 671

We note that each of 1
(2((2r)!−1))r−1 and (r−1)r−1

rr is a decreasing function of r when

r ≥ 2 (the latter can be verified by logarithmic differentiation). Thus[
1

(2((2r)!− 1))r−1
+

(r − 1)r−1

rr

]
≤

[
1

2(4!− 1)
+

1

4

]
< 1

for r ≥ 2. This shows

Cr ≤ [2((2r)!− 1)]1/2

as claimed.
When J is infinite, (2) may be deduced from the finite case by an appropriate

limiting argument. First observe that the pointwise values of the square function
(
∑

j∈J |fj |2)1/2 are independent of any choice of ordering of J because the terms of

the sum are nonnegative; we now assume it belongs to L2r. Let E and E′ be any
finite subsets of J ; then

‖
∑
j∈E

fj −
∑
j′∈E′

fj′‖L2r = ‖
∑

j∈E\E′

fj −
∑

j′∈E′\E
fj′‖L2r

≤ ‖
∑

j∈E\E′

fji‖L2r + ‖
∑

j′∈E′\E
fj′‖L2r

≤ Cr‖(
∑

j∈E\E′

|fj |2)
1
2 ‖L2r + Cr‖(

∑
j′∈E′\E

|fj′ |2)
1
2 ‖L2r

by applying the theorem for finite index sets. If j1, j2, . . . and j′1, j
′
2, . . . are any

enumerations of J , the Lebesgue Dominated Convergence Theorem guarantees that
‖(
∑∞

i=N+1 |fji |2)1/2‖L2r → 0 as N → ∞ and likewise (
∑∞

i′=N ′+1 |fj′i′ |
2)1/2 tends to

zero in L2r as N ′ → ∞. Taking E = {j1, . . . , jN} and E′ = {j′1, . . . , j′N ′} yields

‖
N∑
i=1

fji −
N ′∑
i′=1

fj′
i′
‖L2r ≤ Cr‖(

∑
j∈E\E′

|fj |2)
1
2 ‖L2r + Cr‖(

∑
j′∈E′\E

|fj′ |2)
1
2 ‖L2r

≤ Cr‖(
∞∑

i′=N ′+1

|fj′
i′
|2) 1

2 ‖L2r + Cr‖(
∞∑

i=N+1

|fji |2)
1
2 ‖L2r

which implies that the partial sums are a Cauchy sequence (by taking the orderings
j1, j2, . . . and j′1, j

′
2, . . . to coincide) and that all orderings of the series converge to

the same limit in L2r. Consequently

‖
∑
j∈J

fj‖L2r = lim
N→∞

‖
N∑
i=1

fji‖L2r ≤Cr lim
N→∞

‖(
N∑
i=1

|fji |2)
1
2 ‖L2r =Cr‖(

∑
j∈J

|fj |2)
1
2 ‖L2r

as desired.

4. Construction of an example: Proof of Theorem 3

To prove Theorem 3, when k = 1, the functions fi can be taken to be one
of any number of piecewise-constant mutually orthogonal functions in L2(R). So
without loss of generality, we may assume k ≥ 2. Let I ⊂ N2k−2 consist of all
tuples (j1, . . . , j2k−2) of strictly-increasing indices: 1 ≤ j1 < j2 < · · · < j2k−2.
Subdivide R into intervals of the form [�, � + 1) for each � ∈ Z and suppose that
these intervals are indexed by elements of I; in other words, assume that for each
(j1, . . . , j2k−2) ∈ I, there is some interval Ij1,...,j2k−2

having the form [�, � + 1) for
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672 GRESSMAN, PIERCE, ROOS, AND YUNG

some � ∈ Z such that no distinct elements of I are associated to the same such
interval in R and every such interval [�, �+ 1) is associated to exactly one element
of I.

For each j ∈ N, let rj(t) be the 1-periodic function on R which agrees with the
j-th nonconstant Rademacher function on [0, 1) and let gj(t) be any function in
L2k(R) which is constant and strictly positive on each interval of the form [�, �+1)
for � ∈ Z. Now for each i ∈ N, define, for t ∈ Ij1,...,j2k−2

,

fi(t) :=

{
gi(t)ri(t) i 	∈ {j1, . . . , j2k−2},
gi(t) i ∈ {j1, . . . , j2k−2}.

These functions {fi}∞i=1 will be shown to satisfy the conclusions of the theorem.
First consider (7). It suffices to show that for any 1 ≤ i1 < i2 < · · · < i2k and

any interval [�, �+ 1),

(12)

∫ �+1

�

fi1(t) · · · fi2k(t) dt = 0.

Each such interval [�, � + 1) is equal to Ij1,...,j2k−2
for some indices 1 ≤ j1 < j2 <

· · · < j2k−2. Because all the i’s are distinct, there must exist some s ∈ {1, . . . , 2k}
such that is 	= js′ for any s′ ∈ {1, . . . , 2k − 2}. This means that, on the interval
[�, �+1), fi1 · · · fi2k is a constant multiple of some product of Rademacher functions,
and in this product, the Rademacher function ris appears exactly once. Thus the
orthogonality properties of the Rademacher functions imply that (12) holds.

For (8), suppose that i1, . . . , i2k are not distinct. On every interval [�, � + 1),
fi1 · · · fi2k is a strictly positive multiple of some product of Rademacher functions.
As such, it is always the case that

(13)

∫ �+1

�

fi1(t) · · · fi2k(t) dt ≥ 0.

It suffices to show, then, that the integral (13) is strictly positive for at least one
�. To that end, suppose without loss of generality that 1 ≤ i1 ≤ i2 ≤ · · · ≤ i2k.
Let j1 < · · · < jm enumerate those natural numbers which appear in the tuple
(i1, . . . , i2k) an odd number of times. By assumption, there is at least one natural
number appearing in this tuple two or more times, so the total number of natural
numbers appearing in the list an odd number of times can be at most 2k − 2. (If
there are any natural numbers at all appearing an even number of times, removing
them from the list leaves at most 2k− 2 elements; and if all indices appear an odd
number of times, at least one must appear three or more times, so removing two of
its instances reduces the list length to 2k − 2 again while preserving the criterion
by which j1, . . . , jm are chosen.) Extending the sequence of j’s as needed, we may
assume that there exist 1 ≤ j1 < · · · < j2k−2 such that every index i appearing in
the tuple (i1, . . . , i2k) an odd number of times also appears in (j1, . . . , j2k−2). Now
consider the integral of fi1(t) · · · fi2k(t) on Ij1,...,j2k−2

. Any index i appearing an
odd number of times in (i1, . . . , i2k) must belong to {j1, . . . , j2k−2} and consequently
fi(t) is positive and constant on Ij1,...,j2k−2

for each such i. If i appears an even
number of times in (i1, . . . , i2k), then fi is a positive multiple of ri(t), and so raising
fi to an even power makes it again strictly positive and constant. As a consequence,
fi1 · · · fi2k is strictly positive and constant on Ij1,...,j2k−2

and therefore (13) must
be a strict inequality on Ij1,...,j2k−2

as promised.
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5. Haar functions: Proposition 4

Recall the Haar functions ΨI as defined in (9). Observe that for n dyadic intervals
I1 ⊆ · · · ⊆ In � In+1 = R we have∫

ψI1 · · ·ψIn 	= 0

if and only if the number m ∈ {1, . . . , n} defined by I1 = · · · = Im � Im+1 is even.
As a consequence, the family of Haar functions {ψI}I∈D, indexed by the set of
dyadic intervals, is superorthogonal of Type IV: if I1, . . . , I2r are pairwise distinct,
then

∫
ψI1 · · ·ψI2r = 0 vanishes. Haar functions are however not superorthogonal

of Type II for 2r-tuples with r ≥ 2: if I1 � I2 � I3 are dyadic intervals, then the
index I3 appears precisely once in the 2r-tuple (I1, I1, I2, . . . , I2, I3), but∫

ψ2
I1 ψ2r−3

I2
ψI3 	= 0.

A similar argument shows that Haar functions are also not of Type III on R. To be
of Type III we would need to fix an ordering of the set D, say a bijection ι : N → D
and set ψι(j) = ψIj . According to this ordering, we would say the sequence {ψj}∞j=1

is superorthogonal of Type III on R for some r ≥ 2, in the sense that

(14)

∫
ψIj1

· · ·ψIj2r
= 0

whenever there is an index ji appearing in the product such that ji > j′ for all
j′ 	= ji, j

′ ∈ {j1, . . . , j2r}. The obstacle is that no such ordering can exist.
Indeed, choose an arbitrary bijection ι : N → D and set Ij = ι(j). We claim

that if Ij1 � Ij2 for two dyadic intervals and the Type III property (14) holds, then
necessarily j1 > j2. Indeed, suppose Ij1 � Ij2 are such that j1 < j2. Choose a
dyadic interval Ij3 � Ij2 and let imin = min(j2, j3) and imax = max(j2, j3) > j1.
Then imax is the largest index in the 2r-tuple (j1, j1, imin, . . . , imin, imax), but∫

ψ2
Ij1

ψ2r−3
Iimin

ψIimax
	= 0,

because Ij1 � Ij2 � Ij3 . This is a contradiction to the Type III property (14) for
this ordering. Thus, we must have j1 > j2 whenever Ij1 � Ij2 . Such a bijection
ι cannot exist, because the natural numbers are bounded from below (consider an
ancestor of I1 = ι(1)).

However, the subfamily of Haar functions associated with dyadic intervals con-
tained in a given compact interval is superorthogonal of Type III, by indexing the
sets according to I(k,�) = [2k�, 2k(� + 1)), and applying lexicographic ordering of
(k, �), so that (k, �) > (k′, �′) if k > k′ or k = k′ and � > �′.

6. Further directions

The identification of superorthogonality as a formal tool for obtaining a square
function estimate is quite new, and in the spirit of exploration we raise several
questions.

Formalizing a hierarchy of types is useful because it provides a variety of condi-
tions one can test for a given sequence of functions for which one wishes to prove
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a square function estimate. In particular, Type IV superorthogonality, and its un-
conditional implication of a square function estimate, promises to be useful since
one only needs to check (6) on a relatively small set, call it

Z(IV) = {2r-tuples with j1, . . . , j2r all distinct}.
Is there a type of superorthogonality that unconditionally guarantees a square func-
tion estimate, with a test set of index tuples that is strictly smaller than the set
Z(IV)?

We proved Theorem 1 with a constant Cr ≤ 21/2((2r)! − 1)1/2 for the square
function estimate in L2r, r ≥ 2. Showing a sequence of functions is Type IV pro-
vides a direct route to proving a square function estimate by testing a condition on
a relatively small set of indices, but proving the sequence satisfies a more restric-
tive type in the hierarchy can potentially improve the constant playing the role of
Cr. For example, recently Hickman and Wright [HW22] have studied an extension
operator associated to the moment curve in n-dimensional space, in the setting of
non-archimedean local fields. This type of study can be seen as a non-archimedean
analogue of the square function estimate obtained over R in the authors’ work
[GGP+21]. The latter work effectively obtained the square function estimate by
proving that along a nondegenerate curve such as the moment curve, extension op-
erators for sufficiently small, sufficiently separated intervals satisfy Type I* super-
orthogonality, so that a square function estimate holds with constant Cr ≤ (r!)1/2r

for each integer r ≤ n. Interestingly, without applying the full strength of their
method, Hickman and Wright prove that such extension operators satisfy a Type
II condition (see [HW22, Eqn(13)] and the two subsequent bullet points). By
[Pie21, §3.1], Type II functions satisfy a square function estimate, but the proof
there only gives Cr ≤ r. By pushing further to show a stronger Type I* prop-
erty holds (via a non-archimedean version of the Phong-Stein-Sturm sublevel set
decomposition, see [HW22, Prop. 1.2]), Hickman and Wright’s method allows the
smaller choice Cr ≤ (r!)1/2r for each integer r ≤ n. (Alternatively, Hughes uses
the Girard-Newton equations to show Cr ≤ (rr)1/2r = r1/2 for each integer r ≤ n
[Hug22, Prop. 5].) This leads to a question: can the formal constant in the square
function inequality implied by a type of superorthogonality, such as Cr in Theorem
1 for Type IV, be significantly improved in general?

Pierce also introduced a notion of quasi-superorthogonality [Pie21, §7]. Quasi-
superorthogonality can be interpreted as the condition that the integral (6) satisfies
a non-trivial upper bound (rather than vanishing) whenever the tuple of indices
j1, . . . , j2r lies in a certain set. (It turns out that this notion cleanly characterizes
an important phenomenon observed for multiplicative Dirichlet characters, and
more generally trace functions, in analytic number theory.) A different notion of
being “almost superorthogonal” of a certain type could be the requirement that (6)
vanishes whenever the tuple of indices j1, . . . , j2r is “close” to the set Z(type). As a
particularly simple example, being almost Type IV could impose that (6) vanishes
for all j1, . . . , j2r such that mini,i′ |ji − ji′ | ≥ c. This simple case is reminiscent
of Córdoba’s classic L4 argument for Bochner-Riesz operators [Cór79, p. 507].
Or, Andreas Seeger has pointed out that both these notions can be seen at play
in [CS06, Prop. 5.1]. For some notions of “almost,” one can do a preliminary
step that sparsifies or separates an original sequence {fj}j that is “almost” a type
into a finite number of sequences, each of which is precisely that type; this is
demonstrated for Type I* in [GGP+21, §6]. (See also Type III’ in [Pie21, §4.5].)
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Are there applications that essentially require interesting notions of “almost” or
“quasi” superorthogonality?

Acknowledgments

The authors thank J. Hickman and J. Wright for their encouragement and an
interesting discussion at Oberwolfach in July 2022. We thank AIM for funding our
SQuaRE workshop.

References

[Bur63] D. A. Burgess, On character sums and L-series. II, Proc. London Math. Soc. (3) 13
(1963), 524–536, DOI 10.1112/plms/s3-13.1.524. MR148626
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[Per01] Maŕıa Cristina Pereyra, Lecture notes on dyadic harmonic analysis, Second Sum-
mer School in Analysis and Mathematical Physics (Cuernavaca, 2000), Con-
temp. Math., vol. 289, Amer. Math. Soc., Providence, RI, 2001, pp. 1–60, DOI
10.1090/conm/289/04874. MR1864538

[Pie21] Lillian B. Pierce, On superorthogonality, J. Geom. Anal. 31 (2021), no. 7, 7096–7183,
DOI 10.1007/s12220-021-00606-3. MR4289256

Department of Mathematics, University of Pennsylvania, 209 South 33rd Street,

Philadelphia Pennsylvania 19104

Email address: gressman@math.upenn.edu

Department of Mathematics, Duke University, 120 Science Drive, Durham North

Carolina 27708

Email address: pierce@math.duke.edu

Department of Mathematics and Statistics, University of Massachusetts Lowell,

Lowell, Massachusetts 01854

Email address: joris roos@uml.edu

Mathematical Sciences Institute, Australian National University, Canberra, ACT

2601, Australia & Department of Mathematics, The Chinese University of Hong Kong,

Shatin, Hong Kong

Email address: polam.yung@anu.edu.au, plyung@math.cuhk.edu.hk

Licensed to Univ of Pennsylvania. Prepared on Thu May 30 15:22:47 EDT 2024 for download from IP 165.123.34.86.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=148626
https://mathscinet.ams.org/mathscinet-getitem?mr=544242
https://mathscinet.ams.org/mathscinet-getitem?mr=2251159
https://mathscinet.ams.org/mathscinet-getitem?mr=3338119
https://mathscinet.ams.org/mathscinet-getitem?mr=4289255
https://arxiv.org/abs/2208.07920
https://mathscinet.ams.org/mathscinet-getitem?mr=4534494
https://mathscinet.ams.org/mathscinet-getitem?mr=2188130
https://mathscinet.ams.org/mathscinet-getitem?mr=1576148
https://mathscinet.ams.org/mathscinet-getitem?mr=1864538
https://mathscinet.ams.org/mathscinet-getitem?mr=4289256

	1. Statement of the results
	1.1. Square function estimate
	1.2. Superorthogonality
	1.3. Type IV superorthogonality

	2. Proof of Proposition 2
	3. Proof of Theorem 1
	4. Construction of an example: Proof of Theorem 3
	5. Haar functions: Proposition 4
	6. Further directions
	Acknowledgments
	References

