
Abstract— Urban air quality and the impact of mobile source 
pollutants on human health are of increasing concern in 
transportation studies. Existing research often focuses on 
reducing traffic congestion and carbon footprints, but there's a 
notable gap in understanding the health impacts of traffic from 
an environmentally-just perspective. Addressing this, our paper 
introduces an integrated simulation platform that models not 
only traffic-related air quality but also the direct health 
implications at a microscopic level. This platform integrates five 
modules: SUMO for traffic modeling, MOVES for emissions 
modeling, a 3D grid-based dispersion model, a Matlab-based 
visualizer for pollutant concentrations, and a human exposure 
model. We emphasize the transportation-health pathway, 
examining how different mobility strategies impact human 
health. Our case study on multi-modal on-demand services 
demonstrates that a distributed pickup strategy can reduce 
cancer risk from PMଶ.ହ  exposure by 33.4% compared to 
centralized pickup. This platform offers insights into traffic-
related air quality and health impacts, providing valuable data 
for improving transportation systems and strategies with a focus 
on health outcomes. 

I. INTRODUCTION 

In recent years, increased transportation-related activities 
have raised awareness and concerns about air pollution, 
particularly PMଶ.ହ and NOx, due to their significant impact on 
public health. In 2022, the transportation sector was the largest 
producer of greenhouse gas nationwide, accounting for 
approximately 28.2% of total U.S. emissions [1]. To address 
the issues, a variety of emerging mobility technologies and 
services, such as connected and automated vehicles (CAVs), 
smart infrastructure and shared mobility, have been developed 
and deployed over the past decade [2]. For example, CAV 
technology has been widely studied to improve the 
sustainability of transportation systems, where a CAV can be 
driven by itself with the help of its on-board perception 
sensors, and also communicate with the other equipped 
vehicles (through vehicle-to-vehicle or V2V 
communications), roadside infrastructure (through vehicle-to-
infrastructure or V2I communications), and the “Cloud” [3]. 
Representative applications for urban scenarios are eco-
approach and departure [4], [5]. Besides the advanced 
technologies on the vehicle side, some researchers focus on the 
infrastructure side to improve the overall energy efficiency of 
the traffic system. Lee et al. proposed a cooperative vehicle 
intersection control system that enables cooperation between 
vehicles and infrastructure for effective intersection operation 

and management [6], thus enhancing system throughput and 
environmental sustainability.  

In addition to the advances in both the vehicle and 
infrastructure sides, emerging multi-modal mobility on-
demand (M3OD) services such as micro-mobility and ride-
hailing have not only unlocked novel opportunities for urban 
transportation but also introduced new challenges to users, 
service providers, and public transportation agencies alike. For 
example, increased curbside activities due to the prevalence of 
multi-modal Mobility as a Service (MaaS) have not only 
created congestion for traffic of different modes along the 
curbs or on the sidewalks, but also formed potential 
bottlenecks that may affect upstream on-road vehicular flows. 
From an environmental perspective, traffic congestion near the 
curbside would lead to energy waste and excessive tailpipe 
emissions, thus forming hotspot(s) with high pollutant 
concentration. Even worse, due to the high-volume pedestrian 
and/or other non-motorized traffic on the sidewalk, many more 
safety risks will be raised, and detrimental health impacts 
would be imposed on those vulnerable road users. However, 
most research related to these emerging M3OD services has 
been focused on accessibility, safety, and congestion impacts, 
but much less attention has been raised from the perspective of 
their resultant environmental and health impacts. In particular, 
how well-designed curbside management strategies would 
affect roadway (vehicular) traffic as well as sidewalk 
(pedestrian or other micro-mobility) traffic is still an open 
research question. In addition, how these strategies will 
influence air quality and vulnerable road users’ exposure to 
motor vehicular pollutants and toxins is a critical concern for 
local governments (e.g., cities, MPOs), especially for 
disadvantaged communities. 

 

Figure 1. The concept of integrated modeling for quantifying the 
environmental and health impacts related to M3OD transportation services. 

To address the aforementioned gaps, we develop an 
integrated simulation platform in this study (as shown in 
Figure 1) which is able to: 1) model a multi-modal 
transportation system with high resolution, including roadway 
network, motorized vehicles (such as passenger cars, trucks, 
and shuttles), and non-motorized transportation modes (such 
as pedestrians, bicyclists, or even other micro-mobility 
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travelers); 2) model traffic related pollutant emissions which 
include tailpipe emissions and even brake/tire worn emissions; 
3) model the air quality impact of these emissions air quality 
dispersion; 4) model the potential exposure to those vulnerable 
road users; 5) implement different curbside management 
strategies in response to multi-modal mobility on-demand 
(M3OD) services; and 6) evaluate the system performance 
especially in terms of environmental footprints and health 
impacts. 

The paper is organized as follows: the next section reviews 
the existing literature related to microscopic traffic simulators, 
vehicular emissions models, tailpipe pollutant dispersion 
models and their applications to urban traffic scenarios. Major 
efforts in developing the integrated modeling platform are 
presented in Section 3, where each module is elaborated. 
Based on the real-world network in the City of Riverside, 
Section 4 describes a case study on M3OD services and 
provides quantitative results of tailpipe emissions and human 
exposure for different curbside management strategies. The 
last section concludes this study with potential improvements 
for future research. 

II. BACKGROUND 

In this section, we will review the cutting-edge research in 
microscopic traffic simulation, emission modeling, and urban 
dispersion models. 

A. Microscopic Traffic Simulator 

Currently, there are several microscopic simulators 
available to support modeling traffic scenarios in a realistic 
setting, including the roadway network, motor vehicles and 
non-motorized road users (e.g., pedestrians, bicyclists). 
Among them, PTV VISSIM [7] and Aimsun [8] are two major 
commercial simulation tools. Specifically, VISSIM is a 
behavior-based multi-purpose microscopic simulation that can 
be linked with MATLAB through the Component Object 
Model (COM) interface or with C/C++ via dedicated 
application programming interfaces (APIs). Aimsun is a 
hybrid traffic modelling simulator which allows simultaneous 
application of multi-model analysis with large networks. On 
the other hand, SUMO [9] is an open-source traffic simulator 
that has been used for a variety of applications, such as 
dynamic navigation, traffic surveillance systems evaluation, 
and traffic light algorithm development [10]. In addition, 
SUMO provides an API, Traffic Control Interface (TraCI), to 
facilitate the interaction with external applications through a 
socket (bidirectional) connection. It should be noted that 
SUMO also includes a few emissions models, e.g., the 
Handbook Emission Factors for Road Transport (HBEFA), 
PHEM (Passenger Car and Heavy-Duty Emission Model), 
developed for European vehicle fleets. 

B. Microscopic Emission Model 

Vehicular emissions models estimate emissions rates 
and/or emission factors of motorized vehicles based on 
different traffic conditions and driving cycles. They can be 
classified into three main types, i.e., microscopic models, 
macroscopic models, and average velocity-based statistical 
models. In this study, we focus on the microscopic models 
derived from the relationship between the second-by-second 
vehicle trajectories and emission rates. The Comprehensive 
Modal Emissions Model or CMEM is able to predict second-

by-second tailpipe emissions and fuel consumption based on 
different modal operations from in-use vehicle fleets [11]. The 
calculation method fully considers the power and speed of the 
engine, to accurately reflect the emission characteristics of the 
vehicle, which belongs to transient physical models. Another 
well accepted model is the Virginia Tech microscopic (VT-
Micro) model that was developed using chassis dynamometer 
data on light duty vehicles and trucks [12]. A polynomial 
regression model on key vehicle dynamics, e.g., speed, 
acceleration, and power, is set up to estimate non-steady-state 
emissions. As aforementioned, HBEFA is adopted in SUMO 
and it is widely used for fleets in European countries [13]. 
Based on traffic activities, HBEFA can provide emission 
factors by a) type of emission (e.g., hot run, cold start), b) 
vehicle category (e.g., passenger cars, heavy duty vehicles, 
buses), c) year (1990-2050 for most countries), d) pollutants 
including CO, HC, NOx, PM, CO2, NH3 and N2O. 

Over the past decade, U.S. Environmental Protection 
Agency (EPA) has been developing a state-of-the-art vehicular 
emissions model, called Motor Vehicle Emissions Simulator 
(MOVES) [14]. By applying the binning strategy, MOVES 
aims at estimating vehicular emissions at multiple scales, i.e., 
microscopic (for individual vehicles), mesoscopic (based on 
link-level traffic data), and macroscopic (i.e., aggregated 
inventory for a region or even the entire nation). The open 
database and model structure of MOVES increase its 
transferability, allowing other stakeholders to collect their own 
datasets that represent local traffic conditions, vehicle mix and 
driving trajectories to estimate the specific tailpipe emissions 
inventory. In particular, the open database in MOVES stores 
the base emissions rates of different criteria pollutants for 
different vehicle types, vehicle ages, and operating mode bins 
(depending on speed, acceleration, and vehicle specific 
power). 

C. Dispersion Models and Their Application to Urban 
Scenarios 

Several dispersion models have been developed to 
examine the impact of vehicle emissions on urban air quality. 
Lefebvre et al. presented an integrated model framework 
consisting of a measurement interpolation model, a bi-
Gaussian plume model, and a canyon model to simulate urban 
traffic scenarios at the street level [15]. Shi et al. leveraged a 
CFD-based model to simulate scenarios with street canyons 
and visualize exhaust emissions of moving vehicles using 
dynamic mesh updating which could even capture the vehicle 
movement-induced turbulence effects [16]. Damoiseaux and 
Schutter developed a Line Source Gaussian Puff (LSGP) 
model capable of estimating distributions of gaseous 
pollutants in the vicinity of a freeway and applied it to 
assessing real-time traffic control, e.g., variable speed limit 
[17]. Nevertheless, LSGP is not suitable for microscopic (at 
the individual vehicle level) simulation, as it is a line source 
model. Zegeye proposed a 2D point-source dispersion model, 
which may update the pollutant concentration on a grid basis 
[18]. This model requires minimal computational resources, 
which makes it suitable for online estimation of environmental 
impacts. However, the lack of support in theory dims the 
validity of results from Zegeye’s model, and it is questionable 
to use a simplified decay function for vertical dispersion 
simulation without careful consideration of the mass 
conservation.  
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In principle, any one of these dispersion models can be 
incorporated into the simulation platform described in this 
paper. Instead, we have incorporated a 3-D grid model, which 
while not including the details of dispersion in an urban area, 
incorporates the primary processes that allow us to evaluate 
the impact of alternative transportation strategies. The model 
captures the unsteady aspects of emissions from moving 
vehicles and their subsequent dispersion in a framework that 
facilitates computational efficiency, a requirement for an 
integrated platform. While the model, in its current form, does 
not include the effects of urban street canyons, it can provide 
a time series of concentrations at specified receptors, and 
concentration gradients associated with moving vehicles.  

III. METHODOLOGY 

In this study, we leverage the capacity of SUMO and build 
up an integrated modeling platform (as depicted in Figure 1) 
by adding other key modules, including MOVES, a 3-
dimensional (3D) an unsteady grid-based dispersion model, a 
human exposure model, a Matlab-based concentration 
visualizer, and heuristic strategies for M3OD services (via 
TraCI). 

A. Overall Workflow  

 

Figure 2. The workflow to run the integrated modeling platform. 

Figure 2 presents the workflow developed for the modeling 
platform to quantify the environmental and health impacts 
related to M3OD services. The process begins with the 
construction of a multi-modal traffic network in SUMO, 
including taxis or Uber/Lyft vehicles, background traffic (i.e., 
passenger vehicles) and pedestrians. Subsequently, the 
second-by-second vehicular tailpipe emissions are estimated 
by the coded MOVES model. These emissions, coupled with 
prevailing meteorological conditions, are processed through 
our grid-based dispersion model, which is calibrated based on 
field experiments [19], to estimate grid-wide pollutant 
concentrations. The results can be visualized online through a 
custom-built visualization tool using Matlab. The instant and 
accumulative exposure to specific pollutant (e.g., NOx, PM) 
for each individual vulnerable road user (VRU) can be 
estimated, depending on his/her instant location (i.e., in which 
grid at each time step) and trajectory, as well as characteristics 
related to gender and age (such as height, breathing rate). 

B. Platform Inputs and Output 

1) Input 
a. Geographic area roadway network 

SUMO provides a python script called OsmWebWizard.py 
which can select the real-world region from the Open Street 
Map (OSM) to generate the target simulation roadway 
network without laborious efforts. Another script called 
netconvert.py provided by SUMO can convert OSM to SUMO 
compatible networks. Besides, users can also use a network 
editor named “Netedit” included in SUMO to create and 
modify self-defined network input compatible with SUMO.  

b. Traffic activity of vehicles and pedestrians 
SUMO provides a python script called RandomTrips.py 

which can generate a set of random trips in a given network 
that would apply to both vehicles and pedestrians. Self-defined 
vehicle profiles and pedestrian profiles are also allowed. In 
general, vehicle profiles have a list of vehicles, and each 
vehicle has basic attributes including departure time and 
position, arrival position, predefined route, acceleration, 
minimum gap, and vehicle length, etc. Specifically, special 
vehicle types can be given special attributes. For example, 
drop-off and pick-up duration can be defined for a taxi type 
vehicle. Besides the basic attributes are similar to vehicle 
attributes, pedestrian attributes divide predefined routes into 
routes of walking and routes of taking taxis by the location 
waiting for taxis. In particular, to calculate inhalation, we 
added a “type” attribute to the pedestrian profile to indicate 
whether the pedestrian is an adult or a child. 

c. Meteorological condition 
Meteorological condition is composed by wind speed and 

wind direction of each cell in the map. 

2) Output  
a. Vehicle information 

The vehicle information log is a JSON file, including type, 
location, speed, acceleration, heading, emissions rate and 
energy consumption rate of each individual vehicle at each 
time step. With post-processing, we can assess vehicular 
performance in terms of safety, mobility, and environmental 
sustainability.  

b. Traffic-related concentration 
The concentration log is a file with the extension ".npy" 

that stores concentration matrices for each pollutant of interest 
at every time step. Each matrix has dimensions of height, 
width, and length and can be further analyzed or replayed as 
needed. 

c. Pedestrian exposure 
This includes demographic characteristics (e.g., 

child/adult), location, speed, exposure of each individual 
pedestrian at each time step. The output file can be used to 
evaluate the quality of M3OD service (e.g., waiting time) and 
assess human exposure to the pollutants of interest either 
individually or in an aggregated manner. 

C. Platform Key Modules 

1) Key Module 1 – SUMO 
SUMO mainly serves as a microscopic traffic simulator 

handling vehicles and pedestrian moving behavior using 
default control algorithms. Besides this, SUMO also provides 
powerful APIs to extend its capability. For those interested in 
further exploring the functionalities in SUMO, please refer to 
https://www.eclipse.org/sumo/. 
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2) Key Module 2 – MOVES 
The original MOVES model developed by the U.S. EPA is 

very comprehensive and not suitable for on-line interaction 
with microscopic traffic simulation. In this study, we develop 
an alternative approach to simplify the application of MOVES 
to simulation while keeping reasonable fidelity similar to the 
original MOVES model. Figure 3 depicts the workflow of 
MOVES plug-in development for SUMO. Similar procedures 
can be applied to the development of other microscopic 
simulation tools (e.g., VISSIM). There are two major 
procedures (starting from the upper left corner): a) acquiring 
emission rate tables from MOVES; and b) calculating 
operating mode (OpMode) for each vehicle at each time step 
in the simulation. 

 
Figure 3. The workflow for developing the MOVES plug-in in SUMO. 

a. Acquiring Emission Rate Tables 
To retrieve the customized emission rate tables (from 

MOVES), we firstly input the network model information to 
the MOVES model, such as geographic region (e.g., Riverside 
in California), calendar month and year to be modeled (e.g., 
June 2022). In the meantime, we prepare a set of configuration 
files that can be linked to the MOVES database, including 
vehicle population/activity, fuel type/engine technology, 
vehicle inspection/maintenance program and meteorological 
statistics. Once all the input data files are ready, MOVES can 
be executed and output emission rate tables for different 
source types (e.g., passenger car, truck), considering various 
factors, such as vehicle model year distribution, fuel 
type/engine technology market share, and temperature and/or 
humidity adjustment. 

b. Calculating OpMode Distributions 
In SUMO, TraCI can access second-by-second vehicle 

trajectories (including both speeds and accelerations) and road 
grade (if any). With this activity data for each vehicle and 
roadway geometry, as well as the information on vehicle class 
and weight, the vehicle specific power (VSP) characteristics 
(in kWatt/tonne) can be calculated by [20]: 

𝑉𝑆𝑃 =  ൬
𝐴

𝑀
൰ ∙ 𝑣 + ൬

𝐵

𝑀
൰ ∙ 𝑣ଶ + ൬

𝐶

𝑀
൰ ∙ 𝑣ଷ + (𝑎 + 𝑔 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝑣, (1)  

where 𝐴 , 𝐵  and 𝐶  are the road-load related coefficients for 
rolling resistance ( 𝑘𝑊 ∙ 𝑠𝑒𝑐/𝑚 ), rotating resistance (𝑘𝑊 ∙
𝑠𝑒𝑐ଶ/𝑚ଶ ) and aerodynamic drag ( 𝑘𝑊 ∙ 𝑠𝑒𝑐ଷ/𝑚ଷ ), 
respectively; 𝑣 is the vehicle speed (𝑚/𝑠𝑒𝑐); 𝑀 is the mass of 
vehicle (metric ton); 𝑔 is the acceleration due to gravity (9.8 
𝑚/𝑠𝑒𝑐ଶ); 𝑎 is the vehicle acceleration (𝑚/𝑠𝑒𝑐ଶ); and 𝜃 is the 
(fractional) road grade. Default values of these parameters are 
provided in [20]. After the VSP values are calculated, they will 

be binned according to the MOVES’ vehicle operating mode 
(OpMode) bin definition given in [21]. With the emission rate 
tables coded in SUMO, the energy consumption and pollutant 
emissions can be estimated in either disaggregate (e.g., 
second-by-second for each vehicle) or aggregate in the spatial-
temporal manner. 

3) Key Module 3 – Dispersion model 
The concentrations resulting from the emissions from 

vehicles moving in the domain of interest are computed with 
an unsteady 3D grid-based model based on the mass 
conservation equation.  
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൰
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𝜕𝑦
൬𝐾௬

𝜕𝑞

𝜕𝑦
൰ +

𝑆(𝑥, 𝑦, 𝑧, 𝑡)

𝜌௔

, (2) 

 

where 𝑞 is the mixing ratio of the pollutant; and 𝑢(𝑡) and 𝑣(𝑡) 
are the horizontal velocities along the orthogonal 𝑥  and 𝑦 
coordinates used in the numerical solution of the equation. 
These velocities are taken to be constant over the domain but 
vary hourly. 𝐾(𝑧)  is the eddy diffusivity in the vertical 
direction, which is modeled using Monin-Obukhov similarity 
theory [22], and 𝐾௫  and 𝐾௬  are horizontal diffusivities 
assigned nominal values.  

The emission rate, 𝑆(𝑥, 𝑦, 𝑧, 𝑡) , corresponds to the 
emissions from vehicles in the grid squares laid over the 
domain during 𝛥𝑡, and 𝜌௔ is the density of air. The emissions 
are updated every time step to account for the movement of 
vehicles.  

Equation (2) is solved using the method of fractional steps, 
in which each component of the equation is updated over a 
time step, 𝛥𝑡, using the sequence 1) emission, 2) advection or 
horizontal transport by the wind, 3) Vertical diffusion, 4) 
horizontal diffusion in the x-direction, followed by 5) 
horizontal diffusion in the y-direction.  

Advection is solved using a semi-Lagrangian technique in 
which the mixing ratio is updated by computing a backward 
trajectory from the center of the grid square over 𝛥𝑡, and then 
computing 𝑞 at the location of the starting point of the 
trajectory using bi-linear interpolation. So, the advection 
component 

𝜕𝑞

𝜕𝑡
+ 𝑢(𝑡)

𝜕𝑞

𝜕𝑥
+ 𝑣(𝑡)

𝜕𝑞

𝜕𝑦
= 0, (3)  

is solved using the equivalent equation, 

𝑞(𝑥, 𝑦, 𝑧, 𝑡 + 𝛥𝑡) = 𝑞(𝑥 − 𝑢𝛥𝑡, 𝑦 − 𝑣𝛥𝑡, 𝑧, 𝑡) (4)  

The 𝑞  at (𝑥 − 𝑢𝛥𝑡, 𝑦 − 𝑣𝛥𝑡)  are obtained through bi-
linear interpolation of the 𝑞 field at time, 𝑡.  

The vertical and horizontal diffusion terms are solved 
separately using a finite difference equation that is implicit in 
time. This finite difference representation results in a 
tridiagonal system of linear equations that are readily solved 
using explicit methods.  

The meteorological inputs consist of the wind field, 𝑈 =
(𝑢, 𝑣) , the wind direction 𝜃௪  , the friction velocity 𝑢∗ , the 
Monin-Obukhov length 𝐿,  the mixed layer height 𝑧௜ , the 
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roughness length 𝑧଴ , and the measurement height 𝑧௥௘௙ . The 
micrometeorological variables, which are derived from 
AERMET, the meteorological processor of AERMOD [23], 
are used to compute the vertical eddy diffusivity, 𝐾(𝑧)  in 
Equation (2) . The eddy diffusivities can be enhanced to 
account for vehicle-induced turbulence. We can also account 
for street-canyon enhancement of concentrations using the 
method described in [24]. These features have not yet been 
incorporated in the current version of the dispersion model.  

4) Key Module 4 – Matlab-based Online Visualizer 
SUMO has its own graphical user interface (GUI) showing 

the road network, real-time traffic and pedestrian flows, but 
not the emissions or concentrations. In this project, we develop 
a Matlab-based routine for visualizing the real-time 
concentration of the area of interest using colormap, along 
with the simulation run in SUMO. To achieve this, we first 
read and display the road network from the net file of SUMO. 
Then, we create grids based on the size of the entire network 
and the defined grid size. The side length of the entire mesh 
area is extended to be 10% larger than the target road network 
to avoid any margin problem. Finally, we display the 
concentration matrix by “nipy_spectral” colormap. There is a 
color bar which indicates the mapping of data values, and its 
range keeps updating based on the latest concentration matrix. 
Figure 4 presents an example of a concentration map 
(overlaying the roadway network) output from the Matlab-
based Visualizer. 

 

Figure 4. A screenshot of the Matlab-based Visualizer for an example 
simulation run in SUMO. 

5) Key Module 5 – Human Exposure Model 
In this research, human exposure refers to the amount of 

pollutant inhaled by a person subject. To assess the pollutant 
exposure, inhaled mass (IM) is used as the metric and is 
calculated by the following Equation [25]. Assuming a 
pedestrian subject 𝑖 is located within grid൫𝑥௝௖ , 𝑦௝௖൯ at time step 
𝑘, then 

𝐼𝑀௜(𝑘) = 𝑐𝑜𝑛𝑐(𝑥, 𝑦, 𝑘) ∙ ∆𝑡 ∙ 𝐵𝑅௜(𝑘), (5)  

where 𝑐𝑜𝑛𝑐(𝑥, 𝑦, 𝑘) is the pollutant concentration (μg/m3) 
in grid(𝑥, 𝑦) at time step 𝑘; ∆𝑡 is the time step; and 𝐵𝑅௜(𝑘) 
denotes the breathing rate (assume to be constant in this study) 
of the 𝑖 -th subject exposed to the pollutant at time step 𝑘 . 
Breathing rates of different age groups can be referred to U.S. 
EPA Exposure Factors Handbook [26]. In this study, we 
assume a population-wide average adult breathing rate to be 
17 𝑚ଷ/𝑑𝑎𝑦. Also, we concern more on human exposure to 
PMଶ.ହ, as they are associated with a range of health risks for 
many population groups [27]. 

In the cancer risk assessment, we focus on the risks 
associated with traffic pollutant PMଶ.ହ . The cancer risk 
equations presented below are based on the Hotspots Analysis 
and Reporting Program (HARP) Air Dispersion Modeling and 

Risk Tool [28]. All of the parameters used in these equations 
are chosen based on the acceptable ranges or adapted from 
existing research, to ensure valid assessment: 

𝐶௔௜௥ =
𝐼𝑀௔௩௚

𝐵𝑅 × 𝑡
(6)  

𝐷𝑜𝑠𝑒 = 𝐶௔௜௥  ×
𝐵𝑅

𝐵𝑊
 × 𝐴𝐹 × 𝐸𝐹 × 10ି଺ (7) 

𝐶𝑎𝑛𝑐𝑒𝑟 𝑅𝑖𝑠𝑘 = 𝐷𝑜𝑠𝑒 ×  𝑃𝐹 ×
𝐸𝐷

𝐴𝐿
 × 𝐴𝑆𝐹 × 𝐶𝐹, (8)  

where 𝐶𝑎𝑛𝑐𝑒𝑟 𝑅𝑖𝑠𝑘  is defined as the risk a hypothetical 
individual faces of developing cancer, if exposed to 
carcinogenic emissions from a particular source for a specific 
duration; this risk is defined as an excess risk because it is 
above and beyond the background cancer risk to the 
population; and the cancer risk is expressed in terms of risk per 
million exposed individuals. In Equation (6), 𝐶௔௜௥  is the 
concentration of the target pollutant (in the unit of 𝜇𝑔/𝑚ଷ). 
𝐼𝑀௔௩௚  is the average inhaled mass calculated from the 
dispersion model in 𝜇𝑔. 𝑡 represents the amount of time that 
an individual is exposed to a toxic pollutant during the 
commute. In Equation (7), 𝐷𝑜𝑠𝑒 is the daily amount of a toxic 
pollutant (in the unit of 𝑚𝑔/𝑘𝑔/𝑑𝑎𝑦) that the human body 
absorbs. BR and 𝐵𝑊  refer to the breathing rate and body 
weight, respectively. The breathing rate to body mass ratio 
BR/BW is set to be 233 (𝐿/𝑘𝑔/𝑑𝑎𝑦) for adults. 𝐴𝐹  is the 
absorption factor which is defined as 1 for adults. 𝐸𝐹 is the 
exposure frequency which is set 250/365 for a working period 
of 250 days per year. In Equation (8), 𝑃𝐹 represents potency 
factor for diesel particulate matter and is defined as 1.1 
(𝑚𝑔/𝑘𝑔/𝑑𝑎𝑦)ିଵ, PF for diesel particulate matter is applied 
here as a conservative estimate due to lack of potency data for 
gasoline exhaust; 𝐸𝐷 and 𝐴𝐿 measure exposure duration and 
average lifespan, respectively. The ED/AL ratio is set 20/70 
for a 20-year work period and 70-year lifespan. 𝐴𝑆𝐹 stands for 
age sensitivity factors and is defined as 1 for adults. CF is the 
hourly fraction spent on commuting during a day represented 
as a percentage (i.e., 𝑡/24 × 100%). 

IV. CASE STUDY AND RESULTS 

To showcase the capability of the integrated modeling 
platform, we consider a M3OD service scenario within an 
urban district and deploy a grid-based dispersion model to 
evaluate the health impact on customers under two different 
curbside pickup strategies: centralized and distributed. 

A. Simulation Environment 
We use osmWebWizard.py provided by SUMO to extract the 

roadway network of a target area in Riverside, CA, as shown 
in Figure 5. This roadway network is bounded by W Linden 
Street (Northmost), 12th Street (Southernmost), Kansas 
Avenue (Westernmost), and Iowa Avenue (Easternmost). To 
facilitate pedestrian demand generation, we further add the 
sidewalk for each edge in the network. To enable the 
dispersion modeling, we divide the network into a 353×185 
grid matrix with the grid size of 5×5m. As for the height (along 
the vertical axis), we define six layers, i.e., 0.3, 1.2, 4.8, 19.2, 
76.8, and 200m. The selected height values follow a geometric 
progression where each is four times greater than the previous 
one except for the last value (i.e., 200m) which is considered 
as the boundary layer. This progression ensures a well-
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distributed sampling of pollutant concentrations at different 
altitudes, efficiently capturing the dynamics of pollutant 
dispersion in the vertical direction. In this case, at every time 
step the platform can generate 353×185×6 matrices for the 
concentrations of each emitted pollutant. The entire simulation 
duration is set at 3600 seconds with a time step of 1 second. In 
addition, the dispersion model parameters are established as 
follows: Monin-Obukhov length 𝐿  of -200, the mixed layer 
height 𝑧௜  of 200m, the roughness length 𝑧଴ of 0.1m, and the 
measurement height 𝑧௥௘௙  of 5m.  

 

 

Figure 5. View of study network in Google Map and View of study network 
in SUMO 

To efficiently obtain reliable simulation results, we 
consider the balance between spatial resolution and 
computational efficiency when selecting the grid size. We 
evaluate the average computational time over a range of grid 
sizes, including 1x1, 3x3, 5x5, 10x10, 12x12, 15x15, and 
22x22 as shown in Figure 6. Based on this analysis, a 5x5 grid 
size is selected in this study as it demonstrates a good balance 
(i.e., “elbow effect”) between spatial resolution and 
computational efficiency. 

 
Figure 6. Computational time per time step for various grid sizes. 

In the simulation, we set up the vehicle mix to be 95% of 
passenger vehicles and 5% of taxis vehicles. The passenger 
vehicles are considered background traffic, while taxis 
vehicles can receive pick-up requests, pick up passengers at 
their waiting locations and drop off them at their destinations. 
All the vehicles and pedestrians are randomly generated. 
Unlike the passenger vehicles which are spawned and 
terminated once completing the predefined routes, SUMO 
provides taxis vehicles with the idling algorithm option to 
enable them to continue driving randomly until the next 
request is received. In addition, taxis vehicles can specify the 
drop-off durations and pick-up duration, as shown in Table 1. 

TABLE 1. VEHICULAR PARAMETERS AND SIMULATION SETUP 

Vehicle Type Taxi Passenger Vehicle 
Number 120 2280 
Minimum Gap (m) 5 5 
Maximum Acceleration (m/s2) 4 4 
Maximum Deceleration (m/s2) -5 -5 
Length (m) 5 5 
Pick up Duration (s) 5 -- 
Drop off Duration (s) 10 -- 

We assume the traffic volume per hour in this urban district 
is 2400 vehicles per hour (VPH). Based on the predefined 
vehicle mix, the number of passenger vehicles is 2280 and the 
number of taxis/TNC vehicles is 120. Pedestrians also have 
random origins and destinations, similar to the configuration 
of vehicles in SUMO, but they need to specify the locations 
where they should wait for pickups. Moreover, pedestrians can 
only access sidewalks and crossings, rather than motor 
roadways. It is noted that pedestrian characteristics, such as 
height and breathing rate, can be customized to model different 
groups, e.g., children and adults. In this study, we only 
randomly generate 240 adults. 

To evaluate the human health impacts caused by different 
pickup strategies, we set up two scenarios: centralized pickup 
and distributed pickup. As for the centralized pickup, we 
create a central station at one road segment, as shown in Figure 
7(a), highlighted with a red box. In this scenario, all 
pedestrians have to walk to the station and wait for pickups as 
shown in Figure 7(b) as blue dots, and all for-service vehicles 
have to meet respective passengers at the same station. In the 
second scenario, besides the station defined in Scenario 1, we 
create another 7 stations round as shown in Figure 7(c). 
Pedestrians are randomly distributed to these 8 stations to wait 
for pickups. The wind speed is set to be 10m/s blowing from 
northwest to southeast, which is a typical meteorological 
condition in Riverside, CA in Summer.  

 

 

 

Figure 7. Station configuration for different curbside pickup strategies. (top) 
Centralized pickup, (middle) Zoomed in station in centralized pickup 
scenario, (bottom) Distributed pickup 

B. Results 

a. Vehicular Emissions 
Table 2. compares the emissions results between two 

pickup strategies. As can be observed from the table, the total 
emissions of NOx and PMଶ.ହ  for the distributed pickup 
scenario are slightly higher than those of the centralized 
pickup scenario. This is mainly due to the increase in vehicle-
mile-traveled (VMT). After normalization by the distance, 
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there is no significant difference in total emission factor (i.e., 
Total Emissions/VMT) between two strategies, ranging from 
-0.7% to -0.9%. 

TABLE 2. VEHICULAR EMISSIONS COMPARISON FOR DIFFERENT PICKUP 
STRATEGIES 

Scenario Centrali
zed 

Distribut
ed 

Differen
ce 

Vehicle-mile-traveled (mile) 2801 2879 2.8% 
Average Velocity of Background 
Passenger Vehicles (mile/hour) 

23.01 22.85 -0.7% 

Average Velocity of Taxis (mile/hour) 18.14 19.29 6.34% 
Total Emission of 
Passenger Vehicles (g) 

 
 
 
NOx 

243.54 244.16 0.3% 

Total Emission of Taxis (g) 138.60 145.33 0.5% 
Total Emission (g) 382.15 389.48 1.9% 
Total Emission (g/mile) 0.13642 0.1352 -0.9% 
Total Emission of 
Passenger Vehicles (g) 

 
 
 
PMଶ.ହ 

2.20 2.20 0% 

Total Emission of Taxis (g) 1.43 1.50 4.9% 
Total Emission (g) 3.63 3.71 2.2% 
Total Emission (g/mile) 0.001296 0.001287 -0.7% 

b. Network-wise Grid-based Concentration 
To present the difference in traffic-related concentration, 

we firstly compare the estimated concentration profiles of both 
NOx and PMଶ.ହ (over the time) under two pickup scenarios at 
the location of the bus station. Then, we show the 
concentration profiles at 1.2m estimated by the grid-based 
dispersion model. Figure 8 displays the concentration levels at 
the central bus station. The figure shows that concentrations at 
the bus station are generally higher with the centralized pickup 
strategy compared to the distributed scenario. Specifically, 
mean concentrations of NOx and PMଶ.ହ  throughout the 
centralized pickup strategy were 17% and 64% higher than 
those observed with the distributed pickup strategy, 
respectively. 

 

 
Figure 8. Comparison of pollutant concentration profiles between two pickup 
scenarios at the central station. (a) NOx concentration profile (b) PMଶ.ହ 
concentration profile 

Furthermore, we show a typical screenshot of the network-
wise concentration difference of both NOx and PMଶ.ହ between 
two pickup strategies (i.e., 𝑐𝑜𝑛𝑐௖௘௡௧௥௔௟ − 𝑐𝑜𝑛𝑐ௗ௜௦௧௥௜௕௨௧௘ௗ ) at 
the same time step in Figure 9. As can be observed from the 

figure, the largest difference in concentration between these 
two strategies occurs at or around the location of the central 
station. 

 

 
Figure 9. The difference of network-wise pollutant concentration (at 1.2m) 
between the centralized scenario and the distributed scenario. (a) NOx results 
(b) PMଶ.ହ results 

c. Pedestrian Exposure 
Figure 10 displays the cumulative inhale mass (AIM) of 

PMଶ.ହ for a typical pedestrian, plotted against the dimensions 
of the map and time. The color-coded scatter plot indicates the 
position and AIM value of the pedestrian at each point in time, 
allowing for a better visualization of the pedestrian's trajectory 
and the associated PMଶ.ହ  exposure over time. Once the 
pedestrian was picked up by a taxi, the color of the scatter plot 
stopped changing, indicating that the inhale mass was no 
longer accumulating as the pedestrian was no longer exposed 
to outdoor PMଶ.ହ while in the taxi. 

 
Figure 10. Pedestrian AIM of PMଶ.ହ over time 

Table 3 summarizes the key statistics (e.g., maximum, 
minimum, median and mean) of the distributions of 
pedestrians’ AIM of PMଶ.ହ . The maximum AIM when 
applying the distributed pickup strategy is 33.2% lower than 
that of the centralized strategy. The median AIM and mean 
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AIM in the distributed scenarios are close and lower than the 
values of the centralized scenario. The cancer risk is calculated 
based on Equation (6-8) and shown in Table 3. 

TABLE 3. COMPARISON OF HUMAN EXPOSURE TO PMଶ.ହ WITH DIFFERENT 
PICKUP STRATEGIES 

Scenario Centraliz
ed 

Distribut
ed 

Differen
ce 

Total Number of Pedestrians 240 240 0% 
Maximum Inhale Mass (μg) 0.0066 0.0045 -33.2% 
Minimum Inhale Mass (μg) 0 0 0% 
Median Inhale Mass (μg) 0.0028 0.0017 -39.5% 
Average Inhale Mass (μg) 0.0027 0.0018 -33.4% 
Cancer Risk (in one million) 0.016 0.011 -33.4% 

V. CONCLUSIONS AND FUTURE WORK 

This study proposes an integrated analysis, modeling, and 
simulation (AMS) platform for estimating traffic-related 
health impacts in a microscopic manner. Besides the traffic 
model and emission models, we introduce a 3D grid-based 
concentration model and a human exposure model as the key 
components of this platform. A case study on the evaluation of 
different curbside management strategies has shown the 
effectiveness of the AMS platform. A 5x5 grid size was chosen 
as it provided a good balance between spatial resolution and 
computational efficiency for obtaining reliable simulation 
results. It turns out that the centralized pickup strategy has 
more adverse effects on health in terms of human exposure to 
PMଶ.ହ , compared to the distributed pickup strategy. The 
difference in cancer risk, on average, can be reduced by as 
much as 33.4%. The reasons may include a) relatively higher 
concentration due to the bottleneck created by the for-service 
vehicles; and b) longer waiting time for pedestrians in the 
centralized pickup scenario. 

For future directions, we will apply this tool to investigate 
the health impacts of different roadway design and 
Transportation Systems Management and Operations (TSMO) 
strategies. In addition, we will conduct more field experiments 
to collect data for dispersion model calibration and keep 
improving the model accuracy by considering more realistic 
aerodynamic effects (e.g., turbulence) in the field of 
transportation. 

VI. ACKNOWLEDGMENT 

This research was funded by the Center for Advancing 
Research in Transportation Emissions, Energy, and Health 
(CARTEEH), project number 05-49-UCR. The authors would 
like to acknowledge the California Air Resource Board for 
providing PEAQS to measure CO2 concentration. The 
contents of this paper reflect only the views of the authors, who 
are responsible for the facts and the accuracy of the data 
presented here. 

REFERENCES 
[1] U.S. EPA, "Inventory of U.S. Greenhouse Gas Emissions and Sinks," 

2022. [Online]. Available: 
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-
emissions-and-sinks. [Accessed: Apr. 11, 2023]. 

[2] D. Sperling, Three Revolutions: Steering Automated, Shared, and 
Electric Vehicles to a Better Future. Island Press, 2018. 

[3] Z. Wang et al., "A Digital Twin Paradigm: Vehicle-to-Cloud Based 
Advanced Driver Assistance Systems," in Proc. 2020 IEEE 91st 
Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1-6. 

[4] O. D. Altan et al., "GlidePath: Eco-Friendly Automated Approach and 
Departure at Signalized Intersections," IEEE Trans. Intell. Veh., vol. 2, 
pp. 266-277, 2017. 

[5] K. Katsaros et al., "Performance study of a Green Light Optimized 
Speed Advisory (GLOSA) application using an integrated cooperative 
ITS simulation platform," in Proc. 2011 7th Int. Wireless Commun. 
Mob. Comput. Conf., 2011, pp. 918-923. 

[6] J. Lee and B. Park, "Development and Evaluation of a Cooperative 
Vehicle Intersection Control Algorithm Under the Connected Vehicles 
Environment," IEEE Trans. Intell. Transp. Syst., vol. 13, pp. 81-90, 
2012. 

[7] M. Fellendorf and P. Vortisch, "Microscopic Traffic Flow Simulator 
VISSIM," in Fundamentals of Traffic Simulation, J. Barceló, Ed. 
Springer, New York, NY, 2010, pp. 63-93. 

[8] Aimsun, "Welcome to Aimsun Next 22," Aimsun Next Users Manual, 
2022. [Online]. Available: https://docs.aimsun.com/next/22.0.2/. 
[Accessed: Apr. 11, 2023]. 

[9] M. Behrisch et al., "SUMO – Simulation of Urban MObility: An 
Overview," in Proc. SIMUL 2011, Third Int. Conf. Adv. Syst. Simul., 
Barcelona, 2011. 

[10] D. Krajzewicz et al., "Recent Development and Applications of SUMO 
- Simulation of Urban MObility," Int. J. Adv. Syst. Meas., vol. 3 & 4, 
2012. 

[11] M. Barth et al., "Comprehensive Modal Emissions Model (CMEM)," 
2000. 

[12] H. Rakha et al., "Development of VT-Micro model for estimating hot 
stabilized light duty vehicle and truck emissions," Transp. Res. Part D: 
Transp. Environ., vol. 9, pp. 49-74, 2004. 

[13] INFRAS, "Handbook of emission factors for road transport (HBEFA) 
3.1. Quick Reference," INFRAS, Bern, Switzerland, Tech. Rep. I-
20/2009, 2009. 

[14] U.S. EPA, "EPA releases MOVES2010 mobile source emissions model: 
questions and answers," U.S. EPA, Office of Transp. Air Qual., 
Washington, D.C., Tech. Rep. EPA-420-F-09-073, 2009. 

[15] W. Lefebvre et al., "Evaluation of the RIO-IFDM-street canyon model 
chain," Atmos. Environ., vol. 77, pp. 325-337, 2013. 

[16] T. Shi et al., "The effect of exhaust emissions from a group of moving 
vehicles on pollutant dispersion in the street canyons," Build. Environ., 
vol. 181, 107120, 2020. 

[17] M. Damoiseaux and B. De Schutter, "An Efficient Dispersion Model 
for Control of Emission Levels in the Vicinity of Freeways," in Proc. 
2021 IEEE Int. Intelligent Transp. Syst. Conf. (ITSC), 2021, pp. 2455-
2462. 

[18] S. K. Zegeye, "Model-based traffic control for sustainable mobility," 
Ph.D. dissertation, Delft Univ. of Technol., Delft, 2011. 

[19] Y. Ding et al., “Field study to estimate exposure to vehicle exhaust 
during idling and starting,” Atmospheric Pollution Research, vol. 14, 
no. 1, pp. 101632, 2023. 

[20] U.S. EPA, "MOVES2010 Highway vehicle population and activity 
data," U.S. EPA, Tech. Rep. EPA-420-R-10-026, 2010. 

[21] Z. Wang et al., "MOVESTAR: An Open-Source Vehicle Fuel and 
Emission Model based on USEPA MOVES," 2021. [Online]. Available: 
https://doi.org/10.48550/arXiv.2008.04986. 

[22] J. A. Businger et al., "Flux-Profile Relationships in the Atmospheric 
Surface Layer," J. Atmos. Sci., vol. 28, pp. 181–189, 1971. 

[23] A. J. Cimorelli et al., "AERMOD: A Dispersion Model for Industrial 
Source Applications. Part I: General Model Formulation and Boundary 
Layer Characterization," J. Appl. Meteorol., vol. 44, pp. 682–693, 2005. 

[24] N. Schulte et al., "The ratio of effective building height to street width 
governs dispersion of local vehicle emissions," Atmos. Environ., vol. 
112, pp. 54–63, 2015. 

[25] D. Bennett et al., "Defining intake fraction," Environ. Sci. Technol., vol. 
36, pp. 207A-211A, 2002. 

[26] U.S. EPA, "Exposure Factors Handbook 2011 Edition," U.S. EPA, 
Tech. Rep. EPA/600/R-09/052F, 2011. 

[27] S. Weichenthal et al., "Personal exposure to specific volatile organic 
compounds and acute changes in lung function and heart rate variability 
among urban cyclists," Environ. Res., vol. 118, pp. 118–123, 2012. 

[28] California Air Resources Board, "HARP Air Dispersion Modeling and 
Risk Tool," Health Database, 2022. [Online]. Available: 
https://ww2.arb.ca.gov/resources/documents/harp-air-dispersion-
modeling-and-risk-tool. [Accessed: Apr. 11, 2023]. 

8

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 30,2024 at 18:44:27 UTC from IEEE Xplore.  Restrictions apply. 


