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Abstract— Urban air quality and the impact of mobile source
pollutants on human health are of increasing concern in
transportation studies. Existing research often focuses on
reducing traffic congestion and carbon footprints, but there's a
notable gap in understanding the health impacts of traffic from
an environmentally-just perspective. Addressing this, our paper
introduces an integrated simulation platform that models not
only traffic-related air quality but also the direct health
implications at a microscopic level. This platform integrates five
modules: SUMO for traffic modeling, MOVES for emissions
modeling, a 3D grid-based dispersion model, a Matlab-based
visualizer for pollutant concentrations, and a human exposure
model. We emphasize the transportation-health pathway,
examining how different mobility strategies impact human
health. Our case study on multi-modal on-demand services
demonstrates that a distributed pickup strategy can reduce
cancer risk from PM,s exposure by 33.4% compared to
centralized pickup. This platform offers insights into traffic-
related air quality and health impacts, providing valuable data
for improving transportation systems and strategies with a focus
on health outcomes.

I. INTRODUCTION

In recent years, increased transportation-related activities
have raised awareness and concerns about air pollution,
particularly PM, ¢ and NOx, due to their significant impact on
public health. In 2022, the transportation sector was the largest
producer of greenhouse gas nationwide, accounting for
approximately 28.2% of total U.S. emissions [1]. To address
the issues, a variety of emerging mobility technologies and
services, such as connected and automated vehicles (CAVs),
smart infrastructure and shared mobility, have been developed
and deployed over the past decade [2]. For example, CAV
technology has been widely studied to improve the
sustainability of transportation systems, where a CAV can be
driven by itself with the help of its on-board perception
sensors, and also communicate with the other equipped
vehicles (through vehicle-to-vehicle or v2v
communications), roadside infrastructure (through vehicle-to-
infrastructure or V2I communications), and the “Cloud” [3].
Representative applications for urban scenarios are eco-
approach and departure [4], [5]. Besides the advanced
technologies on the vehicle side, some researchers focus on the
infrastructure side to improve the overall energy efficiency of
the traffic system. Lee et al. proposed a cooperative vehicle
intersection control system that enables cooperation between
vehicles and infrastructure for effective intersection operation
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and management [6], thus enhancing system throughput and
environmental sustainability.

In addition to the advances in both the vehicle and
infrastructure sides, emerging multi-modal mobility on-
demand (M30D) services such as micro-mobility and ride-
hailing have not only unlocked novel opportunities for urban
transportation but also introduced new challenges to users,
service providers, and public transportation agencies alike. For
example, increased curbside activities due to the prevalence of
multi-modal Mobility as a Service (MaaS) have not only
created congestion for traffic of different modes along the
curbs or on the sidewalks, but also formed potential
bottlenecks that may affect upstream on-road vehicular flows.
From an environmental perspective, traffic congestion near the
curbside would lead to energy waste and excessive tailpipe
emissions, thus forming hotspot(s) with high pollutant
concentration. Even worse, due to the high-volume pedestrian
and/or other non-motorized traffic on the sidewalk, many more
safety risks will be raised, and detrimental health impacts
would be imposed on those vulnerable road users. However,
most research related to these emerging M30D services has
been focused on accessibility, safety, and congestion impacts,
but much less attention has been raised from the perspective of
their resultant environmental and health impacts. In particular,
how well-designed curbside management strategies would
affect roadway (vehicular) traffic as well as sidewalk
(pedestrian or other micro-mobility) traffic is still an open
research question. In addition, how these strategies will
influence air quality and vulnerable road users’ exposure to
motor vehicular pollutants and toxins is a critical concern for
local governments (e.g., cities, MPOs), especially for
disadvantaged communities.
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Figure 1. The concept of integrated modeling for quantifying the
environmental and health impacts related to M3OD transportation services.

To address the aforementioned gaps, we develop an
integrated simulation platform in this study (as shown in
Figure 1) which is able to: 1) model a multi-modal
transportation system with high resolution, including roadway
network, motorized vehicles (such as passenger cars, trucks,
and shuttles), and non-motorized transportation modes (such
as pedestrians, bicyclists, or even other micro-mobility
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travelers); 2) model traffic related pollutant emissions which
include tailpipe emissions and even brake/tire worn emissions;
3) model the air quality impact of these emissions air quality
dispersion; 4) model the potential exposure to those vulnerable
road users; 5) implement different curbside management
strategies in response to multi-modal mobility on-demand
(M30D) services; and 6) evaluate the system performance
especially in terms of environmental footprints and health
impacts.

The paper is organized as follows: the next section reviews
the existing literature related to microscopic traffic simulators,
vehicular emissions models, tailpipe pollutant dispersion
models and their applications to urban traffic scenarios. Major
efforts in developing the integrated modeling platform are
presented in Section 3, where each module is elaborated.
Based on the real-world network in the City of Riverside,
Section 4 describes a case study on M30OD services and
provides quantitative results of tailpipe emissions and human
exposure for different curbside management strategies. The
last section concludes this study with potential improvements
for future research.

II. BACKGROUND

In this section, we will review the cutting-edge research in
microscopic traffic simulation, emission modeling, and urban
dispersion models.

A.  Microscopic Traffic Simulator

Currently, there are several microscopic simulators
available to support modeling traffic scenarios in a realistic
setting, including the roadway network, motor vehicles and
non-motorized road users (e.g., pedestrians, bicyclists).
Among them, PTV VISSIM [7] and Aimsun [8] are two major
commercial simulation tools. Specifically, VISSIM is a
behavior-based multi-purpose microscopic simulation that can
be linked with MATLAB through the Component Object
Model (COM) interface or with C/C++ via dedicated
application programming interfaces (APIs). Aimsun is a
hybrid traffic modelling simulator which allows simultaneous
application of multi-model analysis with large networks. On
the other hand, SUMO [9] is an open-source traffic simulator
that has been used for a variety of applications, such as
dynamic navigation, traffic surveillance systems evaluation,
and traffic light algorithm development [10]. In addition,
SUMO provides an API, Traffic Control Interface (TraCl), to
facilitate the interaction with external applications through a
socket (bidirectional) connection. It should be noted that
SUMO also includes a few emissions models, e.g., the
Handbook Emission Factors for Road Transport (HBEFA),
PHEM (Passenger Car and Heavy-Duty Emission Model),
developed for European vehicle fleets.

B.  Microscopic Emission Model

Vehicular emissions models estimate emissions rates
and/or emission factors of motorized vehicles based on
different traffic conditions and driving cycles. They can be
classified into three main types, i.e., microscopic models,
macroscopic models, and average velocity-based statistical
models. In this study, we focus on the microscopic models
derived from the relationship between the second-by-second
vehicle trajectories and emission rates. The Comprehensive
Modal Emissions Model or CMEM is able to predict second-
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by-second tailpipe emissions and fuel consumption based on
different modal operations from in-use vehicle fleets [11]. The
calculation method fully considers the power and speed of the
engine, to accurately reflect the emission characteristics of the
vehicle, which belongs to transient physical models. Another
well accepted model is the Virginia Tech microscopic (VT-
Micro) model that was developed using chassis dynamometer
data on light duty vehicles and trucks [12]. A polynomial
regression model on key vehicle dynamics, e.g., speed,
acceleration, and power, is set up to estimate non-steady-state
emissions. As aforementioned, HBEFA is adopted in SUMO
and it is widely used for fleets in European countries [13].
Based on traffic activities, HBEFA can provide emission
factors by a) type of emission (e.g., hot run, cold start), b)
vehicle category (e.g., passenger cars, heavy duty vehicles,
buses), ¢) year (1990-2050 for most countries), d) pollutants
including CO, HC, NOx, PM, CO2, NH3 and N20O.

Over the past decade, U.S. Environmental Protection
Agency (EPA) has been developing a state-of-the-art vehicular
emissions model, called Motor Vehicle Emissions Simulator
(MOVES) [14]. By applying the binning strategy, MOVES
aims at estimating vehicular emissions at multiple scales, i.e.,
microscopic (for individual vehicles), mesoscopic (based on
link-level traffic data), and macroscopic (i.e., aggregated
inventory for a region or even the entire nation). The open
database and model structure of MOVES increase its
transferability, allowing other stakeholders to collect their own
datasets that represent local traffic conditions, vehicle mix and
driving trajectories to estimate the specific tailpipe emissions
inventory. In particular, the open database in MOVES stores
the base emissions rates of different criteria pollutants for
different vehicle types, vehicle ages, and operating mode bins
(depending on speed, acceleration, and wvehicle specific
power).

C. Dispersion Models and Their Application to Urban
Scenarios

Several dispersion models have been developed to
examine the impact of vehicle emissions on urban air quality.
Lefebvre et al. presented an integrated model framework
consisting of a measurement interpolation model, a bi-
Gaussian plume model, and a canyon model to simulate urban
traffic scenarios at the street level [15]. Shi et al. leveraged a
CFD-based model to simulate scenarios with street canyons
and visualize exhaust emissions of moving vehicles using
dynamic mesh updating which could even capture the vehicle
movement-induced turbulence effects [16]. Damoiseaux and
Schutter developed a Line Source Gaussian Puff (LSGP)
model capable of estimating distributions of gaseous
pollutants in the vicinity of a freeway and applied it to
assessing real-time traffic control, e.g., variable speed limit
[17]. Nevertheless, LSGP is not suitable for microscopic (at
the individual vehicle level) simulation, as it is a line source
model. Zegeye proposed a 2D point-source dispersion model,
which may update the pollutant concentration on a grid basis
[18]. This model requires minimal computational resources,
which makes it suitable for online estimation of environmental
impacts. However, the lack of support in theory dims the
validity of results from Zegeye’s model, and it is questionable
to use a simplified decay function for vertical dispersion
simulation without careful consideration of the mass
conservation.
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In principle, any one of these dispersion models can be
incorporated into the simulation platform described in this
paper. Instead, we have incorporated a 3-D grid model, which
while not including the details of dispersion in an urban area,
incorporates the primary processes that allow us to evaluate
the impact of alternative transportation strategies. The model
captures the unsteady aspects of emissions from moving
vehicles and their subsequent dispersion in a framework that
facilitates computational efficiency, a requirement for an
integrated platform. While the model, in its current form, does
not include the effects of urban street canyons, it can provide
a time series of concentrations at specified receptors, and
concentration gradients associated with moving vehicles.

I1I. METHODOLOGY

In this study, we leverage the capacity of SUMO and build
up an integrated modeling platform (as depicted in Figure 1)
by adding other key modules, including MOVES, a 3-
dimensional (3D) an unsteady grid-based dispersion model, a
human exposure model, a Matlab-based concentration
visualizer, and heuristic strategies for M3OD services (via
TraClI).
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Figure 2. The workflow to run the integrated modeling platform.

Figure 2 presents the workflow developed for the modeling
platform to quantify the environmental and health impacts
related to M3OD services. The process begins with the
construction of a multi-modal traffic network in SUMO,
including taxis or Uber/Lyft vehicles, background traffic (i.e.,
passenger vehicles) and pedestrians. Subsequently, the
second-by-second vehicular tailpipe emissions are estimated
by the coded MOVES model. These emissions, coupled with
prevailing meteorological conditions, are processed through
our grid-based dispersion model, which is calibrated based on
field experiments [19], to estimate grid-wide pollutant
concentrations. The results can be visualized online through a
custom-built visualization tool using Matlab. The instant and
accumulative exposure to specific pollutant (e.g., NOx, PM)
for each individual vulnerable road user (VRU) can be
estimated, depending on his/her instant location (i.e., in which
grid at each time step) and trajectory, as well as characteristics
related to gender and age (such as height, breathing rate).

B.  Platform Inputs and Output

1) Input
a. Geographic area roadway network
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SUMO provides a python script called OsmWebWizard.py
which can select the real-world region from the Open Street
Map (OSM) to generate the target simulation roadway
network without laborious efforts. Another script called
netconvert.py provided by SUMO can convert OSM to SUMO
compatible networks. Besides, users can also use a network
editor named ‘“Netedit” included in SUMO to create and
modify self-defined network input compatible with SUMO.

b.  Traffic activity of vehicles and pedestrians

SUMO provides a python script called RandomTrips.py
which can generate a set of random trips in a given network
that would apply to both vehicles and pedestrians. Self-defined
vehicle profiles and pedestrian profiles are also allowed. In
general, vehicle profiles have a list of vehicles, and each
vehicle has basic attributes including departure time and
position, arrival position, predefined route, acceleration,
minimum gap, and vehicle length, etc. Specifically, special
vehicle types can be given special attributes. For example,
drop-off and pick-up duration can be defined for a taxi type
vehicle. Besides the basic attributes are similar to vehicle
attributes, pedestrian attributes divide predefined routes into
routes of walking and routes of taking taxis by the location
waiting for taxis. In particular, to calculate inhalation, we
added a “type” attribute to the pedestrian profile to indicate
whether the pedestrian is an adult or a child.

¢.  Meteorological condition
Meteorological condition is composed by wind speed and
wind direction of each cell in the map.

2)  Output
a. Vehicle information

The vehicle information log is a JSON file, including type,
location, speed, acceleration, heading, emissions rate and
energy consumption rate of each individual vehicle at each
time step. With post-processing, we can assess vehicular
performance in terms of safety, mobility, and environmental
sustainability.

b. Traffic-related concentration
The concentration log is a file with the extension ".npy"
that stores concentration matrices for each pollutant of interest
at every time step. Each matrix has dimensions of height,
width, and length and can be further analyzed or replayed as
needed.

c. Pedestrian exposure
This includes demographic characteristics (e.g.,
child/adult), location, speed, exposure of each individual
pedestrian at each time step. The output file can be used to
evaluate the quality of M30OD service (e.g., waiting time) and
assess human exposure to the pollutants of interest either
individually or in an aggregated manner.

C. Platform Key Modules

1) Key Module 1 — SUMO

SUMO mainly serves as a microscopic traffic simulator
handling vehicles and pedestrian moving behavior using
default control algorithms. Besides this, SUMO also provides
powerful APIs to extend its capability. For those interested in
further exploring the functionalities in SUMO, please refer to
https://www.eclipse.org/sumo/.
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2) Key Module 2 — MOVES

The original MOVES model developed by the U.S. EPA is
very comprehensive and not suitable for on-line interaction
with microscopic traffic simulation. In this study, we develop
an alternative approach to simplify the application of MOVES
to simulation while keeping reasonable fidelity similar to the
original MOVES model. Figure 3 depicts the workflow of
MOVES plug-in development for SUMO. Similar procedures
can be applied to the development of other microscopic
simulation tools (e.g., VISSIM). There are two major
procedures (starting from the upper left corner): a) acquiring
emission rate tables from MOVES; and b) calculating
operating mode (OpMode) for each vehicle at each time step
in the simulation.

ﬂ
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Figure 3. The workflow for developing the MOVES plug-in in SUMO.

a. Acquiring Emission Rate Tables

To retrieve the customized emission rate tables (from
MOVES), we firstly input the network model information to
the MOVES model, such as geographic region (e.g., Riverside
in California), calendar month and year to be modeled (e.g.,
June 2022). In the meantime, we prepare a set of configuration
files that can be linked to the MOVES database, including
vehicle population/activity, fuel type/engine technology,
vehicle inspection/maintenance program and meteorological
statistics. Once all the input data files are ready, MOVES can
be executed and output emission rate tables for different
source types (e.g., passenger car, truck), considering various
factors, such as vehicle model year distribution, fuel
type/engine technology market share, and temperature and/or
humidity adjustment.

b. Calculating OpMode Distributions
In SUMO, TraCI can access second-by-second vehicle
trajectories (including both speeds and accelerations) and road
grade (if any). With this activity data for each vehicle and
roadway geometry, as well as the information on vehicle class
and weight, the vehicle specific power (VSP) characteristics
(in kWatt/tonne) can be calculated by [20]:

Vsp A B 5 C

- (M) ”+<M) v +<M)
where A, B and C are the road-load related coefficients for
rolling resistance (kW - sec/m), rotating resistance (kW -
sec?/m? ) and aerodynamic drag ( kW -sec3/m3 ),
respectively; v is the vehicle speed (m/sec); M is the mass of
vehicle (metric ton); g is the acceleration due to gravity (9.8
m/sec?); a is the vehicle acceleration (m/sec?); and 0 is the
(fractional) road grade. Default values of these parameters are
provided in [20]. After the VSP values are calculated, they will
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be binned according to the MOVES’ vehicle operating mode
(OpMode) bin definition given in [21]. With the emission rate
tables coded in SUMO, the energy consumption and pollutant
emissions can be estimated in either disaggregate (e.g.,
second-by-second for each vehicle) or aggregate in the spatial-
temporal manner.

3) Key Module 3 — Dispersion model

The concentrations resulting from the emissions from
vehicles moving in the domain of interest are computed with
an unsteady 3D grid-based model based on the mass
conservation equation.

dq dq dq 0 dq d dq
E-l— u(t)&+ U(t)@ = &(K(Z)&) + a(Kx&)
0 dq S(x,y,z,t)
+ 2 (1,20) 4 S320, @
ay\' Y dy Pa

where q is the mixing ratio of the pollutant; and u(t) and v(t)
are the horizontal velocities along the orthogonal x and y
coordinates used in the numerical solution of the equation.
These velocities are taken to be constant over the domain but
vary hourly. K(z) is the eddy diffusivity in the vertical
direction, which is modeled using Monin-Obukhov similarity
theory [22], and K, and K, are horizontal diffusivities
assigned nominal values.

The emission rate, S(x,y,z,t), corresponds to the
emissions from vehicles in the grid squares laid over the
domain during At, and p,, is the density of air. The emissions
are updated every time step to account for the movement of
vehicles.

Equation (2) is solved using the method of fractional steps,
in which each component of the equation is updated over a
time step, At, using the sequence 1) emission, 2) advection or
horizontal transport by the wind, 3) Vertical diffusion, 4)
horizontal diffusion in the x-direction, followed by 35)
horizontal diffusion in the y-direction.

Advection is solved using a semi-Lagrangian technique in
which the mixing ratio is updated by computing a backward
trajectory from the center of the grid square over At, and then
computing q at the location of the starting point of the
trajectory using bi-linear interpolation. So, the advection
component

a—q+u(t)a—q+ v(t)a—qz 0, 3)
at 0x dy
is solved using the equivalent equation,
q(x,y,z,t + At) = q(x — udt,y — vAt, z,t) 4)

The q at (x — udt,y — vAt) are obtained through bi-

v+ (a+g-sind) - v, Dlinear interpolation of the q field at time, ¢.

The vertical and horizontal diffusion terms are solved
separately using a finite difference equation that is implicit in
time. This finite difference representation results in a
tridiagonal system of linear equations that are readily solved
using explicit methods.

The meteorological inputs consist of the wind field, U =
(u,v), the wind direction 6, , the friction velocity u,, the
Monin-Obukhov length L, the mixed layer height z;, the
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roughness length z,, and the measurement height z,..r. The
micrometeorological variables, which are derived from
AERMET, the meteorological processor of AERMOD [23],
are used to compute the vertical eddy diffusivity, K(z) in
Equation (2). The eddy diffusivities can be enhanced to
account for vehicle-induced turbulence. We can also account
for street-canyon enhancement of concentrations using the
method described in [24]. These features have not yet been
incorporated in the current version of the dispersion model.

4) Key Module 4 — Matlab-based Online Visualizer

SUMO has its own graphical user interface (GUI) showing
the road network, real-time traffic and pedestrian flows, but
not the emissions or concentrations. In this project, we develop
a Matlab-based routine for visualizing the real-time
concentration of the area of interest using colormap, along
with the simulation run in SUMO. To achieve this, we first
read and display the road network from the net file of SUMO.
Then, we create grids based on the size of the entire network
and the defined grid size. The side length of the entire mesh
area is extended to be 10% larger than the target road network
to avoid any margin problem. Finally, we display the
concentration matrix by “nipy_spectral” colormap. There is a
color bar which indicates the mapping of data values, and its
range keeps updating based on the latest concentration matrix.
Figure 4 presents an example of a concentration map
(overlaying the roadway network) output from the Matlab-
based Visualizer.

Figure 4. A screenshot of the Matlab-based Visualizer for an example
simulation run in SUMO.

5) Key Module 5 — Human Exposure Model

In this research, human exposure refers to the amount of
pollutant inhaled by a person subject. To assess the pollutant
exposure, inhaled mass (IM) is used as the metric and is
calculated by the following Equation [25]. Assuming a
pedestrian subject i is located within grid(xjc, yjc) at time step
k, then

IM; (k) = conc(x,y, k) - At - BR;(k), (5)

where conc(x, y, k) is the pollutant concentration (ug/m3)
in grid(x, y) at time step k; At is the time step; and BR; (k)
denotes the breathing rate (assume to be constant in this study)
of the i-th subject exposed to the pollutant at time step k.
Breathing rates of different age groups can be referred to U.S.
EPA Exposure Factors Handbook [26]. In this study, we
assume a population-wide average adult breathing rate to be
17 m3/day. Also, we concern more on human exposure to
PM, s, as they are associated with a range of health risks for
many population groups [27].

In the cancer risk assessment, we focus on the risks
associated with traffic pollutant PM, . The cancer risk
equations presented below are based on the Hotspots Analysis
and Reporting Program (HARP) Air Dispersion Modeling and
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Risk Tool [28]. All of the parameters used in these equations
are chosen based on the acceptable ranges or adapted from
existing research, to ensure valid assessment:

Mgy
Cair = BR X t (6)
BR e
Dose = Cgjy X W X AF X EF x 10 (7)
ED
Cancer Risk = Dose X PF X I X ASF x CF, (8)

where Cancer Risk is defined as the risk a hypothetical
individual faces of developing cancer, if exposed to
carcinogenic emissions from a particular source for a specific
duration; this risk is defined as an excess risk because it is
above and beyond the background cancer risk to the
population; and the cancer risk is expressed in terms of risk per
million exposed individuals. In Equation (6), C,;- is the
concentration of the target pollutant (in the unit of ug/m3).
IMg,q is the average inhaled mass calculated from the
dispersion model in pg. t represents the amount of time that
an individual is exposed to a toxic pollutant during the
commute. In Equation (7), Dose is the daily amount of a toxic
pollutant (in the unit of mg/kg/day) that the human body
absorbs. BR and BW refer to the breathing rate and body
weight, respectively. The breathing rate to body mass ratio
BR/BW is set to be 233 (L/kg/day) for adults. AF is the
absorption factor which is defined as 1 for adults. EF is the
exposure frequency which is set 250/365 for a working period
of 250 days per year. In Equation (8), PF represents potency
factor for diesel particulate matter and is defined as 1.1
(mg/kg/day)™1, PF for diesel particulate matter is applied
here as a conservative estimate due to lack of potency data for
gasoline exhaust; ED and AL measure exposure duration and
average lifespan, respectively. The ED/AL ratio is set 20/70
for a 20-year work period and 70-year lifespan. ASF stands for
age sensitivity factors and is defined as 1 for adults. CF is the
hourly fraction spent on commuting during a day represented
as a percentage (i.e., t /24 X 100%).

Iv. CASE STUDY AND RESULTS

To showcase the capability of the integrated modeling
platform, we consider a M30OD service scenario within an
urban district and deploy a grid-based dispersion model to
evaluate the health impact on customers under two different
curbside pickup strategies: centralized and distributed.

A.  Simulation Environment

We use osmWebWizard.py provided by SUMO to extract the
roadway network of a target area in Riverside, CA, as shown
in Figure 5. This roadway network is bounded by W Linden
Street (Northmost), 12th Street (Southernmost), Kansas
Avenue (Westernmost), and Iowa Avenue (Easternmost). To
facilitate pedestrian demand generation, we further add the
sidewalk for each edge in the network. To enable the
dispersion modeling, we divide the network into a 353x185
grid matrix with the grid size of 5x5m. As for the height (along
the vertical axis), we define six layers, i.e., 0.3, 1.2, 4.8, 19.2,
76.8, and 200m. The selected height values follow a geometric
progression where each is four times greater than the previous
one except for the last value (i.e., 200m) which is considered
as the boundary layer. This progression ensures a well-
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distributed sampling of pollutant concentrations at different
altitudes, efficiently capturing the dynamics of pollutant
dispersion in the vertical direction. In this case, at every time
step the platform can generate 353x185%6 matrices for the
concentrations of each emitted pollutant. The entire simulation
duration is set at 3600 seconds with a time step of 1 second. In
addition, the dispersion model parameters are established as
follows: Monin-Obukhov length L of -200, the mixed layer
height z; of 200m, the roughness length z, of 0.1m, and the
measurement height z,..; of Sm.

|

Figure 5. View of study network in Google Map and View of study network
in SUMO

To efficiently obtain reliable simulation results, we
consider the balance between spatial resolution and
computational efficiency when selecting the grid size. We
evaluate the average computational time over a range of grid
sizes, including 1x1, 3x3, 5x5, 10x10, 12x12, 15x15, and
22x22 as shown in Figure 6. Based on this analysis, a 5x5 grid
size is selected in this study as it demonstrates a good balance
(ie., “elbow effect”) between spatial resolution and
computational efficiency.

Average Time Per Step (s)

o s 10 15 20
Gridsize Side Length (m)

Figure 6. Computational time per time step for various grid sizes.

In the simulation, we set up the vehicle mix to be 95% of
passenger vehicles and 5% of taxis vehicles. The passenger
vehicles are considered background traffic, while taxis
vehicles can receive pick-up requests, pick up passengers at
their waiting locations and drop off them at their destinations.
All the vehicles and pedestrians are randomly generated.
Unlike the passenger vehicles which are spawned and
terminated once completing the predefined routes, SUMO
provides taxis vehicles with the idling algorithm option to
enable them to continue driving randomly until the next
request is received. In addition, taxis vehicles can specify the
drop-off durations and pick-up duration, as shown in Table 1.
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TABLE 1. VEHICULAR PARAMETERS AND SIMULATION SETUP

Vehicle Type Taxi Passenger Vehicle
Number 120 2280

Minimum Gap (m) 5 5

Maximum Acceleration (m/s2) 4 4

Maximum Deceleration (m/s2) -5 -5

Length (m) 5 5

Pick up Duration (s) 5 -

Drop off Duration (s) 10 -

We assume the traffic volume per hour in this urban district
is 2400 vehicles per hour (VPH). Based on the predefined
vehicle mix, the number of passenger vehicles is 2280 and the
number of taxis/TNC vehicles is 120. Pedestrians also have
random origins and destinations, similar to the configuration
of vehicles in SUMO, but they need to specify the locations
where they should wait for pickups. Moreover, pedestrians can
only access sidewalks and crossings, rather than motor
roadways. It is noted that pedestrian characteristics, such as
height and breathing rate, can be customized to model different
groups, e.g., children and adults. In this study, we only
randomly generate 240 adults.

To evaluate the human health impacts caused by different
pickup strategies, we set up two scenarios: centralized pickup
and distributed pickup. As for the centralized pickup, we
create a central station at one road segment, as shown in Figure
7(a), highlighted with a red box. In this scenario, all
pedestrians have to walk to the station and wait for pickups as
shown in Figure 7(b) as blue dots, and all for-service vehicles
have to meet respective passengers at the same station. In the
second scenario, besides the station defined in Scenario 1, we
create another 7 stations round as shown in Figure 7(c).
Pedestrians are randomly distributed to these 8 stations to wait
for pickups. The wind speed is set to be 10m/s blowing from
northwest to southeast, which is a typical meteorological
condition in Riverside, CA in Summer.

Figure 7. Station configuration for different curbside pickup strategies. (top)
Centralized pickup, (middle) Zoomed in station in centralized pickup
scenario, (bottom) Distributed pickup

B. Results

a. Vehicular Emissions
Table 2. compares the emissions results between two
pickup strategies. As can be observed from the table, the total
emissions of NOx and PM,; for the distributed pickup
scenario are slightly higher than those of the centralized
pickup scenario. This is mainly due to the increase in vehicle-
mile-traveled (VMT). After normalization by the distance,
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there is no significant difference in total emission factor (i.e.,
Total Emissions/VMT) between two strategies, ranging from
-0.7% to -0.9%.

TABLE 2. VEHICULAR EMISSIONS COMPARISON FOR DIFFERENT PICKUP

STRATEGIES

Scenario Centrali Distribut | Differen
zed ed ce

Vehicle-mile-traveled (mile) 2801 2879 2.8%
Average Velocity of Background | 23.01 22.85 -0.7%
P ger Vehicles (mile/hour)
Average Velocity of Taxis (mile/hour) | 18.14 19.29 6.34%
Total Emission of 243.54 244.16 0.3%
P ger Vehicles (g)
Total Emission of Taxis (g) 138.60 145.33 0.5%
Total Emission (g) NOx 382.15 389.48 1.9%
Total Emission (g/mile) 0.13642 0.1352 -0.9%
Total Emission of 2.20 2.20 0%
P ger Vehicles (g)
Total Emission of Taxis (g) 1.43 1.50 4.9%
Total Emission (g) PM,s | 3.63 3.71 2.2%
Total Emission (g/mile) 0.001296 | 0.001287 | -0.7%

b.  Network-wise Grid-based Concentration

To present the difference in traffic-related concentration,
we firstly compare the estimated concentration profiles of both
NOx and PM, 5 (over the time) under two pickup scenarios at
the location of the bus station. Then, we show the
concentration profiles at 1.2m estimated by the grid-based
dispersion model. Figure 8 displays the concentration levels at
the central bus station. The figure shows that concentrations at
the bus station are generally higher with the centralized pickup
strategy compared to the distributed scenario. Specifically,
mean concentrations of NOx and PM, s throughout the
centralized pickup strategy were 17% and 64% higher than
those observed with the distributed pickup strategy,
respectively.

NOx Concentration Near the Centralized Bus Statiton
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Figure 8. Comparison of pollutant concentration profiles between two pickup
scenarios at the central station. (a) NOx concentration profile (b) PM, ¢
concentration profile

Furthermore, we show a typical screenshot of the network-
wise concentration difference of both NOx and PM, 5 between
two pickup strategies (i.e., CONCcontrar — CONCqistributed) at
the same time step in Figure 9. As can be observed from the

7

figure, the largest difference in concentration between these
two strategies occurs at or around the location of the central
station.
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Figure 9. The difference of network-wise pollutant concentration (at 1.2m)
between the centralized scenario and the distributed scenario. (a) NOx results
(b) PM,, 5 results

c. Pedestrian Exposure
Figure 10 displays the cumulative inhale mass (AIM) of
PM, 5 for a typical pedestrian, plotted against the dimensions
of the map and time. The color-coded scatter plot indicates the
position and AIM value of the pedestrian at each point in time,
allowing for a better visualization of the pedestrian's trajectory
and the associated PM, s exposure over time. Once the
pedestrian was picked up by a taxi, the color of the scatter plot
stopped changing, indicating that the inhale mass was no
longer accumulating as the pedestrian was no longer exposed

to outdoor PM,, 5 while in the taxi.

Pedestrain Accumulated Inhale Mass 19

00004
00003

0.0002

|

0.0001

Figure 10. Pedestrian AIM of PM, ¢ over time

Table 3 summarizes the key statistics (e.g., maximum,
minimum, median and mean) of the distributions of
pedestrians’ AIM of PM,s . The maximum AIM when
applying the distributed pickup strategy is 33.2% lower than
that of the centralized strategy. The median AIM and mean
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AIM in the distributed scenarios are close and lower than the
values of the centralized scenario. The cancer risk is calculated
based on Equation (6-8) and shown in Table 3.

TABLE 3. COMPARISON OF HUMAN EXPOSURE TO PM, 5 WITH DIFFERENT
PICKUP STRATEGIES

Scenario Centraliz | Distribut Differen
ed ed ce

Total Number of Pedestrians | 240 240 0%
Maximum Inhale Mass (ng) 0.0066 0.0045 -33.2%
Minimum Inhale Mass (pg) 0 0 0%
Median Inhale Mass (ug) 0.0028 0.0017 -39.5%
Average Inhale Mass (ng) 0.0027 0.0018 -33.4%
Cancer Risk (in one million) 0.016 0.011 -33.4%

V.CONCLUSIONS AND FUTURE WORK

This study proposes an integrated analysis, modeling, and
simulation (AMS) platform for estimating traffic-related
health impacts in a microscopic manner. Besides the traffic
model and emission models, we introduce a 3D grid-based
concentration model and a human exposure model as the key
components of this platform. A case study on the evaluation of
different curbside management strategies has shown the
effectiveness of the AMS platform. A 5x5 grid size was chosen
as it provided a good balance between spatial resolution and
computational efficiency for obtaining reliable simulation
results. It turns out that the centralized pickup strategy has
more adverse effects on health in terms of human exposure to
PM, s, compared to the distributed pickup strategy. The
difference in cancer risk, on average, can be reduced by as
much as 33.4%. The reasons may include a) relatively higher
concentration due to the bottleneck created by the for-service
vehicles; and b) longer waiting time for pedestrians in the
centralized pickup scenario.

For future directions, we will apply this tool to investigate
the health impacts of different roadway design and
Transportation Systems Management and Operations (TSMO)
strategies. In addition, we will conduct more field experiments
to collect data for dispersion model calibration and keep
improving the model accuracy by considering more realistic
aerodynamic effects (e.g., turbulence) in the field of
transportation.
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