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We present experimental evidence that a heavy Fermi surface consisting of itinerant, charge-neutral
spinons underpins both heavy-fermion-strange-metal (without f electrons) and quantum-spin-liquid states
in the 4d-electron trimer lattice, BayNb;_,Rusz, O, (]x| < 0.20). These two exotic states both exhibit an
extraordinarily large entropy, a linear heat capacity extending into the milli-Kelvin regime, a linear thermal
conductivity at low temperatures, and separation of charges and spins. Furthermore, the insulating spin
liquid is a much better thermal conductor than the heavy-fermion-strange-metal that separately is observed
to strongly violate the Wiedemann-Franz law. We propose that at the heart of this 4d system is a universal,
heavy spinon Fermi surface that provides a unified framework for explaining the exotic phenomena
observed throughout the entire series. The control of such exotic ground states provided by variable Nb
concentration offers a new paradigm for studies of correlated quantum matter.
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Planckian strange metals [I-15], heavy-fermion
metals [16-26], and quantum spin liquids [27-34] are
intriguing quantum states of matter currently subject to
intense investigation. Planckian metals feature a linear
temperature 7 dependence of electrical resistivity p that
persists to 7 =0 K, independent of the Fermi surface
topology, because charge carriers scatter at a rate that
saturates in the Planckian limit, 1 /7 = akgT/h (Where 7 is
the relaxation time, kg and # the Boltzmann and reduced
Planck’s constants, respectively, and a a constant of order
unity [2-11]).

Heavy-fermion metals, on the other hand, are charac-
terized by a large Sommerfeld coefficient y arising
from electronic contributions to low-7 heat capacity
C(T). Values of y range from 20 mJ/mol K? [17] to up
to 1600 mJ/mol K? [19]. At the present time, the heavy-
fermion behavior is observed almost exclusively in
4f- and 5f-electron materials and is dictated by hybridi-
zation between itinerant and localized magnetic electron
states [21-25]. A notable exception to the ongoing
predominance of heavy f-electron states is the transition
metal oxide LiV,0,. This material exhibits a very high
y = 420 mJ/mol K?> [35-37] and p « T? in the low-T
limit [37]. The heavy-fermion behavior is thought to be
a consequence of its frustrated lattice [38—40]. Heavy-
fermion fractionalization driven by an interplay between
geometric frustration and the Kondo effect also has been
extensively discussed in recent years in part because the
one-dimensional Doniach “Kondo necklace” scenario [41]
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may not be flexible enough to account for non-
Fermi liquid behavior in heavy-fermion systems; see,
e.g., [18,21,25,26].

Finally, quantum spin liquids are among the most
intensively studied states of condensed matter. Theoreti-
cal treatments of the honeycomb iridates, a-RuCl;, and
other triangular lattices have inspired a large body of
experimental work that seeks to identify various types of
quantum spin liquids whose experimental signatures
include a linear C(7) extending to 7 = 0 K, which is
expected to arise from a Fermi surface of charge-neutral
spinons [27-34.,42].

Each of the three states mentioned above typically occurs
in different classes of materials with distinct energy scales.
In contrast, we have synthesized the single-crystal series
BayNb,_,Ru;, O, (|x] < 0.20) [Figs. 1(a)-1(c)] that,
depending on composition x, exhibits the characteristics
of all three exotic states, as well as completely novel
phenomena. At one end of the series, a novel metal
simultaneously exhibits the characteristics of both a strange
metal [« is of order unity; see Fig. 1(d)] and a heavy-fermion
metal [y = 164 mJ/mol K2: see Fig. 1(e)]. Furthermore,
this metal violates the Wiedemann-Franz (WF) law by up to
a factor of 26 [Fig. 1(f)] and exhibits a sign change in the
Hall effect when the current is applied along different
crystalline directions (Fig. S6 in Supplemental Material
[43]). We term this material a heavy-fermion-strange-metal.
At the other end of the series, a strongly frustrated Mott
insulator exhibits an increased y = 225 mJ/mol K? and an

© 2024 American Physical Society
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FIG. 1. Key features and phase diagram. (a) The crystal structure of Ba;Nb;_,Ru;,, O, along the ¢ axis, and (b) the ab plane. (c) A

single crystal of Nbgg;. The T dependence for 50 mK < 7" < 10 K for Nby g; of (d) the a-axis p, and the c-axis p. (black dashed lines
are linear fit), and (e) C(T). (f) The Lorenz number of the WF law L, = «/oT and the measured x,p, /T for 1.8 < T < 20 K for Nbyg;.
(g) The T dependence of p, for 50 mK < 7' < 380 K for Nb g;, Nbj g5, Nbg 95, and Nby 1. (h) y (blue) and ey (red, right scale) as a

function of the Nb content. (i) A schematic phase diagram.

enhanced thermal conductivity « greater than that of the
metal. A heavy-fermion metal with y = 181 mJ/mol K? is
situated between these two end states [Fig. 1(h)]. The
electrical resistivity p progressively changes with Nb con-
tent [Fig. 1(g)], but a strikingly linear C(T') extending down
to 50 mK, an equally linear low-7 «k, and a paramagnetic
state with a strong exchange energy of up to 340 K persist
throughout the entire series [Figs. 1(h) and 1(i)]. A large
entropy with no discernible long-range order extends into
the milli-Kelvin regime for all Nb compositions studied
[Fig. 1(h)].

The larger k of the insulating state compared to that of the
metallic state forcefully argues that a heavy Fermi surface of
itinerant charge-neutral spinons must be invoked to explain
this behavior throughout the series [Figs. 1(h) and 1(i)].
Importantly, it rules out the possibility that the large linear-T
C(T) in the insulator comes from localized degrees of
freedom that could not contribute to k. We stress that this
scenario explains a large array of exotic phenomena in terms
of a dissociation of charges and spins, as discussed below.
This rich, novel phenomenology arises from a rare interplay

between geometric frustration and competing inter-
actions and provides a compelling new paradigm for
correlated quantum materials. Note that polycrystalline
Ba,NbRu3O;,(x = 0) has been reported to be a geometri-
cally frustrated insulator with y = 31 mJ/mol K? with spin
freezing near 4 K [44], which is not discerned in this study.

Our single-crystal x-ray diffraction data gathered
between 100 K and 300 K indicate that the series of
BayNb,_,Ru;, 0, (for |x| < 0.20; the sign of x can be
either positive or negative) adopts a rhombohedral structure
with the space group R-3 (No. 148), which is retained for all
x studied herein (Fig. S1 and Tables S1-S3 in Supplemental
Material [43]). For simplicity, we use Nby g1, Nbg 95, Nby 9,
and Nb ¢ to denote BayNb;_,Rus O, with different x
values. The crystal structural data indicate that the formal
valence of Nb is 5+ (4d°) across the entire series [44]. The
average valence of Ru decreases with increasing Nb content
from 3.75+ for Nbgg; to 3.69+ for Nby o5 and to 3.59+ for
Nb, 16, indicating a mixed valence of Ru’*(44°) and
Ru** (4d*), which is common among perovskite ruthenates
[45]. The average number of 4d electrons in each Ru;0,
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FIG. 2. Physical properties of Nbg g;. The T dependence of (a), the a-axis and c-axis y, and y,, along with Ay; ' and Ay;! (right scale),
and (b) p, and p, for 50 mK < 7" < 380 K. (¢), (d) p, and p for 50 mK < 7" < 40 K at y,H ). = 0 and 14 T, and at P = 2.4 GPa and

H = 0 (right scale) (black dashed lines are linear fit). (¢) The T dependence of C(T) at u,H). = 0 and 14 T. (f) C(T) vs T*.

trimer is estimated to be 12.75, 12.93, 13, and 13.23 in
Nb0.819 Nb0.95, Nbl.OO’ and Nbl.lﬁ’ reSpCCtiVely.

The key structural element of BayNb;_,Ruz, O, is the
Ru;0;, trimer formed by three face-sharing RuOg4 octahe-
dra. The trimers (red) are linked along the ¢ axis [Fig. 1(a)]
by corner-sharing NbOg octahedra (blue) to form the
triangular ab planes or trimer layers, which is a common
source of geometric frustration [Figs. 1(b) and 1(i)] [43].

We discuss below the definitive characteristics of each of
the three exotic states shown in Fig. 1(i). Additional data
are included in the Supplemental Material [43].

Heavy-fermion-strange-metal.—The magnetic suscep-
tibility y of Nbg; exhibits a robust Curie-Weiss behavior
down to 1.7 K [Fig. 2(a)]. An analysis of the data for
50-350 K yields the Curie-Weiss temperature Oy =—169 K
and —128 K for the ag-axis y, and c-axis y., respectively,
which reflects a strong antiferromagnetic coupling. The
paramagnetic susceptibility is on the order 10~ emu/mol,
comparable to the values observed for heavy-fermion
systems [19] (see Table S4 in Supplemental Material [43]).

The resistivities p of Nbyg; from 50 mK to 380 K for
current along the ag-axis p, and c-axis p. are shown in
Figs. 2(b)-2(d) (note that p, > p.). The linearity in T
in both p, and p, for T > 250 K is a common occurrence in
many correlated oxides due to enhanced electron-electron
and electron-phonon interactions [15]. What is intriguing
is that the linearity in both p,(=A,T) and p.(= A.T)
persists from 50 K down to 50 mK [Figs. 1(d), 2(c),
and 2(d)], with slope values A, =2.45 x 107 Qcm/K
and A, = 1.88x 107 Qcm/K. Our estimate of the
Planckian limit yields lower bounds for a = 0.46 and
0.75 for the a axis and c axis, respectively [43], confirming
that the scattering rate of charge carriers in Nbg g; is indeed

close to the Planckian limit (Fig. S2a in Supplemental
Material [43]). Note that the Hall coefficient changes sign
with current orientation, indicating that the Fermi surface
of the metallic Nbyg; is highly anisotropic (Fig. S6 in
Supplemental Material [43]).

The linearity of p, and p. persists in the presence of
applied pressure P up to 2.4 GPa [right scale in Figs. 2(c)
and 2(d)], reflecting that the scattering rate is insensitive to
any possible changes in the crystal and/or electronic
structures due to applied pressure. However, application
of magnetic field H changes scattering processes, resulting
instead in a nearly 7-dependence for both p, and p, at low
T, as expected for a Fermi liquid [Figs. 2(c) and 2(d), and
Supplemental Material Fig. S2b [43]].

As for the low-T heat capacity C(T') at 14 T [Fig. 2(e)],
the slope of the linear 7 dependence of C(T) changes
only slightly from y = 164 mJ/mol K> at u,H =0 to
y =158 mJ/molK? at u,H =14 T [Fig. 2(e)]. It is
particularly striking that the high y value persists in such
a strong field that normally depresses entropy, but this
behavior is consistent with C(7T) being dominated by a
spinon Fermi surface [27,28,34,42,46].

It is curious that the 7* contribution to C(T) below 7 K
[parametrized by the second term in C(T) = yT + T3] is
essentially zero [Fig. 2(f)]. The phonon contribution
(positive f) is compensated by the second term of the
Sommerfeld expansion of the electronic contribution (neg-
ative f3) yielding a measured f that is essentially zero. The
low-T C(T) is then yT [Fig. 2(f)] [43]. Note that y(= C/T)
rapidly rises to 275 mJ/mol K? at 50 mK. The nearly 70%
increase in y is intriguing since y is not expected to be a
strong function of 7 in the low-T limit in the absence of
magnetic order, but it hints at a low-energy scale ~3 K.
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FIG. 3.

Thermal conductivity of Nbyg; and Nb; ;5. The T dependence of (a) x,(0) at H = 0, x,(14T) and Ak, = k,(0) — x,(14T)

below 60 K, and (b) L(T)/L, where L, = 2.45 x 1078 (V2/K?) and the measured L(T) = Ak,p,/T. Inset: the configuration for «,
measurements; Jy, is thermal current density. (c) The T dependence of k, and p, (right scale) for Nbyg; and Nb; ;. Note the inverse
relationship between k, and p, for Nb, 6. (d) Ak,/T vs T? for metallic Nby g, and insulating Nb; ;. Note the intercept of Ax,/T at

T = 0 K is larger for Nb, ;¢ than for Nbyg;.

Note that this upturn in C/T is supplanted by a downturn in
Nb 16, as discussed below, which helps rule out a nuclear
Schottky anomaly with a signature term in C(T) ~ 1/T?
(Fig. S3b in Supplemental Material [43]); this is also
confirmed by our heat capacity data on BaRuO; and
Nb,O5 measured in 50 mK-1.0 K and at y,H =0 and
14T, which do not follow at all C(T) ~ 1/T?, indicating a
clear absence of any discernible nuclear Schottky contri-
butions to C(T) of Nbqg; [43,47].

The thermal conductivity «,(0) of Nby g, along the a axis
also decreases linearly with decreasing 7' below 10 K
[Fig. 3(a)]. Atu,H|. = 14 T, k, responds strongly to H for
2 < T <60 K, but very weakly beyond this range. The
difference «,(0) — k,(14T) yields Ak, that reflects contri-
butions from heat carriers that are susceptible to magnetic
fields [Fig. 3(a)] [43]. The same is true for «, (see Fig. S4 of
Supplemental Material [43]).

Thermal and electrical currents are normally carried by
the same quasiparticles. This is reflected in the WF law
k/o = L,T, which states that for a single band the ratio of k
to electrical conductivity ¢ is proportional to 7" with a
constant of proportionality = Lorenz number L, Here,
using Ax,, L(T) = Ak,p,/T(6 = 1/p) we obtain L > L,
by a factor of up to 26 [see squares in Figs. 3(b) and 1(f)].
Such a strong violation of the WF law suggests that the
relaxation times are vastly different for thermal and elec-
trical processes or that more than one band is participating.

The WF law works well for typical metals, including
Fermi liquids [48] when the condition of elastic scattering

is satisfied [49]. Inelastic processes result in different
relaxation times for charge and heat transport [43]. The
strong violation of the WF law is likely due to a combined
effect of geometric frustration and low dimensionality that
causes a dissociation of charges and spins [45,46,50-56],
whose presence is reinforced by the inverse relationship
between k, and o,. The electrical insulator Nb; |4, whose p,
is 107 greater than that for the metal Nbyg; at low T, is a
much better thermal conductor than the metal Nbg g; below
30 K [Fig. 3(c)]. This is clearer in Fig. 3(d) in which the
intercept of Ak,/T at T =0 for the insulating Nb; ¢ is
nearly twice as large as that for the metallic Nb g;. Note the
linearity of x,(0) for both Nbyg, and Nb; ;45 below 10 K
[Fig. 3(c)].

Heavy-fermion metal and frustrated insulator.—
Increasing the Nb content in Bay,Nb,_,Ru;,,0,, weakens
the metallic state and eventually induces the insulating
state. The weakened metallic state in Nbggs and the
insulating state in Nby ;¢ retain paramagnetic spin corre-
lations [Figs. 4(a) and 4(b)] with a strong exchange energy
(absolute values of Ocw) up to 340 K and enhanced y
values [Fig. 1(h)]. In Nby 95, both p, and p. decrease below
150 K [Fig. 4(c)]. The insulator Nb, ;4 displays a drastic
increase in p by more than 7 orders of magnitude with
decreasing T [Fig. 4(d)]. However, this electrical insulator
Nb, ;6 i1s a much better thermal conductor than the metal
Nbgg; [Figs. 3(c) and 3(d)]. This contrasting behavior
further implicates the dissociation of charges and spins
and itinerant spinons (more data and discussion on
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FIG. 4. Physical properties of Nby s and Nb, 4. The T dependence of y, and y, along with Ay; ' and Ay ' (right scale) for (a) Nby o5
and (b) Nb ;4. The T dependence of p, and p, for (c) Nb o5 and (d) Nb, ;6. (€) C(T) for 50 mK < T < 7 K and (f) C/T vs T? for Nby g5,

Nb, 16, and Nby ;.

at magnetic fields are presented in Fig. S7 of the
Supplemental Material [43]).

C(T) of both Nby 5 and Nb; ;4 remains essentially linear
(with slight deviations) below 0.5 K and yields even larger
values of y = 181 and 225 mJ/molK? for Nbyes and
Nb, 16, respectively [Fig. 4(e)]. The linearity of C(T) in
both Nby 95 and Nby ;4 also remains unchanged at 14 T and
higher temperatures, ruling out the influences of magnetic
impurities and further emphasizing the persistent Fermi
surface of charge-neutral spinons (Fig. S5 in Supplemental
Material [43]). Note that the linearity of C(T) in the
insulating phase cannot be due to localized excitations
since such excitations would not contribute to k. The abrupt
upturn in C/T vs T? below 0.5 K in Nby g, is replaced by an
equally abrupt downturn in Nb, ;¢ [Fig. 4(f)] [43].

The most striking feature shared by the entire
BayNb;_,Ru;,,0,, series is the persistent linearity in
low-T C(T) and k, and extraordinarily large y, independent
of the ground state type [Figs. 3(a), 3(c), 4(e), and 4(f)]. All
of our results constitute compelling evidence for the
existence of a heavy-fermion-strange-metal [Figs. 1(d)
and 1(e)] [43] and a quantum spin liquid [Figs. 3(c),
3(d), and 4(d)-4(f)] depending on the Nb content. The
complex behavior of BayNb;_,Rus, .0}, suggests a power-
ful simplifying principle: At the heart of this 4d system is a
universal, itinerant, heavy spinon Fermi surface that pro-
vides a unified framework for explaining the exotic phe-
nomena observed throughout the entire series: (1) the large
exchange energy (fcw) but no magnetic order [Figs. 1(h)],
(2) the linear C(T') persistent down to 50 mK, indicating a
nonzero low-energy density of states [Figs. 2(e) and 4(e)],
(3) the extraordinarily large y only seen in heavy-fermion

materials [Figs. 1(h) and 4(e)], and (4) the linear x at low T in
all states, and much larger « in the insulating spin liquid than
in the heavy-fermion-strange-metal [Figs. 3(c) and 3(d)],
which separately is observed to strongly violate the
Wiedemann-Franz law [Figs. 1(d)-1(f)].

In summary, Ba;,Nb,_,Ru;, Oy, is a rare system, if not
the first, to encompass a proximity or even coexistence of
both spin liquid physics, strong electron correlations
tunable across a Mott metal-to-insulator transition, and a
heavy-fermion-strange-metal. Clearly, the rich, exotic phe-
nomenology offers a compelling new paradigm of corre-
lated quantum matter.
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