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Abstract. On a finite probability space, we consider a problem of

fair pricing of contingent claims in the sense of [8] and its sensitivity
to a distortion of information, where we follow the weak information

modeling approach from [4]. We show that, in complete models, or

more generally, for replicable contingent claims, the weak informa-
tion does not affect the fair price. For incomplete models, this is not

the case for non-replicable claims, where we obtain explicit formulas

for the information premium and correction to an optimal trading
strategy. We illustrate our results by an example, where we demon-

strate that under weak information, the fair price can increase, stay

the same, or decrease. Finally, we perform the stability analysis for
the information premium and the correction of the optimal trading

strategy to perturbations of the contingent claim payoff, stock price
dynamics, and the reference probability measure.

1. Introduction

While in complete markets, every contingent claim admits a unique
arbitrage-free price, in incomplete markets, this is not the case. To as-
sign a unique number (price) in such settings, alternative approaches have
been used, including the ones that are based on the preferences of a given
economic agent. This leads to the notions of utility-based pricing (see [10])
and closely related fair-pricing (see [8]). Note that the question of consis-
tency between the utility-based and arbitrage-free pricing methodologies
typically has an affirmative answer (see [16]).

Information is another crucial ingredient that affects the pricing and
hedging of non-replicable contingent claims. There are different approaches
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to modeling information (and information asymmetry) in financial markets.
They include immersions and enlargements of filtrations and distortions of
the underlying probability measure. We also note that this area of research
is very active. We refer to [1] and [2] for overviews of recent developments.
While immersions and enlargements of filtrations are quite technical math-
ematically, an approach based on conditioning from [3] and [4] allows us to
work on the same probability space; and yet it is closely connected to the
theory of the initial enlargement of filtration; see the discussion in [3].

The goal of this paper is to understand and quantify the effect of infor-
mation on the fair-pricing and hedging methodologies. We adopt a weak
information modeling approach from [4] and investigate its impact on fair
pricing and hedging in the sense of [8]. More specifically, we suppose that
an investor is trading in a discrete-time, arbitrage-free market with zero
bid-ask spread (i.e., no transaction cost). If possible, the investor seeks to
match the payoff of a derivative security via gains from the trade using some
initial capital value up to the terminal time period, at which the payoff is
attained. If perfect matching, also known as replication, is not possible, the
investor wants to find a trading strategy, such that the associated wealth
process minimizes the expectation of the square of the difference between
the payoff of the contingent claim and the wealth process associated with
the trading strategy. The initial value of such a minimizing wealth process
is known as a fair price, see [8].

Our results include explicit formulas for the change of the fair price under
weak information, that is, an information premium, and for the change
of the trading strategy. By means of examples, we show that the fair
price under weak information can increase, stay the same, or decrease. We
also perform the stability analysis of the information premium and the
correction of the optimal trading strategy with respect to simultaneous
small perturbations of the payoff of the contingent claim, the subjective
probability, and the dynamics of the risky asset. For this, we establish the
stability of the family of the Föllmer-Schweizer decompositions under such
perturbations, a result of independent usefulness.

The remainder of this paper is organized as follows. In Section 2, we
review the fair pricing methodology in the sense of [8], and in Section 3,
we discuss the weak information approach. In Section 4, we show that in
complete markets, there is no information premium, whereas in Section 5,
we provide explicit formulas for the information premium and corrections
to the optimal trading strategy.
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2. Fair pricing in the sense of [8]

Let (Ω,F,P) be a finite probability space, where for some integer N >
0, and the filtration, F = (Fn)n=0,1,...,N , is an increasing family of sub-
algebras each containing ∅ and Ω. We suppose that F0 is trivial, and FN
is the power set of Ω. Let the probability measure P be such that P[ω] > 0
for all ω ∈ Ω. Let S = (Sn)n=0,1,...,N , the discounted stock price process

(i.e., if the undiscounted stock price at time n = 0, 1, . . . , N , is denoted Sn,

for some fixed one-period market interest rate r > −1, Sn = Sn
(1+r)n ), be a

real-valued F-adapted process. Furthermore, we denote

∆Sn := Sn − Sn−1, for n = 1, . . . , N,

to be the incremental discounted stock price process. Let ξ = (ξn)n=1,2,...,N

be a predictable (i.e., ξn is Fn−1-measurable for all n = 1, . . . , N) trading
strategy that describes the number of shares of the stock held in the port-
folio. We also suppose that there is a money market account, but since
we are working in the discounted terms, the price process for the money
market account equals to 1 at all times.

Definition 2.1. Let Θ be the set of all predictable trading strategies ξ.
For ξ ∈ Θ, let G(ξ) be defined by

Gn(ξ) :=

n∑
j=1

ξj∆Sj .

Then, for a random variable VN and some V0 ∈ R, one can define the
following problem from [8]:

minimize E
[
(VN − V0 −GN (ξ))2

]
over all ξ ∈ Θ and V0 ∈ R. (1)

2.1. Interpretation. V0+Gn(ξ), n = 0, . . . , N , can be viewed as the gains
from the trade process, starting from the initial capital V0. We also interpret
VN as the payoff of a contingent claim or a derivative security with maturity
N and whose underlying asset does not have to be S, but it can be. The
most common derivative security is the European Call Option, which gives
its owner the right, but not the obligation, to buy one share of stock at
the maturity time for the strike price K. If the SN > K, the owner can
exercise the option and makes a profit of SN −K, while the option would
be worthless if SN < K, in which case the owner does not buy a share of
the stock. Therefore, the payoff of the European Call Option is said to be
(SN −K)+ := max{SN −K, 0}. Generally, VN can represent the payoff of
any security, an option on a different stock, in particular.

The solution to (1), consisting of an optimal trading strategy ξ̂, is de-
veloped and given in [8] using a method known as (backward in time)
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sequential regression. We need the following assumption in order for ξ̂ to
be well-defined in (3) below.

Assumption 2.2. We suppose that the process

vPn := VarPFn−1
[∆Sn], n ∈ {1, . . . , N}, (2)

is strictly positive with probability 1.

Assumption 2.2, in the settings of this paper, is equivalent to nonde-
generacy condition from [14, p. 4]. The formula for the optimal trading
strategy (recursively, backward in time) is given by:

ξ̂n =

CovFn−1

[
VN −

N∑
j=n+1

ξ̂j∆Sj ,∆Sn

]
VarFn−1

[∆Sn]
, n = N, . . . , 1, (3)

where CovFn−1
[., .] and VarFn−1

[.] denote the conditional covariance and
variance conditioned on Fn−1, respectively.

Furthermore, given the optimal trading strategy ξ̂, one can find the fair
derivative security price V̂0 from (1) given by:

V̂0 = E[VN −GN (ξ̂)]. (4)

These solutions to (1) gives one the discrete Föllmer-Schweizer decomposi-
tion of the payoff of the non-traded derivative security, VN , defined below:

Definition 2.3. The discrete Föllmer-Schweizer decomposition, following
[14], is defined as follows. Let S = M + A be the semimartingale decom-
position of S into a martingale M and a predictable process A. Then the
random variable VN admits the discrete Föllmer-Schweizer decomposition:

VN = V̂0 +

N∑
j=1

ξ̂j∆Sj + LN (5)

for some V̂0 ∈ R, optimal trading strategy ξ̂ ∈ Θ, and a P-martingale L
such that:

(1) L and M are orthogonal (i.e., LM is a P-martingale),
(2) E[L0] = 0,

where the second condition is just L0 = 0 for a trivial F0.

3. The Weak Information Approach

Background. The weak information approach has been initiated in [3] in
the context of complete markets. In [4], it is further developed for incom-
plete financial models. It corresponds to a certain change of a probability
measure, and the name contrasts it with the strong information modeling
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approach, which is based on enlargements of filtration. We recall some no-
tions from [4, p. 61]. For some random variable1 Y (e.g., Y can be the
value of the stock price at time T > 0), let us consider an insider who is
only weakly informed on Y , which means that he or she has knowledge of
the filtration F and of the law of Y . More precisely, with Y we associate
a probability measure ν on R. We assume that ν is equivalent to P ([4]
additionally supposes the boundedness of the density that holds trivially
on finite spaces). The probability ν should be interpreted as the law of Y
under the effective probability of the market. A typical example of Y is the
stock price at maturity.

In [4], the weak information was placed into a utility maximization prob-
lem from terminal wealth and without contingent claims (or random endow-
ment), in continuous time. Let A(x) be the set of all admissible trading
strategies Θ, that is the set of θ’s that are integrable with respect to S

and are such that the associated wealth processes x+
∫ t

0
θudSu, t ∈ [0, T ],

where x > 0 is an initial wealth, stays nonnegative. Then, for some increas-
ing, strictly concave utility function U : (0,∞) → R, [4, p. 74] defines the
financial value of the weak information on the optimal portfolio problem as

u(x, ν) = inf
Q∈Eν

sup
θ∈A(x)

EQ

[
U

(
x+

∫ T

0

θudSu

)]
, x > 0. (6)

Further, for a given initial wealth x > 0, [4, p. 76] sets

u(x, ν)− U(x) (7)

to be the value of the additional information.

Our formulation. Combining the weak information on the outputs to (1)
as it is done below in (8) has the spirit of [4]; however, it differs from (6)
in [4] by

• switching from maximization to minimization problem (this change
is fairly straightforward),

• more importantly, it allows us to incorporate the contingent claim
VN in a tractable way, which allows us to give affirmative answers
to natural questions of what is the information premium and what
the corrections to the optimal trading strategy are under extra in-
formation.

In contrast to [3] and [4], where continuous-time models are considered, we
work in discrete-time settings.

1To be more precise, in [4, p. 46], Y : Ω → P, an FT -measurable random element,
where P is a Polish space. We suppose that P = R for simplicity of the presentation.
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Remark 3.1. The utility maximization problem with a contingent claim
or a random endowment in the general settings of incomplete markets is
substantially more difficult than the one without a contingent claim, and
the existing results are obtained later; compare [11] and [12] (without ran-
dom endowment) with [7], [9], and [13] (with endowment), where [7] is the
earliest known result.

We suppose that an insider has weak information about some random
variable Y (e.g., the value of the stock price at time N), given via its
distribution ν as well as about the filtration F . We let Eν set of probability
measures Q on Ω that are equivalent to P and are such that the law of Y
under Q is ν (exactly as in the construction of (6)). Then we consider the
following problem:

sup
Q∈Eν

inf
V0∈R,ξ∈Θ

EQ
[
(VN − V0 −GN (ξ))

2
]
. (8)

We call the information premium the change in the fair price V̂0 that
comes from formulations (1) and (8). This concept has some connection
to the value of the additional information in (7); however, it captures the
changes in the fair price directly.

Discussion. This problem may be interpreted as the greatest decrease to
the least squares difference between some non-traded derivative security
payoff, dependent on S, and some initial capital plus the gains from the
trade under some trading strategy up to time N , under the weak infor-
mation on SN . Comparing the solutions of (1) and (8), one may quantify
the financial value of the weak information through the Föllmer-Schweizer
decomposition of the derivative security payoff as well as the information
premium on the fair price of the security.

The novel problem (8) holds similarities to (6). One can interpret (8)
as the discrete-time, quadratic analog to (6), but with some additional
contingent claim with a payoff VN . Therefore, (8) is a novel yet natural
problem to investigate.

Mathematically, using sequential regression, one can obtain the solu-
tions to (1), and identify the Föllmer-Schweizer decomposition of VN un-
der some measure P. Note that, the fair price and the optimal trading
strategy, and, as a result, the Föllmer-Schweizer decomposition of the de-
rivative security payoff depend on which probability measure that defines
the weak information is used. We now investigate whether one can iden-
tify the Föllmer-Schweizer decomposition of VN or its analog based on (8),
where the objective in (8) can be interpreted as considering the worst case
scenario, given the uncertainty about the choice of Q ∈ Eν .

6 MISSOURI J. OF MATH. SCI., VOL. 31, NO. 1
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We interpret having weak information on SN as an insider having extra
information on the outcomes of the asset’s value during the payoff period.
As such, using this weak anticipation the insider may gain some knowledge
on the fair price of a non-traded derivative security whose value is derived
from S, as well as the optimal trading strategy required to reduce the least-
squares difference between the payoff and the initial capital plus the gains
from the trade up to the terminal time period, under this optimal trading
strategy.

The main drawback of the considered model is that, for non-replicable
contingent claims, the mathematical problem (8) governing the informa-
tion premium is not well-posed in the sense of Hadamard, in general. This
drawback can potentially be addressed by adjusting the modeling frame-
work and working under some particular probability measure in Eν that
can be chosen by additional considerations.

4. The Information Premium in Complete Markets is Zero

In the settings of Section 2, a market is complete, if every contingent
claim VN can be represented as

VN = V0 +GN (ξ), (9)

for some ξ ∈ Θ and some V0 ∈ R. This corresponds to the case when
LN = 0 in (5): the payoff of the non-traded security VN can be exactly
replicated via the gains from trade from some ξ ∈ Θ, starting from the
initial capital V0.

Example 4.1 (The Binomial Model). Suppose that we have an arbitrage-
free market in which for each time step n = 0, 1, . . . , N − 1, where, for
every realization of the undiscounted stock price Sn at time n, the value of
Sn+1 may take on one of two possible values, either uSn or dSn for some
u, d satisfying 0 < d < 1 + r < u, for a one-period interest rate r > −1.
This is known as the no-arbitrage binomial market model. We suppose that
P [Sn+1 = uSn|Sn] = p ∈ (0, 1), and P [Sn+1 = dSn|Sn] = q := 1 − p. One
may interpret Sn+1 = uSn as the stock increasing in value from time n to
n + 1, and Sn+1 = dSn as the stock decreasing in value from time n to
n+ 1. Suppose X = (Xn)n=0,1,...,N is a wealth process that replicates the
payoff VN , i.e., a self-financing process that begins with initial capital X0

such that

XN (ω) = VN (ω), ω ∈ Ω.

Then the backward induction approach leads to the Delta-Hedging formula
given by [15]. It provides the number of stocks to trade at each time period,
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the self-financing trading strategy ξ̂, in order to replicate VN :

ξ̂n(ω) =
Xn(ωH)−Xn(ωT )

uSn−1 − dSn−1
,

where ω = ω1 . . . ωn, where each ωi ∈ {H,T}. Therefore, if an insider is
given some weak information ν(SN ), the problem of

sup
Q∈Eν

inf
V0∈R,ξ∈Θ

EQ
[
(VN − V0 −GN (ξ))

2
]
,

in an arbitrage-free binomial asset pricing model is trivial. For any Q ∈ Eν ,
(9) implies that the trading strategy ξ and an initial wealth V0 result in

VN − V0 −GN (ξ) = 0. (10)

Thus, ξ and V0 are minimizers to both (8) and (1). These minimizers

depend on neither P, nor Eν . Equality (10) is consistent with (4) with ξ̂ = ξ

and V̂0 = V0, and (10) also reinforces the consistency between arbitrage-free
prices and fair prices in the current settings. Note that this is also addressed
in [16] for utility-based prices, and that in complete binomial settings, the
consistency of the hedging by sequential regression and the delta-hedging
formula in demonstrated in [5].

Comparing (3), (4) with (9), and by picking

ξ̂ = ξ and V̂0 = V0

we deduce that the weak information premium is zero (i.e., (10) holds)
not only in binomial settings but in general complete models. This, in
turn, implies the consistency of arbitrage-free pricing and fair pricing in
complete models. Therefore, in complete markets, the weak information
does not affect the fair price of a contingent claim, as the price is formed
by a different mechanism: replication.

5. The Information Premium in Incomplete Markets

Let us now consider more realistic incomplete models, that is, the ones
where not all contingent claims are replicable in the sense of (9). As men-
tioned above, in complete markets, one can price assets through the repli-
cation and subsequently reduce the Föllmer-Schweizer decomposition of a
security payoff VN to

VN = V̂0 +GN (ξ̂),

which is consistent with (9). Instead, for incomplete markets, for non-
replicable (in the sense (9)) contingent claims, we can only ask what is the
optimal trading strategy and fair price of the security under which the risk
of loss is minimized, as with the least squares minimization problem (1).
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Therefore, in incomplete markets for non-replicable claims, if an investor
has some weak information, the objective

sup
Q∈Eν

inf
V0∈R,ξ∈Θ

EQ
[
(VN − V0 −GN (ξ))

2
]
> 0,

becomes much more pertinent. For replicable claims, that is for the ones
that admit representation (9), the situation is exactly the same as in com-
plete markets though, and the information premium is 0.

5.1. The information premium for non-replicable claims. For every
probability measure Q, which is absolutely continuous with respect to P,
let us define

vQn := VarQFn−1
[∆Sn], n ∈ {1, . . . , N}. (11)

In this section, we need to strengthen Assumption 2.2 to make it uniform
over Q ∈ Eν .

Assumption 5.1. We suppose that there exists δ > 0, such that, for every
Q ∈ Eν , with probability 1, we have

vQn ≥ δ, n ∈ {1, . . . , N}.

As in (8) we deal with Föllmer-Schweizer decompositions under multiple
probability measures, it will be convenient to emphasize the dependence of

V̂0, ξ̂, and L appearing in (5) on the probability measure by writing V̂ Q
0 , ξ̂Q,

and LQ, where Q is the probability measure under which the expectation
in (5) is considered, that is

VN = V̂ Q
0 +

N∑
j=1

ξ̂Qj ∆Sj + LQ
N . (12)

With Eν denoting the closure of Eν , we note that from Assumption 5.1 one
can show that (12) is well-defined for every Q ∈ Eν . To state Theorem 5.2,
we need to consider

sup
Q∈Eν

E[(LQ
T )2]. (13)

The following theorem gives the formulas for information premium and
the correction of the optimal trading strategy.

Theorem 5.2. On a finite probability space, where P(ω) > 0 for every
ω ∈ Ω, let us suppose that Assumption 5.1 holds and there exists a unique
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solution to (13). Then, the maximizer Q̂ to (13) satisfies

sup
Q∈Eν

inf
V0∈R,ξ∈Θ

EQ


VN − V0 −

N∑
j=1

ξj∆Sj

2
 = EQ̂

[(
VN − V̂ Q̂

0 −GN (ξQ̂)
)2
]

= inf
V0∈R,ξ∈Θ

EQ̂


VN − V0 −

N∑
j=1

ξj∆Sj

2
 .

(14)

The information-based correction to the optimal strategy is well-defined and
recursively, backward in time, is given by

ξ̂Pn − ξ̂Q̂n =

CovPFn−1

[
VN −

N∑
j=n+1

ξ̂Pj∆Sj ,∆Sn

]
VarPFn−1

[∆Sn]

−
CovQ̂Fn−1

[
VN −

N∑
j=n+1

ξ̂Q̂j ∆Sj ,∆Sn

]
VarQ̂Fn−1

[∆Sn]
, n = N, . . . , 1.

(15)

The information premium (that is the correction to the fair price due to the
weak information) is given by

V P
0 − V

Q̂
0 = E

VN − N∑
j=1

ξ̂Pj∆Sj

− EQ̂

VN − N∑
j=1

ξ̂Q̂j ∆Sj

 . (16)

The probability measure Q̂ and the outputs of the Föllmer-Schweizer de-
composition can be approximated by elements of Eν . This is the subject of
the following proposition, and the approximation argument will be further
used in the stability analysis.

Proposition 5.3. Let us assume that the conditions of Theorem 5.2 hold,
and consider Q̂ specified in Theorem 5.2. Then, there exists a sequence
Qm ∈ Eν , m ∈ N, such that

lim
k→∞

ξ̂Q
m

j (ω) = ξ̂Q̂j (ω), j = 1, . . . , N, ω ∈ Ω,

lim
k→∞

Gj(ξ̂
Qm)(ω) = Gj(ξ̂

Q̂)(ω), j = 0, . . . , N, ω ∈ Ω,

lim
k→∞

V̂ Qm
0 = V̂ Q̂

0 ,

lim
k→∞

LQm
j (ω) = LQ̂

j (ω), j = 0, . . . , N, ω ∈ Ω.

(17)

10 MISSOURI J. OF MATH. SCI., VOL. 31, NO. 1
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Proof. Let us consider the objective

F := sup
Q∈Eν

inf
V0∈R,ξ∈Θ

EQ


VN − V0 −

N∑
j=1

ξj∆Sj

2
 > 0,

and let us define

f(Q) := inf
V0∈R,ξ∈Θ

EQ


VN − V0 −

N∑
j=1

ξj∆Sj

2
 , Q ∈ Eν .

Let Qk, k ∈ N, be a sequence of probability measures in Eν , such that

f(Qk) ≥ F − 1/k. (18)

As we work on a finite probability space, each Q can be represented by a
finite-dimensional vector (where the dimension corresponds to the number
of states, and thus such a dimension does not depend on the choice of Q).
The components of such a vector take values in (0, 1), and in particular are
bounded from above and below. Consequently, there exists a convergent
subsequence Qnk , k ≥ 1, such that

[0, 1] 3 lim
k→∞

Qnk(ω) =: Q̂(ω), ω ∈ Ω. (19)

Boundedness of Qnk , k ≥ 1, implies that Q̂ is also a probability measure2.
We denote this subsequence by Qm, m ≥ 1.

Let us recall that for a fixed Q, such that the process vQ, defined in (2),

is strictly positive with probability 1, the optimal ξ̂ in (5) is given by

ξ̂Qn =

CovQ
Fn−1

[
VN −

N∑
j=n+1

ξ̂Qj ∆Sj ,∆Sn

]
vQn

, n = 1, . . . , N, (20)

see (3). Assumption 5.1 ensures that vQ̂ is strictly positive. Therefore, from
(19) and (20), we get

lim
m→∞

ξ̂Q
m

N (ω) = ξ̂Q̂N (ω), ω ∈ Ω.

Consequently, we obtain

lim
m→∞

ξ̂Q
m

N (ω)∆SN (ω) = ξ̂Q̂N (ω)∆SN (ω), ω ∈ Ω.

In turn, this allows to deduce that

lim
m→∞

ξ̂Q
m

N−1(ω) = ξ̂Q̂N−1(ω), ω ∈ Ω.

2We note that this implication can be though as an application of Prokhorov’s
theorem.
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Continuing the backward recursion procedure, we deduce the first two
equalities in (17).

From the first two equalities in (17), (4), and (19) we deduce that

lim
m→∞

V̂ Qm
0 = V̂ Q̂

0 ,

that is the third equality in (17) holds. Now, from (12), we deduce that

lim
m→∞

LQm
n (ω) = LQ̂

n(ω), n = 0, . . . , N, ω ∈ Ω,

which is the last equality in (17). �

Remark 5.4. The argument in the proof of Proposition 5.3 can be applied
to every element Q̃ in the closure of Eν , where Assumption 5.1 ensures that

vQ̃ is strictly positive, and this implies representations analogous to (17)

for the components of (12) under Q̃.

Proof of Theorem 5.2. First, we observe that Assumption 5.1 implies that

Q[|∆Sn − EFn−1 [∆Sn]| = 0] = 0, n ∈ {1, . . . , N}, Q ∈ Eν . (21)

The equivalence of P to every probability measure in Eν and (21) implies
that vP is a strictly positive process, with probability 1.

To show (14), let us consider and approximating sequence Qm ∈ Eν ,
m ∈ N, as in the statement of Proposition 5.3. From (17), we deduce that

lim
m→∞

(
VN − V̂ Qm

0 −GN (ξ̂Qm)
)2

(ω) =
(
VN − V̂ Q̂

0 −GN (ξ̂Q̂)
)2

(ω), ω ∈ Ω,

and therefore from (19), we get

lim
m→∞

EQm
[(
VN − V̂ Qm

0 −GN (ξ̂Qm)
)2
]

= EQ̂
[(
VN − V̂ Q̂

0 −GN (ξ̂Q̂)
)2
]
.

(22)

12 MISSOURI J. OF MATH. SCI., VOL. 31, NO. 1
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Consequently, we obtain

sup
Q∈Eν

inf
V0∈R,ξ∈Θ

EQ


VN − V0 −

N∑
j=1

ξj∆Sj

2


= lim
k→∞

inf
V0∈R,ξ∈Θ

EQmk


VN − V0 −

N∑
j=1

ξj∆Sj

2


= lim
k→∞

EQmk

[(
VN − V̂

Qmk
0 −GN (ξ̂Qmk )

)2
]

=EQ̂
[(
VN − V̂ Q̂

0 −GN (ξ̂Q̂)
)2
]

= inf
V0∈R,ξ∈Θ

EQ̂


VN − V0 −

N∑
j=1

ξj∆Sj

2
 ,

(23)

where in the first equality, we used (18), in the second and fourth equalities,

we have used the optimality of V̂0’s and ξ̂’s, and in the third equality, we
have used (22). Now, (23) gives (14). In turn (14) and (4) imply the
representation (16), and finally (14) and (3) give (15).

�

5.2. Example: the information premium in a one-period trinomial
model. A classical example of a discrete-time arbitrage-free incomplete
market model is based on the trinomial asset pricing model. Here, we model
a discounted risky asset S such that at each time period n = 0, 1, . . . , N−1,
Sn+1 may take on three different values. That is, Sn+1 = uSn, or the asset
value increase by factor u from time n, Sn+1 = sSn = Sn, or the asset value
remains the same as in time n, or Sn+1 = dSn, or the asset value decreases
by factor d from time n.

For example, consider a 1-step trinomial asset pricing model with S0 = 4,
u = 2, d = 1

2 , r = 0, and a European Call Option, V1, expiring at time
N = 1 with strike price K = 7. Note that in this market, the payoff V1(ω)
is 1 if and only if ω = u. In the following subsection, we will illustrate that
extra information can increase, decrease or keep the fair time-zero price V̂0

the same.
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4

8

4

2

S0

S1(u)

S1(s)

S1(d)

1-period Trinomial Model, with K = 7

Using the above one-period trinomial model, assume that an un-informed
investor (one without weak information on Y = S1) has a naive belief
that the stock prices will be uniformly distributed at time 1 (i.e., the
stock price distribution at time 1 matches the probability measure P =
{p(u), p(s), p(d)} = { 1

3 ,
1
3 ,

1
3}, where p(u), p(s), p(d) represent the probabil-

ity of the stock price increasing, staying the same, or decreasing respec-
tively). Now suppose we have an insider who is given some weak infor-
mation on Y = S1. Note that for the one-period model case, ν defines
some new probability measure P′ = {p′(u), p

′
(s), p

′
(d)}. We thus consider

a range of possible ν that an insider may be given, and show how the fair
price of the option and optimal trading strategy change under different
measures that may be defined. We compute the time-zero fair price for this
contingent claim using the following formulas:

ξ̂1 =

Cov

[
V1,∆S1

]
Var[∆S1]

,

V̂0 = E[V1]− ξ̂1E[∆S1].

We note that under P, calculating ξ̂1 and V̂0 yields 5
28 and 3

14 . Analogous
results can be obtained under weak information, and the following graphs
give how the fair price of the contingent claim and optimal trading strategy
change when an investor is given some weak information:

14 MISSOURI J. OF MATH. SCI., VOL. 31, NO. 1
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Positive and negative values are shown in blue and red
colors, respectively. (left) Fair time-zero option price dif-
ference under ν from P. (right) Strategy difference under
the extra information under ν from P.

Since E[V1] = P(u), the option is priced higher if P(u) increases, or ξ̂1
or E[∆S1] decreases. Notice that weak information that gives extremely
small ν(S1 = 2) and ν(S1 = 8) results in a positive and negative change
to the optimal trading strategy, ξν1 − ξP1 , respectively. This matches with
an intuition that if there is almost no chance of a stock losing (or gaining)
its value, a trader should buy more (or less) shares of stock than he or she
would have under the naive assumption in order to hedge a position.

We conclude this example by pointing out that it demonstrated that the
weak information in an incomplete, trinomial model could change the fair

price V̂0 and the trading strategy ξ̂. The fair price can become higher, lower,
or stay the same. This contrasts with the complete models considered in
Section 4.

5.3. Stability of the Föllmer-Schweizer decomposition. For some
ε0 > 0, let us consider a family of adapted stock price processes parametrized
by ε, (Sε)ε∈(−ε0,ε0) (where an example of such a family corresponds to lin-
ear perturbations of the drift and volatility considered in [5], another closely
related example corresponds to perturbations of the numéraire considered
in [6]), a family of probability measures (Pε)ε∈(−ε0,ε0), such that Pε(ω) > 0
for every ω ∈ Ω and ε ∈ (−ε0, ε0), and a family of contingent claim payoffs
(V εN )ε∈(−ε0,ε0). We note that, for every ε ∈ (−ε0, ε0), the measurable space
(Ω,F) and the filtration F = (Fn)n=0,1,...,N are the same and are described
in Section 2. We suppose that

Sε → S0, Pε → P0, and V εN → V ε0 ,
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in the following sense

lim
ε→0

Sεn(ω) = S0
n(ω), n ∈ {0, . . . , N}, ω ∈ Ω,

lim
ε→0

Pε(ω) = P0(ω) > 0, ω ∈ Ω,

lim
ε→0

V εN (ω) = V 0
N (ω), ω ∈ Ω.

(24)

Next, we show stability of a family of the Föllmer-Schweizer decompositions
under joint perturbations of the stock price dynamics, the contingent claim
payoff, and the reference probability measure.

Proposition 5.5. On a finite space, let us consider a family of stock price
processes, (Sε)ε∈(−ε0,ε0), a family of probability measures (Pε)ε∈(−ε0,ε0),
such that Pε(ω) > 0 for every ω ∈ Ω and ε ∈ (−ε0, ε0), and a family of
payoffs of contingent claims, (V εN )ε∈(−ε0,ε0) satisfying (24). Let us suppose
that Assumption 2.2 holds for the base model corresponding to ε = 0. Then,
there exists ε0 ∈ (0, ε0], such that for every ε ∈ (−ε0, ε0), the family of the
Föllmer-Schweizer decompositions

V εN = V̂ ε0 +

N∑
j=1

ξ̂εj∆S
ε
j + LεN , ε ∈ (−ε0, ε0). (25)

is well-defined and satisfies

lim
ε→0

ξ̂εn = ξ̂0
n, n ∈ {1, . . . , N},

lim
ε→0

V̂ ε0 = V̂ 0
0 ,

lim
ε→0

Lεn = L0
n, n ∈ {0, . . . , N},

(26)

where the equalities hold for every ω ∈ Ω.

Proof. We observe that the positivity of Pε(ω), for every ω ∈ Ω and ε ∈
(−ε0, ε0), implies that

Pε ∼ P0, ε ∈ (−ε0, ε0).

From Assumption 2.2, obtain that for ε = 0, (25) holds, where

ξ̂0
n =

CovP0

Fn−1

[
V 0
N −

N∑
j=n+1

ξ̂j∆S
0
j ,∆S

0
n

]
VarP

0

Fn−1
[∆S0

n]
, n = N, . . . , 1,

is well-defined, where, here and below, we used the superscript P0 to em-
phasize the probability measure, under which the conditional covariance
and the conditional variance are computed.
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Now, (24) imply that there exists ε0 ∈ (0, ε0], such that for every ε ∈
(−ε0, ε0) and n = 1, . . . , N , with probability 1, we have

VarP
ε

Fn−1
[∆Sεn] > 0. (27)

Now, (24) implies that lim
ε→0

VarP
ε

Fn−1
[∆Sεn] = Var0

Fn−1
[∆S0

n], for every n ∈

{1, . . . , N} and ω ∈ Ω, which together with the representation of ξ̂εN for
every Pε (in (3) at n = N however with V εN and Sε instead of V 0

N and S0)
gives

lim
ε→0

ξ̂εN = ξ̂0
N ,

and therefore also

lim
ε→0

ξεN∆SεN = ξ0
N∆S0

N ,

Now, proceeding recursively, backward in time, we deduce from formula (3)
for every Pε, ε ∈ (−ε0, ε0) that

lim
ε→0

ξ̂εn = ξ̂0
n, n ∈ {N, . . . , 1},

lim
ε→0

n∑
j=1

ξ̂εj∆S
ε
j = lim

ε→0

n∑
j=1

ξ̂0
j∆S0

j , n ∈ {N, . . . , 1},
(28)

therefore, in particular, the first equation in (26) holds.
Further, by the martingale property of Lε under the associated Pε and

since EPε [Lε0] = 0, we have

V ε0 = EPε

V εN − N∑
j=1

ξ̂εj∆S
ε
j

 .
Consequently, (24) (convergence of V εN ’s) and (28) result in the convergence
of V ε0 ’s, that is the second equation in (26). By rewriting (25) as

LεN = V εN − V̂ ε0 −
N∑
j=1

ξ̂εj∆Sj , ε ∈ (−ε0, ε0),

and using first two equalities in (26), we obtain that lim
ε→0

LεN = L0
N . Finally,

by taking the conditional expectations under the corresponding measures
Pε’s, and invoking the martingale property of Lε’s under the associated
measures, we deduce that the third equality in (26) holds. �

5.4. Stability of the information premium and the correction to
optimal trading strategy. We work in the settings and notations of Sec-
tion 5.3. The main result below gives the stability of the information pre-
mium and the correction to the optimal trading strategy under perturbation
(24).
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Let ε0 be as in Proposition 5.5. For every ε ∈ (−ε0, ε0), to emphasize
the dependence of the components of the Fölmer-Schweizer decomposition
on both ε and the probability measure Q, that is, for the outputs to

minimize EQ

(V εN − V0 −
N∑
j=1

ξj∆S
ε
j )2

 over all ξ ∈ Θ and V0 ∈ R, (29)

we denote the associated Fölmer-Schweizer decompositions as follows

V εN = V̂ Q,ε
0 +

N∑
j=1

ξ̂Q,εj ∆Sεj + LQ,ε
N , ε ∈ (−ε0, ε0). (30)

Theorem 5.6. On a finite space, let us consider a family of stock price
processes, (Sε)ε∈(−ε0,ε0), a family of probability measures (Pε)ε∈(−ε0,ε0),
such that Pε(ω) > 0 for every ω ∈ Ω and ε ∈ (−ε0, ε0), and a family of
payoffs of contingent claims, (V εN )ε∈(−ε0,ε0) satisfying (24). Let us suppose
that Assumption 5.1 holds and there exists a unique solution to (13) for the
base model corresponding to ε = 0.

Then, for ε0 > 0 as in Proposition 5.5 and every Qε ∈ arg max
Eν

v(ε),

ε ∈ (−ε0, ε0), we have

lim
ε→0

(
V Pε,ε

0 − V Qε,ε
0

)
= V P0,0

0 − V Q̂,0
0 ,

lim
ε→0

(
ξP
ε,ε
n − ξQ

ε,ε
n

)
= ξP

0,0
n − ξQ̂,0n , n ∈ {1, . . . , N}, ω ∈ Ω,

(31)

where Q̂ is the optimizer to (34), for ε = 0, and we use double superscripts
as in (30).

Proof. We observe that, similarly to the proof of Theorem 5.2, Assumption

5.1 and equivalence of P0 to every probability measure in Eν imply that vP
0

is strictly positive, where vP
0

is defined in (2), that is Assumption 2.2 holds
for P0. Next, using (24), we deduce that there exists ε0 ∈ (0, ε0], such that
for every ε ∈ (−ε0, ε0) we have

VarP
ε

Fn−1
[∆Sεn] ≥ 1

2v
P0

n > 0, n ∈ {1, . . . , N}. (32)

By Proposition 5.5, we deduce that

lim
ε→0

V Pε,ε
0 = V P0,0

0 and lim
ε→0

ξP
ε,ε
n = ξP

0,0
n , n ∈ {1, . . . , N}. (33)

Next, we set

u(ε) := sup
Q∈Eν

E[(LQ,ε
N )2], ε ∈ (−ε0, ε0). (34)

We claim that
lim
ε→0

u(ε) = u(0). (35)
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Let us consider

lim inf
ε→0

u(ε) = lim inf
ε→0

sup
Q∈Eν

EQ[(LQ,ε
N )2] ≥ lim inf

ε→0
EQ̂[(LQ̂,ε

N )2]. (36)

Using Proposition 5.5, we can rewrite the latter limit as

lim inf
ε→0

EQ̂[(LQ̂,ε
N )2] = lim inf

ε→0
EQ̂[(LQ̂,0

N )2] = u(0),

combining which with (36), we deduce that

lim inf
ε→0

u(ε) ≥ u(0). (37)

Let us now consider a sequence εk, k ∈ N, such that

lim
k→∞

u(εk) = lim sup
ε→0

u(ε) (38)

and we fix Qk ∈ Eν , k ∈ N, such that

u(εk) ≤ E[(LQk,εk
N )2] +

1

k
, k ∈ N. (39)

For the sequence Qk ∈ Eν , k ∈ N, we can pick a convergent subsequence
kl, l ∈ N, whose limit we denote by Q. One can see that Q ∈ Eν . Applying
Proposition 5.5 (the last equality in (26)), we deduce that

lim
l→∞

L
Qkl ,εkl
N = LQ,0

N ,

for every ω ∈ Ω. Combining this with (38) and (40), we deduce that

lim sup
ε→0

u(ε) = lim
l→∞

E[(L
Qkl ,εkl
N )2] = E[(LQ,0

N )2] ≤ sup
Q∈Eν

E[(LQ,0
N )2] = u(0).

(40)
Now, (37) and (40) imply (35).

Let εm, m ∈ N, be an arbitrary sequence converging to 0 and such that
εm ∈ (−ε0, ε0), m ∈ N. Let us consider Qεm ∈ arg max

Eν
u(εm), m ∈ N. We

claim that
lim
m→∞

Qεm(ω) = Q̂(ω), ω ∈ Ω. (41)

If by contradiction we do not have such convergence, there exists a subse-
quence mk, k ∈ N, and a probability measure Q̃, such that lim

k→∞
Qεmk = Q̃,

for every ω ∈ Ω. Proposition 5.5 (see (26)) this implies that

lim
k→∞

L
Qεmk ,εmk
N = LQ̃,0

N ,

for every ω ∈ Ω. Therefore, as Q̂ is the unique optimizer to u(0) (by the
assumption of this theorem), we deduce from (34) that

lim
k→∞

u(εmk) = lim
k→∞

E[(L
Qεmk ,εmk
N )2] = E[(LQ̃,0

N )2] < E[(LQ̂,0
N )2] = u(0),
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which contradicts to (35). Thus, (41) holds. Applying Proposition 5.5 (see
(26) again), we obtain that

lim
m→∞

ξ̂Q
εm ,εm

n = ξ̂Q̂,0n , n ∈ {1, . . . , N}, and lim
m→∞

V̂ Qεm ,εm
0 = V̂ Q̂,0

0 .

(42)

As εm, m ∈ N, is an arbitrary sequence, (42) combined with (33) imply
(31). �
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under small perturbations of the numéraire on a finite probability space. Involve,

15(4):649–668, 2022.
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