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Aerobreakup of drops is a fundamental two-phase flow problem that is essential to many
spray applications. A parametric numerical study was performed by varying the gas stream
velocity, focusing on the regime of moderate Weber numbers, in which the drop deforms
to a forward bag. When the bag is unstable, it inflates and disintegrates into small droplets.
Detailed numerical simulations were conducted using the volume-of-fluid method on an
adaptive octree mesh to investigate the aerobreakup dynamics. Grid-refinement studies
show that converged three-dimensional simulation results for drop deformation and bag
formation are achieved by the refinement level equivalent to 512 cells across the initial drop
diameter. To resolve the thin liquid sheet when the bag inflates, the mesh is refined further
to 2048 cells across the initial drop diameter. The simulation results for the drop length and
radius were validated against previous experiments, and good agreement was achieved.
The high-resolution results of drop morphological evolution were used to identify the
different phases in the aerobreakup process, and to characterize the distinct flow features
and dominant mechanisms in each phase. In the early time, the drop deformation and
velocity are independent of the Weber number, and a new internal-flow deformation
model, which respects this asymptotic limit, has been developed. The pressure and velocity
fields around the drop were shown to better understand the internal flow and interfacial
instability that dictate the drop deformation. Finally, the impact of drop deformation on
the drop dynamics was discussed.

Key words: drops, aerosols/atomization, multiphase flow

1. Introduction

When a drop is subjected to a high-speed gas stream, the drop can experience significant
deformation or even breakup. If the stabilizing forces, including surface tension and
viscous forces, are not sufficient to overcome the destabilizing inertia force, then the
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drop will break into a collection of child droplets of different sizes (Taylor 1949;
Guildenbecher, López-Rivera & Sojka 2009; Theofanous 2011). The aerodynamic breakup
(or aerobreakup) of drops is essential to many spray applications, such as liquid fuel
injection and spray cooling, and has therefore been studied extensively in the past decades.

Though the interaction between the drop and surrounding gas in practical aerobreakup
applications usually involves many complex factors, drop aerobreakup is formulated
typically in a simplified configuration, i.e. an initially stationary and spherical drop is
suddenly exposed to an unbounded uniform gas stream (Theofanous & Li 2008; Jain
et al. 2019; Marcotte & Zaleski 2019). Then the two-phase interfacial flows that dictate
the drop deformation and dynamics are fully determined by the densities and viscosities
of the drop liquid and the gas, ρl, µl, ρg and µg, the surface tension σ , the initial drop
diameter d0, and the gas stream velocity U0. The subscripts g and l are used to denote the
properties for the gas and liquid, respectively, while the subscript 0 is used to represent
the initial state. The drop is considered to be far away from the free-stream boundary.
Furthermore, it is assumed that the Mach number of the gas stream is significantly lower
than the critical Mach number, so the compressibility effect can be neglected. Aerobreakup
of drops in a supersonic gas stream (Theofanous, Li & Dinh 2004; Theofanous et al. 2007;
Sharma et al. 2021) is outside the scope of the present study. We have also considered
the liquid as a Newtonian fluid and excluded the non-Newtonian effect of the drop liquids
on the process (Joseph, Belanger & Beavers 1999; Theofanous, Mitkin & Ng 2013). As a
result, the present problem can be characterized fully by four independent dimensionless
parameters: the Weber number We = ρgU2

0d0/σ , the Reynolds number Re = ρgU0d0/µg,
the Ohnesorge number Oh = µl/

√
ρld0σ , and the gas-to-liquid density ratio r = ρg/ρl

(Pilch & Erdman 1987; Hsiang & Faeth 1992; Joseph et al. 1999; Guildenbecher et al.

2009). Alternative dimensionless parameters can be defined based on the above four
parameters, such as the gas-to-liquid viscosity ratio m = µg/µl (Guildenbecher et al.

2009).
The present study focuses on the regime of millimetre water drops in an air stream,

following the recent work by Jackiw & Ashgriz (2021). In this regime, the small values
of r ∼ O(10−3) and Oh ∼ O(10−3), and the large value of Re ∼ O(103), indicate that
surface tension plays the dominant role in resisting drop breakup. The key parameter
characterizing drop dynamics and morphology evolution is We ∼ O(102), which is
moderate. Previous experiments using shock tubes (Hinze 1955; Hsiang & Faeth 1995;
Joseph et al. 1999; Theofanous et al. 2004) and continuous jets (Liu & Reitz 1993;
Flock et al. 2012; Zhao et al. 2013; Opfer et al. 2014; Guildenbecher et al. 2017; Jackiw
& Ashgriz 2021, 2022) have identified different breakup modes for low-Oh drops. The
critical Weber number for breakup to occur is Wecr ≈ 11 ± 2. When We < Wecr, the
drop will oscillate without breakup or break into a small number of large child drops
due to large-amplitude nonlinear oscillations (also referred to as the vibration breakup
mode). As We > Wecr, the drop will break into a large number of child droplets. The
drop morphology upon breakup varies significantly with We, from bag, bag-stem (or
multi-mode), multi-bag and stripping (or sheet-thinning mode) (Hsiang & Faeth 1995;
Liu & Reitz 1997; Guildenbecher et al. 2009; Jackiw & Ashgriz 2021). When We is
sufficiently large, such as We > 103, it has been claimed in previous studies that the drop
breaks in the catastrophic mode (Joseph et al. 1999). However, more recent high-resolution
experimental diagnostics suggest that such a breakup mode does not exist (Theofanous
& Li 2008). Different classifications of the breakup regimes have also been proposed,
based on the dominant breakup mechanisms (Theofanous et al. 2004). Since the bag,
bag-stem and multi-bag breakup modes all involve the formation and inflation of bags,
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Simulation of drop aerobreakup in the bag regime

which is driven by the Rayleigh–Taylor instability, they have been reclassified as the
Rayleigh–Taylor piercing mode. On the other hand, the sheet-thinning mode has been
renamed the shear-induced entrainment mode, since it is driven mainly by the shear on the
interface periphery.

The impulsive gas acceleration and continuous non-zero relative velocity between the
gas and the drop induce both viscous and inviscid, steady and unsteady drag forces on the
drop (Maxey & Riley 1983; Mei, Lawrence & Adrian 1991; Ling, Parmar & Balachandar
2013), resulting in a streamwise acceleration of the drop. As the drop deforms, the gas flow
will be modulated, which in turn influences the drop deformation. Consequently, although
the surrounding gas flow in the far field is steady, the drop deformation and the gas flow
around the drop are highly unsteady. According to the scaling analysis (Ling et al. 2013),
the ratios between the unsteady forces and the quasi-steady drag are proportional to 1/r.
For the present cases with r � 1, the unsteady forces will have a small contribution to the
overall drop acceleration. The drop dynamics are dictated by the quasi-steady drag, and
the drop velocity will increase following the gas viscous time scale. For cases with a large
r, such as in a pressurized gas environment, the contribution of the unsteady forces to the
drop acceleration cannot be ignored (Jain et al. 2019; Marcotte & Zaleski 2019).

Aerodynamic breakup of an isolated drop involves rich physics, and the investigation of
the subject is challenging for both experiments and simulations. Due to the highly unsteady
flow and complex topology change, an analytical approach is generally not viable, except
for limiting cases (Vanden-Broeck & Keller 1980; Miksis, Vanden-Broeck & Keller 1981).
Previous studies of drop aerobreakup are based on experiments. Thanks to advancements
in high-speed imaging, the temporal evolution of the drop morphology can be captured
clearly (Theofanous & Li 2008; Flock et al. 2012; Opfer et al. 2014; Jackiw & Ashgriz
2021). With more sophisticated diagnostics, such as digital in-line holography, the velocity
and size of the child droplets can also be measured (Gao et al. 2013; Guildenbecher et al.

2017). However, it is still challenging to measure high-level details of the drop deformation
and gas flows due to the small length and time scales involved. For example, for the bag
breakup mode, it is difficult to visualize the velocity and pressure fields inside the bag
and to measure directly the thickness and velocity in the bag sheet (Opfer et al. 2014).
Therefore, high-fidelity interface-resolved numerical simulations that can provide these
high-level details are essential to investigate drop aerobreakup (Jain et al. 2019; Marcotte
& Zaleski 2019).

Fully-resolved simulations of drop aerobreakup are expensive if one aims to resolve all
the length scales. For example, for a millimetre-sized drop that breaks in the bag mode, the
bag sheet thickness reduces to tens of nanometres before the bag sheet ruptures (Williams
& Davis 1982; Burelbach, Bankoff & Davis 1988). Previous numerical studies could afford
to use a high mesh resolution for two-dimensional (2-D) axisymmetric simulations only
(Han & Tryggvason 1999, 2001; Jing & Xu 2010; Chang, Deng & Theofanous 2013; Jalaal
& Mehravaran 2014; Strotos et al. 2016; Stefanitsis et al. 2017; Jain et al. 2019; Marcotte
& Zaleski 2019). However, as will be shown later, 2-D axisymmetric simulations will not
correctly capture the bag formation in the high Re regime since the turbulent wake and
its influence on the drop deformation are not resolved faithfully. That explains why even
converged 2-D simulations fail to reproduce the bag morphology observed in experiments
(Marcotte & Zaleski 2019). The mesh resolutions in previous three-dimensional (3-D)
simulations are generally much lower, and are insufficient to capture the turbulent wake
and the bag development (Kekesi, Amberg & Wittberg 2014; Jain et al. 2015, 2019; Yang
et al. 2016). There remains a significant gap between the existing simulation results and
experimental data.

972 A28-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

70
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Y. Ling and T. Mahmood

An important motivation for the study of drop aerobreakup is to develop sub-scale
models that can be used in simulations of sprays consisting of a huge number of droplets,
for which it is intractable to resolve the interface of each individual drop. The cell size
used for simulations of sprays in practical scales is typically much larger than the size of
individual drops, therefore the drops are represented by Lagrangian point-particles (Apte,
Gorokhovski & Moin 2003; Pai & Subramaniam 2006; Balachandar 2009). The drop
motion, shape deformation, topology change, and heat and mass transfer between the drop
and the surrounding flow need to be captured by subgrid models (O’Rourke & Amsden
1987; Hsiang & Faeth 1992). When drop breakup occurs, one also needs to estimate the
starting time and end time (Chou & Faeth 1998; Dai & Faeth 2001) and the statistics of
the child droplets produced (O’Rourke & Amsden 1987; Hsiang & Faeth 1992; Wert 1995;
Zhao et al. 2013). For the moderate We regime, the Taylor analogy breakup (TAB) model
(O’Rourke & Amsden 1987) and its subsequent variants (Tanner 1997; Park, Yoon &
Hwang 2002) have been adopted widely to predict the drop deformation (the time evolution
of the drop lateral radius) and the breakup time. The TAB models are based simply on the
mass–spring–damper analogy, and there exist coefficients that need to be calibrated based
on experimental data. Models that incorporate the flow physics have also been proposed.
In the model of Villermaux & Bossa (2009), the pressure distribution induced by the
stagnation flow on the windward surface is considered as the driving force for the lateral
expansion of a thin liquid disk, although the model was also extended to predict the overall
drop deformation (Kulkarni & Sojka 2014; Stefanitsis et al. 2019b; Rimbert et al. 2020;
Jackiw & Ashgriz 2021). Since the Rayleigh–Taylor instability (RTI) plays a significant
role in the formation and development of bags, models based on linear RTI analysis have
also been developed to predict the critical condition for the bag formation and also the
number of bags to be formed in the multi-bag mode (Harper, Grube & Chang 1972; Joseph
et al. 1999; Theofanous et al. 2004). For very high We, the drop breaks in the stripping
mode, and the corresponding breakup models are based on the shear instability (Ranger
& Nicholls 1969) and the rupture of the thinning liquid sheets (Liu & Reitz 1997; Lee &
Reitz 2001). Comprehensive reviews of these models have been given in previous studies
(Guildenbecher et al. 2009; Jackiw & Ashgriz 2021), thus are not repeated here.

Though significant progress has been made in understanding the physics that drives
the deformation and breakup of drops at moderate We, important fundamental questions
remain unanswered. When We is just above the critical value, a single bag is formed, and
the breakup starts when the bag sheet ruptures. When We is very large, liquid sheets are
formed at the equator and break into small droplets before a bag gets a chance to form
near the centre. Between these two asymptotic limits, when We is moderate, the drop
can deform to a variety of shapes before breakup occurs (Jackiw & Ashgriz 2021). The
variation in breakup morphology is very sensitive to We in the moderate range. As the
drop is accelerated by the free stream, it experiences baroclinic torque and RTI on its
windward side. Several models based on the linear stability analysis of RTI on a liquid
layer of finite thickness (Mikaelian 1990, 1996) have been proposed to predict the critical
Weber number (Joseph et al. 1999; Theofanous et al. 2004). However, the significance
of the RTI, and whether the linear stability model captures the nonlinear development
of the bag and the bag morphology change from a simple axisymmetric bag to more
complex shapes, remain uncertain, despite its presence on the interface (Guildenbecher
et al. 2009). It has been suggested that the Laplace pressure on the edge of the drop/disk
contributes to hindering the bag formation or development (Guildenbecher et al. 2009),
yet solid evidence to support the argument remains absent.

The goal of the present study is to investigate the aerobreakup of an isolated drop at
moderate Weber numbers through detailed interface-resolved 3-D numerical simulation.
972 A28-4
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Simulation of drop aerobreakup in the bag regime

By using advanced numerical techniques, including the mass–momentum consistent
volume-of-fluid method (Arrufat et al. 2020; Zhang, Popinet & Ling 2020), balanced-force
surface tension discretization (Popinet 2009), and adaptive mesh refinement, we aim to
resolve fully the two-phase turbulent interfacial flows involved in aerobreakup through
large-scale parallel computations. The drop’s initial diameter and fluid properties are kept
unchanged, and the free-stream gas velocity is varied for a parametric study. Although
typically the lateral radius of the drop increases monotonically in time (Flock et al. 2012;
Opfer et al. 2014; Jackiw & Ashgriz 2021), the overall deformation is a complex process
consisting of different phases with distinct features. The high-level details revealed by
the simulation results will be used to identify the dominant mechanisms that dictate the
deformation in each phase, and also to characterize the effect of We.

For the range of We considered, the drop will deform from its initial spherical shape
to a forward bag with the opening facing the upstream direction. Although it is of great
interest to study the rupture of thin bag sheets and the statistics of the droplets generated
by the bag and rim breakups (Guildenbecher et al. 2017; Jackiw & Ashgriz 2022), the
mesh resolution required to resolve fully the sheet rupture and hole formation is beyond
the current available computational capability. If a liquid sheet breaks due to molecular
forces, then the thickness must be reduced to tens of nanometres. For simulations of
millimetre drops, a fully resolved simulation would need to cover over six orders of
magnitude in length scales, which is obviously impractical even with today’s computer
power. Therefore, the present study will focus mainly on the drop deformation and bag
formation and development before the bag sheet rupture occurs. The present simulations
can be considered fully resolved and mesh-independent up to the early stage of the bag
inflation, but not for the sheet rupture and child drop statistics. Nevertheless, the simulation
results still provide important insights into the bag rupture mechanisms, such as the
hole–hole interaction, which remain not fully understood. Since the occurrence of holes
in the liquid sheet is random, ensemble averaging and statistics of multiple realizations
(e.g. hole appearing locations and the number of holes) will be required to characterize
fully the rupture dynamics and the statistics of the droplets formed (Mostert, Popinet &
Deike 2022; Tang, Adcock & Mostert 2023), though such studies are outside the scope of
the present work.

The rest of the paper will be organized as follows. Subsection 2.1 introduces the
governing equations, and § 2.2 describes the numerical methods used in the present
simulations. The physical parameters and simulation set-up are presented in § 2.3. Before
discussing the simulation results, § 3 defines the characteristic length and time scales used
to characterize the drop shape and gas flows. Grid-refinement and validation studies are
presented in § 4. The simulation results identify different deformation phases, which are
discussed in sequence in § 5. The effect of drop deformation on the aerodynamic drag and
lift exerted on the drop is discussed in § 6. Finally, § 7 concludes the key findings of the
present study.

2. Simulation methods

2.1. Governing equations

The two-phase interfacial flows are governed by the incompressible Navier–Stokes
equations with surface tension,

ρ

(

∂ui

∂t
+ ui

∂uj

∂xj

)

= − ∂p

∂xi

+ ∂

∂xj

[

µ

(

∂ui

∂xj

+ ∂uj

∂xi

)]

+ σκδsni, (2.1)

972 A28-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

70
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Y. Ling and T. Mahmood

∂ui

∂xi

= 0, (2.2)

where ρ, ui, p, µ represent density, velocity vector, pressure and viscosity, respectively.
The Dirac distribution function δs is localized on the interface. The surface tension
coefficient σ is constant, and κ and ni represent the curvature and normal vector of the
interface.

The gas and liquid phases are distinguished by the liquid volume fraction c, the evolution
of which follows the advection equation

∂c

∂t
+ ui

∂c

∂xi

= 0. (2.3)

After spatial discretization, the cells with only liquid or gas will exhibit c = 1 and 0,
respectively, while for cells containing the gas–liquid interface, 0 < c < 1. The density
and viscosity are both defined based on the arithmetic mean:

ρ = ρlc + ρg(1 − c), (2.4)

µ = µlc + µg(1 − c). (2.5)

2.2. Numerical methods

The governing equations (2.1)–(2.3) are solved using the open-source, multiphase flow
solver Basilisk. The Basilisk solver uses a finite-volume method for spatial discretization.
The projection method is used to incorporate the incompressibility condition. The
advection equation (2.3) is solved via a geometrical volume-of-fluid (VOF) method
(Scardovelli & Zaleski 1999). The advection of momentum across the interface is
conducted consistently with the VOF advection (Arrufat et al. 2020; Zhang et al. 2020).
The mass–momentum consistency is essential for multiphase flows with large density
contrast (Zhang et al. 2020). The balanced-force method is used to discretize the singular
surface tension term in the momentum equation (Popinet 2009). The interface curvature
required to calculate surface tension is computed based on the height-function method
(Popinet 2009). The staggered-in-time discretization of the volume fraction/density and
pressure leads to a formally second-order-accurate time discretization (Popinet 2009).
An adaptive quadtree/octree mesh is used to discretize the computational domain, which
allows adaptive mesh refinement in user-defined regions. The mesh adaptation is based
on the wavelet estimate of the discretization errors of the liquid volume fraction and
velocity (van Hooft et al. 2018). The parallelization of the solver is done through a tree
decomposition to guarantee high parallel performance even if a large number of levels of
octree cells are used. Numerous validation studies for the Basilisk solver can be found
on the Basilisk website and also in our previous studies (Sakakeeny & Ling 2020, 2021;
Zhang et al. 2020; Sakakeeny et al. 2021).

2.3. Simulation set-up

The spherical drop is initially placed in a computational domain filled with stationary gas.
We have considered both 2-D-axisymmetric and 3-D domains, as shown in figures 1(a)
and 1(b), respectively. At t = 0+, a uniform velocity boundary condition (BC) is imposed
on the left boundary of the domain, while the pressure outflow boundary condition is
applied to the right boundary. Due to the incompressibility condition, the gas is suddenly
accelerated to U0 in an infinitesimal time (one time step in the simulation).
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Figure 1. Schematics of the computational domains for (a) 2-D-axisymmetric and (b) 3-D simulations.

ρl ρg µl µg σ d0 r m Oh

(kg m−3) (kg m−3) (Pa s) (Pa s) (N m−1) (mm) ρg/ρl µg/µl µl/
√

ρlD0σ

1000 1.2 0.001 0.000018 1.9 0.0483 0.0012 0.018 0.00269

Table 1. Fluid properties for simulation cases.

All lateral boundaries in the 3-D domain are considered as slip walls. For the 2-D
domain, the bottom is the axis and the top is a slip wall. The 2-D domain is a square with
edge length l/d0 = 16, while the 3-D domain is a cube with edge length l/d0 = 32. The
domain size is sufficient to resolve the wake behind the drop during the time considered.
For all 2-D and 3-D simulations, the drop is initially placed x0/d0 = 3 away from the
inlet. In the 3-D simulations, the initial location of the drop is at the centre of the y–z

cross-section.
The physical parameters used in the present simulations are chosen to be similar

to the experiment of Jackiw & Ashgriz (2021). The liquid and gas are water and
air at room temperature, and their fluid properties are given in table 1. The initial
drop diameter is fixed at d0 = 1.9 mm. The corresponding gas-to-liquid density and
viscosity ratios are thus small, r = 0.0012 and m = 0.018, respectively. The Ohnesorge
number Oh = 0.0026 is very small, indicating that the effect of liquid viscosity on drop
breakup is small compared to that of surface tension, and the latter is the dominant
force to resist the drop deformation/breakup induced by interaction with the gas stream.
Therefore, the Weber number We is the key dimensionless parameter that characterizes the
aerobreakup dynamics. A parametric study of We is performed here by varying U0 from
18.7 to 24.0 m s−1. The Reynolds number will vary from approximately 2400 to 3000
correspondingly. More cases were simulated, but we will focus the discussion on the five
cases shown in table 2.

The 2-D/3-D domains are discretized by quadtree/octree meshes, which are adapted
dynamically based on the wavelet estimates of the discretization errors of the liquid volume
fraction and all velocity components (van Hooft et al. 2018). The minimum cell size is
controlled by the maximum refinement level L, i.e. ∆min = l/2L. For 2-D simulations,
L has been varied from 12 to 15, corresponding to 256 to 2048 minimum quadtree
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Case U0 We Re 3-D mesh 2-D mesh
(m s−1) ρgU2

0d0/σ ρgU0d0/µg N = d0/∆min N

1 18.7 10.9 2369 256 —
2 19.2 11.5 2432 256–2048 —
3 19.6 12.0 2483 256–2048 256–2048
4 22.1 15.3 2800 128–2048 —
5 24.0 18.0 3040 256–2048 —

Table 2. Simulation cases and key parameters.

cells across the initial drop diameter, i.e. N = d0/∆min = 256 to 2048. Due to the higher
computational cost for 3-D simulations, we have used a different mesh adaptation strategy.
As will be shown later, the mesh resolution required to capture the early deformation
of the drop is significantly lower than that required to resolve the thin liquid sheet in
the bag. Therefore, we have used a maximum refinement level L = 12 to 14, which is
equivalent to N = 128 or 512 to start the simulations, for the purpose of confirming that
the resolution is enough to capture the drop deformation until the bag is formed. As the
bag grows and the sheet thickness decreases, L is then increased up to 16 (N = 2048).
For the case We = 10.9, since a thin bag sheet is never formed, L = 12 (N = 256) is used
throughout the simulation.

According to the knowledge of the authors, the current mesh resolution is significantly
higher than all previous numerical studies, including both 2-D and 3-D simulations in
the literature, while the domain is large enough to resolve the wake (Jain et al. 2019;
Marcotte & Zaleski 2019). For the 3-D domain, the mesh for N = 2048 corresponds to
16 levels of adaptively refined octree cells, which is equivalent to 2.8 × 1014 uniform
Cartesian cells. Generally, the total number of octree cells increases over time, as
the drop surface area increases and the wake develops. For the case We = 15.3,
the number of octree cells reaches approximately 500 million. The high-performance
tree-decomposition parallelization technique in the Basilisk solver is essential to guarantee
efficient simulations using such large numbers of levels (up to 16), computational cores (up
to 3584), and octree cells (up to 500 million).

For the present study, the drop diameter is 1.9 mm, and the minimum cell size for
N = 2048 is approximately ∆min = 0.9 µm, which is still significantly larger than the
physical cutoff length scale dictated by van der Waals forces (∼O(10 nm)). Therefore,
the interfaces’ pinching and hole formation induced by van der Waals forces will not
be captured in the simulation. The hole nucleation in the liquid sheet here is due to the
numerical cutoff length, i.e. the minimum cell size ∆min. When the sheet thickness is
smaller than approximately 2∆min, the flow and pressure in the liquid cannot be well
resolved, and the thin region of the liquid sheet represented by the VOF field will be
perturbed, and numerical pinching of the interfaces will occur. The numerical breakup
leads to earlier hole formation, and as a result, the bag will break at a size smaller than
what was observed in experiments. Nevertheless, as indicated in previous experimental
studies, holes are observed in the liquid sheet with thickness larger than the length for
active molecular forces (Lhuissier & Villermaux 2012; Opfer et al. 2014), probably due to
tiny bubbles in the liquid sheet. A more detailed discussion of the effect of mesh resolution
on the bag breakup dynamics will be given later, in the results section.

The 2-D simulations were run on the Baylor University cluster Kodiak using 4–36
cores (Intel Xeon Gold 6140 processor). The most refined simulation (N = 2048)
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Simulation of drop aerobreakup in the bag regime

y

x

ymax

ymin

xmin
xmax

xmin,a xmax,a 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

10–3

10–2

10–1

100

ĥa
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(a) (b)

Figure 2. (a) Representative snapshot of the drop surface and velocity magnitude on the central x–y plane, with
annotations showing the characteristic length scales for the drop shape. (b) Time evolution of ha = xmax,a −
xmin,a for We = 15.3, indicating the time ranges resolved by different mesh resolutions. The horizontal lines
indicate the minimum cell size for each mesh. The dimensionless variables are denoted by ,̂ and defined in
(3.10a–e) and (3.11).

takes approximately 20 days using 36 cores. The 3-D simulations were run on the
TACC-Stampede2 (Intel Xeon Platinum 8160) and TACC-Frontera (Intel Xeon Platinum
8280) machines, using up to 3584 cores. The simulation time varies with cases, and the
longest one takes approximately 50 days.

3. Parameters to characterize drop aerobreakup

Before we present and discuss the results, we will first introduce the parameters to be
measured in the simulation to characterize the drop shape, dynamics and turbulent flows
involved in the drop aerobreakup process.

3.1. Drop morphology

To characterize the drop shape at a given time, the maximum and minimum interfacial
positions along the Cartesian coordinates were measured, i.e. xmax, xmin, ymax, ymin, zmax,
zmin, as shown in figure 2(a). Furthermore, we also measured the maximum and minimum
interfacial positions along the x-axis (along the streamwise direction), xmax,a, xmin,a. Based
on these measurements, several characteristic length scales can be obtained.

(i) Length of the drop, L = xmax − xmin.
(ii) Lateral radius of the drop, R = ( ymax − ymin + zmax − zmin)/4. When the drop shape

is axisymmetric, the maximum lateral radius is R = ymax = −ymin = zmax = −zmin;
otherwise, R is the average for the y- and z-directions.

(iii) Thickness of the sheet along the x-axis, ha = xmax,a − xmin,a. At early times, when
the drop shape is axisymmetric and both windward and leeward sides are convex,
ha = L. At later times, when the drop deforms to a bag, ha represents the sheet
thickness at the centre of the bag, as shown in figure 2(b).

(iv) Length of the forward bag, Lfb = xmin,a − xmin. Here, ‘forward bag’ refers to the bag
with the opening facing the upstream direction.
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Y. Ling and T. Mahmood

3.2. Turbulent gas flow and drop dynamics

For the range of Re considered, the gas flow in the wake of the drop lies in the chaotic
vortex shedding or the subcritical turbulent wake regimes, according to the regime map
for a solid sphere (Tiwari et al. 2020b). The gas enstrophy is then used to characterize the
gas turbulence, which is calculated as

Ωg = 1

V

∫

(1 − c) |ω|2 dV, (3.1)

where ω is the vorticity vector, and V is the volume of the computational domain. The
normalized gas enstrophy is defined as Ω̂g = Ωgd0/U2

0 .
The aerodynamic drag exerted on the drop will cause the drop to accelerate along the

streamwise direction. The mean velocity of the drop in the x-direction is calculated by
integrating over all the liquid cells in the domain:

ud =

∫

cu dV

∫

c dV

. (3.2)

Note that this definition is valid only before breakup occurs. Then the drag coefficient can
be defined as

CD = 2md

ρg(U0 − ud)2πR2

dud

dt
, (3.3)

where md is the mass of the drop. Here, CD is defined based on the instantaneous relative
velocity (U0 − ud), and the drop frontal area is estimated by the lateral radius (πR2). As a
result, the variation of CD is generally not influenced by the time variation of ud and R.

The asymmetric drop deformation and the turbulent wake will introduce lift on the drop.
The lift coefficients in the transverse directions are defined as

Cy = 2md

ρg(U0 − ud)2πR2

dvd

dt
, Cz = 2md

ρg(U0 − ud)2πR2

dwd

dt
, (3.4a,b)

where vd and wd are the mean drop velocities in the y- and z-directions, respectively,
similar to ud.

3.3. Characteristic time scales for drop deformation

The early-time deformation of the drop is driven by the pressure variation in the radial
direction, which is in turn induced by the stagnation gas flow on the windward surface
of the drop. The viscous and surface tension effects are secondary to the early-time
deformation. Then simple scaling analysis shows that the time scale governing the drop
deformation is (Ranger & Nicholls 1969; Villermaux & Bossa 2011)

τd = d0

U0
√

r
. (3.5)

The scaling τd ∼ r−1/2 has been confirmed by the parametric study of Marcotte & Zaleski
(2019). It was shown that the evolutions of R for different r collapse approximately if t is
scaled by τd. This time scale τd was first introduced by Ranger & Nicholls (1969) based
on the drag on the drop and the resulting acceleration. However, it was shown by Marcotte
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Simulation of drop aerobreakup in the bag regime

& Zaleski (2019) that the time scale τd actually does not collapse the drop velocity for
different r. In the present study, r and d0 are kept constant, so τd varies due to U0.

The surface tension and liquid viscosity resist the drop deformation, and the
corresponding time scales are

τs =

√

ρld
3
0

σ
, (3.6)

τvl = ρld
2
0/µl. (3.7)

The time scale ratios are related to the key dimensionless parameters, i.e. τs/τvl = Oh

and τs/τd =
√

We. For the cases considered here, Oh ∼ O(10−3) is very small, and
We ∼ O(10). As a result, τvl � τs > τd. Therefore, τvl is too large to be relevant, and
surface tension is the dominant resisting force. Furthermore, since τs > τd, we expect the
early-time drop deformation will be insensitive to We.

3.4. Characteristic time scales for drop acceleration

When a stationary drop is suddenly exposed to the free stream, it experiences an impulsive
gas acceleration and a continuous non-zero relative velocity. The resulting aerodynamic
drag drives the drop to move along the streamwise direction. This treatment can be
considered as an approximation of the passage of a shock wave with the post-shock
velocity equal to U0, neglecting the compressibility effect, as discussed by Marcotte &
Zaleski (2019).

The overall drag can be divided into quasi-steady, pressure-gradient, added-mass and
Basset history forces (Maxey & Riley 1983; Ling et al. 2013). The last three are
unsteady contributions, which are triggered mainly by the impulsive acceleration. The
pressure-gradient and added-mass forces, often referred to as the inviscid unsteady forces,
are active only at t = 0+, when the surrounding gas is suddenly accelerated from 0 to U0.
In the simulation, this impulse spans one time step, and the integration of the impulse is
U0. Therefore, the drop velocity jumps over the first time step due to the inviscid unsteady
forces (including added-mass and pressure-gradient forces) as follows (Ling, Haselbacher
& Balachandar 2011; Ling et al. 2013):

ud(0
+) = 3r

2
U0. (3.8)

Similar estimates of the velocity jump have been proposed by Marcotte & Zaleski (2019)
and Hadj-Achour et al. (2021). Marcotte & Zaleski (2019) found that the velocity jump
scales with r, but the scaling coefficient 1/2 is different from the 3/2 in (3.8) since they
did not include the pressure gradient force. The viscous-unsteady (Basset history) force
will last for a finite period of time, characterized by the viscous-unsteady time scale τvu

(Ling et al. 2013). Due to the small value of r considered here, the contributions of the
unsteady forces to the increase in drop velocity are generally small (Ling et al. 2013). For
cases with larger r, additional attention to the unsteady forces will be required. For the
present cases, the quasi-steady force is the dominant force that accelerates the drop. The
time scale for the quasi-steady drag is referred to as the response time, τqs. For r � 1 (Ling
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3-D, N256, We = 15.3
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(a) (b)

Figure 3. Time evolutions of (a) the drop length L̂ and (b) the drop radius R̂, for We = 15.3, obtained from
the 3-D simulations. The experimental results by Opfer et al. (2014), Flock et al. (2012) and Jackiw & Ashgriz
(2021) are shown for comparison.

et al. 2013),

τqs =
ρgd2

0

36µg

Φ, (3.9)

where νg = µg/ρg, and Φ is the correction factor to the Stokes drag, accounting for
the effect of Re and the drop shape. In the limit of zero Re and We, the drop acts like
a solid sphere in the Stokes limit, and Φ = 1. For the range of Re considered here,
τqs ∼ O(10−1 s). As a result, drop breakup occurs on a time scale much smaller than
τqs when the drop velocity ud remains significantly lower than the free-stream velocity U0.

Finally, we define dimensionless variables using d0, U0 and ρg as characteristic scales,
namely

x̂ = x/d0, L̂ = L/d0, R̂ = R/d0, û = u/U0, p̂ = p/(ρgU2
0). (3.10a–e)

Due to the focus on the drop deformation, τd is selected as the characteristic time scale.
The dimensionless time is then defined as

t̂ = t/τd. (3.11)

4. Verification and validation

4.1. Grid-refinement studies

The time evolutions of the drop length L̂ and radius R̂ for different mesh resolutions are
shown in figure 3. The initial mesh resolutions are N = 128, 256 and 512. The same mesh
refinement strategy has been used for all three meshes, i.e. when the drop deforms to a
bag and the bag sheet thickness decreases to approximately 4 cells, refinement level will
be increased until N = 2048, as shown in figure 2(b). It can be seen from figure 3 that
the results for N = 256 and 512 match very well. The results for N = 128 are also similar
in general, though small deviations are observed for t̂ > 1.3 when the forward bag forms.
Therefore, one can conclude that N = 512 is sufficient to yield converged results for the
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Figure 4. Time evolutions of (a) drag coefficient CD and (b) gas enstrophy Ω̂g = Ωgd0/U2
0 for We = 15.3.

The 3-D simulation results for two different mesh resolutions, N = 256 and 512, are shown. In (b), the results
for N = 256 were obtained by the mesh refinement L = 14 without further increase, as in other cases.

drop deformation until the bag ruptures, and thus is sufficient to determine the breakup
criteria.

In order to assess the adequacy of the mesh resolution in resolving the turbulent gas flow
and its effect on the drag force, we examine the evolution of the drag coefficient CD and
the gas enstrophy (see figure 4). Both CD and Ωg exhibit non-monotonic behaviour due to
the development of the turbulent wake and the drop deformation. The results obtained with
meshes N = 256 and 512 show good agreement, with only minor discrepancies for t̂ � 1.
Given the inherently chaotic nature of the gas flow, this level of agreement is considered
satisfactory.

4.2. Experimental validation

The simulation results obtained for the case We = 15.3 are validated against available
experimental data for the drop length L̂ and radius R̂. Specifically, comparison is
made with the experiments of Jackiw & Ashgriz (2021) (water, We = 15.3 and
16.0), Opfer et al. (2014) (ethylene glycol, We = 15.1), and Flock et al. (2012)
(ethyl alcohol, We = 12.7). The parameters employed for the present simulations
are chosen to be similar to those adopted in the experiments conducted by Jackiw
& Ashgriz (2021) (JA). Although the dimensionless parameters for the two other
experiments are not identical to those in the present study, the small values of
Oh and r, and the large value of Re, in all cases suggest that the aerobreakup
dynamics for similar We is expected to be comparable to the present cases. Thus the
experimental data serve as an important validation benchmark for the present numerical
simulations.

It can be observed from figure 3 that the simulation results for both L̂ and R̂ exhibit
remarkable agreement with the experimental data of JA and Opfer et al. (2014) at early
times. The deviations from the experimental results of Flock et al. (2012) are relatively
small, given that the experimental parameters, such as We = 12.7, do not match the present
simulations exactly. The simulation results for R̂ deviate from the JA experimental data
for the same We = 15.3 at approximately t̂ = 0.7, but they match quite well with the JA
experimental results for a slightly larger We = 16 and the other two experiments. The
discrepancy may be due to the high degree of variation inherent in such experiments.
Unlike the results of Opfer et al. (2014) and Flock et al. (2012), which are averaged data for
multiple experiments, those of JA correspond to single experimental runs and thus exhibit
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Y. Ling and T. Mahmood

higher uncertainty. Moreover, in JA’s experiment, the drop is suspended from a needle,
which may significantly influence the development of the drop radius, as discussed in the
appendix of their paper.

4.3. Limitations of 2-D axisymmetric simulations

Due to the high computational cost of 3-D simulations, 2-D axisymmetric simulations
have been used widely in numerical studies of drop aerobreakup (Jain et al. 2019; Marcotte
& Zaleski 2019; Stefanitsis et al. 2019a). However, previous studies for bubbles (Blanco
& Magnaudet 1995; Magnaudet & Mougin 2007) and drops (Rimbert et al. 2020) have
also indicated that 2-D axisymmetric simulations may not be sufficient to resolve the
asymmetric wake when Re and We are not small. It remains unclear to what extent (such
as time duration and ranges of Re and We) a 2-D axisymmetric simulation is valid in
resolving drop aerobreakups. In the present study, we have performed both 2-D and 3-D
simulations using identical numerical methods and initial/boundary conditions. Therefore,
the difference between the results characterize the effect of the artificial axisymmetric
constraint in the 2-D simulations on the drop.

The temporal evolutions of L̂ and R̂ for both 2-D and 3-D simulations are shown in
figure 5. The 2-D simulation results for two different mesh resolutions, N = 512 and
N = 1024, agree remarkably well, indicating that the 2-D results presented here are
mesh-independent. The discrepancy between the 2-D and 3-D results is not related to the
mesh resolution. The 2-D and 3-D results match very well for t̂ � 0.5, but the deviation
grows over time. In general, the 3-D results agree much better with the experimental
data. The 2-D simulation significantly underestimates the drop length compared to the
3-D simulation and experimental results, as shown in figure 5(a). This indicates that the
2-D simulations fail to capture the bag development. Significant discrepancies can also be
observed in the drop velocity and drag coefficient, as shown in figures 5(c) and 5(d). For
1 � t̂ � 1.6, the value of CD predicted by the 2-D simulation is only approximately half
of that obtained from the 3-D simulation.

The poor prediction of the 2-D simulation is due to the fact that it cannot resolve the
turbulent wake accurately. The pressure fields obtained from both 2-D and 3-D simulations
are shown in figures 6(a) and 6(b), respectively. The vortical structures at different times
for the 3-D simulation, visualized by the λ2 criterion, are shown in figure 6(c) to illustrate
the development of the wake. The wake is initially approximately axisymmetric and later
transitions to being fully 3-D and turbulent. The artificial axisymmetric constraint in the
2-D simulation limits the azimuthal development of the wake, leading to high pressure
near the leeward pole and a low-pressure region in the symmetric vortex ring, as seen in
figure 6(a) at t̂ = 0.78. In contrast, the gas pressure near the leeward pole is lower and more
uniform in the turbulent wake for the 3-D results. The different pressure distributions result
in different drags on the drop. The high pressure on the leeward pole in the 2-D simulation

also hinders the development of the bag, which is the reason for the discrepancy for L̂

observed in figure 5(a). Actually, the 2-D simulation fails to capture the correct shape of
the bag, as seen at t̂ = 1.76 in figures 6(a) and 6(b). While the 3-D simulation shows a bag
curved forward shape, the 2-D bag bends upstream near the centre, showing a ‘bag-stem’
shape. The maximum bag curvature and minimum sheet thickness in the 2-D bag are near
the 45-degree corner, where the rupture of the bag and the hole will appear first. This is
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Figure 5. Comparison between 2-D-axisymmetric and 3-D simulation results for We = 15.3, including

(a) drop length L̂, (b) drop radius R̂, (c) drop velocity ud , and (d) drag coefficient CD. The experimental results
by Opfer et al. (2014), Flock et al. (2012) and Jackiw & Ashgriz (2021) are shown in (a,b) for comparison.

not consistent with the experiment and 3-D simulation results, and is purely a numerical
artefact.

In summary, for drops with high Re, the 2-D simulation can capture only the early-time
drop dynamics and deformation (t̂ � 0.7), when the wake remains approximately
axisymmetric. Even though the drop shape for We = 15.3 remains approximately
axisymmetric for a longer time, it will not be captured correctly by the 2-D
axisymmetric simulation. A full 3-D simulation, though expensive, is necessary to resolve
the drop aerobreakup.

5. Different phases in drop morphological evolution

The shape deformation of a drop is a complex process consisting of multiple phases with
distinct features and dominant physics. We will use the case We = 12.0 to illustrate the
different deformation phases, as shown in figure 7. In figures 7(a) and 7(b), we have
presented the temporal evolution of pressure p̂ and y-velocity ûy inside the drop on the
central x–y plane. The corresponding drop surfaces, coloured with the velocity magnitude,

are shown in figure 7(c). The drop radius R̂ has been used commonly in previous studies to
describe drop deformation, and it increases monotonically over time. However, its rate of

972 A28-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

70
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Y. Ling and T. Mahmood

t̂  = 0.20

(a) (b) (c)

t̂  = 0.39

t̂  = 0.78

t̂  = 1.17

t̂  = 1.56

t̂  = 1.76

t̂  = 1.87

t̂  = 1.91

Bag rupture

Figure 6. Time evolutions of the pressure field on the x–y plane using (a) 2-D-axisymmetric and (b) 3-D
simulations. (c) Vortical structures using 3-D simulations. The results are for the case We = 15.3. The colour on
the drop surface in (c) represents the velocity magnitude. See movies in the supplementary materials available
at https://doi.org/10.1017/jfm.2023.708.

change dR̂/dt̂ exhibits a non-monotonic variation over time, as shown in figure 7(d), from
which different phases can be identified.

(i) Phase I, ellipsoid deformation: dR̂/dt̂ increases over time with a decreasing rate and
gradually approaches a plateau. The deformation is driven by the stagnation pressure
on the windward surface. The drop shape is similar to an ellipsoid, and the thickness
in the streamwise direction decreases over time.

(ii) Phase II, disk formation: dR̂/dt̂ rises quickly again as the drop extends laterally,
forming a circular disk.
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Simulation of drop aerobreakup in the bag regime

(iii) Phase III, disk deformation: dR̂/dt̂ decreases over time. The deceleration of the drop
edge and equator is due to surface tension at the drop periphery.

(iv) Phase IV, bag development: dR̂/dt̂ is approximately constant, indicating that forces
reach equilibrium at the edge rim. The sheet thickness near the centre continues to
decrease, and the thin region of the bag starts to curve toward downstream, forming
a forward bag.

(v) Phase V, bag inflation: dR̂/dt̂ increases rapidly due to the inflation of the forward
bag.

After the above phases, there is an additional phase, phase VI, for the bag rupture, which
is not shown in figure 7. These phases have not been addressed systematically in previous

studies, probably because little attention has been paid to the evolution of dR̂/dt̂. The
key features of drop deformation in each phase and the effect of We will be discussed in
subsequent subsections.

5.1. Phase I: ellipsoid deformation

In phase I, the windward surface remains convex, so Lfb = 0. Stagnation flows are formed
near the windward and leeward poles (see points W and L in figure 7a). On the windward
surface, the gas pressure is high near the stagnation point and decreases along the surface
in the lateral direction. If the viscous effect is ignored, then the gas pressure near the
stagnation point is given as

pg(r) = pg(0) − ρg

a2U2

8d2
0

r2, (5.1)

where r is the radial coordinate from the x-axis. The stretching rate of the stagnation
flow, a, varies with the shape of the windward surface geometry, e.g. a = 6 for a spherical
surface, and a = π/4 for a flat disk (Villermaux & Bossa 2009). The liquid pressure inside
the drop can be estimated as the sum of the gas pressure and the Laplace pressure,

pl(r) = pg(r) + σκ, (5.2)

which exhibits a variation in r similar to that for pg. The gradient of pl drives the extension
of the drop in the radial direction, as shown in figure 7(b) at t̂ = 0.14. If the liquid flow is
modelled as one-dimensional and inviscid (due to the low Oh for the present cases), then
the momentum equation can be expressed as

ρl

(

∂ur

∂t
+ ur

∂ur

∂r

)

= −∂pl

∂r
, (5.3)

which can be integrated from r = 0 to R to yield

R
d2R

dt2
= 2( pl(0) − pl(R))

ρl

. (5.4)

Combining (5.2), an evolution equation for R̂ can be obtained (Villermaux & Bossa 2009;
Kulkarni & Sojka 2014; Jackiw & Ashgriz 2021):

d2R̂

dt̂2

1

R̂
=

(a

2

)2
[

1 − 8

a2 We

κ̂E − κ̂W

R̂2

]

, (5.5)

where κ̂W and κ̂E are the curvatures at the windward pole (r = 0, point W) and the lateral
edge (r = R̂, point E).
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Figure 7. Temporal evolutions of (a) pressure p and (b) y-velocity in the drop on the central x–y plane. (c) Drop

surface coloured with velocity magnitude. (d) Drop lateral radius R̂ and its rate of change dR̂/dt̂ for We = 12.0.
Different phases of deformation are defined and indicated.

5.1.1. Asymptotic early-time dynamics

At t = 0, κ̂W = κ̂E = 1/R̂0, so (5.5) reduces to
(

d2R̂

dt̂2

)

t=0

= a2

8
, (5.6)

indicating that the drop deformation in the asymptotic limit is independent of We and is
determined purely by a. This universal early-time behaviour is consistent with the time
scale analysis above (i.e. τvl � τs > τd) and is also confirmed by the simulation results;
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Figure 8. Early-time evolution of (a) rate of change of drop radius dR̂/dt̂ and (b) drop velocity ûd , for different
We. The inviscid compressible flow simulation results for shock–droplet interaction by Meng & Colonius (2018)
are shown in (b) for comparison.

see figure 8. It is observed that dR̂/dt̂ for all cases collapses very well at early times (t̂ �
0.15) for the range of We considered (10.9 ≤ We ≤ 18).

Similarly, the results for the drop velocity ud also collapse in the early time (t̂ � 0.3);
see figure 8(b). The initial jump of ud at t = 0+ is observed, which is due to the impulsive
gas acceleration and the resulting inviscid-unsteady forces. Therefore, the velocity jump
is also independent of We and Re. The velocity jump û(t = 0+) ≈ 0.002 agrees well with
the prediction given by (3.8). The results from the inviscid compressible flow simulation
of Meng & Colonius (2018) are also shown for comparison. In their simulations, the
stationary water drop is hit by a planar air shock of Mach number Ms = 1.47. Due to the
compressibility effect, the drop velocity ‘jump’ occurs in a finite period of time (t̂ � 0.04).
Nevertheless, the subsequent evolution of ud agrees well with the present simulations,
assuming incompressible flows. The good agreement affirms that the early-time drop
dynamics for the ranges of We and Oh considered is independent of viscous and surface
tension effects.

5.1.2. Effect of We

The inviscid results of Meng & Colonius (2018) deviate from the present cases at later
times t̂ � 0.3 due to the effect of surface tension. Additional 3-D simulations were
performed for higher We, and it is shown that the present simulation results for We = 42
and 72 agree well with the results of the inviscid simulation results for the whole time
range shown. This indicates that the compressibility effect on drop breakup induced by
weak shocks on the drop velocity is secondary, and the incompressible flow simulations
can yield a reasonable estimate for shock-induced drop aerobreakup.

Deviations among different cases for dR̂/dt̂ arise after approximately t̂ = 0.2, as shown

in figure 8(a). It can be observed that dR̂/dt̂ for different We eventually reaches different
plateau values. As the curvatures of the windward surface decrease, the stagnation
flow is modified, and the pressure gradient that drives the lateral expansion is reduced.
Simultaneously, the curvature at the lateral edge increases, and as a result, the retraction
force due to surface tension increases. The balance between the surface tension and
stagnation pressure brings dR̂/dt̂ to a constant. For cases with larger We, the retraction
force from the lateral edge is smaller, thus it takes slightly longer for dR̂/dt̂ to reach the

plateau, and the plateau values of dR̂/dt̂ are also higher.
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Y. Ling and T. Mahmood

The above discussions focus mainly on the windward surface. Due to flow separation,
the pressure field on the leeward side is different from the windward counterpart, as
shown in figure 7(a). Generally, the pressure at the leeward pole is lower. Nevertheless, the
pressure decreases radially even faster due to the vortex ring formed behind the separation
point. As a result, the leeward surface curvature decreases faster and turns from convex to
concave earlier (t̂ = 0.28) than the windward counterpart.

5.1.3. Modelling early-time evolution of drop radius R

The evolution of the drop radius R is dictated mainly by windward surface deformation.
The shape of the drop can be approximated as ellipsoidal. Then κW and κE can be
expressed in terms of R as κW = ha/R2 and κE = 4R/h2

a + 1/R, where ha = d3
0/4R2 is

the thickness of the drop for an ellipsoid. By substituting the estimates of curvatures into
(5.5), we obtain

d2R̂

dt̂2

1

R̂
=

(a

2

)2
[

1 − 64

a2 We

(

8R̂3 + 1

8R̂3
− 1

32R̂6

)]

. (5.7)

Similar models have been developed by Villermaux & Bossa (2009) (VB) and were then
extended by Kulkarni & Sojka (2014) (KS) and Jackiw & Ashgriz (2021) (JA). The
difference between the present model (5.7) and the previous ones lies in the different
estimates of κW and κE. In the VB and KS models, the drop is assumed to be a cylindrical
disk with a rounded edge, so the windward surface is flat (κW = 0), and only the principal
curvature on the x–y plane is considered for the edge, namely κE = 2/ha, where ha =
d3

0/6R2 for a cylinder. As a result, (5.5) becomes
(

d2R̂

dt̂2

1

R̂

)

KS

=
(a

2

)2
[

1 − 96

a2 We

]

. (5.8)

Note that this expression holds for both the VB and KS models; the difference between the
two lies in the different values of a. In the JA model, the drop was first considered as a disk,
so κW = 0 and κE = 2/ha + 1/R, with the second principal curvature added compared to
the KS model. Nevertheless, when relating ha to R, they have used the relation for an
ellipsoid, so ha = d3

0/4R2. Eventually, they obtained
(

d2R̂

dt̂2

1

R̂

)

JA

=
(a

2

)2
[

1 − 64

a2 We

(

1 + 1

8R̂3

)]

. (5.9)

Based on experimental observations, they argued that for a short time t̂ < t̂bal = 1/8, the
drop radius R remains unchanged, and then R increases linearly. Therefore, (5.9) can be
simplified further as

(

dR̂

dt̂

)

JA2

=

⎧

⎪

⎨

⎪

⎩

0, if t̂ ≤ t̂bal,

(a

2

)2
[

1 − 128

a2 We

]

t̂bal

2
, if t̂ > t̂bal,

(5.10)

which is referred to as the JA2 model here, to distinguish it from (5.9). In the present
model, we have used the geometric features of an ellipsoid to estimate κW , κE, and the
relation between ha and R consistently. This treatment leads to an important feature, the
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Figure 9. Comparison between the present simulation and model results for dR̂/dt̂ and R̂ and predictions of
other models for (a,c) We = 12.0 and (b,d) We = 15.3. The results for other models are shown as well: VB,
KS, TAB, Rimbert represent the models of Villermaux & Bossa (2009), Kulkarni & Sojka (2014), O’Rourke
& Amsden (1987) and Rimbert et al. (2020); JA and JA2 represent the two models of Jackiw & Ashgriz (2021)
((5.9) and (5.10)). The results for the model of Rimbert et al. (2020) are based on the corrected parameter KC.
Refer to the text for more details.

We-independent asymptotic limit at t = 0 (see (5.6)), being captured correctly. It can be
shown easily that none of the above models guarantees this feature.

To close the above models, the stretching rate of the stagnation flow, a, remains to be
determined. In the VB model, a is taken to be 4, which is an arbitrary intermediate chosen
between the two limits a = 6 and π/4 for sphere and cylinder. Both VB and KS proposed
that the condition d2R/dt2 = 0 can be used to determine the critical Weber number Wecr;
i.e. when We < Wecr, d2R/dt2 < 0, then R will not increase over time and the drop will be
stable. The value a = 4 used by VB will lead to Wecr = 6, which does not agree with
experimental observations for drop aerobreakup. That is why KS proposed a = 2

√
2,

so that according to their model (5.8), d2R/dt2 = 0 will yield Wecr = 12, which agrees
with the experimental observations. Nevertheless, this way to estimate a is problematic
since both experimental and simulation results show that d2R/dt2 > 0 is not a necessary
condition for the drop to be unstable. A good counterexample is the case We = 10.9, for
which d2R/dt2 > 0 at an early time. However, the drop is eventually stable. Generally,
the KS model significantly underpredicts the temporal growth of R at an early time; see
figures 9(b) and 9(d). In particular, for the case We = 12.0, the KS model will yield
d2R/dt2 = 0, and as a result, R would not grow in time (see figures 9a,c), which is
obviously incorrect.
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Y. Ling and T. Mahmood

In the JA model, the value of a for a sphere was used, i.e. a = 6. In contrast to the
KS model, the JA model significantly overpredicts the evolution of R̂ and dR̂/dt̂. Among
the VB, KS and JA models, the VB model actually matches the best with the present

simulation results for the initial development of R̂ and dR̂/dt̂ for t̂ � 0.25. Nevertheless, a
common issue of all these models is that they fail to capture the trend that dR̂/dt̂ gradually
reaches a plateau at t̂ ≈ 0.3. The constant dR̂/dt̂ was observed in the experiments of JA,
which motivated them to add this assumption in the original JA model, leading to the
simplified JA2 model that approximates dR̂/dt̂ as a piecewise constant function of time;
see (5.10). This simplification reduces the discrepancy between the model predictions and

the simulation results. However, as shown in figures 9(a,b), the evolution of dR̂/dt̂ in
reality does not change abruptly.

In a recent study by Rimbert et al. (2020), the potential flow solution around a spheroid
was used to estimate the gas pressure on the drop surface. Therefore, their model does
not require ad hoc models for the stagnation flow features, such as the stretching rate of
the stagnation flow, a, and the time-varying pressure work on the drop is expressed as a
function of R̂. The drop deformation in time is determined through an energy approach,
namely the time derivative of the sum of kinetic and surface energy is equal to the pressure
and viscous works. In the original paper, the authors seem to have missed a factor 1/2 in
the kinetic energy parameter KC. The predictions of the model by Rimbert et al. (2020)
with the corrected KC are shown in figure 9. It can be observed that the model agrees
remarkably well with the present simulation results at early times, though it generally
overpredicts the evolutions of dR̂/dt̂ and R̂ at later times when the drop deviates from the
spheroidal shape.

By introducing a small perturbation at the initial spherical state, ε̂ = 2R̂ − 1, the model
of Rimbert et al. (2020) (with corrected KC) can be simplified to a linear form, i.e.

d2ε̂

dt̂2
+ 40

Oh√
We

dε̂

dt̂
+

(

64

We
− 684

35

)

ε̂ = 3. (5.11)

The constant 3 on the right-hand side is determined by the pressure work of the gas flow,
estimated from the potential flow solution, and the kinetic energy within the liquid drop.
At time zero, ε̂ = dε̂/dt̂ = 0, so we have

(

d2ε̂

dt̂2

)

t=0
= 3, or

(

d2R̂

dt̂2

)

t=0

= 3

2
, (5.12)

which yields an analytical solution for the initial slope of dR̂/dt̂, i.e. (dR̂/dt̂)t=0 = 3/2.
Consistent with (5.6), the model of Rimbert et al. (2020) also indicates that the initial

slope of dR̂/dt̂ is independent of We and Oh.
To predict the evolution of R̂ in phase I, a simple model is proposed here by

incorporating a time varying a. First, by combining (5.6) and (5.12), one can determine the

initial value of a, i.e. a0 = a(t = 0) =
√

(d2R/dt2)t=0 =
√

12. The value is lower than 6
even though the initial drop shape is spherical, and the difference is related to the simplified
pressure distribution on the drop surface, i.e. (5.1). As the drop deforms and the windward
surface curvature decreases, a decreases over time and eventually reaches a1. The time
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Simulation of drop aerobreakup in the bag regime

variation of a is modelled simply by an error function as

a = a0 − (a0 − a1) erf(t̂/τ̂a), (5.13)

where a1 = 2.5 is the asymptotic value of a at the end of phase I, and τa = 0.35 is the
transition time, found based on the simulation results. Though the present model ((5.7) and
(5.13)) requires simulation results to calibrate the model parameters, (5.13) is independent
of We and thus can be used to predict the evolution of R in phase I for other values of
We that are not simulated here. It is also worth noting that previous models (except JA2)
predict continuous growth of dR̂/dt̂, which is inconsistent with the present simulation
results and experimental data of Jackiw & Ashgriz (2021). By using a decaying a, the
present model agrees very well with the simulation results; see figures 9(a) and 9(b).

Finally, as the TAB model (O’Rourke & Amsden 1987) is used widely in the literature,
its results are also shown in figure 9 for comparison. It can be observed that the TAB
model underpredicts the initial growths of dR̂/dt̂ and R̂.

5.2. Phase II: disk formation

A distinct feature of phase II is that dR̂/dt̂ increases again after it reaches the plateau at the
end of phase I, as shown in figure 7(d). As shown in figure 7(a), as the pressure at point E
increases, the growth of dR̂/dt̂ slows down at the end of phase I. In phase II, the liquid turns
to flow towards a new low-pressure location, the point N marked in the figure. The low
pressure is related to small curvature at point N on the x–y plane, which is in turn related
to the deformation of the leeward surface in phase I. It can be observed that the y-velocity
at point N increases faster than that at point E, as shown for t̂ = 0.42 to 0.68 in figure 7(b).
As a result, the lateral extension velocity of the drop increases again. At approximately
t̂ = 0.56, the point N passes the point R, becoming the new location determining R. As
the drop deforms, the curvature at point N increases, and the drop gradually deforms from
an approximate ellipse to a disk with rounded edge. At the end of phase II, the Laplace
pressure at the new periphery N becomes comparable to the stagnation pressure near the
windward pole. Then d2R̂/dt̂2 = 0, and dR̂/dt̂ reaches a local maximum.

It is worth mentioning that the model given in (5.5) can also be used to predict the
drop deformation in this phase, with certain adaptation. The additional complexity is to
estimate the time variation of the principal curvature κN on the x–y plane since the shape
of the drop is neither an ellipse nor a disk in the transition. In this study, we focus on
discussions of the flow physics and will leave the model development for future work.

The appearance of a local maximum in dR̂/dt̂ is a distinctive feature of the bag
breakup regime. As We increases and the drop breakup mode transitions to the multi-mode
regime, dR̂/dt̂ will increase monotonically. Here, we denote the time corresponding to

d2R̂/dt̂2 = 0 in phase II as t̂∗. The zero acceleration of R̂ indicates a force balance at
the drop periphery. When We is too large, the surface tension will not be sufficient to
establish such a balance. Marcotte & Zaleski (2019) suggested that the force balance at the
drop periphery is achieved when the rim is formed, which is consistent with the present
results. They also suggested that rim formation is a critical feature in determining whether
the drop will break in the bag modes (Rayleigh–Taylor piercing mode) or in the shear
modes (shear-induced entrainment mode). Nevertheless, the present results show that rim
formation will not be achieved even in the multi-mode regime, and that We does not need
to reach high values in the shear breakup regime to prevent rim formation.
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Figure 10. (a) Comparison of Laplace pressure (5.14) with liquid inertia (5.15) and gas pressure differences
estimated by the VB (5.16) and present (5.17) models as a function of We when the rim is formed.

(b) Comparison of the drop lateral radius when the rim is formed, R̂∗, measured from the present simulation
and the model prediction (5.18).

The Laplace pressure at the drop periphery at t̂∗ can be estimated by assuming that the
drop exhibits the shape of a disk:

p̂∗
La = σκN

ρgU2
0

= 1

We

(

12R̂∗2 + 1

R̂∗

)

, (5.14)

where R̂∗ is the dimensionless drop radius for t̂ = t̂∗. The values of p̂∗
La for different We are

shown in figure 10. Marcotte & Zaleski (2019) suggested that the Laplace pressure when
the rim is formed is in equilibrium with the liquid fluid inertia:

p̂∗
MZ = ρl(dR/dt)2

ρgU2
0

=
(

dR̂

dt̂

)2

. (5.15)

They further proposed to approximate dR/dt by the Dimotakis speed, namely U0
√

r.
However, it can be observed in figure 8(a) that U0

√
r significantly overpredicts dR̂/dt̂

at t̂∗. By using the corrected (dR̂/dt̂) obtained from simulations, it can be observed from
figure 10 that the liquid inertia is significantly lower than p̂∗

La, thus it is unlikely to be the
force that balances the Laplace pressure when the rim is formed.

According to the one-dimensional inviscid model (5.4), when d2R̂/dt̂2 = 0, the liquid
pressure at the disk centre and the rim should be in equilibrium, pl(0) = pl(R). Since the
curvature at the windward pole is approximately zero at this time, pl(0) ≈ pg(0); see also
figure 7(a) at t̂ = 0.68. The liquid pressure at the periphery is pl(R) = pg(R) + pLa. As a
result, the Laplace pressure at the rim is actually balanced by the gas pressure difference
p̂g,dif = pg(0) − pg(R). Villermaux & Bossa (2009) have proposed estimating pg(R) using
the stagnation pressure on the windward surface, namely (5.1):

(

p̂∗
g,dif

)

VB
= pg(0) − pg(R)

ρgU2
0

= a2R̂2

8
, (5.16)

where a = π/4 for a disk. However, the computed pressure field (see figure 7a) indicates
that the gas pressure above the periphery of the drop, pg(R), is dictated only by stagnation
flow at the windward surface when the drop exhibits an ellipsoidal shape in phase I.
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Simulation of drop aerobreakup in the bag regime

When the drop becomes a disk in phases II and III, the gas flows over the drop periphery
without much influence from the windward surface, and as a result, pg(R) ≈ 0. Therefore,
we estimate the gas pressure difference between the disk centre and periphery as

p̂∗
g,dif = pg(0)

ρgU2
0

= 1

2
. (5.17)

The results of (p̂∗
g,dif )VB and p̂∗

g,dif are shown in figure 10, and it can be observed
that the present estimate p̂∗

g,dif agrees better with p̂∗
La, affirming that the rim formation

and the maximal radial expansion velocity before inflation are established when the gas
stagnation pressure at the windward pole is in equilibrium with the Laplace pressure at the
periphery rim. Furthermore, the pressure balance p̂∗

La = p̂∗
g,dif yields

1

We

(

12R̂∗2 + 1

R̂∗

)

= 1

2
, (5.18)

which can be used to predict R̂∗ as a function of We for the bag breakup regime.

Figure 10(b) shows the comparison between the simulation results for R̂∗ and the

prediction from the model. It can be observed that the increasing trend of R̂∗ with We is
captured. The agreement between the model predictions and the simulation measurements
is generally good for We = 10.9 to 15. However, the discrepancy is much larger for
We = 18, since this case is in the transition to the multi-mode regime.

5.3. Phase III disk deformation

After dR̂/dt̂ reaches a local maximum at the end of phase II, it starts to decrease over time
in phase III, when the disk deforms; see figure 7(d). The RTI contributes to the subsequent
deformation of the windward and leeward surfaces of the disk. As the drop accelerates
towards the right, the baroclinic torque induced by the misalignment between the pressure
and density gradients destabilizes the windward surface of the disk and stabilizes the
leeward counterpart; see t̂ = 0.92 in figure 7. The deformation of the two surfaces squeezes
the liquid to move from the disk centre towards the edge rim (see the distribution of ûy in
figure 7b), resulting in a rapid decrease of disk thickness at the centre ha and an increase

in R̂.
There are two mechanisms induced by surface tension that hinder the disk deformation,

resulting in the deceleration of the disk edge in the radial direction (d2R̂/dt̂2 < 0). The
first mechanism is the surface tension corresponding to the deformation of the windward
surface and the resulting curvature on the x–y plane. This surface force is accounted for in
the stability analysis of RTI on a flat surface or a planar liquid layer with surface tension
(Mikaelian 1990, 1996), which is used to predict the most unstable wavelengths on the
windward surface (Joseph et al. 1999; Theofanous et al. 2004). The second mechanism is
the surface force from the rounded edge of the disk. As the radius of curvature is smaller
at the lateral edge, a higher pressure develops at the edge, and the resulting pressure
gradient resists the disk’s lateral expansion, as shown in figure 7 at t̂ = 1.11. Similar to
phases I and II, the second mechanism is the dominant one, and the competition between
this mechanism and the Rayleigh–Taylor baroclinic torque seems to determine the drop
deformation in this phase.

Though the effect of We can be seen already from dR̂/dt̂ at the end of phase II, the
differences in the drop shapes do not become obvious until phase III; see the temporal
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Figure 11. Time evolutions of (a) the drop radius R̂, (b) the drop length L̂, (c) the rate of change of R̂, (d) the
bag length Lfb, and (e) the bag sheet thickness along the x-axis, for different We.

evolutions of the characteristic length scales in figure 11. Phase III is characterized by the
decrease of dR̂/dt̂ in time, and it is observed that phase III starts at approximately t̂ = 0.7
and ends at approximately t̂ = 1.2 for all cases except We = 10.9.

The evolutions of L̂fb and ĥa in phase III also showed distinct behaviours; see figure 11.
When the drop windward/leeward surfaces become concave, it is hard to measure these

two parameters in experiment, but it is easy in the simulation. Due to the definition of L̂fb,
it remains zero until the windward surface becomes concave in phase III. Though the RTI
contributes to the deformation of the windward surface, the growth of L̂fb in the linear
regime (when L̂fb is small) is linear instead of exponential. While an exponential growth is
expected for the linear RTI on an infinitely flat layer of finite thickness, a possible reason
for not observing it here is the surface tension effect at the edge of the disk. The rapid
growth of L̂fb for We = 15.3 and 18.0 at later times may appear to be exponential, but it
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Simulation of drop aerobreakup in the bag regime

is due to the bag inflation, which will be discussed later, and is not related to the linear
stability development. It can be seen that ĥa decreases monotonically in time, but the rate
of decrease in phase III is higher than that in phase II. In addition, kinks are observed
in the evolutions of ha for cases with We ≤ 12 at approximately t̂ = 1.1, after which the
rate of decrease is significantly reduced. For the case We = 10.9, the slow decrease of
ĥa prevents it from reaching the threshold of approximately 0.2 (i.e. the disk thickness
remains larger than 20 % of the original drop diameter). As will be shown later, the thick
layer at the disk centre hinders the bag growth, and a topology change never happens for
this case. It is noteworthy that even a slight increase in We – for instance, from We = 11.5

to 12.0 – can cause ĥa to surpass the critical threshold, leading to the eventual piercing of
the bag.

To better illustrate the flow inside the drop and its impact on the drop deformation, the
time evolutions of ûy inside the drop for different We are also shown in figure 12. It is
confirmed that the velocity distributions within the drop for different We are generally
similar for phases I and II, and distinctions among different cases arise in phase III. Due
to the approximate flow symmetry, ûy is close to zero near the centre of the disk (y =
0) and is generally positive and negative in the top and bottom portions of the drop in
phases I and II for all cases, indicating that the liquid flows outwards from the disk centre.
The signs of ûy are generally similar in phase III, but the radial flow is not driven by
the liquid pressure gradient inside the drop as in phases I and II, but by the RTI on the
windward surface. As shown in figure 7(a) at t̂ = 1.11, the pressure actually increases
along the radial direction and drives an inward flow back towards the centre, as can be seen
in the small regions of ûy < 0 near the right top corner of the disk for t̂ = 1.04. For We =
10.9 and 11.5, the inward flow gradually overcomes the outward counterpart, as the region
for ûy < 0 in the upper half of the drop grows in time. Eventually, the lateral deformation of
the disk changes from expansion to contraction. For We ≤ 12, the outward flow dominates,
and the liquid continues to flow away from the centre, leading to a continuous decrease of
ha, as shown in figure 11.

5.4. Phase IV: bag development

The evolution of dR̂/dt̂ shown in figure 7(d) also exhibits a phase for which dR̂/dt̂ is
approximately constant, referred to as phase IV. In this phase, the thin centre of the disk
starts to bend towards downstream, forming a forward bag. Here, we define a ‘forward
bag’ as a curved liquid layer with the opening facing upstream. Based on this definition,
a ‘bag’ is formed for all cases; see figure 12. The formation of the bag is due to the
baroclinic torque on the unstable windward surface overcoming its counterpart on the
stable leeward surface, which in turn is caused by the larger pressure difference on the
windward surface. The deformation of the bag enhances liquid flow from the disk centre

to the edge, balancing the forces at the edge rim of the disk such that d2R̂/dt̂2 = 0. Phase
IV ends when the bag inflates and dR̂/dt̂ increases rapidly again.

5.4.1. Criteria for bag piercing

The evolutions of the characteristic lengths and internal flows for different We are shown
in figures 11 and 12. It can be seen that the constant dR̂/dt̂ is obvious only for We ≤ 12 and
thus is a near-Wecr feature. For cases with higher We, the bags start to inflate right after
they are formed. Among the three lower We cases considered here, the bag for We = 10.9
is stable, the edge of the bag retracts (dR̂/dt̂ < 0), and the thickness of the bag turns to
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Figure 12. Temporal evolution of the y-velocity (uy) on the central x–y plane inside the drop for different We

values: (a) 10.9, (b) 11.5, (c) 12.0, (d) 15.3, and (e) 18.0. The points C and D marked in (d,e) indicate the
concave locations on the perturbed windward surface due to drop deformation. Different deformation phases
for We = 12.0 are indicated in (c).

increase in time (dĥa/dt̂ > 0). Topology change does not happen (vibration breakup may
occur in a long time, but this is outside the scope of this study). In contrast, for We = 12.0,

the bag is unstable, R̂ increases, and ĥa decreases, and eventually the bag inflates and is
pierced through by the gas flow. The results for We = 11.5 show an interesting breakup
mode that is less understood, i.e. both R̂ and ĥa decrease over time. As a result, the bag
will rupture similar to the unstable case We = 12.0, but the remaining rim retracts back
to form a big drop like the stable case We = 10.9. Since the drop for We = 11.5 will not
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Simulation of drop aerobreakup in the bag regime

fragment into a large number of small drops, we consider the case We = 12.0 to represent
the dynamics of aerobreakup at critical conditions, thus Wecr = 12.0, which is consistent
with previous experiments for water drops. Nevertheless, the results for We = 11.5 show
that bag piercing does not guarantee a complete fragmentation of the bag. The range of We

for such behaviour is quite narrow for the density ratios and Reynolds numbers considered,
and further investigation of this breakup mode will be relegated to future study.

The linear RTI model with surface tension and viscous effects for an accelerating infinite
planar liquid sheet has been proposed to predict the critical condition, such as Wecr (Joseph
et al. 1999; Theofanous et al. 2004, 2012), based on the linear stability analysis (Mikaelian
1990, 1996). It was suggested that when the most unstable wavelength is smaller than the
disk diameter, a bag will be formed and eventually pierced through by the gas. Although
such models, along with other assumptions, capture reasonably the variation of Wecr over
Oh, the hypotheses of the model are not fully consistent with the flow physics. First,
the effect of surface tension at the disk edge was not considered in the model. This
simplification is acceptable for perturbations of small wavelengths but not for those with
wavelengths comparable to the disk radius R. Furthermore, the previous models predict
disk/bag stability based on the linear dynamics of RTI. However, a perturbation that grows
in the linear regime (when its amplitude L̂fb is small) does not guarantee its continuous
nonlinear growth at later times, and the case We = 10.9 explained above is a good example
of that.

For cases with We ≤ 15.3, the forward bag formed is approximately a symmetric
spherical shell, and the tip of the bag is located near the central x-axis. Such bags are
referred to as ‘simple’ bags here, and theoretical models have been proposed to predict
their formation and development (Villermaux & Bossa 2009; Kulkarni & Sojka 2014). It
is considered that the acceleration of the bag tip, which is perpendicular to the free stream,
is driven by the pressure difference (
p)a across the liquid sheet:

d2Lfb

dt2
= (
p)a

ρlha

. (5.19)

In this simple model, surface tension and liquid viscosity are ignored. Extensions to
incorporate these effects have been made by Kulkarni & Sojka (2014). Since the pressure
is hard to measure in experiments, Villermaux & Bossa (2009) approximates the pressure
on the leeward side to be the free-stream pressure, and that on the windward side to be
the stagnation pressure, so (
p)a ≈ pg(r = 0), as given in (5.1). For cases with different
We, (
p)a is similar, so the different evolution of Lfb is due to mainly the different ha.
The rate of decrease of ha generally increases with We. As a result, ha for low We can
be significantly larger than that for high We; for example, at t̂ = 1.5, ha = 0.2 and 0.03
for We = 10.5 and 15.3, respectively, and the former is almost an order of magnitude
larger than the latter. If ha is too large, then the tip acceleration is slow compared to the
capillary retraction of the edge rim, and ha will stop decreasing, and the bag will not
be pierced through. For the present cases, the evolutions of ha for We = 10.5 and 11.0
bifurcate at ĥa = 0.1–0.2, which seems to indicate that the ha threshold for bag piercing is
approximately 0.2. The value may vary with other parameters that are kept constant in the
study, and further investigations are still required to fully confirm this observation.

5.4.2. Transition from simple to ring bags

The bag formed for We = 18.0 exhibits a more complex shape compared to other cases, as
shown in figure 13. First, the bag loses the approximate symmetry observed for We = 15.3.
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t̂  = 0.87 1.04 1.21 1.39 1.56 1.73 1.82

(a)

(b)

Figure 13. Bag morphological evolutions for (a) We = 15.3 (simple bag) and (b) 18.0 (ring bag). The colour
represents the velocity magnitude, and the colour scale is the same as in figure 7.

Furthermore, the minimum thickness of the disk is located not at the bag centre but rather
at a ring around it, as seen in figure 12(e). As the tip accelerates faster at the location with
smaller sheet thickness, the interfacial velocity at t̂ = 1.82 shown in figure 13(b) results in
the formation of a ‘ring’ bag with a dent at the centre. As the ring bag grows, the liquid
is squeezed to move away from the tip in two directions. The outward flowing liquid will
gather at the rim, and the inward counterpart will gather at the centre to form a small stem,
as seen in figure 12(e). This drop morphology is also known as the ‘bag-stem’ mode.
As the ring bag grows, transverse RTI may develop and introduce an azimuthal variation
of the bag growth rate, leading to the ‘multi-bag’ mode. A detailed investigation of the
bag-stem and multi-bag modes is outside the scope of this paper. However, the present
results provide a good understanding of the transition from simple to ring bags and lay the
foundation for future studies on the bag-stem and multi-bag modes.

A close look at the drop shapes at t̂ = 0.69 in figure 12 reveals wavy perturbations
formed on the windward surface of the disk. The surface is convex at the centre and

concave about R̂/2 away from the centre. The concave locations are marked as points C and
D in figures 12(d) and 12(e). The perturbation wavelength is about R, and such a feature
holds for all We, making it an outcome of the early-time deformation and independent of
We. As the drop for We = 18.0 continues to deform, C and D become the locations for
the minimum disk thickness where the ring bag is formed. In comparison, for We ≤ 15.3,
C and D merge at the centre, resulting in the minimum thickness being located at the
centre. RTI models based on the linear stability of an infinite liquid layer (Theofanous
et al. 2004) have been used to predict the transition from simple to ring bags. It is argued
that the transition will occur when the most unstable Rayleigh–Taylor (RT) wavelength λRT

satisfies (2R)/λRT = 3. However, the simulation results presented here suggest a slightly
different conclusion. When λRT is smaller than R, the perturbation on the windward
surface will grow and form the ring bag. When λRT > R, even if the location of minimum
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Simulation of drop aerobreakup in the bag regime

thickness is initially not at the centre of the bag, it will eventually move back to the centre
because the mode with a larger wavelength grows faster.

5.5. Phase V: bag inflation

As the thickness of the bag reduces to a certain level, ĥa � 0.02, the development of the
bag enters phase V, as shown in figure 7. For simple bags, the bag in this phase consists
of two regions, the rim and the bag sheet, as seen at t̂ = 2.37 in figure 7. The fraction of
the liquid mass in the sheet increases with We. The ratios between the masses in the sheet
and the rim determine the mass fractions of the child droplets generated by the rupture of
the sheet and the rim. In phase V, the sheet portion of the bag inflates. The rapid radial
expansion of the sheet also enhances the lateral expansion of the edge rim, resulting in a
rapid increase of dR̂/dt̂, which is the key feature to distinguish phase V from phase IV.
This subsection will focus on the inflation of simple bags.

The sheet inflation is driven mainly by the pressure difference across the liquid sheet. It
is shown in figure 7(a) that (
p)a varies over time. On the windward side, the gas pressure
inside the bag is approximately uniform. The pressure in the bag is initially similar to the
stagnation pressure of the free stream. However, as the bag inflates and the bag tip velocity
increases, the pressure decreases. On the leeward side, due to flow separation on the lateral
edge of the bag, the pressure in the wake is generally lower than the free-stream pressure.
Different from the pressure on the windward side of the bag, the pressure on the leeward
side increases as the bag inflates due to the resulting delay of flow separation.

The model of Villermaux & Bossa (2009) predicts that the sheet thickness for a disk
decays exponentially over time, i.e.

ĥa ∼ exp(−4t̂). (5.20)

Then (5.19) can be integrated, yielding two asymptotic limits:

L̂fb ∼ t̂2 for t̂ � 1, (5.21)

L̂fb ∼ exp(4t̂) for t̂ � 1. (5.22)

In the model of Reyssat et al. (2007), the bag was approximated as a spherical shell that
extends uniformly in all directions. Also assuming that the pressure difference inside and
outside scales with the stagnation pressure, they predicted that

L̂fb ∼ (1 − bt̂)−2. (5.23)

Then through mass conservation, it can be shown that

ĥa ∼ (L̂fb)
−2 ∼ (1 − bt̂)4. (5.24)

The simulation results for ĥa for We = 12.0 and 15.3 are shown in figure 14(a). It can be
observed that the early-time decrease of ĥa in phases I and II is exponential, similar to the
model of Villermaux & Bossa (2009). However, since at this time range, the drop is not
exactly a disk, the expression for ĥa should be corrected to

ĥa = exp(−t̂), (5.25)

instead of exp(−4t̂) in the original model. When the bag starts to inflate in the long time,

the decay of ĥa switches to a power law, as predicted by the model of Reyssat et al. (2007),
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Figure 14. Time evolutions of (a) sheet thickness ĥa and (b) bag length L̂fb for the cases We = 12.0 and 15.3.
(c) Plot of L̂fb as a function of ĥa.

i.e.

ĥa = [1 − b(t̂ − t̂b0)]
−4, (5.26)

where b and t̂b0 are model coefficients that need to be fitted based on the simulation
results. In the figure, b = 0.37 and 0.58, and t̂b0 = 0.4 and 0.5, for We = 12.0 and 15.3,

respectively. The temporal evolutions of ĥa for We = 12.0 and 15.3 are quite similar until
the end of phase III (t̂ ≈ 1.2). Afterwards, ĥa decays faster for We = 15.3, which is due to

mainly the long phase IV for We = 12.0, during which ĥa decays more gradually.

The evolution of L̂fb is shown in figure 14(b). In the early time of bag inflation,
L̂fb increases with time following a power law, similar to (5.21). We have to add a
case-dependent parameter t̂b1, i.e.

L̂fb = (t̂ − t̂b1)
2, (5.27)

where the fitted values for t̂b1 are 0.6 and 0.7 for We = 12.0 and 15.3, respectively. In the
intermediate term, when the drop deforms as a disk, the increase of L̂fb is exponential, as
predicted by the model of Villermaux & Bossa (2009) and (5.22). It is found that

L̂fb = exp[b2(t̂ − t̂b2)], (5.28)

where b2 = 2.5 and 4.5, and t̂b2 = 1.85 and 1.55, for We = 12.0 and 15.3, respectively.
Similar trends have also been observed in the experiments (Villermaux & Bossa 2009). In
the long time, when the bag inflates and deforms as a shell with decreasing thickness, it
is observed that L̂fb increases following another power law, similar to (5.23) given by the
model of Reyssat et al. (2007), i.e.

L̂fb = [1 − b3(t̂ − t̂b3)]
−2, (5.29)

where b3 = 0.98 and 1.5, and t̂b3 = 2.35 and 1.68, for We = 12.0 and 15.3, respectively.

During bag inflation, L̂fb increases with decreasing ĥa; see figure 14(c). The variation of

L̂fb for small ĥa follows a power law, yet the power index is −0.38, instead of −0.5 given by
(5.24). The agreement between the present simulation results with the theoretical scaling
relations indicates that the early stage of bag inflation is well captured.
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Simulation of drop aerobreakup in the bag regime
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Figure 15. Time evolution of the drop surface from t̂ = t/τd = 2.51 to 2.58 for We = 12.0, showing the
breakup of the bag due to appearance and merging of holes. The colour on the interfaces represents the velocity
magnitude. The three different views are shown for each time.

5.6. Phase VI bag rupture

As the bag sheet thickness continues to decrease, the two interfaces will eventually pinch,
forming a hole in the liquid sheet. Generally, holes are formed at different locations at
different times. The holes will expand as the rim retracts with the Taylor–Culick velocity
(Opfer et al. 2014; Ling et al. 2017; Agbaglah 2021). When different holes merge, the
liquid sheet rupture completely, producing numerous small filaments and droplets, and the
remaining rim. The bag rupture process for We = 12.0 is shown in figure 15.

5.6.1. Effect of numerical breakup

In an ideal scenario without any tiny bubbles or contaminants in the liquid sheet and
with no thermal fluctuations, as considered in the present simulations, the two interfaces
will eventually pinch, resulting in holes in the liquid sheet. Van der Waals forces become
important to the interfacial dynamics when the sheet thickness is between approximately
10 and 100 nm, and the interactions between van der Waals forces and surface tension
typically dictate the sheet rupture and hole formation. The critical sheet thickness at which
holes first appear due to van der Waals forces is referred to as the physical cutoff length,
which is of the order of tens of nanometres. While the rupture dynamics of a stationary free
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liquid sheet has been studied extensively (Erneux & Davis 1993; Ida & Miksis 1996), the
rupture of a dynamic moving sheet is less understood, and the corresponding critical sheet
thickness could be significantly larger, as indicated in the drop aerobreakup experiment
by Opfer et al. (2014). The minimum cell size in a 3-D simulation, referred to as the
numerical cutoff length, is significantly larger than the physical counterpart, and therefore
the interface pinching occurs earlier in the simulation. When the liquid sheet thickness
reduces to approximately twice the minimum cell size of the octree mesh, numerical
error in VOF reconstruction will act as a perturbation on the interfaces, which eventually
causes numerical pinching between the two interfaces of the sheet. The interface pinching
will form small holes in the liquid sheet. The numerical breakup of the VOF method
has both pros and cons. On one hand, it will allow topology change automatically, and
no additional procedure is required as needed for other methods like the front-tracking
method (Lu & Tryggvason 2018). On the other hand, the length scale for pinching to occur
is related to mesh resolution. As a result, it will not produce mesh-independent results
for liquid sheet breakup and hole formation. Recently, the manifold death method has
been proposed by Chirco et al. (2022) to model sheet rupture. Thin sheets are detected by
taking quadratic moments of an indicator obtained from the VOF function, then pinching
is induced manually based on a user-defined cutoff length that is independent of the cell
size. The manifold death method has been applied recently to simulate bag breakup by
Chirco et al. (2022) and Tang et al. (2023), and it was observed that the method reduces
the influence of numerical breakup on hole formation. Nevertheless, since the cutoff length
scale in the manifold death method needs to be larger than the cell size, it will not produce
‘more physical’ results unless the mesh resolution is comparable to the physical length
scale. The larger numerical cutoff length, which is approximately 1 µm in the present
simulation, will cause hole formation earlier than in reality, and as a result, the numerical
simulation will not be able to capture the late stage of bag inflation and the bag rupture.

In spite of the limitations of the numerical simulation, the results at different resolutions
obtained here are still useful for understanding the bag rupture dynamics, and the results
can be used to extrapolate the unresolved stage of bag inflation. The evolution of the
total surface area of the drop, normalized by its initial value, i.e. S/S0, for We = 12.0,
is shown in figure 16(a). During the interaction between the drop and the free stream,
the gas kinetic energy is transferred to the surface energy of the drop, thus the surface
area increases over time. After holes are formed, the surface area will change to decrease
due to the capillary expansion of the holes. Therefore, S reaches the maximum value at
approximately the onset time for sheet breakup. As the mesh resolution increases from
N = 512 to 2048, the breakup is delayed, and we can resolve the bag until S/S0 ≈ 5.5
with N = 2048. According to figure 14(a) and the fitted function (5.26), one can estimate
the breakup time for a given physical cutoff length smaller than the minimum cell size.
Then, based on the estimated breakup time, extrapolation from figure 16(a) can be used to
estimate the surface area when the bag breaks according to the physical cutoff length.

The bag morphology when holes are just formed is shown in figures 16(b), 16(c), and
16(d) for N = 512, 1024 and 2048, respectively. Typically, the holes formed due to the lack
of resolution in VOF reconstruction exhibit irregular shapes. Yet after they are formed,
surface tension tends to regularize the shape of the hole and to form a rim on the edge
of the hole. For N = 512, many small holes are formed simultaneously, thus holes start
to interact with each other before the rim gets a chance to develop. With the most refined
mesh, N = 2048, only three small holes are formed initially, and the subsequent evolutions
of rims and holes are well captured; see also figure 15.
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Figure 16. Effect of mesh resolution on the bag bursting for We = 12.0. (a) Time evolution of the drop surface
area. (b–d) Drop surfaces when the holes are just formed for different mesh resolutions N = 512, 1024, 2048,
respectively.

Hole
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Figure 17. The RTI due to centripetal acceleration of the rim, forming fingers at the rim, which later detach to
form child droplets. The results are for We = 12.0 and t̂ = 2.534–2.589, with increment 0.008. The colour on
the interfaces represents the velocity magnitude; see figure 15 for the colour scale.

5.6.2. Hole dynamics and drop formation

After a hole is formed, the capillary retraction of the rim causes the hole to expand.
The rim retraction velocity is the Taylor–Culick velocity UTC =

√
2σ/ρlh, where h is

the sheet thickness near the rim. As the sheet thickness in the bag is quite uniform,
the rim retraction velocity is approximately constant and agrees well with UTC (Ling
et al. 2017; Agbaglah 2021). Nevertheless, as the rim moves along the curved liquid
sheet, it experiences a centripetal acceleration along the radial direction of the bag; see
figure 17(a). Along with the density difference, an RTI is triggered along the rim. The
development of RTI leads to the formation of fingers normal to the rim pointing outwards.
The subsequent Rayleigh–Plateau instability of the fingers detaches droplets. The process
of finger formation and drop detachment at the rim is shown in figure 17(b). The colour
on the interface represents the velocity magnitude, from which the interfacial velocity
variation along the rim can be recognized. Similar drop formation processes were also
observed in bubble bursting (Lhuissier & Villermaux 2012).

Figure 18 shows the interaction between two holes. It can be observed that when the rims
of different holes collide, a new fish-shaped liquid lamella is formed, the disintegration
of which produces a large number of small droplets. The hole–hole interaction has
been investigated recently by Agbaglah (2021) and Tang et al. (2023) through numerical
simulation. The simulation results of Agbaglah (2021) show that the collision of rims
forms a rim instead of a lamella as observed here and in the results of Tang et al. (2023).
The discrepancy is probably due to the fact that the sheet thicknesses considered by
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Y. Ling and T. Mahmood

Figure 18. Interactions between rims of different holes when the hole-merging occurs. The results are for
We = 12.0 and t̂ = t/τd = 2.544–2.562 with increment 0.004. The colour on the interfaces represents the
velocity magnitude; see figure 15 for the colour scale.

Agbaglah (2021) are larger than those in the present cases. The small sheet thickness leads
to a higher rim retraction velocity when they collide. This is also why the lamella formation
was not observed in the present simulations with coarser meshes. Neel, Lhuissier &
Villermaux (2020) suggested characterizing the rim collision dynamics using the Weber
number Weh, defined based on UTC and rim radius. It can be shown that Weh is proportional
to the ratio between the holes’ distance and the sheet thickness. When Weh is sufficiently
large, the rim collision will generate an expanding lamella with transverse modulation on
the rim. The lamella will also break later to form a distribution of child droplets.

While the present simulations are useful in revealing the qualitative droplet formation
mechanisms, the larger numerical cutoff length scale will not allow for a quantitative
prediction of the statistics of the droplets formed from the bag rupture. Such a prediction
will be possible only if one can use a mesh resolution down to the physical cutoff length,
or if a subgrid sheet model can be developed to represent the unresolved sheet inflation
and breakup dynamics. These tasks are relegated to future works.

6. Turbulent wake and drop dynamics

6.1. Effect of drop deformation on the aerodynamic drag and lift

In the aerobreakup process, the drop accelerates due to aerodynamic drag. As discussed in
§ 3.3, the unsteady contributions to the drag, triggered by the impulsive gas acceleration,
to the drop velocity are generally small due to the low gas-to-liquid density ratio. The
drop acceleration is dictated mainly by the quasi-steady drag corresponding to the relative
velocity U0 − ud. The shape deformation has a strong impact on the quasi-steady drag and
the resulting drop acceleration. The temporal evolutions of the normalized drop velocity
ûd, for different We, are shown in figure 19(a). When We increases, the drop deforms
more significantly, and the drop velocity increases faster. It can be seen that the drop
velocity reaches approximately 18 % of U0 for We = 18.0 when the drop breaks, compared
to approximately 12 % for We = 15.3.

The lateral radius R is the characteristic length for the gas flow around the drop, based
on which the instantaneous drop Reynolds number is defined as

Red = ρg(U0 − ud)2R

µg

. (6.1)

The evolutions of Red for different We are shown in figure 19(b). At time zero, Red =
Re. As time evolves, the differences in Red for different cases are magnified. Though the
relative velocity U0 − ud decreases over time, Red increases, thanks to the rapid increase
of R. For We = 18.0, Red can increase to almost three times its initial value. For the cases

We = 10.9 and 11.5, when R̂ turns to decrease at later time, Red also decreases. For all the
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Figure 19. Time evolutions of (a) streamwise velocity of the drop uc, (b) drop Reynolds number Red , (c) drag
coefficient CD, and (d,e) lift coefficients in the lateral y- and z-directions, for drops at different We.

cases considered, Red varies between approximately 2000 and 8000. For a solid sphere,
this range of Red lies in the chaotic vortex shedding regime and subcritical turbulent wake
regime (Tiwari et al. 2020a). The shedding of the turbulent wake can be observed in
figure 6(c).

Since the drag coefficient CD is defined (see (3.3)) based on the instantaneous relative
velocity and drop radius, the time variations of U0 − ud and R actually do not contribute
to changes in CD over time. While a constant CD is often assumed in previous studies
(Marcotte & Zaleski 2019), a non-monotonic time evolution of CD is observed here, as
shown in figure 19(c), which is due to the complex drop shape deformation in different
phases. Once again, we take the case We = 12.0 as the representative example to explain
the physics behind it. When the drop remains approximately a sphere at early time, CD ≈
0.5, which is expected for a spherical drop with large density and viscosity contrast. Then,
as the drop deforms into an ellipsoid with decreasing streamwise thickness in phase I, CD

increases until it reaches a local maximum. When the drop continues to deform into a disk
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in phase II, CD increases again until it reaches a plateau value of approximately 1, which
is similar to the typical CD for a thin, flat circular disk. When the disk deforms into a
bag in phases III and IV due to RTI, the change in the drop shape is relatively small, so
CD increases slowly. When the bag inflates in phase V, as the bag shape becomes more
aligned with the gas flow, CD decreases. The amplitude of variation in CD is generally
more profound for cases with larger We.

6.2. Effect of transient development of gas flow

The present configuration involves a sudden exposure of the drop to the free stream, which
causes the boundary layer around the drop to take a finite time to develop, as shown
in figure 6(c). This boundary layer development contributes to viscous-unsteady drag
and the resulting large amplitude variation of CD near t̂ = 0. Despite the high Reynolds
numbers, the flow remains approximately axisymmetric in phase I, and the transition to
a turbulent wake does not occur until phase II. The formation of the disk in phase II
enhances flow separation and accelerates the transition of the wake to turbulence. When
the wake becomes turbulent, the gas pressure on the leeward side of the drop increases,
as shown at t̂ = 0.79 in figure 6(b). Consequently, the drag decreases at t̂ ≈ 0.6–0.7, as
shown in figure 19(c). The breakdown of wake symmetry induces lift on the drop. The lift
coefficients in the lateral y- and z-directions are initially zero since the flow around the
drop is approximately axisymmetric, but Cy and Cz become non-zero and start to oscillate
in time approximately t̂ = 0.4, as shown in figures 19(d) and 19(e). The low-frequency
oscillation observed in the lift coefficients is related to the shedding of the wake. The
wake features are consistent with the range of Re for the present cases.

7. Conclusions

Detailed numerical simulations were performed in the present study to investigate the
drop aerobreakup in the moderate Weber number (We) regime. We have considered an
ideal configuration, in which an initially stationary and spherical drop is subjected to a
uniform gas stream. The liquid and gas are taken to be water and air, and the drop size
is fixed at 1.9 mm, following the experiment of Jackiw & Ashgriz (2021). A parametric
study is carried out by varying the gas stream velocity (U0). Due to the interaction with
the uniform gas stream, the drop deforms from a sphere to a forward bag with the opening
facing upstream. When We is sufficiently high, the bag is unstable and will eventually
inflate and be pierced through by the gas stream.

The numerical simulations were performed using the Basilisk solver. The
mass–momentum consistent volume-of-fluid method is used to captured the sharp
gas–liquid interface. The computational domain is discretized using quadtree/octree mesh,
and an adaptive mesh refinement technique is employed to reduce the total number of cells.
To resolve the bag inflation and rupture dynamics, the finest mesh used in the simulation
is equivalent to 2048 cells across the initial drop diameter.

The key findings of the present study are summarized as follows.

(i) High-resolution 3-D simulation is necessary to capture drop aerobreakup. Both
2-D axisymmetric and 3-D simulations were performed, using identical numerical
methods and initial/boundary conditions. The converged 2-D simulation results are
shown to be significantly different from the 3-D simulation and experimental results,
because 2-D simulations cannot resolve the turbulent wake, and as a result, will not
be able to capture the correct bag shape and drop acceleration. Grid-refinement
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Simulation of drop aerobreakup in the bag regime

studies were performed for the 3-D simulations, and the adaptive mesh with a
minimum cell size equivalent to 512 cells across the initial drop diameter is sufficient
to yield mesh-independent results for the drop shape, drag coefficient and gas
enstrophy. The 3-D simulation results are compared against previous experiments,
and good agreement is achieved.

(ii) Different phases in the drop morphological evolution are identified. The
non-monotonic evolution of the rate of change of the lateral drop radius (dR/dt)
shows clearly different phases in the overall process, including (I) ellipsoid
deformation, (II) disk formation, (III) disk deformation, (IV) bag development, (V)
bag inflation, and (VI) bag rupture.

(iii) The asymptotic early-time drop dynamics is independent of We. In the asymptotic
limit of t → 0, the evolutions of the drop shapes for different We collapse. This We

independence in early-time drop dynamics is consistent with the time scale analysis
and is affirmed further by the good agreement between drop velocities obtained
by the present simulations and the inviscid compressible simulations in previous
studies.

(iv) A new internal-flow deformation model is proposed for phase I. The drop deforms
as an ellipsoid in phase I, and the deformation is dictated by the internal flow, which
is, in turn, driven by the stagnation flow near the windward pole. An improved
internal-flow deformation model is proposed, which respects the We-independent
asymptotic limit at time zero. The results of the present model show better agreement
with the present simulation results, compared to previous models.

(v) The disk is formed when the Laplace pressure at the edge is in balance with
the stagnation pressure. The drop deforms towards a disk with a rounded edge in
phase II. The edge rim of the disk is formed when dR/dt reaches a local maximum,
namely d2R/dt2 = 0, and the Laplace pressure at the edge rim reaches a balance
with the gas stagnation pressure on the windward surface.

(vi) The RTI dictates the thinning of the disk centre. When the disk is accelerated along
the streamwise direction, the windward surface is unstable while the leeward surface
is stable. The development of the RTI becomes the dominant mechanism for the
continuous drop lateral extension and the thinning of the disk centre in phase III.
The surface tension at the edge rim resists the RTI development, and as a result,
dR/dt decreases in time.

(vii) Bag piercing does not guarantee bag fragmentation. When the thin disk centre curves
downstream, the disk deforms to a forward bag. The bag can be pierced through by
the gas stream only if the minimum thickness of the disk can decrease to be lower
than a threshold, which is approximately 20 % of the original drop diameter. More
importantly, when We is just lower than Wecr, the bag can be pierced through but
does not fragment into droplets, as the ring rim will retract towards the centre and
eventually will turn back to a big drop.

(viii) Evolutions of the bag length and sheet thickness follow similar power laws when
the bag inflates. In phase V, the rapid inflation of the bag causes the rim lateral
velocity dR/dt to increase rapidly over time. The increase of the bag length and the
decrease of the sheet thickness follow exponential functions initially and then switch
to power laws. The agreement with the power-law scaling actually indicates that the
sheet expands uniformly in all directions when the bag inflates. That is because the
gas pressure is approximately uniform inside the bag.

(ix) Hole–hole interaction is important to the disintegration of the bag. The numerical
cutoff length is significantly larger than the physical counterpart, thus the bags in the
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simulations break earlier than in reality. Nevertheless, the simulation results for the
most refined mesh well capture the dynamics of holes. When two holes merge, the
collision between the two rims forms a lamella first, then the lamella disintegrates
into small droplets.

(x) The drop morphological change has a strong impact on the drag coefficient. The
evolutions of the drop deformation and acceleration are coupled closely. Due to
the low gas-to-liquid density ratio, the drop acceleration is due mainly to the
quasi-steady drag. Although the relative velocity U0 − ud decreases in time, the
instantaneous Reynolds number increases with R. The non-monotonic evolution of
the drag coefficient CD is caused mainly by the change of drop shape; CD decreases
over time as the bag inflates, and the flow separation is delayed.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.708.
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