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A B S T R A C T

Accurate prediction of the dynamics and deformation of freely moving drops is crucial for numerous droplet
applications. When the Weber number is finite but below a critical value, the drop deviates from its spherical
shape and deforms as it is accelerated by the gas stream. Since aerodynamic drag on the drop depends
on its shape oscillation, accurately modeling the drop shape evolution is essential for predicting the drop’s
velocity and position. In this study, 2D axisymmetric interface-resolved simulations were performed to provide
a comprehensive dataset for developing a data-driven model. Parametric simulations were conducted by
systematically varying the drop diameter and free-stream velocity, achieving wide ranges of Weber and
Reynolds numbers. The instantaneous drop shapes obtained in simulations are characterized by spherical
harmonics. Temporal data of the drag and modal coefficients are collected from the simulation data to train
a Nonlinear Auto-Regressive models with eXogenous inputs (NARX) neural network model. The overall model
consists of two multi-layer perceptron networks, which predict the modal coefficients and the drop drag,
respectively. The drop shape can be reconstructed with the predicted modal coefficients. The model predictions
are validated against the simulation data in the testing set, showing excellent agreement for the evolutions of
both the drop shape and drag.

1. Introduction

Accurate prediction of the dynamics of freely moving drops is
important in numerous droplet applications, such as raindrop impact
on aerodynamic surfaces, fuel injection, and spray cooling. Though the
interaction between a drop and the surrounding gas flow is complex,
the aerodynamic deformation of a drop is typically formulated in an
ideal configuration, i.e., an initially stationary and spherical drop is
suddenly exposed to an unbounded uniform gas stream (Theofanous
and Li, 2008; Marcotte and Zaleski, 2019; Jain et al., 2019). In such
cases, the drop deformation and dynamics are fully determined by the
densities and viscosities of the drop liquid and the gas, �l, �l, �g , and �g ,
the surface tension �, the initial drop diameter D0, and the gas stream
velocity U0. The subscripts g and l are used to denote the properties for
the gas and liquid, respectively, while the subscript 0 is used to repre-
sent the initial state. Neglecting the compressibility (Theofanous et al.,
2004, 2007; Sharma et al., 2021) and non-Newtonian (Joseph et al.,
1999; Theofanous et al., 2013) effects, the drop shape deformation and
dynamics can be fully characterized by four independent dimensionless
parameters: the Weber number W e = �gU

2
0
D0∕�, the Reynolds number

Re = �gU0D0∕�g , the Ohnesorge number Oℎ = �l∕
√
�lD0�, and the
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gas-to-liquid density ratio r = �g∕�l (Pilch and Erdman, 1987; Hsiang

and Faeth, 1992; Joseph et al., 1999; Guildenbecher et al., 2009).

Except for high-pressure applications (Manin et al., 2014), the density

ratio between gas and liquids is generally small and the effect of r

is secondary (Marcotte and Zaleski, 2019). The Ohnesorge number

Oℎ measures the relative importance of liquid viscosity compared to

surface tension. For low-viscosity liquids like water, Oℎ is generally

small except for very small drops, and therefore surface tension is the

dominant force to resist drop deformation or breakup. Previous studies

showed that the effect of Oℎ on the criteria for the onset of breakup

is small when Oℎ < 0.1 (Hsiang and Faeth, 1992). The Weber number

We is generally used to characterize drop breakup criteria and breakup

modes (Hsiang and Faeth, 1992). For water drops in air, the critical

Weber number is about 11, under which a drop will only experience

shape oscillation but will not break. The Reynolds number Re dictates

the viscous gas flows in outside the drop, such as the boundary layer

separation and the wake structure. For a spherical particle, the wake

becomes turbulent when Re > 3000 (Yun et al., 2006; Tiwari et al.,

2020).
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In the sub-critical Weber number regime, the drop experiences
shape oscillation when it is accelerated by the aerodynamic drag.
The complex interaction between the shape oscillation and the sur-
rounding flow makes accurate prediction of the drop shape and drag
challenging. The oscillation dynamics for drops with finite We is more
complicated than capillary oscillation of a drop in a quiescent envi-
ronment (Rayleigh, 1879; Lamb, 1932; Reid, 1960; Miller and Scriven,
1968; Prosperetti, 1980). As the drop experiences a large-amplitude
oscillation, the nonlinear effect will modulate the drop oscillation dy-
namics (Tsamopoulos and Brown, 1983; Basaran, 1992), e.g., the drop
oscillation frequency decreases as the oscillation amplitude increases.
Furthermore, the drop oscillation amplitude decreases over time due
to viscous dissipation, so the nonlinear effect will be reduced as time
elapses and as a result, the drop oscillation frequency will change over
time. As the external gas flow and the liquid flow inside the drop can be
significantly modulated by the drop shape oscillations (Bergeles et al.,
2018; Lalanne et al., 2013; Zhang et al., 2019), the drag coefficient for
a deforming drop will be significantly different from a spherical drop in
the zero-We limit, and will evolve in time in an oscillatory manner. How
to incorporate the effect of shape oscillation in the drop drag model
remains an open question (Lin and Palmore Jr., 2022).

In practical simulations of sprays consisting of a large number
of droplets, it is impractical to resolve the interface of each indi-
vidual drop. Instead, the drops are represented by point particles
and traced in a Lagrangian framework (Apte et al., 2003; Pai and
Subramaniam, 2006; Balachandar, 2009). The drop drag and shape
deformation, along with other physics like heat and mass transfer
between the drop and the surrounding flow (Abramzon and Sirignano,
1989; Boyd and Ling, 2023; Boyd et al., 2023) and aerodynamic
breakup, need to be represented by subgrid models (O’Rourke and
Amsden, 1987; Hsiang and Faeth, 1992). For drops with finite W e,
traditional drag models for spherical drops (Maxey and Riley, 1983)
in the zero-W e limit will be invalid. Though different physics-based
models have been proposed (O’Rourke and Amsden, 1987; Kulkarni
et al., 2012; Rimbert et al., 2020; Jackiw and Ashgriz, 2021), significant
discrepancies between the model predictions and high-fidelity simula-
tion and experiment were observed (Ling and Mahmood, 2023). The
fundamental challenge of physics-based models lies in the necessary
assumptions/simplifications of the drop shape and surrounding flows,
such as assuming the drop shape is a spheroid, which are typically valid
only for a limited time period and small W e.

Data-driven modeling is an important alternative to develop sub-
scale models for multi-phase flows, and its capability is significantly en-
hanced by the rapid development of machine-learning techniques. Wan
et al. (2020) presented a data-driven kinematic model to predict the
trajectories of bubbles in high-Re fluid flow using a recurrent neural
network consisting of long short-term memory (LSTM) layers. Stud-
ies have been dedicated to developing machine-learning models of
quasi-steady drag for particle-laden flow with finite particle volume
fractions (He and Tafti, 2019; Siddani et al., 2021a,b; Siddani and
Balachandar, 2023). To the knowledge of the authors, there are not yet
machine-learning models for the drag force acting on deforming drops.
The additional time-dependent shape deformation of drops makes the
modeling more challenging compared to the particle counterpart.

The goal of the present study is to develop a data-driven model
to predict the time evolutions of drop shape and drag for a freely-
moving drop in the sub-critical Weber number regime. Though it is of
highly interest to model a wider range of parameters that cover also the
aerodynamic breakup of drops, the present study will be focused on the
aerodynamic deformation of drops that will not experience breakup.
To provide the data to train and to test the model, interface-resolved
simulations using volume-of-fluid (VOF) method will be performed.
The Nonlinear Auto-Regressive models with eXogenous inputs (NARX)
recurrent neural network (Lin et al., 1995, 1996) will be used to
develop the data-driven models. The rest of the paper will be organized
as follows. We will first define the problem and the parameter space

of interest in Section 2. The numerical methods and solver for the
interface-resolved simulations will be presented in Section 3, followed
by the simulation results shown in Section 4. The machine-learning
model architecture will be described in Section 5, and the model
predictions and comparison with simulation data will be presented in
Section 6. Finally, we will conclude key findings of the present study
in Section 7.

2. Problem description and parameter space

2.1. Parameter space of interest

In the present study, we consider that an initially stationary and
spherical drop is suddenly exposed to a uniform gas stream (Ranger
and Nicholls, 1969; Hsiang and Faeth, 1992; Tang et al., 2023; Ling
and Mahmood, 2023). The physical parameters and the dimensionless
parameters are listed in Tables 1 and 2. The drop liquid and gas are
taken to be water and air, respectively. As a result, r = 0.0012 is fixed
and for such a low value the density ratio effect is negligible (Marcotte
and Zaleski, 2019). A parametric study is performed by varying U0 and
D0. As a result,W e, Oℎ and Re vary from case to case. For the ranges of
U0 and D0 considered, Oℎ d 0.086, and it is expected that the effect of
liquid viscosity, though is present, is less important compared to surface
tension. Previous studies indicated that the impact of Oℎ on the critical
Weber number W ecr is negligible for the present ranges of r and Oℎ,
andW ecr H 11±2 (Hsiang and Faeth, 1992). Futhermore, the drop drag
mainly depends on Re, therefore, W e and Re are the key controlling
parameters. The ranges of which considered in the present study are :
0.1 d W e d 10 and 10 d Re d 1000. The focus is on the sub-critical
regime, W e < W ecr, so that the drop will only undergo oscillation
but will not break and form child droplets. Furthermore, we have only
considered moderate Re so that the less expensive 2D axisymmetric
simulations will remain good approximation, and neglecting the 3D
flow features in the drop wake will not lead to significant effect on the
drop deformation and drag (Boyd et al., 2023). The low computational
costs for 2D axisymmetric simulations will allow us to consider a large
number cases. To guarantee the compressibility effect is negligible, it
is taken that M < 0.3, which leads to a constraint that Re > 38.87W e.
Furthermore, we consider the drop diameter to be smaller than 10 mm,
which then leads to another boundary in the Re-W e space, i.e., Re <

1632
√
W e. The final parameter space of interest is shown in Fig. 1(b).

2.2. Cases of study

A total of 102 cases were selected by performing a Latin Hyper-
cube Sampling using the maximum–minimum distance criteria over
the parameter space of interest, see Fig. 1(b)). Among them, 92 cases
will be used for data-driven model development, and are further split
randomly into training and validation sets by an 80:20 ratio. Training
sets are used to train the model and validation sets will ensure the
model’s robustness by preventing the over-fitting of the training data.
The remaining 10 cases will be used as the testing set which will
provide the unbiased evaluation of the trained model. The simulation
cases used as training, validation, and testing datasets are detailed in
the Appendix.

3. Interface-resolved simulations

3.1. Simulation methods

Interface-resolved simulations were performed for the selected cases
to generate the data to train and test the data-driven model. The
two-phase interfacial flows are governed by the incompressible Navier–
Stokes equations with surface tension,
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Table 1
Fluid properties for simulation cases.

�l �g �l �g � D0 U0

(kg/m3) (kg/m3) (Pa s) (Pa s) (N/m) (m) (m/s)

1000 1.2 0.001 0.000018 0.072 5.8 × 10−3–5 × 10−6 1.34–88.02

Fig. 1. (a) Schematic of simulation domain and (b) parameter space of interest in the We-Re plane, where We and Re are in linear and log scales, respectively.

Table 2
Range of dimensionless parameters for simulation cases.

We Re Oh r
�gU

2
0
D0∕� �gU0D0∕�g �l∕

√
�lD0� �g∕�l

0.1–10 10–1000 0.0012–0.0861 0.0012

)ui

)xi
= 0 . (2)

where �, ui, p, � represent density, velocity, pressure and viscosity, re-
spectively. The Dirac distribution function �s is localized on the inter-
face. The surface tension coefficient is denoted by �, while � and ni
represent the curvature and normal vector of the interface.

The gas and liquid phases are distinguished by the liquid volume
fraction c, the evolution of which follows the advection equation:

)c

)t
+ ui

)c

)xi
= 0 . (3)

After spatial discretization, the cells with pure liquid or gas will exhibit
c = 1 and 0, respectively, while for cells containing the gas–liquid
interface, c is a fractional number. The density and viscosity are both
defined based on the arithmetic mean

� = �lc + �g(1 − c) , (4)

� = �lc + �g(1 − c) . (5)

The present simulations are conducted using the open-source solver
Basilisk. The governing equations are solved using a finite-volume
method. The projection method is used to incorporate the incompress-
ibility condition. Sharp interfaces separating the two phases are traced
by solving the advection equation via a mass–momentum consistent
geometric Volume-of-Fluid (VOF) method (Arrufat et al., 2020; Zhang
et al., 2020). The balanced-force method is used to discretize the
singular surface tension term in the momentum equation (Popinet,
2009). The interface curvature required to calculate surface tension is
computed based on the height-function (HF) method (Popinet, 2009).
The staggered-in-time discretization of the volume fraction/density
and pressure leads to a formally second-order-accurate time discretiza-
tion (Popinet, 2009). An quadtree mesh is used to discretize the 2D
computational domain, which allows for adaptive mesh refinement
(AMR) in user-defined regions. The mesh adaptation is based on the
wavelet estimate of the discretization errors of specified variables (van
Hooft et al., 2018). Validation of the numerical methods and the solver
Basilisk in resolving drop deformation and breakup can be found in our

previous studies (Zhang et al., 2019; Sakakeeny and Ling, 2020, 2021;
Sakakeeny et al., 2021; Ling and Mahmood, 2023; Boyd et al., 2023;
Boyd and Ling, 2023).

3.2. Simulation setup

The computational domain is shown in Fig. 1(a). The velocity of
the drop and the gas in the domain is initially zero. The velocity
boundary condition is invoked on the left boundary of the domain, with
a pressure outflow boundary condition invoked on the right boundary.
Due to the incompressibility condition, the gas is suddenly accelerated
to U0 in an infinitesimal time (one time step in the simulation). The
bottom is the axis and the top is a slip wall. The computational domain
has an edge length of l = 64D0, and the drop is initially placed x0 = 3D0

away from the left boundary. The computational domain is discretized
by a quadtree mesh, which is dynamically adapted based on the wavelet
estimates of the discretization errors of the liquid volume fraction and
the velocity components. The minimum cell size � is controlled by
the maximum refinement level ú, i.e., � = l∕2ú. In the present study,
ú = 13 is used, corresponding to 128 minimum quadtree cells across
the initial drop diameter, i.e., N = D0∕� = 128. The grid-refinement
study, to be discussed in Section 4.3, confirms that the mesh resolution
is sufficient.

4. Simulation results and data processing

4.1. General behavior

The time evolution of the pressure fields and drop surface for
different W e and Re are shown in Fig. 2. The cases in (a), (b), and
(c) are for (W e,Re) = (0.13, 61.42), (0.97, 772.89), and (9.60, 834.65),
which represent low-We-low-Re, low-We-high-Re, and high-We-high-Re
regimes, respectively. The high stagnation pressure near the wind-
ward and leeward poles of the drop drives radial flow towards the
periphery, leading to the flattening of the drop in the streamwise
direction (Villermaux and Bossa, 2009; Jackiw and Ashgriz, 2021). The
corresponding Oℎ for cases (a), (b), and (c) are 0.011, 0.0025, and
0.0071, respectively. Due to the low Oℎ, surface tension is the dominant
force resisting drop deformation. It is evident that cases with low W e

show only mild deformation throughout the process, whereas, for the
case with high W e, the deformation is more pronounced, and the drop
transitions from a sphere to a flat disk, as seen in Fig. 2(c). Since
W e is below the critical value, surface tension is sufficient to revert
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Fig. 2. Temporal evolutions of the pressure fields for three representative cases with
different We and Re. (a)W e = 0.13, Re = 61.42, (b) W e = 0.97, Re = 772.89, (c)
W e = 9.60, Re = 834.65.

the drop to an elongated shape, causing it to deform in an oscillatory
manner. Although cases (a) and (b) have low W e and thus similar drop
shapes, their Re values are markedly different, leading to distinct wake
structures and consequently different drag forces on the drop.

4.2. Drop shape characterization

To characterize the shape of the drop, we employ the spherical
coordinate system, and the radius on the drop surface can be expressed
as a function of the colatitude � and time t, i.e., R = R(�, t). The in-
stantaneous drop shape can be decomposed into axisymmetric spherical
harmonic modes, represented by Legendre polynomials Pn

R(�, t) − R0

R0

=

@1

n=0

Cn(t)Pn(cos(�)) , (6)

where R0 = D0∕2 is the volume-based radius, Cn represents the
coefficient for the mode n, which varies over time. For the current
problem, keeping modes with n d 10 is sufficient to accurately represent
the drop shape for all cases and all time. Given the instantaneous shape
of the drop, Cn can be computed by the Legendre–Fourier transform

Cn(t) =
2n + 1

2 +
1

−1

R(�, t) − R0

R0

Pn(cos(�))d(cos(�)). (7)

When the drop deformation amplitude is small, C0 = 0 if the volume
is constant and C1 = 0 if R(�, t) is defined based on the drop center.
However, when the drop deformation amplitude is high, as for cases
with high We, C0 and C1 are not identical to zero when the centroid
is used as the origin of the coordinate system, see Figs. 3(a) and (b).
The deviations from zero are more profound for the caseW e = 9.60, for
which the drop deforms more significantly, which can be observed from
the snapshots of the drop shapes shown in Fig. 3(c). As the deformation
amplitude decreases over time, the magnitudes for C0 and C1 also
reduce. The results here indicate that it is necessary to include C0 and
C1 for shape characterization.

4.3. Grid refinement study

To verify that the mesh resolution is sufficient to resolve the drop
shape oscillation, a grid-refinement study is performed using the same
representative cases shown in Fig. 2. Since these cases represent the
corners in the parameter space of interest, convergence of results for
these cases will guarantee the mesh is fine enough for other cases
considered.

The time evolutions of the aspect ratio, A = Ly∕Lx, where Lx and
Ly are the streamwise and lateral widths of the drop, for different
cases and mesh resolutions, are shown in Fig. 4. Four different mesh
refinement levels have been tested, ú = 11, 12, 13, and 14, which
correspond to N = D0∕� = 32, 64, 128, and 256, respectively. Time has
been normalized with the Lamb frequencies of the dominant second
mode !2,lamb. The Lamb frequency of the nth axisymmetric mode is
given as (Lamb, 1932)

!n,Lamb =

√
(n − 1)n(n + 1)(n + 2)�

[(n + 1)�l + n�g]R
3
0

. (8)

The results for N = 128 and 256 match very well, indicating the mesh
N = 128 is sufficient to yield converged results, which is used for the
parametric simulations.

4.4. Temporal evolutions of modal coefficients

The temporal evolutions of the Fourier–Legendre coefficients for
modes n = 2 − 7 for different We and Re are plotted in Fig. 5. As the
amplitude of the modal coefficient variation increases withWe, we have
plotted the ratio of Cn to We instead. The differences in the results
between different cases are reduced for Cn∕W e, which also helps to
improve the accuracy of the data-driven model.

All the modal coefficients are initially zero since the drop is spher-
ical at t = 0. As the drop starts to deform, Cn varies over time. It is
shown that the oscillation of C2 exhibits a single frequency. For low
We cases, the frequency is close to that of the 2nd Lamb mode, while a
lower frequency is observed for the high W e = 9.60 case. Furthermore,
the equilibrium state of the C2 oscillation is not zero, indicating the
equilibrium shape is not a perfect sphere. The time evolutions of the
coefficients for modes n > 2 are more complicated, in particular for
the high W e case, due to the non-linear effects (Becker et al., 1991;
Basaran, 1992; Zhang et al., 2019). It is difficult to model the time
evolutions of each mode using simple explicit functions, as can be done
for small-amplitude drop oscillations (Zhang et al., 2019).
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Fig. 3. Temporal evolutions of (a) C0 and (b) C1 for three representative cases with different We and Re. (c) Time snapshots of the drop shapes for the case W e = 9.60 and
Re = 834.65.

Fig. 4. Temporal evolutions of the aspect ratios (A = Ly∕Lx) for different levels of mesh refinement N = D0∕�min = 32 − 256 for three representative cases with different We and
Re. (a)W e = 0.13, Re = 61.42, (b) W e = 0.97, Re = 772.89, (c) W e = 9.60, Re = 834.65.

4.5. Temporal evolutions of drag coefficient

The aerodynamic drag causes the drop to accelerate along the
streamwise direction. The mean x-velocity of the drop is calculated by
the integration of the velocity and VOF fields,

ud =
+ c u dV

+ c dV
(9)

based on which the drop acceleration can be calculated as dud∕dt, and
the drag coefficient is evaluated as

CD =
2md

�g(U0 − ud )
2�R2

dud

dt
(10)

where md is the mass of the drop. Here, CD is defined based on the
instantaneous relative velocity (U0−ud ), and the drop frontal area (�R

2)

estimated by the lateral radius R. We normalize the drag coefficient
with the standard drag correlation for spherical particle corresponding
to Re,

CD,std =
24

Re
(1 + 0.15Re0.687) +

0.42

1 +
42500

Re1.16

(11)

The time evolutions of CD for different We and Re are shown in
Fig. 6. The three cases shown are the same cases shown in Figs. 2
and 4. Initially CD is much higher than CD,std due to the impulsive
acceleration at time zero and the resulting unsteady forces (added-mass
and Basset history force) (Ling et al., 2013). The drag coefficient will
approach the steady drag after the transition phase, the duration of
which is dictated by the viscous unsteady time scale. For the case (a)
with low W e = 0.13 and Re = 61.42, it is seen that CD∕CD,std reaches
a plateau, about 0.82, see Fig. 6. In contrast, CD for case (b) oscillates
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Fig. 5. Temporal evolutions of the modal coefficients C2 to C7 for three representative cases.

Fig. 6. Temporal evolutions of drag coefficients for three representative cases with
different We and Re.

in time and the oscillation frequency matches with that for the shape
oscillation. The increase in CD oscillation amplitude is attributed to
the increase of W e and the resulting stronger drop shape deformation,
see Fig. 4. Compared to case (a), the wake structure for case (b) also
varies as Re increases significantly, see Fig. 2, which contributes to
the lower plateau value of CD. For the case (c) with high W e = 9.60,
CD exhibits a more complex oscillation with multiple frequencies and
larger amplitude, which is due to the large-amplitude multi-mode shape
oscillations, see Fig. 4. The oscillation in CD with a frequency similar
to the shape oscillation clearly demonstrates that the drag and shape
evolutions are closely coupled. Therefore, it is necessary to incorporate
the drop shape evolution into the data-driven model to accurately
predict the drag.

4.6. Effect of We and Re on aspect ratio and dominant frequency

The complex dynamics for drops in finite W e and Re regimes make
it challenging to model drop shape and drag evolutions through con-
ventional physics-based approaches. This complexity is evident in the
oscillation amplitude and frequency. Given that oscillation amplitude
generally decreases over time due to viscous dissipation, the maximum
aspect ratio, Amax = max(|Ly∕Lx|), typically occurring during the first
oscillation, is used to represent the oscillation amplitude (Basaran,
1992). The results for the maximum aspect ratio Amax across all simu-
lated cases are summarized in Fig. 7. It is observed that Amax primarily
varies with W e. The variation of Amax with W e is nonlinear and

typically follows a quadratic function, as depicted in Fig. 7(a). The
dependence of Amax on Re is generally weak, as seen in Fig. 7(b). For a
given W e, Oℎ is inversely proportional to Re, so the weak dependence
on Re also indicates that the effect of Oℎ on the oscillation amplitude
is small for the ranges of parameters considered.

While multiple modes with different frequencies are present, the
dominant mode is the second mode for all cases, as depicted in the
spectra for two representative cases shown in Fig. 8(b). The normalized
dominant frequency !∕!2,Lamb is plotted as a function of Amax and Re

in Fig. 8(a). A decrease in frequency is observed as Amax increases,
attributable to the increase inW e, as shown in Fig. 7(a). The dispersion
of data points is due to the limited spectral resolution to identify
the dominant frequency. Improving spectral resolution would require
running simulations for a much longer time, which is beyond the scope
of this study. Nonetheless, a general decreasing trend of !∕!2,Lamb with
W e or Amax is evident. This decrease in frequency, due to nonlinear
effects in large-amplitude oscillation, aligns reasonably well with the
Tsamopoulos and Brown (TB) nonlinear model when Amax is mod-
erate (Tsamopoulos and Brown, 1983). However, as Amax increases,
significant deviations from the TB model are observed, as also observed
in previous numerical studies (Basaran, 1992).

The uncertainties in identifying the dominant frequency render the
results somewhat noisy, making it challenging to clearly demonstrate
the impact of Re on the dominant frequency. For high W e cases,
oscillation frequency changes over time; as the oscillation amplitude
decreases, the nonlinear effect on frequency is reduced. Consequently,
the frequency during the initial oscillation may slightly differ from that
reflected in the spectrum, which accounts for all oscillations, as shown
in Fig. 8(b).

In summary, these results demonstrates the difficulty of predicting
drop shape oscillation through physics-based approaches, highlighting
the necessity for data-driven modeling.

5. Machine-learning data-driven models

5.1. Model overview

The purpose of the present data-driven model is to predict the tem-
poral evolutions of the drop shape and the drag based on the initial flow
conditions and the fluid properties, characterized by the dimensionless
parameters like We and Re. Such a model can be used in Lagrangian
spray simulations to predict the motion and shape of individual drops
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Fig. 7. (a) Variation of the maximum aspect ratio Amax = max(Ly∕Lx) as a function of We for all cases simulated. (b) Variation of the maximum aspect ratio Amax on the We-Re
plane.

Fig. 8. (a) Variation of dominant frequency with maximum aspect ratio Amax = max(Ly∕Lx). The color represents Re. (b) Frequency spectra for two cases with different We. The
dashed vertical lines indicate the frequency measured based on the first oscillation.

without solving the flows on the drop scale. As described above, the
drop shape is characterized by the modal coefficients C0 − C10 and the
drop drag is represented by the drag coefficient. In the simulations,
the above quantities are calculated and collected at a fixed timestep

�tmodel

√
�∕�lD

3
0
= 0.01 for model training and testing. The simulations

have been run to tsim!2,Lamb = 10.17 (equivalent to tsim

√
�∕�lD

3
0
= 8.00)

in general. As a result, there are in total 800 temporal datapoints of
modal and drag coefficients for one sample (i.e., simulation case). For
some cases with W e e 7, the drop will leave the domain before the
specified end time, then for those cases the simulations were stopped as
the drop reaches a distance of 2D0 from the right boundary. There are
24 cases in the training set that fall into this category and the minimum
simulation time is tsim!2,Lamb = 6.43. For those cases, we will have
smaller numbers of datapoints. Note that the timestep �tmodel in the
dataset for model development is larger than the timestep �tsim used in
the simulation, and the downsampling is done to provide a compressed
dataset without aliasing errors.

The overall machine-learning model is depicted in Fig. 9. The model
comprises two multi-layer perceptron (MLP) models. The first model is
the drop shape model, which predicts future modal coefficients based
on the history of modal coefficients and the dimensionless parameters
W e and Re. The second model is the drop drag model, which uses
the history of both modal and drag coefficients, W e and Re as inputs
to predict future drag coefficients. The rationale for separating the
models is to reduce input redundancy, as the history of CD is not
required for predicting the future shape of the drop. Thus, the first
model exclusively uses the history of modal coefficients.

Normalization of data to minimize differences across various cases
enhances training efficiency. The modal coefficients defining the drop

shape are normalized by W e, i.e., C∗
n
= Cn∕W e, because the amplitude

variation of Cn increases with W e. Similarly, the drag coefficient is
normalized by the standard drag for the corresponding Re, i.e., C∗

D
=

CD∕CD,std .

5.2. Nonlinear Auto-Regressive models with eXogenous inputs (NARX) re-
current neural network

The Nonlinear Auto-Regressive with eXogenous inputs (NARX) re-
current neural network is a machine-learning model that predicts the
system’s outputs based on a nonlinear combination of previous outputs
and exogenous input parameters (Lin et al., 1995, 1996). This model
has demonstrated its accuracy in modeling complex, time-dependent
systems, as indicated in prior research (Haris et al., 2022; Menezes Jr.
and Barreto, 2008; Benouar et al., 2023). In the present study, the
physical parameters Re and W e serve as the exogenous inputs. The
NARXNN model can be expressed as a mapping of future predictions
of the vector of quantities of interest ė = (C0, C1,& , C10, CD) from the
history data and exogenous inputs, i.e.,

ė(tn,& , tn+1, tn+s−1) = F [ė(tn−1),& , ė(tn−lag), Re,W e] (12)

where stride (s) and lag are model hyperparameters that represent
the number of future and history timesteps used in each prediction,
respectively.

5.3. Model training and testing

A NARX neural network can be open-loop or closed-loop. In the
present model, the training process is open-loop, for which the simula-
tion data from the history steps are used as inputs to predict the future
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Fig. 9. Overall modeling strategy.

steps. The open-loop training process for the drop shape model is shown
in Fig. 10(a). Here, lag = 50 and s = 10 were used, which means that
the modal coefficients from the preceding 50 timesteps are utilized to
predict the values for the subsequent 10 timesteps. Consequently, one
input ‘‘dataset’’ to the drop shape MLP consists of 552 inputs, including
the 11 modal coefficients for the 50 history steps, plus W e and Re,
and the MLP output consists of 110 outputs, specifically the modal
coefficients for the future 10 steps. Examples for the input–output pairs
of two subsequent datasets are depicted in Fig. 10(a). For the dataset us-
ing modal coefficients for tn−50, tn−49,& , tn as inputs, the corresponding
outputs for the future steps are tn+1, tn+2,& , tn+10, while the subsequent
dataset uses the modal coefficients for tn−49, tn−48,& , tn, tn+1 to predict
the values for tn+2, tn+3,& , tn+11. At time zero, there is no ‘‘history’’
available. Then synthetic data for t < 0 are created, where the modal
coefficients are taken to be zero, i.e., C0,1,&,10(t < 0) = 0, and the
normalized drag coefficient is set to one, i.e., CD∕CD,std (t < 0) = 1,
according to the initial spherical shape of the drop. As a result, for
one sample in the training set, there will be 800 datasets for the 800
timesteps.

The data for all samples with different combinations of W e and
Re will be combined to the input and output tensors. Then the paired
input and output tensors will be shuffled and separated into batches for
training. The loss function is the mean squared error (MSE) between
model predictions and the ground truth values for the output tensor
for one batch. The final loss for an epoch is the average loss across all
batches. The MLP comprises 8 hidden layers. Details about the neurons
in each layer and other hyperparameters such as learning rate, and
batch size are provided in Table 3. Early stopping based on evaluating
the validation dataset is used to prevent overfitting of the model on
training data.

The testing of the trained model will be closed loop, see Fig. 10(b).
The predicted outputs for the future 10 timesteps will be fed back as
inputs to the model. For example, the previous predicted modal coeffi-
cients for tn−50, tn−49,& , tn will be used to predict the future values at
tn+1, tn+2,& , tn+10, which will then be used as the next input dataset to
the MLP, i.e., the modal coefficients for tn−50, tn−39,& , tn+10, to predict
the values for tn+11, tn+12,& , tn+20. Similar subsequent predictions will
be made. Similar to the training process, synthetic data for t < 0 will
be used to initiate the model prediction. Therefore, the present model
is recurrent and will only require Re and W e to autonomously predict
the temporal evolutions of the modal coefficients.

The drop drag NARX neural network model architecture is similar
the shape model. The MLP for the drop drag has the same number of
hidden layers and neurons as the drop shape MLP. The only difference
is that, the time history data of C∗

d
were added to the inputs. As a

Table 3
Summary of NARXNN Model.

Hyperparameters Value

Total Number of Inputs for One Dataset for Drop Shape MLP 552
Total Number of Inputs for One Dataset for Drop Drag MLP 602
Total Number of Outputs for One Dataset for Drop Shape MLP 110
Total Number of Outputs for One Dataset for Drop Drag MLP 10
Number of Hidden Layers 8
Total Number of Neurons in Hidden Layers 4450
Batch Size 16
Learning Rate 10−5

Weight Decay 10−7

Lag 50
Stride, s 10
Maximum Epoch Number 1000
Optimizer AdamW
Loss Function Mean square error

result, the drop drag model takes historical values of modal and drag
coefficients as temporal inputs and W e and Re as exogenous inputs,
to predict future values C∗

d
. In total, one dataset for the drop drag MLP

has 602 inputs and 10 outputs, see Table 3. Similar to the shape model,
drag model also uses open-loop data flow during training and closed
loop for testing.

5.4. Model evaluation

The model performance will be evaluated using error metrics, in-
cluding the Mean Relative Errors (MRE) for the modal coefficients
(CMRE) and drag coefficients (CdMRE

). As the modal coefficients enable
reconstruction of the drop shape, specifically R(�) in spherical coordi-
nates, we also assess the MRE for the drop radius (RMRE). The error
expressions are as follows:

CMRE =
1

N

N1

n=1

‖ÿ̂ − ÿ‖F
‖ÿ‖F

(13)

CdMRE
=

1

N

N1

n=1

‖ÿ̂d − ÿd‖2
‖ÿ∗

d
‖
2

(14)

RMRE =
1

N

N1

n=1

‖Ď̂ − Ď‖F
‖Ď‖F

(15)

where N denotes the total number of data points evaluated. Variables
with and without ̂ represent ground truth (simulation data) and model
predictions, respectively. The matrix ÿ includes the modal coefficients
and all timesteps and samples, while Ď and ÿd are vectors for the drop
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Fig. 10. Schematic flowchart to show the (a) open-loop training and (b) closed-loop testing processes for the drop shape model.

radius at various colatitudes and drag coefficient at different timesteps
for all samples. Subscripts F and 2 denote Frobenius and L2 norm errors
for matrices and vectors, respectively.

6. Data-driven model predictions

6.1. Model prediction for drop shape deformation

The model predictions of the modal coefficients (C0–C10) for two
cases in the testing dataset, i.e., (W e,Re) = (0.89, 116.12) and
(8.31, 652.63), representing low and high We regimes in the parameter
space, are shown in Figs. 11 and 12, respectively. It is noteworthy that
these two test cases were never ‘‘seen’’ by the model. The predicted
time evolutions of all the modal coefficients align remarkably well
with the simulation results. The high-order modal coefficients exhibit
complicated oscillations, which are accurately captured by the model.
Though some discrepancies were observed at later times for the higher-
order modes, like C5–C10, their amplitudes are small compared to the
dominant mode C2. As a result, the discrepancies have a negligible
effect on the overall drop shape. Fig. 13 shows the drop shapes at
different times reconstructed from the modal coefficients, illustrating
that the predictions for both cases closely match the simulation results.
This excellent agreement confirms the model’s ability to accurately
predict the drop shape evolutions for different We and Re.

Table 4 summarizes the radius and modal coefficients prediction
errors for training, validation and testing datasets. The MRE in modal
coefficients (CMRE), around 8−9%, may seem high. However, the high-
order modes, which contribute significantly to this error, see Fig. 11,

Table 4
Summary of MRE result for different datasets.

Datasets RMRE CMRE C∗
dMRE

Training Sets 0.80% 9.62% 1.28%
Validation Sets 0.84% 8.36% 1.30%
Testing Sets 0.78% 8.91% 0.88%

have minor impacts on the drop shape. Thus, the relatively higher
errors in the high-order modal coefficients do not significantly affect
the accuracy of the predicted drop shape, which is reflected by the MRE
for the drop radius (RMRE). It is observed that RMRE values are less
than 1% for all datasets.

The values of RMRE for all 10 cases in the testing dataset are given
in Table 5. It can be observed that RMRE increases with W e. The
highest error, 1.59%, is associated with the case with Re = 652.63

and W e = 8.307. As W e increases, the drop deforms more significantly
and the drop shape is also more complex. The magnitude of the modal
coefficients also increases with W e. As a result, the error in modal
coefficients has a greater influence on the drop shape for cases with
higher W e.

6.2. Model prediction for drop drag coefficient

With the drop shape model validated, the predictions of the modal
coefficients are now incorporated into the drop drag model to predict
the time evolution of the drag coefficient. Fig. 14 shows the time
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Fig. 11. Comparison between model predictions of modal coefficients (C0–C10) and simulation data for the test case (Re = 116.12, W e = 0.89).

evolutions of C∗
d
predicted by the present model for two test cases,

(W e,Re) = (0.89, 116.12) and (8.31, 652.63). Again, the model predic-
tions agree very well with the simulation data for both cases for all
time. Due to the drop shape oscillation, C∗

d
evolves in an oscillatory

manner, and the model well captures the frequency and magnitude of
C∗
d
.
The prediction errors of C∗

d
for different datasets are shown in

Table 4. Due to the error propagation from the shape model to the drag
model, the error in drag coefficient is slightly higher than that for the
drop radius, but C∗

dMRE
remains lower than 1% for the testing set. The

values of C∗
dMRE

for all cases in the testing set can be found in Table 5.
Similar to the error in the drop shape, the error in the drag increases
with W e, and the values of C∗

dMRE
and RMRE are quite similar. The

maximum error of C∗
d
is 1.99%, which is associated with the case with

Re = 652.63 and W e = 8.307. The similarity between C∗
dMRE

and RMRE

affirms that accurate prediction the drop shape evolution is necessary
to well predict the drag and drop motion.

7. Conclusions

A data-driven model has been developed in the present study to
predict the shape and drag evolutions of a freely-moving drop in a
uniform stream. Assuming the drop fluid and the surrounding gas are
water and air, with the drop initially spherical, the key parameters
are the Weber (We) and Reynolds (Re) numbers, defined based on
the initial relative velocity and the drop diameter. The present study
focuses on the subcritical Weber number regime, in which drops will
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Fig. 12. Comparison between model predictions of modal coefficients (C0–C10) and simulation data for the test case (Re = 652.63, W e = 8.31).

Fig. 13. Comparison between model predictions of drop shapes and simulation data for the test cases (a) Re = 116.12, W e = 0.89, and (b) Re = 652.63, W e = 8.31.
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Fig. 14. Comparison between model predictions of C∗
d
and simulation data for test cases (a) W e = 0.89, Re = 116 and (b) W e = 8.31, Re = 652.63.

Table 5
MRE results for all cases in the test set.

Cases Re We RMRE CMRE C∗
dMRE

1 116.13 0.898 0.16% 9.02% 0.47%
2 364.52 1.307 0.26% 8.44% 0.35%
3 351.40 2.705 0.42% 8.09% 0.42%
4 274.80 3.117 0.35% 7.19% 0.28%
5 472.41 3.979 0.65% 8.32% 0.62%
6 444.77 5.099 0.80% 9.14% 0.73%
7 486.27 5.714 1.11% 10.91% 1.10%
8 501.24 6.499 1.08% 9.27% 1.12%
9 577.14 7.741 1.34% 9.19% 1.73%
10 652.63 8.307 1.59% 9.55% 1.99%

Mean 0.78% 8.91% 0.88%

deform but not break. The significant deformation of the drop influ-
ences the interaction between the drop and the surrounding gas flow.
As a result, accurately predicting the drag and the resulting motion of
the drop requires rigorous prediction of the drop shape evolutions. The
complex interplay between drop shape deformation and drag makes
conventional physics-based models difficult, so a data-driven approach
based on Non-linear Auto-Regressive with eXogenous inputs (NARX)
recurrent neural network is adopted.

To provide data for model development, parametric interface-
resolved 2D-axisymmetric simulations were performed for 102 cases of
different combinations ofWe and Re numbers in the parameter space of
interest. The geometric volume-of-fluid (VOF) method is used to resolve
the sharp interface, and an adaptive quadtree mesh with the minimum
cell size equivalent to 128 cells across the initial drop diameter is
used in the simulation. To characterize the instantaneous drop shapes,
the drop radius as a function of the colatitude is decomposed into
spherical harmonic modes. Assuming the drop is axisymmetric, only
the axisymmetric modes are considered. The amplitudes of the modal
coefficients decrease with the mode number, and a truncation is made
at the mode number 10. Eventually, the temporal data for the modal
and drag coefficients are collected from the simulations. The modal
coefficients are normalized byWe and the drag coefficient is normalized
by the standard drag for spherical particles to reduces the differences
across cases.

The overall model consists of two NARX models. The first model, the
drop shape model, takes the history of modal coefficients as temporal
inputs, along with We and Re as exogenous inputs, and predicts the
modal coefficients at future timesteps. The second model, the drop drag
model, uses the history of modal and drag coefficients, along with We
and Re, as inputs and then predicts the drag coefficients in future steps.
The overall simulation data is split into training (92 cases) and testing
sets (10 cases). The NARX model training is open-loop, meaning the
history simulation data are used as inputs, while testing of the model

is done in a closed-loop manner, where the predictions are fed back as
inputs, so that the model prediction is recurrent. The model accurately
predicts the evolution of both the modal and drag coefficients for
both low and high We cases. The modal coefficients can be used to
reconstruct the drop shape, and prediction errors are also measured on
the reconstructed drop radius as a function of the colatitude. The drag
coefficient evolves in time in an oscillatory manner due to the drop
shape oscillation, and the model predictions agree very well with the
simulation data for cases in the testing set. The mean relative errors in
the predictions of drop radius and drag coefficient generally increase
withWe. The maximum errors in the testing cases are 1.59% and 1.99%
for drop radius and drag coefficient, respectively.
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Appendix. Parameters for simulation dataset

Fig. A.15 shows the initial drop diameter D0 and the free-stream
velocity U0 for all 102 simulation cases, along with the corresponding
values of key dimensionless parameters W e, Re, and Oℎ. Other fluid
properties are kept constant. The simulation cases are then split into
training, validation, and testing datasets, as indicated.
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Fig. A.15. Parameters of all simulation cases and corresponding dataset.
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