

1 Poynting Flux Input to the Auroral
2 Ionosphere: The Impact of Subauroral
3 Polarization Streams and Dawsone
4 Auroral Polarization Streams

5

6 Jiang Liu^{1,2}, L. R. Lyons², Delores Knipp^{3,4}, Qiang Zhang⁵, Chih-Ping Wang², Yangyang
7 Shen¹, V. Angelopoulos¹, Yuzhang Ma⁶, Sheng Tian², A. Artemyev¹, Chengyu Qian⁷, Jun
8 Liang⁸, Hui Wang⁷, and Ying Zou⁹

9 1. Department of Earth, Planetary, and Space Sciences, University of California, Los
10 Angeles, USA.

11 2. Department of Atmospheric and Oceanic Sciences, University of California, Los
12 Angeles, USA.

13 3. Smead Aerospace Engineering Science Department, University of Colorado,
14 Boulder, USA

15 4. High Altitude Observatory, National Center for Atmospheric Research, Boulder,
16 CO, USA

17 5. Tongji University, Shanghai, China

18 6. School of Space Science and Applied Physics, Shandong University, Weihai, China

19 7. Department of Space Physics, School of Electronic Information, Wuhan
20 University, Hubei, China

21 8. Department of Physics and Astronomy, University of Calgary, Alberta, Canada

22 9. John Hopkins Applied Physics Laboratory, Laurel, Maryland, USA.

23 **Key Points:**

24 - We examine the distribution of Poynting flux into the ionosphere related to Joule
25 heating using DMSP data with a novel gridding scheme.

26 - The highest Poynting flux is near the Region 1 and 2 currents' interface; the sunlit cusp
27 also contains high Poynting flux.

28 - The Poynting flux is asymmetric about the R1/R2 interface, exhibiting distinct peaks in
29 regions associated with SAPS and DAPS.

30 **Abstract.** The Poynting vector (Poynting flux) from Earth's magnetosphere downward
31 towards its ionosphere carries the energy that powers the Joule heating in the
32 ionosphere and thermosphere. The Joule heating controls fundamental ionospheric
33 properties affecting the entire magnetosphere-ionosphere-thermosphere system, so it is
34 necessary to understand when and where the Poynting flux is significant. Taking
35 advantage of new datasets generated from DMSP (Defense Meteorological Satellite
36 Program) observations, we investigate the Poynting flux distribution within and around
37 the auroral zone, where most magnetosphere-ionosphere (M-I) dynamics and thus Joule
38 heating occurs. We find that the Poynting flux, which is generally larger under more
39 active conditions, is concentrated in the sunlit cusp and near the interface between
40 Region 1 and 2 currents. The former concentration suggests voltage generators drive the
41 cusp dynamics. The latter concentration shows asymmetries with respect to the
42 interface between the Region 1 and 2 currents. We show that these reflect the

43 controlling impact of subauroral polarization streams and downside auroral polarization
44 streams on the Poynting flux.

45 Plain Language Summary

46 Earth's upper atmosphere and ionosphere receive energy from space in many ways, and
47 one of them is through an incoming flux of electromagnetic energy. This is expressed as
48 a 'Poynting flux', and we investigate how it is distributed in and around the ionosphere's
49 auroral zone, where most activities occur. Our results show that large Poynting fluxes are
50 distributed at locations where dramatic plasma flows appear, indicating a significant role
51 of these flows in the energy circulation of the geospace.

52 1 Introduction

53 The heating of Earth's thermosphere and ionosphere modifies their temperature,
54 composition, and conductivity (e.g., Farley et al., 1967; Hays et al., 1973; Aksnes et al.,
55 2002), which are important aspects of space weather (e.g., Schunk & Sojka, 1996)
56 impacting atmospheric and magnetospheric dynamics (e.g., Buonsanto et al., 1990;
57 Wiltberger et al., 2004). One of the major heating forms is the Joule heating (e.g., Cole,
58 1962). It is often the dominant heating form at high latitudes (Vickrey et al., 1982; Lu et
59 al., 1995), especially around the auroral zone (e.g., Knipp et al., 2004), the most active
60 region of the ionosphere-thermosphere (I-T) system where dramatic events such as
61 geomagnetic storms and substorms deposit their energy (e.g., Panov et al., 2016). The
62 Joule heating in the I-T system is carried out by ionospheric electric fields and currents
63 (e.g., Lu et al., 1995), both of which originate from magnetospheric processes and are

64 modified by magnetosphere-ionosphere coupling (e.g., Vickrey et al., 1986). Thus,
65 investigations of Joule heating can provide key information on the dynamic energy
66 circulation between the magnetosphere, ionosphere, and thermosphere.

67 A direct investigation of the Joule heating requires measurements of electric fields and
68 currents, which can only be obtained at limited altitudes by low-altitude spacecraft or
69 within a limited field of view by radars (e.g., Kiene et al., 2019). To comprehensively
70 investigate the Joule heating in a convenient way, Kelley et al. (1991) introduced an
71 indirect approach based on the Poynting vector (also called Poynting flux) measured by
72 low-altitude spacecraft:

$$73 \quad S_p = -(\mathbf{E} \times \delta\mathbf{B}) \cdot \hat{\mathbf{r}} / \mu_0, \quad (1)$$

74 where \mathbf{E} is the electric field, expected to vanish during quiet (no plasma flow) times, $\delta\mathbf{B}$
75 is the magnetic field perturbation relative to Earth's main field, $\hat{\mathbf{r}}$ is the radial unit vector
76 approximating the main field orientation, and S_p is the Poynting flux (approximately
77 parallel to Earth's main field at high latitudes) associated with \mathbf{E} and $\delta\mathbf{B}$. It is defined as
78 positive when pointing from the magnetosphere downward towards the ground, which
79 is almost always the case in the high latitude ionosphere, including the auroral zone
80 (e.g., Gary et al., 1995; Knipp et al., 2021).

81 S_p contains contributions from perturbations of all frequencies, including those from
82 quasi-steady dynamics such as the large-scale convection and those from waves (e.g.,
83 Billett et al., 2022). Under steady state conditions, S_p equals the total Joule heating rate
84 of the entire unit column of ionosphere and thermosphere below the spacecraft (Kelley

85 et al., 1991). This approximation assumes the neutral wind's modification to the Joule
86 heating rate to be insignificant, which is usually valid at high latitudes where it is
87 typically <15% (Billett et al., 2018). Under time-varying conditions, a part of S_p goes to
88 particles via a parallel potential drop in the auroral acceleration region (e.g., Knight,
89 1973; Evans, 1974; Lyons, 1981). This part has been studied separately as associated
90 with Alfvén waves (Wygant et al., 2000; Keiling et al., 2003) and comprises only a small
91 portion of S_p (Janhunen et al., 2005). S_p may contain a contribution to the auroral
92 acceleration region only when it is measured by a spacecraft above that region at $\sim 2 R_E$
93 above the ground (Mozer & Hull, 2001), so for spacecraft at lower altitudes (as is the
94 case for our study; see Section 2), S_p can well represent the Joule heating rate.

95 Recognizing the implications of S_p , previous studies have statistically investigated the
96 global distributions of S_p to find where and how much electromagnetic energy is
97 deposited to the ionosphere for Joule heating (Gary et al., 1995; Janhunen et al., 2005;
98 Knipp et al., 2021). These studies showed that S_p is typically 1-10 mW/m² at ~ 300 -1000
99 km altitude and larger during more active geomagnetic conditions (e.g., Billett et al.,
100 2021). Large S_p values are concentrated in the cusp and auroral latitudes, as expected,
101 since most magnetospheric activities map to these regions.

102 These previous studies, however, could not clarify the processes responsible for large S_p
103 in the auroral zone, because they used magnetic latitudes to organize their statistics. The
104 auroral zone and the various phenomena within it do not occur at constant latitudes, so
105 their effects get intermingled when statistics are organized by latitude. These
106 phenomena include subauroral polarization streams (SAPS), westward fast flows

107 appearing equatorward of the bright electron aurora of the dusk convection cell (Foster
108 & Vo, 2002), and downside auroral polarization streams (DAPS), eastward fast flows
109 appearing poleward of the bright arc of the dawn convection cell (Liu et al., 2020). Both
110 streams result from enhanced convection involving mesoscale magnetospheric
111 processes (e.g., Gallardo-Lacourt et al., 2017) and can lead to significant Joule heating
112 (Wang et al., 2011; Zou et al., 2013). Despite these previous findings, the extent and
113 significance of the streams' Joule heating in the context of the global-scale auroral zone
114 are still unclear.

115 To investigate the role of dynamic phenomena such as SAPS and DAPS in the energy
116 budget of the auroral zone, we study the statistical distribution of S_p after organizing it in
117 physical grids representing locations relative to the Region 1 and 2 (R1 and R2) currents
118 (Iijima & Potemra, 1976), the field-aligned currents (FACs) implicated in the large-scale
119 M-I convection (e.g., Tanaka, 1995). The Region 1 current occupies the higher latitude
120 part of the auroral oval; its magnetospheric origin includes the higher latitude plasma
121 sheet and the plasma sheet boundary layer. The Region 2 current covers the lower
122 latitude part of the oval, which maps to the central plasma sheet and the inner
123 magnetosphere (e.g., Ohtani et al., 1988; Liu et al., 2016). The locations of the R1 and R2
124 currents are known to determine those of SAPS and DAPS (e. g., Anderson et al., 1993;
125 Liu et al., 2020) and organize other ionospheric phenomena. Our study involving these
126 currents' locations is made possible by two newly available datasets.

127 2 Datasets

128 Our investigation is based on a recently assembled S_p database (Knipp et al., 2021) and a
129 recent method for determining boundaries of Region 1 and 2 currents (Liu et al., 2022),
130 both using data from the DMSP mission. All DMSP spacecraft are polar orbiting with a
131 low-earth orbit of \sim 850 km altitude.

132 The Poynting flux S_p has been computed using Equation 1, where the perturbation
133 magnetic field comes from DMSP's fluxgate magnetometer (Rich, 1984) and the electric
134 field is inferred from $\mathbf{E} = -\mathbf{v} \times \mathbf{B}_0$ (the corotation electric field has been subtracted; see
135 Kilcommons et al. (2022)). Here \mathbf{B}_0 is the International Geomagnetic Reference Field and
136 \mathbf{v} is the ion bulk flow in the Earth frame (satellite velocity has been subtracted). Unlike
137 most previous DMSP studies of the Poynting flux which only used the cross-track
138 components of \mathbf{v} (e.g., Knipp et al., 2011; Huang et al., 2017), the bulk flow here includes
139 all components measured by the Ion Drift Meter and the Retarding Potential Analyzer of
140 DMSP with the newest quality flags (Hairston & Coley, 2019). Knipp et al. (2021) provide
141 more information about this S_p dataset, which is available for DMSP-f15, f16, and f18 for
142 the years 2011-2014. This availability range marks the scope of our statistical studies.

143 The other dataset we use is boundaries of R1 and R2 currents identified from DMSP
144 transects of the auroral zone. Liu et al. (2022) determined these boundaries using a fully-
145 automated algorithm based on the perturbation magnetic field. This algorithm has been
146 applied to all DMSP auroral zone transects with the available Poynting flux data (Knipp et
147 al., 2021), which provide 14796 transects with R1 and R2 boundaries thus identified for
148 our statistical studies (as illustrated in Figure 1).

149 3 Results

150 We examine the Poynting flux distribution within and around the auroral zone by
151 generating statistical maps. These maps will contain many longitudinal and latitudinal
152 bins to reveal detailed S_p distribution. We define the longitudinal bins as evenly
153 distributed magnetic local time (MLT) bins. For the latitudinal bins, we use a novel and
154 more physical definition—we construct them regarding the ranges of Region 1 and 2
155 currents. The details in these ranges will be represented by several latitudinal bins within
156 each range. Because the latitudinal widths of the R1 and R2 currents are different for
157 different auroral zone transects of DMSP, dividing them into fixed-width latitudinal bins
158 would result in different numbers of bins for different transects, prohibiting the
159 assembly of data from many transects to generate statistical distributions. Thus, we
160 divide each of the R1 and R2 ranges into a fixed number of bins. This is done by
161 segmenting the spacecraft trajectory of each DMSP transect regarding the widths of the
162 observed R1 and R2 ranges, as illustrated in Figure 2.

163 For each transect, we define three magnetic latitudes of boundary locations: Λ_1 , the
164 poleward boundary of the R1 current, Λ_{12} , the interface between the R1 and R2 current,
165 and Λ_2 , the equatorward boundary of the R2 current. By definition, $|\Lambda_1| > |\Lambda_{12}| > |\Lambda_2|$. We
166 divide the R1 range, which has a latitudinal width of $\Delta\Lambda_1 = |\Lambda_1 - \Lambda_{12}|$, into three segments,
167 each with the same latitudinal width of $\Delta\Lambda_1/3$. We do the same to the R2 range
168 (latitudinal width: $\Delta\Lambda_2 = |\Lambda_{12} - \Lambda_2|$) and get three segments with a width of $\Delta\Lambda_2/3$ for each.
169 (Note that Λ_{12} is not contained by any of the segments.) We also identify the three
170 consecutive segments immediately poleward of the R1 current, each with a latitudinal

171 width of $\Delta\Lambda_1/3$, and one segment immediately equatorward of the R2 current with a
172 width of $\Delta\Lambda_2/3$. These additional segments will provide useful information beyond the
173 auroral oval. Now we have ten segments for each auroral zone transect of DMSP. For
174 every segment, we designate the average values of quantities (e.g., S_p and MLT) over it
175 as its signature values. Using the signature values of the segments from all DMSP
176 transects in our database (regardless of northern or southern hemisphere), we construct
177 statistical maps of different quantities in the following. Please note that these maps
178 cannot be perceived in the same way as traditional maps (i.e., those using actual
179 latitudes as grids) because the signature values on the two sides of the R1/R2 interface
180 are averages over different latitudinal widths. Nevertheless, they are no less meaningful
181 than averages over the same widths because M-I dynamics are not expected to be better
182 prescribed by absolute latitude widths than by those normalized by the R1 or R2 width.

183 Figure 3 presents statistical maps of S_p . To investigate how the Poynting flux depends on
184 geomagnetic activity levels, we split the dataset into quiet conditions defined as $K_p < 3$
185 (Figures 3a-3b) and active conditions defined as $K_p \geq 3$ (Figures 3c-3d). We chose K_p to
186 represent the activity level following previous statistical studies on Poynting flux (Olsson
187 et al., 2004; Knipp et al., 2021) so our results can be conveniently compared with theirs.
188 We also separate the results for sunlit (Figures 3a and 3c) and dark (Figures 3b and 3d)
189 conditions because they are known to impact the Poynting flux via their different
190 ionospheric conductivities due to different levels of solar EUV ionization (e.g., Pakhotin
191 et al., 2021). We determined these conditions for each transect segment using the
192 signature location and time of that segment; the criterion for sunrise/sunset is $90^\circ 50'$

193 solar zenith angle (Jacobson et al., 2011). Separating the segments based on their sunlit
194 condition allows us to mix the data from northern and southern hemispheres together
195 for our statistical study. For the segments in each statistical subset, we position them in
196 different bins (colored arc areas in Figure 3) based on their relative location to the R1/R2
197 current and signature MLT values. For each bin, we compute the median of the signature
198 S_p of all the segments in that bin. These medians, as represented by the bin colors,
199 reveal typical distributions of Poynting flux input to the ionosphere. To assure the quality
200 of the statistical results, we show the medians only for bins containing segments from
201 ≥ 30 DMSP transects. Such bins are most abundant near the dawn and dusk sectors
202 because of DMSP's sun-synchronous orbits around the dawn-dusk meridian, but there
203 are also a few bins satisfying the quality criterion in the noon and midnight sectors.
204 The S_p distributions reveal that their median values are always downward (towards the
205 ground) and typically $1-10$ mW/m². In general, the ionosphere receives significantly
206 higher Poynting flux during active times (with typical values up to >10 mW/m², as given
207 by the medians in Figures 3c-3d) than during quiet times (<5 mW/m²; Figures 3a-3b).
208 These values under various conditions are consistent with previous findings (e.g., Knipp
209 et al., 2021). Regardless of the condition or MLT, S_p peaks in the bins adjacent to the
210 R1/R2 interface and decreases away from it until it approaches zero in the bins
211 immediately equatorward of the R1 current's poleward boundary and in the bins
212 immediately poleward of the R2 current's equatorward boundary. Equatorward of the
213 R2 current, the Poynting flux is negligible. Poleward of the R1 current, S_p is typically <3
214 mW/m², but can be significant (>5 mW/m²) near the noon meridian under sunlight

215 (Figures 3a and 3c). Between 8 and 14 MLT during active and sunlit conditions (Figure
216 S_p is ~ 5 mW/m² poleward of the R1 current. This region is the cusp (e.g., Jacobsen et
217 al., 2010) and has been shown to contain high Poynting flux (e.g., Cosgrove et al., 2014).

218 Taking a closer look at Figure 3, we find an interesting feature: S_p is usually
219 asymmetrically distributed about the R1/R2 interface. In most MLT bins (13 out of 18)
220 from postnoon to premidnight, S_p in the bins equatorward of the interface are larger
221 than those poleward of it with the same normalized distances to it, so the maximum S_p
222 occurs in the bins immediately equatorward of the interface. During active times
223 (Figures 3c-3d), this difference is typically >50%. From postmidnight to prenoon, an
224 opposite asymmetry shows up under darkness (Figures 3b and 3d): at any given MLT, S_p
225 peaks in the bin immediately poleward of the R1/R2 interface and is significantly larger
226 (>30% under quiet conditions and >50% under active conditions) than that in the bin
227 immediately equatorward of the interface.

228 3.1 Factors Contributing to the Poynting Flux Distribution

229 To find what leads to the distributions in Figure 3, we examine the factors contributing to
230 the Poynting flux. Converting Equation 1 into scalar form:

$$231 S_p = -[(\mathbf{E}_h + \mathbf{E}_r) \times (\delta\mathbf{B}_h + \delta\mathbf{B}_r)] \cdot \frac{\hat{\mathbf{r}}}{\mu_0} = -(\mathbf{E}_h \times \delta\mathbf{B}_h) \cdot \frac{\hat{\mathbf{r}}}{\mu_0} = -E_h \delta B_h \sin \theta_{BE} / \mu_0,$$

232 Where suffices h and r indicate the horizontal (to earth surface) and radial components,
233 respectively. It is evident that S_p should be proportional to the magnitudes of the
234 horizontal electric and perturbation magnetic fields E_h and δB_h and $\sin \theta_{BE}$, where θ_{BE} is
235 the angle between \mathbf{E}_h and $\delta\mathbf{B}_h$. Figure 4 shows the distribution of these factors, with the

236 horizontal ion bulk flow v_h as the proxy of E_h ($\mathbf{E}_h \approx -\mathbf{v}_h \times \mathbf{B}_0$; \mathbf{B}_0 is the nearly vertical
237 main field). As indicated by Figures 4a-4h, the higher Poynting flux during active times is
238 caused by larger plasma flows and perturbation magnetic fields. The flows (Figures 4a-
239 4d; and thus electric field) are also higher under darkness than under sunlight, as
240 expected from ‘current generators’ in the magnetosphere (Vickrey et al., 1986). On the
241 contrary, $\delta\mathbf{B}_h$ (Figures 4e-4h) presents an opposite dependence on illumination, although
242 it does not dominate the Poynting flux’s dependence. According to Ampere’s law, this
243 $\delta\mathbf{B}_h$ dependence indicates that field-aligned currents are more intense under sunlight
244 than under darkness. Current continuity requires the same for horizontal ionospheric
245 currents, which suggests ‘voltage generators’ as their magnetospheric sources (Vickrey
246 et al., 1986). $\delta\mathbf{B}_h$ and \mathbf{E}_h are more perpendicular to each other (higher $\sin\vartheta_{BE}$ in Figures
247 4i-4l) under sunlight than under darkness, but this does not affect the Poynting flux’s
248 dependence on illumination significant enough to overturn it.

249 The high S_p near the R1/R2 interface is contributed by all factors— v_h , $\delta\mathbf{B}_h$, and $\sin\vartheta_{BE}$ all
250 peak near the interface and decrease away from it. All factors also contribute to the high
251 Poynting flux in the sunlit cusp (Figures 4a, 4c, 4e, 4g, 4i, and 4k). Although the dark cusp
252 and polar cap contain significant flows (>0.5 km/s; Figures 4b and 4d), the lack of
253 magnetic perturbations there (Figures 4f and 4h) leads to small S_p . Equatorward of the
254 R2 current, vanishing magnetic field perturbations (Figures 4e-4h) lead to vanishing S_p .
255 Details in Figure 4 reveal the contributors to the asymmetry in the S_p distribution about
256 the R1/R2 interface. While the magnetic field perturbation contributes to the
257 asymmetry only for the active-time postnoon-to-premidnight sector as in Figures 4g-4h,

258 $\sin\vartheta_{BE}$ and plasma flows always contribute to it—they are larger in the R2 range than in
259 the R1 range in the postnoon-to-premidnight sector; they are larger in the R1 range than
260 in the R2 range in the postmidnight-to-prenoon sector. The peak plasma flows
261 equatorward of the R1/R2 interface in the postnoon-to-premidnight sector are at where
262 subauroral polarization streams are expected, and the peak flows poleward of the
263 interface in the postmidnight-to-prenoon sector should be contributed by dawnside
264 auroral polarization streams. In the postmidnight-to-prenoon sector, the difference in
265 flow magnitude across the interface is much larger under dark conditions than under
266 sunlit conditions (Figures 4a-4d), consistent with the DAPS generation mechanism
267 suggested by Liu et al. (2020). This is a major factor leading to the difference in the S_p
268 asymmetry about the R1/R2 interface between sunlit (Figures 3a and 3c) and dark
269 (Figures 3b and 3d) conditions in the postmidnight-to-prenoon sector.

270 3.2 The Role of SAPS and DAPS

271 Figures 4a-4d suggest that SAPS and DAPS may contribute to the Poynting flux
272 asymmetry about the R1/R2 interface. To evaluate this idea, we examine typical DMSP
273 observations of SAPS (Figures 5a-5d) and DAPS (Figures 5e-5g). A SAPS is a fast westward
274 flow (Figure 5b) equatorward of the electron aurora as indicated by electron
275 precipitations (Figure 5d). At the same location of the SAPS is an enhanced downward
276 Poynting flux (Figure 5c). To put this region into the context of the auroral zone, we
277 determine the ranges of R1 and R2 currents based on the gradual slopes of the magnetic
278 field's east-west component, as marked in Figure 5a (see, e.g., Liu et al., 2021 for this
279 method). The high Poynting flux is equatorward of the R1/R2 interface and much larger

280 than that poleward of it, consistent with the statistical asymmetries in the postnoon-to-
281 premidnight sector of Figure 3. Figure 5f shows a typical DAPS, an eastward fast flow in
282 the dawn convection cell (as indicated by the R1 and R2 FAC directions in Figure 3e) near
283 the R1/R2 interface. A typical signature of DAPS is that the eastward flow poleward of
284 the interface is much larger than that equatorward of it, which causes the same
285 asymmetry in Poynting flux (Figure 5g). This asymmetry is consistent with those in the
286 postmidnight-to-prenoon sector of Figures 3b and 3d.

287 To better illustrate the streams' impact on the Poynting flux distribution, in Figure 6 we
288 generate a statistical S_p map from the DMSP transects with either SAPS or DAPS
289 observed. We identified SAPS and DAPS using fully automated algorithms (Appendix A),
290 which gave us 2028 and 1301 transects with SAPS and DAPS, respectively. The locations
291 of these transects are indicated by green and red dots in Figure 1. Because SAPS and
292 DAPS are themselves condition-dependent, we no longer divide these transects into
293 subgroups based on activity level or illumination. Figure 6 shows the S_p asymmetries
294 more clearly than any panel in Figure 3: In the postnoon-to-premidnight sector, S_p
295 immediately equatorward of the R1/R2 interface is much larger than poleward of the
296 interface; in the postmidnight-to-prenoon sector, S_p immediately poleward of the R1/R2
297 interface is much larger than equatorward of the interface.

298 4 Conclusion and Discussion

299 Our statistical results have revealed the following:

300 1. The Poynting flux input to the ionosphere (as computed from Equation 1) is
301 higher during active times than during quiet times, consistent with previous
302 findings (e.g., Gary et al., 1995; Cosgrove et al., 2014; Kaepller et al., 2022).
303 2. Under all activity and illumination conditions, the highest Poynting flux input
304 occurs near the interface between Region 1 and 2 currents and decreases toward
305 the poleward and equatorward boundaries of the R1 and R2 current,
306 respectively. Such a distribution is caused by all factors contributing to the
307 Poynting flux: near the interface, the plasma bulk flow (and thus electric field)
308 and the perturbation magnetic field are larger than in other places; the angle
309 between the electric and the perturbation magnetic fields is closer to 90°. These
310 flow and magnetic field peaks are consistent with the typical convection profile in
311 the auroral zone (Archer et al., 2017).
312 3. The sunlit cusp is another region of high Poynting flux input, especially during
313 active times. In contrast, the dark cusp does not show a concentration of
314 Poynting flux, although its plasma flows are as intense as those in the sunlit cusp.
315 This controlling factor of the Poynting flux in the cusp is the perturbation
316 magnetic field, which is much larger in the sunlit cusp than in the dark cusp. The
317 magnetic perturbations are caused by field-aligned currents, which must be
318 connected to horizontal ionospheric currents to ensure current continuity.
319 Therefore, the difference in magnetic perturbations between the sunlit and dark
320 cusp indicates a difference in horizontal ionospheric currents, which is most likely
321 related to the ionospheric conductivity—the higher conductivity under sunlit

322 conditions allows larger horizontal current, and thus FACs, magnetic
323 perturbations, and Poynting flux. This role of the conductivity reveals that the
324 magnetospheric sources of the cusp's dynamic processes are 'voltage generators'
325 instead of 'current generators' (see e.g., Lysak, 1985; Vickrey et al., 1986 for the
326 meanings of these terms)—the processes originate as potential electric fields
327 instead of currents needing closure through the ionosphere. Such voltage
328 generators can cause significant Poynting flux only in regions of high ionospheric
329 conductivity.

330 4. The Poynting flux shows asymmetries about the R1/R2 interface—in the
331 postnoon-to-premidnight sector of the R1 and R2 range, the Poynting flux
332 equatorward of the interface is significantly higher (~30% to >50% in statistical
333 medians) than that poleward of it; in the postmidnight-to-prenoon sector, the
334 asymmetry is opposite. The asymmetries are more prominent if we only include
335 DMSP transects observing SAPS or DAPS in the statistics (Figure 3i), suggesting
336 that these streams are responsible for the asymmetries. Confirming this notion,
337 plasma flows are a major contributor to the asymmetries (Figures 4a-4d). The
338 asymmetry in the postnoon-to-premidnight sector exists under all conditions but
339 that in the postmidnight-to-prenoon sector only shows up under darkness. This
340 difference suggests that the generation of DAPS depends on conductivity much
341 more than that of SAPS. As Liu et al. (2020) suggested, an auroral zone
342 conductivity gradient caused by precipitation is crucial for prominent DAPS
343 signatures, but this gradient can be much suppressed under sunlight. The

344 Poynting flux equatorward of the R1/R2 interface in the postmidnight sector
345 receives limited contributions from abnormal SAPS (Voiculescu & Roth, 2008; D.
346 Lin et al., 2022), which are less common and slower than DAPS (Qian & Wang,
347 2023).
348 All these signatures of the Poynting flux distribution also show up in statistical quartiles
349 (Figures S1-S4 in the supporting information), so they are robust results.
350 The conclusions above come from DMSP data, which were measured at ~850 km
351 altitude. Thus, the investigated Poynting flux does not contribute to the auroral
352 acceleration region (see Section 1) and should mostly become Joule heating in the
353 ionosphere and thermosphere. The conclusions about the Poynting flux' distribution and
354 asymmetries may also be applied to Joule heating. For example, the asymmetries about
355 the R1/R2 interface (Point 4 above) indicate strong Joule heating and thus
356 recombination in the R2 range of the postnoon-to-premidnight sector and the R1 range
357 of the postmidnight-to-prenoon sector. The recombination may cause low density
358 troughs to form in these two regions, consistent with observations (e.g., Anderson et al.,
359 1991; Zou et al., 2013). The Joule heating may also lead to phenomena such as the
360 STEVE (Strong Thermal Emission Velocity Enhancement; MacDonald et al., 2018), which
361 has received intense research focus recently (Harding et al., 2020). Our results provide
362 important information for predicting such phenomena.

363 Appendix A: Selection Algorithms for SAPS and DAPS

364 We look for SAPS and DAPS by applying fully automated algorithms (including all the

365 following) to the DMSP auroral zone transects used for our Poynting flux statistics, which

366 all have identified R1 and R2 ranges (see Section 2). As a preparation, from the magnetic

367 field slopes within the R1 and R2 ranges we automatedly determine the directions of the

368 R1 and R2 FACs (e.g., Figure 5e). These directions indicate which convection cell the

369 spacecraft transected—the dusk cell is given by an upward R1 FAC and the dawn cell by a

370 downward R1 FAC. This method is more accurate than using spacecraft ephemerides

371 because the convection cells do not stay at constant locations (see Walach et al., 2022

372 and references therein). We select SAPS and DAPS only from the dusk and dawn

373 convection cells, respectively, as consistent with their definitions.

374 We select SAPS and DAPS from DMSP’s cross-track flow measurements, which we treat

375 as (approximately) east-west flows. We smooth the original measurements v_{cross} using

376 the Kitagawa (1981) method with a half bandwidth equal to the inverse of the total

377 latitudinal width of the R1 and R2 currents. The goal of this smoothing is to remove

378 secondary flow variations that may confuse the selection for SAPS and DAPS.

379 A.1 SAPS Selection

380 A SAPS is defined as a significant westward flow equatorward of the prominent electron

381 aurora in the dusk convection cell (e.g., C. S. Lin & Hoffman, 1982). Thus, we first need to

382 find the equatorward boundary of the electron aurora from each DMSP transect of the

383 dusk convection cell. Because electron aurora intensity is proportional to ionospheric

384 conductance (Lam et al., 2019; Gabrielse et al., 2021), we look for the aurora boundary

385 based on Σ_P , the Pederson conductance. This is a common practice for identifying
386 aurora boundaries from DMSP observations (e.g., Wang et al., 2008). After computing Σ_P
387 from electron precipitation using the Robinson et al. (1987) equation, we smooth it to
388 get $\widetilde{\Sigma}_P$ (the third row from top of Figure A1) using the same method applied to the cross-
389 track flow. Next, we characterize the auroral zone using Λ_M , the latitudinal location of
390 the maximum $\widetilde{\Sigma}_P$ in the Region 1 and 2 range, and $\widetilde{\Sigma}_{P_{Au}}$, the overall auroral brightness of
391 each DMSP transect, which is computed as the average $\widetilde{\Sigma}_P$ over the expected overall
392 range of auroral emissions. By default, we use the R1 range for this range, because the
393 R1 current in the dusk convection cell is an upward FAC carried by precipitating electrons
394 producing auroral emissions. However, the range of bright auroral emissions is not
395 always collocated with the R1 current (Carter et al., 2016), so Λ_M sometimes falls outside
396 the R1 current (then it must be within the R2 range). Under such conditions, we extend
397 the averaging range to be from Λ_M to the poleward boundary of the R1 current to
398 include the significant auroral precipitation in the R2 range.

399 Next, we divide the time interval of the DMSP track between Λ_M and the equatorward
400 boundary of the R2 current (Λ_2) into N equally spaced windows. N is chosen as follows: if
401 the whole interval is >50 seconds, $N=10$; otherwise, N is the maximum integer allowing
402 each window to be ≥ 5 seconds. Next, we identify the poleward-most window with every
403 window equatorward of it (including itself) having an average $\widetilde{\Sigma}_P$ smaller than $0.2\widetilde{\Sigma}_{P_{Au}}$ or
404 1 mho (the criterion values come from Wang et al. (2008)). If such a window can be
405 identified (W_{Low}), we look for the equatorward boundary of the electron auroral within
406 this window by dividing it into n small time windows— n is the smallest integer allowing

407 each resultant window to be ≤ 5 seconds. We then repeat what we did to the N windows
408 above to these n small windows to identify a final low-conductance small window. If
409 such a small window can be identified, we take its poleward boundary as Λ_{AU} , the
410 equatorward boundary of the electron aurora. Otherwise, we define Λ_{AU} as the
411 equatorward boundary of W_{Low} . Figure A1 illustrates examples of identified Λ_{AU} (orange
412 dotted lines).

413 For SAPS selection, we first identify all westward peaks of the smoothed flow \tilde{v}_{cross}
414 within the range equatorward of Λ_{AU} and poleward of Λ_2 . The generation mechanism of
415 SAPS requires it to be within this range (e.g., Anderson et al., 1993). For all the locations
416 of identified \tilde{v}_{cross} peaks, we examine whether their original v_{cross} is at least 0.5 km/s
417 larger than v_{cross}^q , the flow in the unperturbed region (determined as the average of the
418 30 seconds of data immediately equatorward of the R2 range). We chose the 0.5 km/s
419 criterion following Zhang et al. (2020). Of the peaks satisfying this criterion (if any), we
420 select the one with the largest \tilde{v}_{cross} as the SAPS peak. Figure A1 shows examples of
421 selected SAPS (with their peaks indicated by dotted magenta lines).

422 A.2 DAPS Selection

423 Our DAPS selection algorithm is designed based on the typical events reported by Liu et
424 al. (2020). First, we compute an average-sense eastward flow gradient as $K_0 =$
425 $(\tilde{v}_{cross}^{E,\max} - v_{cross}^q)/\Delta\Lambda_2$, where $\tilde{v}_{cross}^{E,\max}$ is the maximum eastward flow of the R1 and R2
426 range. Next, within the range between $\Lambda_{12} - \Delta\Lambda_2/3$ and $\Lambda_{12} + \Delta\Lambda_1/3$, we find all data
427 points of $d\tilde{v}_{cross}/d|\Lambda|$ with the same sign as K_0 and a magnitude exceeding $3|K_0|$,
428 where Λ is the magnetic latitude. Each continuous group of such data points (if they

429 exist) is regarded as a significant eastward flow gradient. For each significant gradient,
430 we examine the range immediately poleward of it with a latitudinal width of $0.3\Delta\lambda_1$ (if
431 this range's poleward edge is poleward of the R1 current's poleward boundary, we adjust
432 it to be that poleward boundary) and the one immediately equatorward of it with a
433 width of $0.3\Delta\lambda_2$ (if this range's equatorward edge is equatorward of the R2 current's
434 equatorward boundary, we adjust it to that equatorward boundary). If the maximum
435 eastward v_{cross} of the former range is larger than that of the latter range and v_{cross}^q by
436 ≥ 0.5 km/s, we mark this gradient as a candidate for final selection. Of all candidates, we
437 select the one with its poleward edge closest to the R1/R2 interface as that of a DAPS
438 and define the eastward flow poleward of it as a DAPS. Figure A2 shows examples of
439 selected DAPS.

440 **Acknowledgements.** We thank James McTiernan for help with figure plotting, Roger
441 Varney for useful discussions, and the DMSP team for producing data. The work at UCLA
442 was supported by NASA grants 80NSSC23K0903, 80NSSC22K0749, 80NSSC22K0751,
443 80NSSC22K1012, 80NSSC20K1314, and contract NAS5-02099 and NSF grants AGS-
444 2055192, AGS-2247034, and AGS-2224108. DJK was partially supported by AFOSR Award
445 FA9550-17-1-0258. YZ was supported by NSF grant AGS-2405261 and NASA grant
446 80NSSC21K0729.

447 Open Research/Data Availability Statement

448 The data used in this study are publicly available at the Madrigal site
449 (<http://cedar.openmadrigal.org/>) and the National Centers for Environmental

450 Information (https://www.ngdc.noaa.gov/stp/geomag/kp_ap.html). To access the DMSP
451 data in the Madrigal site, please go to <http://cedar.openmadrigal.org/single> and then
452 from the drop down menus select 'Satellite Instruments' -> 'Defense Meteorological
453 Satellite Program' -> Year -> Month -> Date -> Select experiment. All the DMSP datafiles
454 for the selected date will show up on the page. The software employed in this study is
455 available at the SPEDAS software page <https://themis.ssl.berkeley.edu/software.shtml>
456 and Zenodo (<https://zenodo.org/records/11176127>).

457 References

458 Aksnes, A., Stadsnes, J., Bjordal, J., Østgaard, N., Vondrak, R. R., Detrick, D. L., et al. (2002).
459 Instantaneous ionospheric global conductance maps during an isolated substorm.
460 *Annales Geophysicae*, 20(8), 1181–1191. <https://doi.org/10.5194/angeo-20-1181-2002>
461 Anderson, P. C., Heelis, R. A., & Hanson, W. B. (1991). The ionospheric signatures of rapid
462 subauroral ion drifts. *Journal of Geophysical Research*, 96(A4).
463 <https://doi.org/10.1029/90ja02651>
464 Anderson, P. C., Hanson, W. B., Heelis, R. A., Craven, J. D., Baker, D. N., & Frank, L. A. (1993). A
465 proposed production model of rapid subauroral ion drifts and their relationship to
466 substorm evolution. *Journal of Geophysical Research: Space Physics*, 98(A4), 6069–6078.
467 <https://doi.org/10.1029/92ja01975>
468 Archer, W. E., Knudsen, D. J., Burchill, J. K., Jackel, B., Donovan, E., Connors, M., & Juusola, L.
469 (2017). Birkeland current boundary flows. *Journal of Geophysical Research: Space
470 Physics*, 122(4), 4617–4627. <https://doi.org/10.1002/2016ja023789>

471 Billett, D. D., Grocott, A., Wild, J. A., Walach, M.-T., & Kosch, M. J. (2018). Diurnal Variations in
472 Global Joule Heating Morphology and Magnitude Due To Neutral Winds. *Journal of*
473 *Geophysical Research: Space Physics*. <https://doi.org/10.1002/2017JA025141>

474 Billett, D. D., Perry, G. W., Clausen, L. B. N., Archer, W. E., McWilliams, K. A., Haaland, S., et al.
475 (2021). The Relationship Between Large Scale Thermospheric Density Enhancements
476 and the Spatial Distribution of Poynting Flux. *Journal of Geophysical Research: Space*
477 *Physics*, 126(5), e2021JA029205. <https://doi.org/10.1029/2021JA029205>

478 Billett, D. D., McWilliams, K. A., Pakhotin, I. P., Burchill, J. K., Knudsen, D. J., & Martin, C. J. (2022).
479 High-Resolution Poynting Flux Statistics From the Swarm Mission: How Much Is Being
480 Underestimated at Larger Scales? *Journal of Geophysical Research: Space Physics*,
481 127(7), e2022JA030573. <https://doi.org/10.1029/2022JA030573>

482 Buonsanto, M. J., Foster, J. C., Galasso, A. D., Sipler, D. P., & Holt, J. M. (1990). Neutral winds and
483 thermosphere/ionosphere coupling and energetics during the geomagnetic disturbances
484 of March 6–10, 1989. *Journal of Geophysical Research*, 95(A12), 21033.
485 <https://doi.org/10.1029/JA095iA12p21033>

486 Carter, J. A., Milan, S. E., Coxon, J. C., Walach, M. -T., & Anderson, B. J. (2016). Average field-
487 aligned current configuration parameterized by solar wind conditions. *Journal of*
488 *Geophysical Research: Space Physics*, 121(2), 1294–1307.
489 <https://doi.org/10.1002/2015JA021567>

490 Cole, K. D. (1962). Joule Heating of the Upper Atmosphere. *Australian Journal of Physics*, 15(2),
491 223. <https://doi.org/10.1071/PH620223>

492 Cosgrove, R. B., Bahcivan, H., Chen, S., Strangeway, R. J., Ortega, J., Alhassan, M., et al. (2014).
493 Empirical model of Poynting flux derived from FAST data and a cusp signature. *Journal of*

494 *Geophysical Research: Space Physics*, 119(1), 411–430.

495 <https://doi.org/10.1002/2013JA019105>

496 Evans, D. S. (1974). Precipitating electron fluxes formed by a magnetic field aligned potential

497 difference. *Journal of Geophysical Research*, 79(19), 2853–2858.

498 <https://doi.org/10.1029/JA079i019p02853>

499 Farley, D. T., McClure, J. P., Sterling, D. L., & Green, J. L. (1967). Temperature and composition of

500 the equatorial ionosphere. *Journal of Geophysical Research*, 72(23), 5837–5851.

501 <https://doi.org/10.1029/JZ072i023p05837>

502 Foster, J. C., & Vo, H. B. (2002). Average characteristics and activity dependence of the

503 subauroral polarization stream. *Journal of Geophysical Research: Space Physics*,

504 107(A12), SIA 16-1-SIA 16-10. <https://doi.org/10.1029/2002ja009409>

505 Gabrielse, C., Nishimura, T., Chen, M., Hecht, J. H., Kaepller, S. R., Gillies, D. M., et al. (2021).

506 Estimating Precipitating Energy Flux, Average Energy, and Hall Auroral Conductance

507 From THEMIS All-Sky-Imagers With Focus on Mesoscales. *Frontiers in Physics*, 9, 744298.

508 <https://doi.org/10.3389/fphy.2021.744298>

509 Gallardo-Lacourt, B., Nishimura, Y., Lyons, L. R., Mishin, E. V., Ruohoniemi, J. M., Donovan, E. F.,

510 et al. (2017). Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS

511 Flows. *Journal of Geophysical Research: Space Physics*, 122(12), 12,406-12,420.

512 <https://doi.org/10.1002/2017ja024198>

513 Gary, J. B., Heelis, R. A., & Thayer, J. P. (1995). Summary of field-aligned Poynting flux

514 observations from DE 2. *Geophysical Research Letters*, 22(14), 1861–1864.

515 <https://doi.org/10.1029/95GL00570>

516 Hairston, M., & Coley, W. R. (2019). A Short Introduction to the DMSP SSIES-3 Quality Flags and

517 How to Use Them (Version version 1). <https://doi.org/10.5281/ZENODO.4776161>

518 Harding, B. J., Mende, S. B., Triplett, C. C., & Wu, Y. J. (2020). A Mechanism for the STEVE
519 Continuum Emission. *Geophysical Research Letters*, 47(7), e2020GL087102.
520 <https://doi.org/10.1029/2020GL087102>

521 Hays, P. B., Jones, R. A., & Rees, M. H. (1973). Auroral heating and the composition of the neutral
522 atmosphere. *Planetary and Space Science*, 21(4), 559–573.
523 [https://doi.org/10.1016/0032-0633\(73\)90070-6](https://doi.org/10.1016/0032-0633(73)90070-6)

524 Huang, C. Y., Huang, Y., Su, Y.-J., Hairston, M. R., & Sotirelis, T. (2017). DMSP observations of high
525 latitude Poynting flux during magnetic storms. *Journal of Atmospheric and Solar-
526 Terrestrial Physics*, 164, 294–307. <https://doi.org/10.1016/j.jastp.2017.09.005>

527 Iijima, T., & Potemra, T. A. (1976). The amplitude distribution of field-aligned currents at
528 northern high latitudes observed by Triad. *Journal of Geophysical Research*, 81(13),
529 2165–2174. <https://doi.org/10.1029/JA081i013p02165>

530 Jacobsen, K. S., Moen, J. I., & Pedersen, A. (2010). Quasistatic electric field structures and field-
531 aligned currents in the polar cusp region. *Journal of Geophysical Research: Space
532 Physics*, 115(A10), 2010JA015467. <https://doi.org/10.1029/2010JA015467>

533 Jacobson, L. D., Seaver, A., & Tang, J. (2011). AstroCalc4R : software to calculate solar zenith
534 angle; time at sunrise, local noon, and sunset; and photosynthetically available radiation
535 based on date, time, and location. U.S. Department of Commerce, Northeast Fish Sci
536 Cent RefDoc. Retrieved from <https://repository.library.noaa.gov/view/noaa/3867>

537 Janhunen, P., Olsson, A., Tsyganenko, N. A., Russell, C. T., Laakso, H., & Blomberg, L. G. (2005).
538 Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using
539 Polar EFI and MFE data and Astrid-2 EMMA data. *Annales Geophysicae*, 23(5), 1797–
540 1806. <https://doi.org/10.5194/angeo-23-1797-2005>

541 Kaepller, S. R., Knipp, D. J., Verkhoglyadova, O. P., Kilcommons, L. M., & Zhan, W. (2022).

542 Electromagnetic energy input and dissipation. In *Cross-Scale Coupling and Energy*
543 *Transfer in the Magnetosphere-Ionosphere-Thermosphere System* (pp. 301–355).

544 Elsevier. <https://doi.org/10.1016/B978-0-12-821366-7.00006-8>

545 Keiling, A., Wygant, J. R., Cattell, C. A., Mozer, F. S., & Russell, C. T. (2003). The Global Morphology
546 of Wave Poynting Flux: Powering the Aurora. *Science*, 299(5605), 383–386.
547 <https://doi.org/10.1126/science.1080073>

548 Kelley, M. C., Knudsen, D. J., & Vickrey, J. F. (1991). Poynting flux measurements on a satellite: A
549 diagnostic tool for space research. *Journal of Geophysical Research*, 96(A1), 201.
550 <https://doi.org/10.1029/90JA01837>

551 Kiene, A., Bristow, W. A., Conde, M. G., & Hampton, D. L. (2019). High-Resolution Local
552 Measurements of *F* Region Ion Temperatures and Joule Heating Rates Using SuperDARN
553 and Ground-Based Optics. *Journal of Geophysical Research: Space Physics*, 124(1), 557–
554 572. <https://doi.org/10.1029/2018JA025997>

555 Kilcommons, L. M., Knipp, D. J., Hairston, M., & Coley, W. R. (2022). DMSP Poynting Flux: Data
556 Processing and Inter-Spacecraft Comparisons. *Journal of Geophysical Research: Space*
557 *Physics*, 127(8), e2022JA030299. <https://doi.org/10.1029/2022JA030299>

558 Kitagawa, G. (1981). A Nonstationary Time Series Model and Its Fitting by a Recursive Filter.
559 *Journal of Time Series Analysis*, 2(2), 103–116. [9892.1981.tb00316.x](https://doi.org/10.1111/j.1467-
560 9892.1981.tb00316.x)

561 Knight, S. (1973). Parallel electric fields. *Planetary and Space Science*, 21(5), 741–750.
562 [https://doi.org/10.1016/0032-0633\(73\)90093-7](https://doi.org/10.1016/0032-0633(73)90093-7)

563 Knipp, D. J., Tobiska, W. K., & Emery, B. A. (2004). Direct and Indirect Thermospheric Heating
564 Sources for Solar Cycles 21–23. *Solar Physics*, 224(1–2), 495–505.
565 <https://doi.org/10.1007/s11207-005-6393-4>

566 Knipp, D. J., Eriksson, S., Kilcommons, L., Crowley, G., Lei, J., Hairston, M., & Drake, K. (2011).
567 Extreme Poynting flux in the dayside thermosphere: Examples and statistics: EXTREME
568 DAYSIDE POYNTING FLUX. *Geophysical Research Letters*, 38(16), n/a-n/a.
569 <https://doi.org/10.1029/2011GL048302>

570 Knipp, D. J., Kilcommons, L., Hairston, M., & Coley, W. R. (2021). Hemispheric Asymmetries in
571 Poynting Flux Derived From DMSP Spacecraft. *Geophysical Research Letters*, 48(17).
572 <https://doi.org/10.1029/2021GL094781>

573 Lam, M. M., Freeman, M. P., Jackman, C. M., Rae, I. J., Kalmoni, N. M. E., Sandhu, J. K., & Forsyth,
574 C. (2019). How Well Can We Estimate Pedersen Conductance From the THEMIS White-
575 Light All-Sky Cameras? *Journal of Geophysical Research: Space Physics*, 124(4), 2920–
576 2934. <https://doi.org/10.1029/2018JA026067>

577 Lin, C. S., & Hoffman, R. A. (1982). Observations of inverted-V electron precipitation. *Space
578 Science Reviews*, 33(4). <https://doi.org/10.1007/BF00212420>

579 Lin, D., Wang, W., Merkin, V. G., Huang, C., Oppenheim, M., Sorathia, K., et al. (2022). Origin of
580 Dawnside Subauroral Polarization Streams During Major Geomagnetic Storms. *AGU
581 Advances*, 3(4), e2022AV000708. <https://doi.org/10.1029/2022AV000708>

582 Liu, J., Angelopoulos, V., Chu, X., & McPherron, R. L. (2016). Distribution of Region 1 and 2
583 currents in the quiet and substorm time plasma sheet from THEMIS observations.
584 *Geophysical Research Letters*, 43(15), 7813–7821.
585 <https://doi.org/10.1002/2016gl069475>

586 Liu, J., Lyons, L. R., Wang, C., Hairston, M. R., Zhang, Y., & Zou, Y. (2020). Dawsone Auroral
587 Polarization Streams. *Journal of Geophysical Research: Space Physics*.
588 <https://doi.org/10.1029/2019JA027742>

589 Liu, J., Lyons, L. R., Wang, C., Ma, Y., Strangeway, R. J., Zhang, Y., et al. (2021). Embedded Regions
590 1 and 2 Field-Aligned Currents: Newly Recognized From Low-Altitude Spacecraft
591 Observations. *Journal of Geophysical Research: Space Physics*, 126(6).
592 <https://doi.org/10.1029/2021JA029207>

593 Liu, J., Higuchi, T., Lyons, L. R., Ohtani, S., Wu, J., Zou, Y., et al. (2022). The Occurrence of
594 Embedded Region 1 and 2 Currents Depends on Geomagnetic Activity Level. *Journal of
595 Geophysical Research: Space Physics*, 127(11). <https://doi.org/10.1029/2022JA030539>

596 Lu, G., Richmond, A. D., Emery, B. A., & Roble, R. G. (1995). Magnetosphere-ionosphere-
597 thermosphere coupling: Effect of neutral winds on energy transfer and field-aligned
598 current. *Journal of Geophysical Research*, 100(A10), 19643.
599 <https://doi.org/10.1029/95JA00766>

600 Lyons, L. R. (1981). Discrete aurora as the direct result of an inferred high-altitude generating
601 potential distribution. *Journal of Geophysical Research*, 86(A1).
602 <https://doi.org/10.1029/JA086iA01p00001>

603 Lysak, R. L. (1985). Auroral electrodynamics with current and voltage generators. *Journal of
604 Geophysical Research*, 90(A5). <https://doi.org/10.1029/JA090iA05p04178>

605 MacDonald, E. A., Donovan, E., Nishimura, Y., Case, N. A., Gillies, D. M., Gallardo-Lacourt, B., et
606 al. (2018). New science in plain sight: Citizen scientists lead to the discovery of optical
607 structure in the upper atmosphere. *Science Advances*, 4(3), eaq0030.
608 <https://doi.org/10.1126/sciadv.aaq0030>

609 Mozer, F. S., & Hull, A. (2001). Origin and geometry of upward parallel electric fields in the
610 auroral acceleration region. *Journal of Geophysical Research: Space Physics*, 106(A4),
611 5763–5778. <https://doi.org/10.1029/2000JA900117>

612 Ohtani, S., Kokubun, S., Elphic, R. C., & Russell, C. T. (1988). Field-aligned current signatures in
613 the near-tail region: 1. ISEE observations in the plasma sheet boundary layer. *Journal of*
614 *Geophysical Research*, 93(A9), 9709. <https://doi.org/10.1029/JA093iA09p09709>

615 Olsson, A., Janhunen, P., Karlsson, T., Ivchenko, N., & Blomberg, L. G. (2004). Statistics of Joule
616 heating in the auroral zone and polar cap using Astrid-2 satellite Poynting flux. *Annales*
617 *Geophysicae*, 22(12), 4133–4142. <https://doi.org/10.5194/angeo-22-4133-2004>

618 Pakhotin, I. P., Mann, I. R., Xie, K., Burchill, J. K., & Knudsen, D. J. (2021). Northern preference for
619 terrestrial electromagnetic energy input from space weather. *Nature Communications*,
620 12(1), 199. <https://doi.org/10.1038/s41467-020-20450-3>

621 Panov, E. V., Baumjohann, W., Wolf, R. A., Nakamura, R., Angelopoulos, V., Weygand, J. M., &
622 Kubyshkina, M. V. (2016). Magnetotail energy dissipation during an auroral substorm.
623 *Nature Physics*, 12(12), 1158–1163. <https://doi.org/10.1038/nphys3879>

624 Pearson, K. (1901). LIII. *On lines and planes of closest fit to systems of points in space. The*
625 *London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 2(11),
626 559–572. <https://doi.org/10.1080/14786440109462720>

627 Qian, C., & Wang, H. (2023). A Statistical Study of Ion Upflow during Periods of Dawsone Aurora
628 Polarization Streams and Subauroral Polarization Streams. *Remote Sensing*, 15(5), 1320.
629 <https://doi.org/10.3390/rs15051320>

630 Rich, F. J. (1984). Fluxgate magnetometer (SSM) for the Defense Meteorological Satellite Program
631 (DMSP) Block 5D-2, flight 7. Tech. Rep. AFGL-TR-84-0225, Air Force Geophys. Lab.,
632 Hanscom Air Force Base, Mass.

633 Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. (1987). On calculating
634 ionospheric conductances from the flux and energy of precipitating electrons. *Journal of*
635 *Geophysical Research: Space Physics*, 92(A3), 2565–2569.

636 <https://doi.org/10.1029/JA092iA03p02565>

637 Schunk, R. W., & Sojka, J. J. (1996). Ionosphere-thermosphere space weather issues. *Journal of*
638 *Atmospheric and Terrestrial Physics*, 58(14), 1527–1574. <https://doi.org/10.1016/0021->
639 9169(96)00029-3

640 Tanaka, T. (1995). Generation mechanisms for magnetosphere-ionosphere current systems
641 deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-
642 ionosphere coupling processes. *Journal of Geophysical Research*, 100(A7), 12057.
643 <https://doi.org/10.1029/95JA00419>

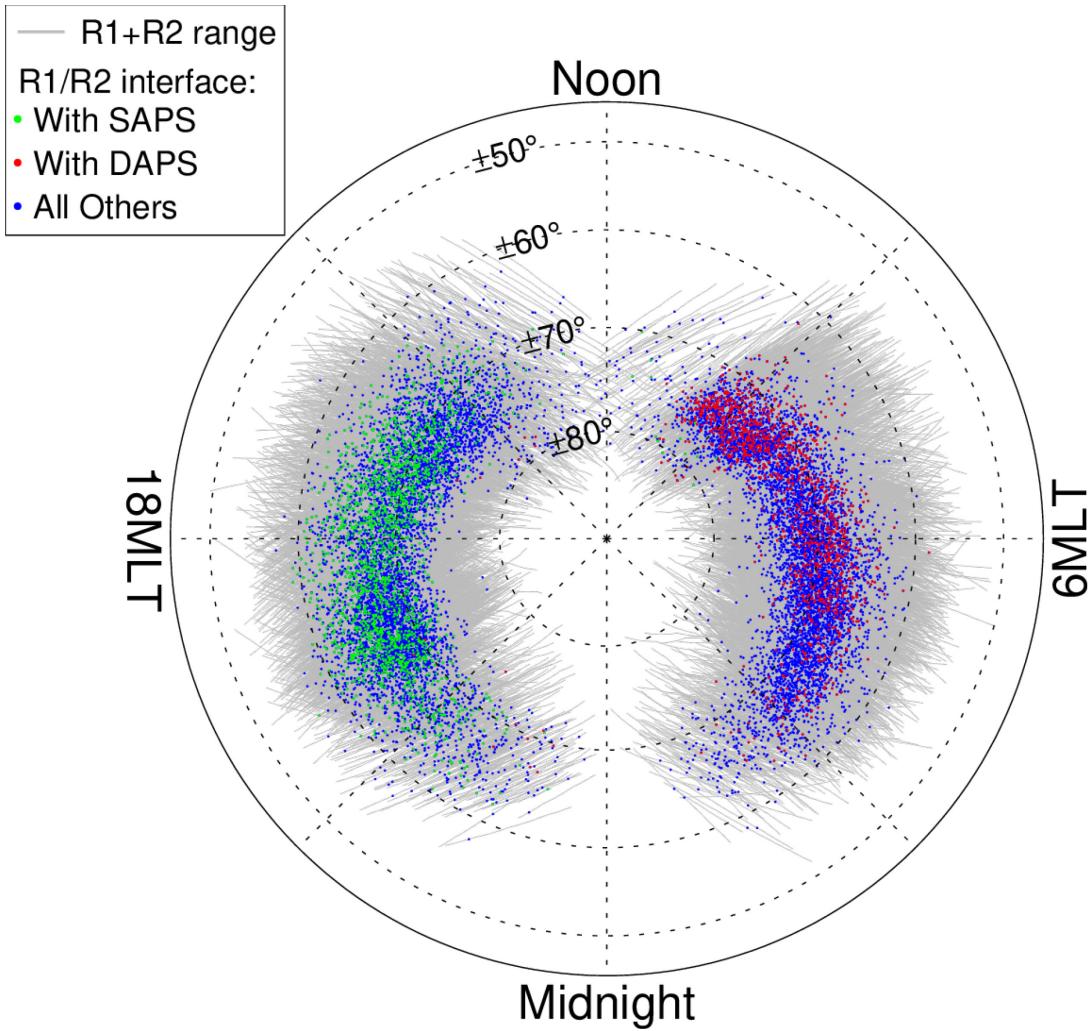
644 Vickrey, J. F., Vondrak, R. R., & Matthews, S. J. (1982). Energy deposition by precipitating particles
645 and Joule dissipation in the auroral ionosphere. *Journal of Geophysical Research: Space*
646 *Physics*, 87(A7), 5184–5196. <https://doi.org/10.1029/JA087iA07p05184>

647 Vickrey, J. F., Livingston, R. C., Walker, N. B., Potemra, T. A., Heelis, R. A., Kelley, M. C., & Rich, F. J.
648 (1986). On the current-voltage relationship of the magnetospheric generator at
649 intermediate spatial scales. *Geophysical Research Letters*, 13(6), 495–498.
650 <https://doi.org/10.1029/GL013i006p00495>

651 Voiculescu, M., & Roth, M. (2008). Eastward sub-auroral ion drifts or ASAID. *Annales*
652 *Geophysicae*, 26(7), 1955–1963. <https://doi.org/10.5194/angeo-26-1955-2008>

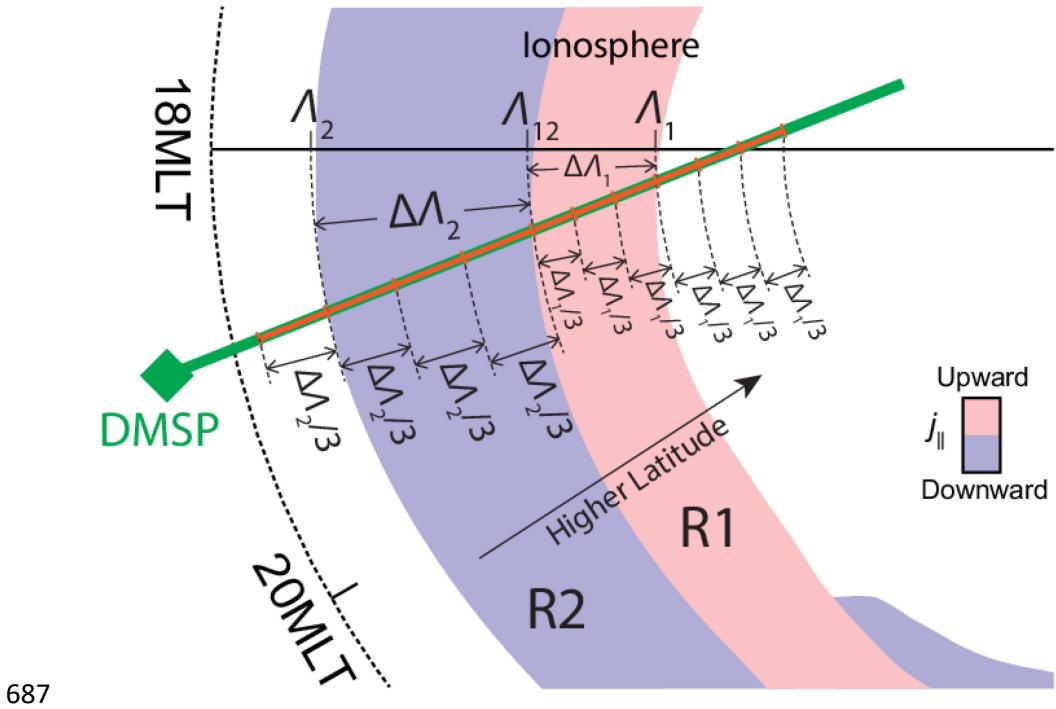
653 Walach, M. -T., Grocott, A., Thomas, E. G., & Staples, F. (2022). Dusk-Dawn Asymmetries in
654 SuperDARN Convection Maps. *Journal of Geophysical Research: Space Physics*, 127(12),
655 e2022JA030906. <https://doi.org/10.1029/2022JA030906>

656 Wang, H., Ridley, A. J., Lühr, H., Liemohn, M. W., & Ma, S. Y. (2008). Statistical study of the
657 subauroral polarization stream: Its dependence on the cross-polar cap potential and
658 subauroral conductance. *Journal of Geophysical Research: Space Physics*, 113(A12),
659 2008JA013529. <https://doi.org/10.1029/2008JA013529>

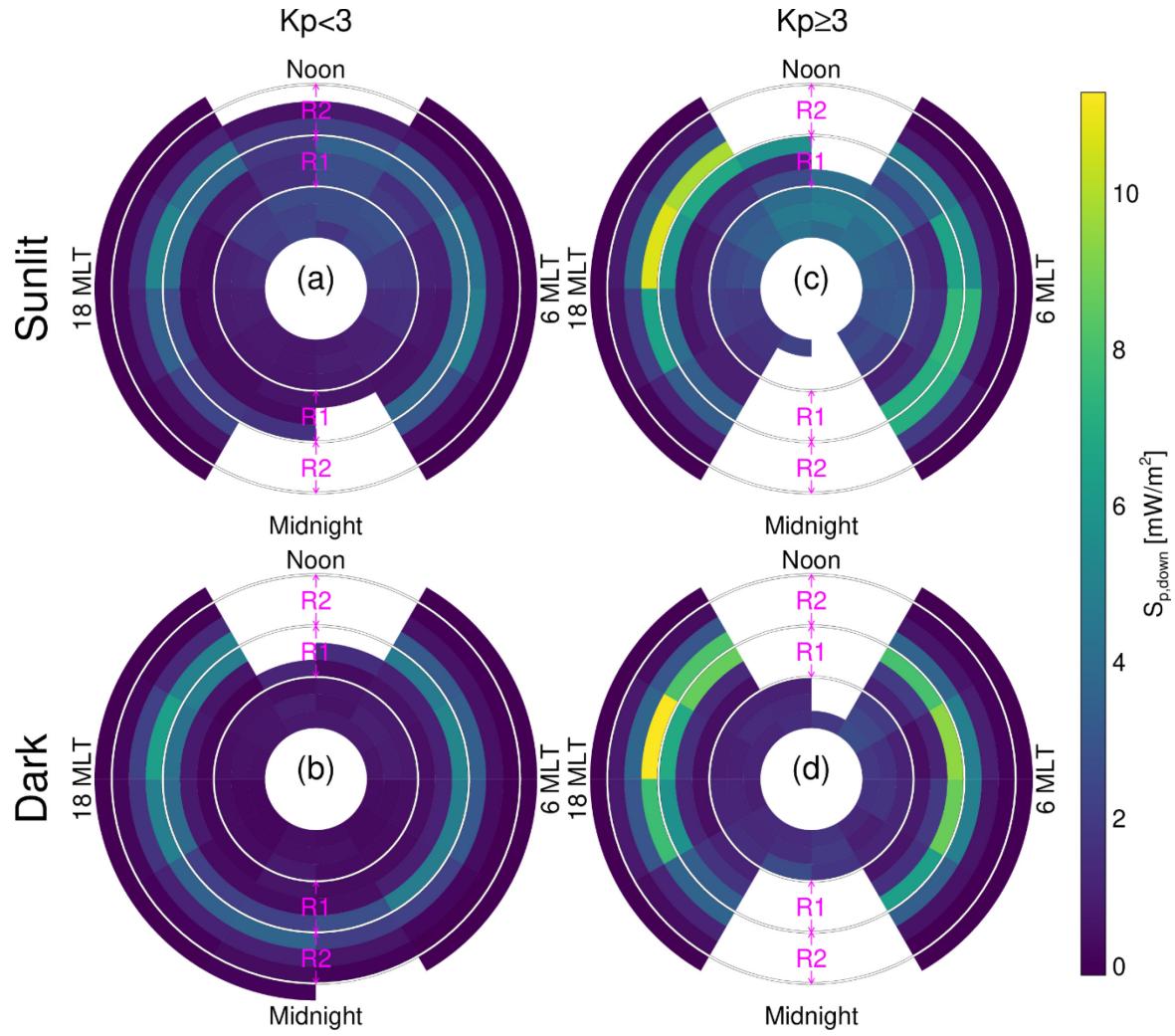

660 Wang, H., Lühr, H., Häusler, K., & Ritter, P. (2011). Effect of subauroral polarization streams on the
661 thermosphere: A statistical study: STUDY OF SAPS EFFECT ON THERMOSPHERE. *Journal*
662 *of Geophysical Research: Space Physics*, 116(A3). <https://doi.org/10.1029/2010JA016236>

663 Wiltberger, M., Wang, W., Burns, A. G., Solomon, S. C., Lyon, J. G., & Goodrich, C. C. (2004). Initial
664 results from the coupled magnetosphere ionosphere thermosphere model:
665 magnetospheric and ionospheric responses. *Journal of Atmospheric and Solar-Terrestrial*
666 *Physics*, 66(15–16), 1411–1423. <https://doi.org/10.1016/j.jastp.2004.03.026>

667 Wygant, J. R., Keiling, A., Cattell, C. A., Johnson, M., Lysak, R. L., Temerin, M., et al. (2000). Polar
668 spacecraft based comparisons of intense electric fields and Poynting flux near and within
669 the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora.
670 *Journal of Geophysical Research: Space Physics*, 105(A8), 18675–18692.
671 <https://doi.org/10.1029/1999ja900500>

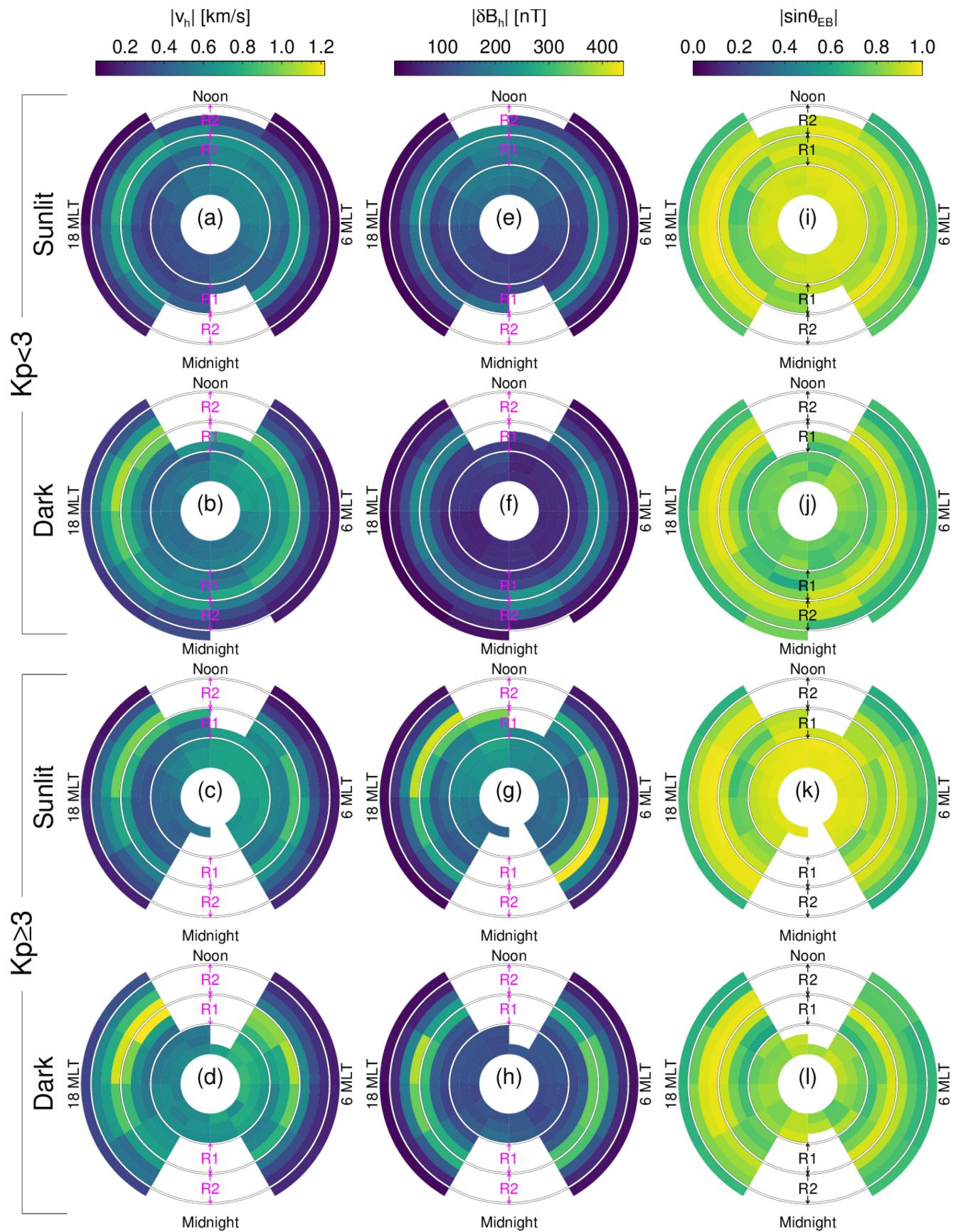

672 Zhang, Q., Liu, Y. C. -M., Zhang, Q. -H., Xing, Z., Wang, Y., & Ma, Y. (2020). Statistical Study of Ion
673 Upflow Associated with Subauroral Polarization Streams (SAPS) at Substorm Time.
674 *Journal of Geophysical Research: Space Physics*, 125(3), e2019JA027163.
675 <https://doi.org/10.1029/2019JA027163>

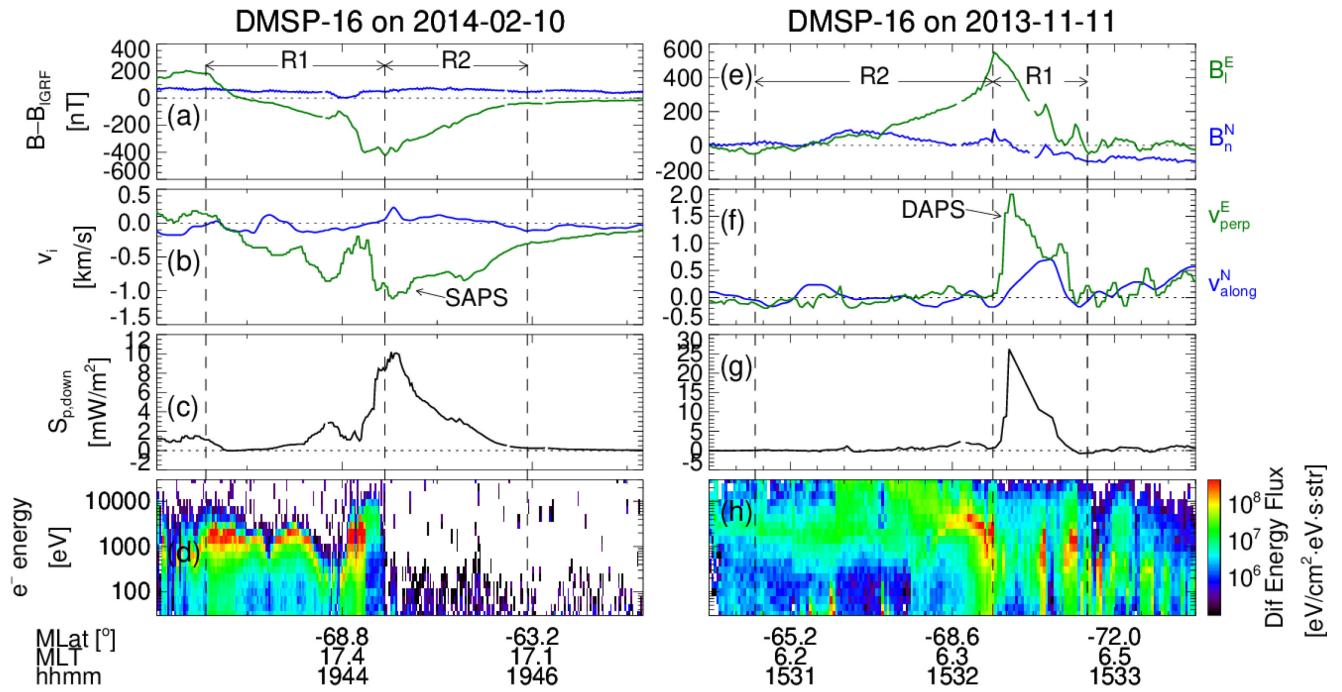
676 Zou, S., Moldwin, M. B., Nicolls, M. J., Ridley, A. J., Coster, A. J., Yizengaw, E., et al. (2013).
677 Electrodynamics of the high-latitude trough: Its relationship with convection flows and
678 field-aligned currents. *Journal of Geophysical Research: Space Physics*, 118(5), 2565–
679 2572. <https://doi.org/10.1002/jgra.50120>



680

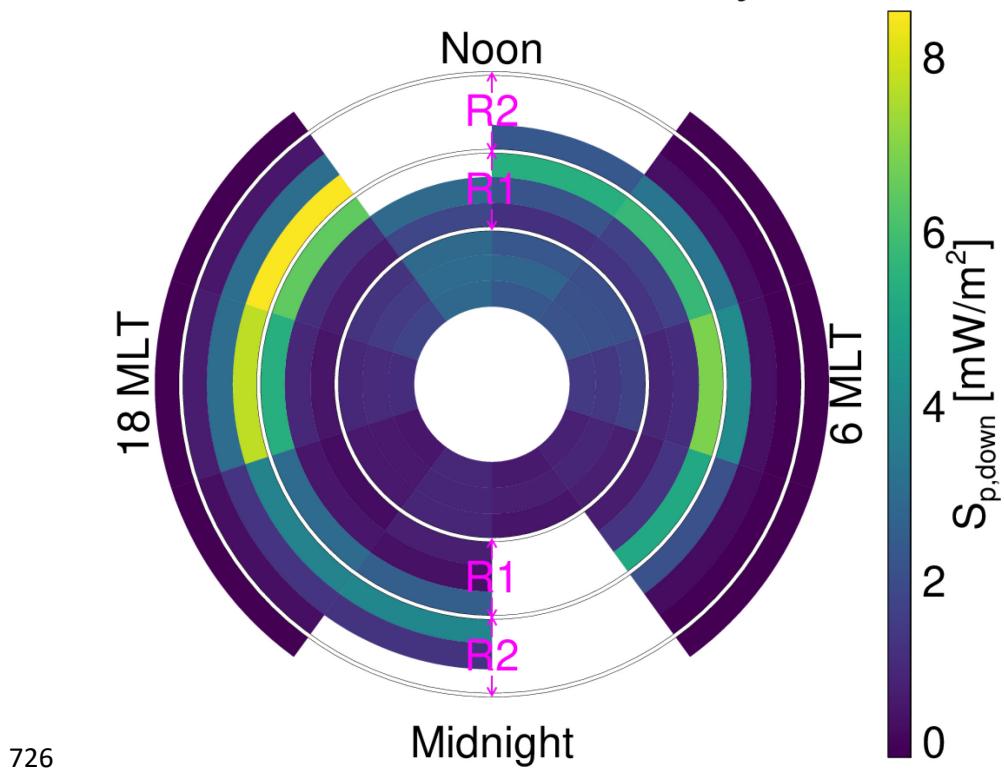
681 **Fig. 1.** The locations of the observations used in our statistical study. Grids: magnetic
 682 latitude and MLTs. Gray lines: Defense Meteorological Satellite Program trajectories in
 683 the latitudinal range covered by R1 and R2 currents. Green, red, and blue dots: R1/R2
 684 interface locations for transects identified to contain DAPS, those containing SAPS, and
 685 all other ones, respectively. Please note that the dots do not indicate the exact locations
 686 of SAPS or DAPS.


687 **Fig. 2.** A Schematic illustration of how we segment a DMSP transect of the Region 1 and
 688 2 currents in the ionosphere. Pink/light blue: upward/downward field-aligned currents.
 689 Green line and diamond: schematic track of a DMSP spacecraft. Each dashed curve is of
 690 a constant magnetic latitude. Λ_1 , Λ_2 , and Λ_{12} are the magnetic latitudes of the poleward
 691 boundary of the R1 current, the equatorward boundary of the R2 current, and the R1/R2
 692 interface, respectively. $\Delta\Lambda_1$ and $\Delta\Lambda_2$ are the widths of the R1 and R2 currents in magnetic
 693 latitude, respectively. From these values we determine the orange segments for
 694 computing average values (see Section 3).
 695


696

697 **Fig. 3.** Statistical distribution of typical S_p at various locations around the auroral zone
 698 under (a-b) quiet, (c-d) active, (a, c) sunlit, and (b, d) dark conditions, as reconstructed
 699 from DMSP transects of the auroral zone (including both northern and southern
 700 hemispheres). Color of each bin: the median of the signature S_p values of all spacecraft
 701 trajectory segments falling inside that bin (see Section 3; the lower and upper quartiles
 702 of the values are illustrated in Figures S1 and S2 of the supporting information,
 703 respectively). A positive S_p means a Poynting flux downwards towards the ground. White
 704 circles from small to large: the poleward boundary of the R1 current, the R1/R2

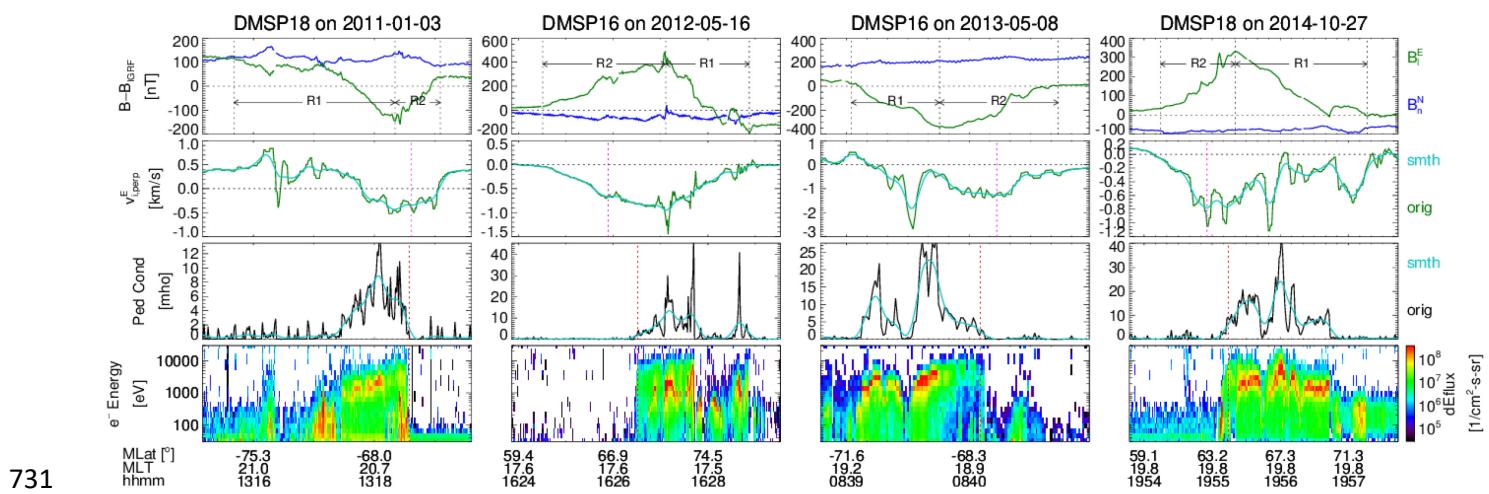
705 interface, and the equatorward boundary of the R2 current. For each panel, the center
706 of the circles is the magnetic pole; a radially increasing distance from the center
707 represents a decreasing normalized magnetic latitude (normalized by the R1 or R2
708 current's latitudinal width). Each bin's normalized latitudinal width is 1/3; it has been
709 normalized by the latitudinal width of the R1 (R2) current if it is poleward (equatorward)
710 of the R1/R2 interface.



712 **Fig. 4.** Distributions of (a-d) horizontal ion bulk speed, (e-h) horizontal perturbation
 713 magnetic field strength, and (i-l) the sine function of the angle between the horizontal
 714 electric field and the horizontal perturbation magnetic field under (a-b, e-f, i-j) quiet, (c-
 715 d, g-h, k-l) active, (a, e, l, c, g, k) sunlit, and (b, f, j, d, h, l) dark conditions. Each panel is
 716 presented in the same way as those in Figure 3.

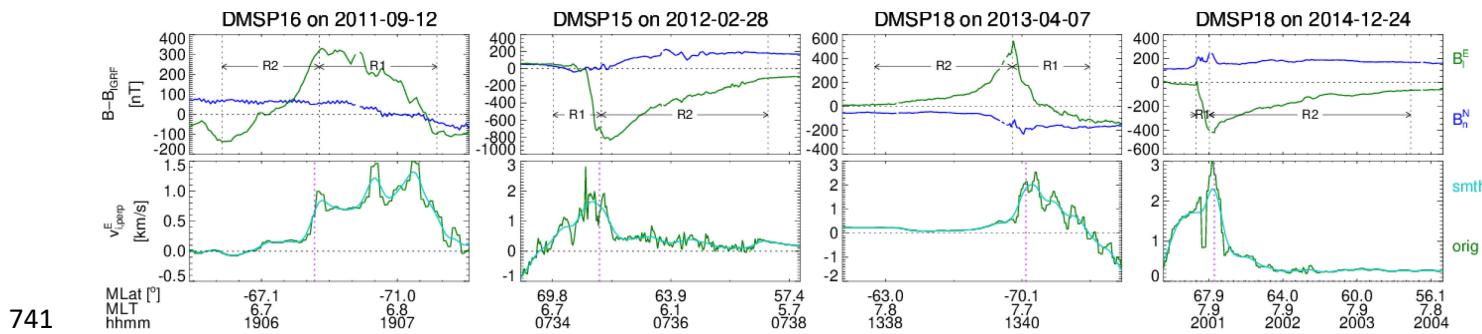
717 **Fig. 5.** Examples of (a-d) SAPS and (e-h) DAPS observations. (a, d) Horizontal
 718 perturbation magnetic field. Blue (green) component: in the minimum (maximum)
 719 variance direction; positive when approximately northward (eastward). We obtain these
 720 directions by applying a principal axis analysis (Pearson, 1901) to the interval of R1 and
 721 R2 currents. (b, e) Horizontal ion bulk velocity parallel and perpendicular to the
 722 spacecraft trajectory, as illustrated by the blue and green curves, respectively. The blue
 723 (green) component is positive when approximately northward (eastward). (c, f)
 724 Perturbation Poynting flux. (d, g) Differential energy flux of electron precipitation.

SAPS and DAPS Only



726 **Fig. 6.** A statistical distribution of median S_p reconstructed from DMSP transects

727 containing either SAPS or DAPS, presented in the same format as Figure 3. The


728 corresponding lower and upper quartiles are illustrated in Figures S3 and S4 of the

729 supporting information, respectively.

731

732 **Fig. A1.** Examples of SAPS identified by our selection algorithm. The top and bottom
 733 rows present the same quantities as Figures 5a and 5d, respectively. Second row from
 734 top: Horizontal ion bulk velocity perpendicular to the spacecraft trajectory, positive
 735 when approximately eastward. The green and cyan curves are original and smoothed
 736 data (see Appendix A for the smoothing technique), respectively. The dotted magenta
 737 lines indicate the peaks of the identified SAPS. Third row from top: Pederson
 738 conductance computed from the Robinson (1987) equation. The blue and cyan curves
 739 are the original and smoothed data, respectively. The dotted orange lines indicate the
 740 equatorward boundaries of the electron aurora as determined by our algorithm.

741 **Fig. A2.** Examples of DAPS identified by our selection algorithm. The panels present the
 742 same quantities as those in the first two rows of Figure A1. Magenta dotted lines
 743 indicate DAPS (marked at the poleward edge of the significant gradients of the
 744 smoothed flow; see Appendix A.2).