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Key Points:

- We examine the distribution of Poynting flux into the ionosphere related to Joule

heating using DMSP data with a novel gridding scheme.

- The highest Poynting flux is near the Region 1 and 2 currents’ interface; the sunlit cusp

also contains high Poynting flux.

- The Poynting flux is asymmetric about the R1/R2 interface, exhibiting distinct peaks in

regions associated with SAPS and DAPS.

Abstract. The Poynting vector (Poynting flux) from Earth’s magnetosphere downward
towards its ionosphere carries the energy that powers the Joule heating in the
ionosphere and thermosphere. The Joule heating controls fundamental ionospheric
properties affecting the entire magnetosphere-ionosphere-thermosphere system, so it is
necessary to understand when and where the Poynting flux is significant. Taking
advantage of new datasets generated from DMSP (Defense Meteorological Satellite
Program) observations, we investigate the Poynting flux distribution within and around
the auroral zone, where most magnetosphere-ionosphere (M-1) dynamics and thus Joule
heating occurs. We find that the Poynting flux, which is generally larger under more
active conditions, is concentrated in the sunlit cusp and near the interface between
Region 1 and 2 currents. The former concentration suggests voltage generators drive the
cusp dynamics. The latter concentration shows asymmetries with respect to the

interface between the Region 1 and 2 currents. We show that these reflect the
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controlling impact of subauroral polarization streams and dawnside auroral polarization

streams on the Poynting flux.

Plain Language Summary

Earth’s upper atmosphere and ionosphere receive energy from space in many ways, and
one of them is through an incoming flux of electromagnetic energy. This is expressed as

a ‘Poynting flux’, and we investigate how it is distributed in and around the ionosphere’s
auroral zone, where most activities occur. Our results show that large Poynting fluxes are
distributed at locations where dramatic plasma flows appear, indicating a significant role

of these flows in the energy circulation of the geospace.

1 Introduction

The heating of Earth’s thermosphere and ionosphere modifies their temperature,
composition, and conductivity (e.g., Farley et al., 1967; Hays et al., 1973; Aksnes et al.,
2002), which are important aspects of space weather (e.g., Schunk & Sojka, 1996)
impacting atmospheric and magnetospheric dynamics (e.g., Buonsanto et al., 1990;
Wiltberger et al., 2004). One of the major heating forms is the Joule heating (e.g., Cole,
1962). It is often the dominant heating form at high latitudes (Vickrey et al., 1982; Lu et
al., 1995), especially around the auroral zone (e.g., Knipp et al., 2004), the most active
region of the ionosphere-thermosphere (I-T) system where dramatic events such as
geomagnetic storms and substorms deposit their energy (e.g., Panov et al., 2016). The
Joule heating in the I-T system is carried out by ionospheric electric fields and currents

(e.g., Lu et al., 1995), both of which originate from magnetospheric processes and are
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modified by magnetosphere-ionosphere coupling (e.g., Vickrey et al., 1986). Thus,
investigations of Joule heating can provide key information on the dynamic energy

circulation between the magnetosphere, ionosphere, and thermosphere.

A direct investigation of the Joule heating requires measurements of electric fields and
currents, which can only be obtained at limited altitudes by low-altitude spacecraft or
within a limited field of view by radars (e.g., Kiene et al., 2019). To comprehensively
investigate the Joule heating in a convenient way, Kelley et al. (1991) introduced an
indirect approach based on the Poynting vector (also called Poynting flux) measured by

low-altitude spacecraft:
S, =—(Ex8B) - /5, (1)

where E is the electric field, expected to vanish during quiet (no plasma flow) times, 6B
is the magnetic field perturbation relative to Earth’s main field, f is the radial unit vector
approximating the main field orientation, and S is the Poynting flux (approximately
parallel to Earth’s main field at high latitudes) associated with E and 6B. It is defined as
positive when pointing from the magnetosphere downward towards the ground, which
is almost always the case in the high latitude ionosphere, including the auroral zone

(e.g., Gary et al., 1995; Knipp et al., 2021).

Sp contains contributions from perturbations of all frequencies, including those from
guasi-steady dynamics such as the large-scale convection and those from waves (e.g.,
Billett et al., 2022). Under steady state conditions, Sp equals the total Joule heating rate

of the entire unit column of ionosphere and thermosphere below the spacecraft (Kelley



85 etal., 1991). This approximation assumes the neutral wind’s modification to the Joule
86  heating rate to be insignificant, which is usually valid at high latitudes where it is

87  typically <15% (Billett et al., 2018). Under time-varying conditions, a part of S, goes to
88  particles via a parallel potential drop in the auroral acceleration region (e.g., Knight,

89  1973; Evans, 1974; Lyons, 1981). This part has been studied separately as associated
90  with Alfvén waves (Wygant et al., 2000; Keiling et al., 2003) and comprises only a small
91  portion of Sp (Janhunen et al., 2005). S, may contain a contribution to the auroral

92  acceleration region only when it is measured by a spacecraft above that region at ~2 Re
93  above the ground (Mozer & Hull, 2001), so for spacecraft at lower altitudes (as is the

94  case for our study; see Section 2), S, can well represent the Joule heating rate.

95  Recognizing the implications of Sy, previous studies have statistically investigated the

96 global distributions of S, to find where and how much electromagnetic energy is

97 deposited to the ionosphere for Joule heating (Gary et al., 1995; Janhunen et al., 2005;

98  Knipp et al., 2021). These studies showed that S, is typically 1-10 mW/m? at ~300-1000

99  km altitude and larger during more active geomagnetic conditions (e.g., Billett et al.,
100  2021). Large Sp values are concentrated in the cusp and auroral latitudes, as expected,

101  since most magnetospheric activities map to these regions.

102  These previous studies, however, could not clarify the processes responsible for large Sp
103  in the auroral zone, because they used magnetic latitudes to organize their statistics. The
104  auroral zone and the various phenomena within it do not occur at constant latitudes, so
105 their effects get intermingled when statistics are organized by latitude. These

106  phenomena include subauroral polarization streams (SAPS), westward fast flows
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appearing equatorward of the bright electron aurora of the dusk convection cell (Foster
& Vo, 2002), and dawnside auroral polarization streams (DAPS), eastward fast flows
appearing poleward of the bright arc of the dawn convection cell (Liu et al., 2020). Both
streams result from enhanced convection involving mesoscale magnetospheric
processes (e.g., Gallardo-Lacourt et al., 2017) and can lead to significant Joule heating
(Wang et al., 2011; Zou et al., 2013). Despite these previous findings, the extent and
significance of the streams’ Joule heating in the context of the global-scale auroral zone

are still unclear.

To investigate the role of dynamic phenomena such as SAPS and DAPS in the energy
budget of the auroral zone, we study the statistical distribution of S, after organizing it in
physical grids representing locations relative to the Region 1 and 2 (R1 and R2) currents
(lijima & Potemra, 1976), the field-aligned currents (FACs) implicated in the large-scale
M-I convection (e.g., Tanaka, 1995). The Region 1 current occupies the higher latitude
part of the auroral oval; its magnetospheric origin includes the higher latitude plasma
sheet and the plasma sheet boundary layer. The Region 2 current covers the lower
latitude part of the oval, which maps to the central plasma sheet and the inner
magnetosphere (e.g., Ohtani et al., 1988; Liu et al., 2016). The locations of the R1 and R2
currents are known to determine those of SAPS and DAPS (e. g., Anderson et al., 1993;
Liu et al., 2020) and organize other ionospheric phenomena. Our study involving these

currents’ locations is made possible by two newly available datasets.
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2 Datasets

Our investigation is based on a recently assembled S, database (Knipp et al., 2021) and a
recent method for determining boundaries of Region 1 and 2 currents (Liu et al., 2022),
both using data from the DMSP mission. All DMSP spacecraft are polar orbiting with a

low-earth orbit of ~850 km altitude.

The Poynting flux Sy has been computed using Equation 1, where the perturbation
magnetic field comes from DMSP’s fluxgate magnetometer (Rich, 1984) and the electric
field is inferred from E = —v X B, (the corotation electric field has been subtracted; see
Kilcommons et al. (2022)). Here By is the International Geomagnetic Reference Field and
v is the ion bulk flow in the Earth frame (satellite velocity has been subtracted). Unlike
most previous DMSP studies of the Poynting flux which only used the cross-track
components of v (e.g., Knipp et al., 2011; Huang et al., 2017), the bulk flow here includes
all components measured by the lon Drift Meter and the Retarding Potential Analyzer of
DMSP with the newest quality flags (Hairston & Coley, 2019). Knipp et al. (2021) provide
more information about this S, dataset, which is available for DMSP-f15, f16, and f18 for

the years 2011-2014. This availability range marks the scope of our statistical studies.

The other dataset we use is boundaries of R1 and R2 currents identified from DMSP
transects of the auroral zone. Liu et al. (2022) determined these boundaries using a fully-
automated algorithm based on the perturbation magnetic field. This algorithm has been
applied to all DMSP auroral zone transects with the available Poynting flux data (Knipp et
al., 2021), which provide 14796 transects with R1 and R2 boundaries thus identified for

our statistical studies (as illustrated in Figure 1).
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3 Results

We examine the Poynting flux distribution within and around the auroral zone by
generating statistical maps. These maps will contain many longitudinal and latitudinal
bins to reveal detailed S, distribution. We define the longitudinal bins as evenly
distributed magnetic local time (MLT) bins. For the latitudinal bins, we use a novel and
more physical definition—we construct them regarding the ranges of Region 1 and 2
currents. The details in these ranges will be represented by several latitudinal bins within
each range. Because the latitudinal widths of the R1 and R2 currents are different for
different auroral zone transects of DMSP, dividing them into fixed-width latitudinal bins
would result in different numbers of bins for different transects, prohibiting the
assembly of data from many transects to generate statistical distributions. Thus, we
divide each of the R1 and R2 ranges into a fixed number of bins. This is done by
segmenting the spacecraft trajectory of each DMSP transect regarding the widths of the

observed R1 and R2 ranges, as illustrated in Figure 2.

For each transect, we define three magnetic latitudes of boundary locations: Aj, the
poleward boundary of the R1 current, A1, the interface between the R1 and R2 current,
and A, the equatorward boundary of the R2 current. By definition, |A1]|>|A12]>]A2]. We
divide the R1 range, which has a latitudinal width of AA;=|A1-A12], into three segments,
each with the same latitudinal width of AA1/3. We do the same to the R2 range
(latitudinal width: AA;=|A12-A2]) and get three segments with a width of AA,/3 for each.
(Note that A1z is not contained by any of the segments.) We also identify the three

consecutive segments immediately poleward of the R1 current, each with a latitudinal
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width of AA1/3, and one segment immediately equatorward of the R2 current with a
width of AA,/3. These additional segments will provide useful information beyond the
auroral oval. Now we have ten segments for each auroral zone transect of DMSP. For
every segment, we designate the average values of quantities (e.g., Sp and MLT) over it
as its signature values. Using the signature values of the segments from all DMSP
transects in our database (regardless of northern or southern hemisphere), we construct
statistical maps of different quantities in the following. Please note that these maps
cannot be perceived in the same way as traditional maps (i.e., those using actual
latitudes as grids) because the signature values on the two sides of the R1/R2 interface
are averages over different latitudinal widths. Nevertheless, they are no less meaningful
than averages over the same widths because M-I dynamics are not expected to be better

prescribed by absolute latitude widths than by those normalized by the R1 or R2 width.

Figure 3 presents statistical maps of S,. To investigate how the Poynting flux depends on
geomagnetic activity levels, we split the dataset into quiet conditions defined as Kp<3
(Figures 3a-3b) and active conditions defined as Kp>3 (Figures 3c-3d). We chose Kp to
represent the activity level following previous statistical studies on Poynting flux (Olsson
et al., 2004; Knipp et al., 2021) so our results can be conveniently compared with theirs.
We also separate the results for sunlit (Figures 3a and 3c) and dark (Figures 3b and 3d)
conditions because they are known to impact the Poynting flux via their different
ionospheric conductivities due to different levels of solar EUV ionization (e.g., Pakhotin
et al., 2021). We determined these conditions for each transect segment using the

signature location and time of that segment; the criterion for sunrise/sunset is 90°50’
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solar zenith angle (Jacobson et al., 2011). Separating the segments based on their sunlit
condition allows us to mix the data from northern and southern hemispheres together
for our statistical study. For the segments in each statistical subset, we position them in
different bins (colored arc areas in Figure 3) based on their relative location to the R1/R2
current and signature MLT values. For each bin, we compute the median of the signature
Sp of all the segments in that bin. These medians, as represented by the bin colors,
reveal typical distributions of Poynting flux input to the ionosphere. To assure the quality
of the statistical results, we show the medians only for bins containing segments from
>30 DMSP transects. Such bins are most abundant near the dawn and dusk sectors
because of DMSP’s sun-synchronous orbits around the dawn-dusk meridian, but there

are also a few bins satisfying the quality criterion in the noon and midnight sectors.

The S, distributions reveal that their median values are always downward (towards the
ground) and typically 1-10 mW/m?. In general, the ionosphere receives significantly
higher Poynting flux during active times (with typical values up to >10 mW/m?, as given
by the medians in Figures 3c-3d) than during quiet times (<5 mW/m?; Figures 3a-3b).
These values under various conditions are consistent with previous findings (e.g., Knipp
et al., 2021). Regardless of the condition or MLT, S, peaks in the bins adjacent to the
R1/R2 interface and decreases away from it until it approaches zero in the bins
immediately equatorward of the R1 current’s poleward boundary and in the bins
immediately poleward of the R2 current’s equatorward boundary. Equatorward of the
R2 current, the Poynting flux is negligible. Poleward of the R1 current, S; is typically <3

mW/m?, but can be significant (>5 mW/m?) near the noon meridian under sunlight
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(Figures 3a and 3c). Between 8 and 14 MLT during active and sunlit conditions (Figure
3c¢), Spis ~ 5 mW/m? poleward of the R1 current. This region is the cusp (e.g., Jacobsen et

al., 2010) and has been shown to contain high Poynting flux (e.g., Cosgrove et al., 2014).

Taking a closer look at Figure 3, we find an interesting feature: S, is usually
asymmetrically distributed about the R1/R2 interface. In most MLT bins (13 out of 18)
from postnoon to premidnight, Sp in the bins equatorward of the interface are larger
than those poleward of it with the same normalized distances to it, so the maximum S,
occurs in the bins immediately equatorward of the interface. During active times
(Figures 3c-3d), this difference is typically >50%. From postmidnight to prenoon, an
opposite asymmetry shows up under darkness (Figures 3b and 3d): at any given MLT, S
peaks in the bin immediately poleward of the R1/R2 interface and is significantly larger
(>30% under quiet conditions and >50% under active conditions) than that in the bin

immediately equatorward of the interface.

3.1 Factors Contributing to the Poynting Flux Distribution

To find what leads to the distributions in Figure 3, we examine the factors contributing to

the Poynting flux. Converting Equation 1 into scalar form:

r r

Sp = —[(Ex + E;) X (6B, + 6B;)] T —(Ep X 6By) T —E} 8By, sin Ogg /o,
0

0
Where suffices h and r indicate the horizontal (to earth surface) and radial components,
respectively. It is evident that S, should be proportional to the magnitudes of the
horizontal electric and perturbation magnetic fields Es and 6Bx and sindge, where Jge is

the angle between E, and 6Bh. Figure 4 shows the distribution of these factors, with the
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horizontal ion bulk flow vy as the proxy of Ex (E;, ® —vj, X By; Bo is the nearly vertical
main field). As indicated by Figures 4a-4h, the higher Poynting flux during active times is
caused by larger plasma flows and perturbation magnetic fields. The flows (Figures 4a-
4d; and thus electric field) are also higher under darkness than under sunlight, as
expected from ‘current generators’ in the magnetosphere (Vickrey et al., 1986). On the
contrary, 6B, (Figures 4e-4h) presents an opposite dependence on illumination, although
it does not dominate the Poynting flux’s dependence. According to Ampere’s law, this
6Bh dependence indicates that field-aligned currents are more intense under sunlight
than under darkness. Current continuity requires the same for horizontal ionospheric
currents, which suggests ‘voltage generators’ as their magnetospheric sources (Vickrey
et al., 1986). 6Bh and E, are more perpendicular to each other (higher sinJse in Figures
4i-41) under sunlight than under darkness, but this does not affect the Poynting flux’s

dependence on illumination significant enough to overturn it.

The high Sp near the R1/R2 interface is contributed by all factors—vs, 6Bs, and sindse all
peak near the interface and decrease away from it. All factors also contribute to the high
Poynting flux in the sunlit cusp (Figures 4a, 4c, 4e, 4g, 4i, and 4k). Although the dark cusp
and polar cap contain significant flows (>0.5 km/s; Figures 4b and 4d), the lack of
magnetic perturbations there (Figures 4f and 4h) leads to small S,. Equatorward of the

R2 current, vanishing magnetic field perturbations (Figures 4e-4h) lead to vanishing Sp.

Details in Figure 4 reveal the contributors to the asymmetry in the S, distribution about
the R1/R2 interface. While the magnetic field perturbation contributes to the
asymmetry only for the active-time postnoon-to-premidnight sector as in Figures 4g-4h,
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singe and plasma flows always contribute to it—they are larger in the R2 range than in
the R1 range in the postnoon-to-premidnight sector; they are larger in the R1 range than
in the R2 range in the postmidnight-to-prenoon sector. The peak plasma flows
equatorward of the R1/R2 interface in the postnoon-to-premidnight sector are at where
subauroral polarization streams are expected, and the peak flows poleward of the
interface in the postmidnight-to-prenoon sector should be contributed by dawnside
auroral polarization streams. In the postmidnight-to-prenoon sector, the difference in
flow magnitude across the interface is much larger under dark conditions than under
sunlit conditions (Figures 4a-4d), consistent with the DAPS generation mechanism
suggested by Liu et al. (2020). This is a major factor leading to the difference in the S,
asymmetry about the R1/R2 interface between sunlit (Figures 3a and 3c) and dark

(Figures 3b and 3d) conditions in the postmidnight-to-prenoon sector.

3.2 The Role of SAPS and DAPS

Figures 4a-4d suggest that SAPS and DAPS may contribute to the Poynting flux
asymmetry about the R1/R2 interface. To evaluate this idea, we examine typical DMSP
observations of SAPS (Figures 5a-5d) and DAPS (Figures 5e-5g). A SAPS is a fast westward
flow (Figure 5b) equatorward of the electron aurora as indicated by electron
precipitations (Figure 5d). At the same location of the SAPS is an enhanced downward
Poynting flux (Figure 5c). To put this region into the context of the auroral zone, we
determine the ranges of R1 and R2 currents based on the gradual slopes of the magnetic
field’s east-west component, as marked in Figure 5a (see, e.g., Liu et al., 2021 for this

method). The high Poynting flux is equatorward of the R1/R2 interface and much larger
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than that poleward of it, consistent with the statistical asymmetries in the postnoon-to-
premidnight sector of Figure 3. Figure 5f shows a typical DAPS, an eastward fast flow in
the dawn convection cell (as indicated by the R1 and R2 FAC directions in Figure 3e) near
the R1/R2 interface. A typical signature of DAPS is that the eastward flow poleward of
the interface is much larger than that equatorward of it, which causes the same
asymmetry in Poynting flux (Figure 5g). This asymmetry is consistent with those in the

postmidnight-to-prenoon sector of Figures 3b and 3d.

To better illustrate the streams’ impact on the Poynting flux distribution, in Figure 6 we
generate a statistical S, map from the DMSP transects with either SAPS or DAPS
observed. We identified SAPS and DAPS using fully automated algorithms (Appendix A),
which gave us 2028 and 1301 transects with SAPS and DAPS, respectively. The locations
of these transects are indicated by green and red dots in Figure 1. Because SAPS and
DAPS are themselves condition-dependent, we no longer divide these transects into
subgroups based on activity level or illumination. Figure 6 shows the S, asymmetries
more clearly than any panel in Figure 3: In the postnoon-to-premidnight sector, S,
immediately equatorward of the R1/R2 interface is much larger than poleward of the
interface; in the postmidnight-to-prenoon sector, S, immediately poleward of the R1/R2

interface is much larger than equatorward of the interface.

4 Conclusion and Discussion

Our statistical results have revealed the following:
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1. The Poynting flux input to the ionosphere (as computed from Equation 1) is

higher during active times than during quiet times, consistent with previous
findings (e.g., Gary et al., 1995; Cosgrove et al., 2014; Kaeppler et al., 2022).
Under all activity and illumination conditions, the highest Poynting flux input
occurs near the interface between Region 1 and 2 currents and decreases toward
the poleward and equatorward boundaries of the R1 and R2 current,
respectively. Such a distribution is caused by all factors contributing to the
Poynting flux: near the interface, the plasma bulk flow (and thus electric field)
and the perturbation magnetic field are larger than in other places; the angle
between the electric and the perturbation magnetic fields is closer to 90°. These
flow and magnetic field peaks are consistent with the typical convection profile in
the auroral zone (Archer et al., 2017).

The sunlit cusp is another region of high Poynting flux input, especially during
active times. In contrast, the dark cusp does not show a concentration of
Poynting flux, although its plasma flows are as intense as those in the sunlit cusp.
This controlling factor of the Poynting flux in the cusp is the perturbation
magnetic field, which is much larger in the sunlit cusp than in the dark cusp. The
magnetic perturbations are caused by field-aligned currents, which must be
connected to horizontal ionospheric currents to ensure current continuity.
Therefore, the difference in magnetic perturbations between the sunlit and dark
cusp indicates a difference in horizontal ionospheric currents, which is most likely

related to the ionospheric conductivity—the higher conductivity under sunlit
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4.

conditions allows larger horizontal current, and thus FACs, magnetic
perturbations, and Poynting flux. This role of the conductivity reveals that the
magnetospheric sources of the cusp’s dynamic processes are ‘voltage generators’
instead of ‘current generators’ (see e.g., Lysak, 1985; Vickrey et al., 1986 for the
meanings of these terms)—the processes originate as potential electric fields
instead of currents needing closure through the ionosphere. Such voltage
generators can cause significant Poynting flux only in regions of high ionospheric
conductivity.

The Poynting flux shows asymmetries about the R1/R2 interface—in the
postnoon-to-premidnight sector of the R1 and R2 range, the Poynting flux
equatorward of the interface is significantly higher (~30% to >50% in statistical
medians) than that poleward of it; in the postmidnight-to-prenoon sector, the
asymmetry is opposite. The asymmetries are more prominent if we only include
DMSP transects observing SAPS or DAPS in the statistics (Figure 3i), suggesting
that these streams are responsible for the asymmetries. Confirming this notion,
plasma flows are a major contributor to the asymmetries (Figures 4a-4d). The
asymmetry in the postnoon-to-premidnight sector exists under all conditions but
that in the postmidnight-to-prenoon sector only shows up under darkness. This
difference suggests that the generation of DAPS depends on conductivity much
more than that of SAPS. As Liu et al. (2020) suggested, an auroral zone
conductivity gradient caused by precipitation is crucial for prominent DAPS

signatures, but this gradient can be much suppressed under sunlight. The
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Poynting flux equatorward of the R1/R2 interface in the postmidnight sector
receives limited contributions from abnormal SAPS (Voiculescu & Roth, 2008; D.
Lin et al., 2022), which are less common and slower than DAPS (Qian & Wang,

2023).

All these signatures of the Poynting flux distribution also show up in statistical quartiles

(Figures S1-S4 in the supporting information), so they are robust results.

The conclusions above come from DMSP data, which were measured at ~850 km
altitude. Thus, the investigated Poynting flux does not contribute to the auroral
acceleration region (see Section 1) and should mostly become Joule heating in the
ionosphere and thermosphere. The conclusions about the Poynting flux’ distribution and
asymmetries may also be applied to Joule heating. For example, the asymmetries about
the R1/R2 interface (Point 4 above) indicate strong Joule heating and thus
recombination in the R2 range of the postnoon-to-premidnight sector and the R1 range
of the postmidnight-to-prenoon sector. The recombination may cause low density
troughs to form in these two regions, consistent with observations (e.g., Anderson et al.,
1991; Zou et al., 2013). The Joule heating may also lead to phenomena such as the
STEVE (Strong Thermal Emission Velocity Enhancement; MacDonald et al., 2018), which
has received intense research focus recently (Harding et al., 2020). Our results provide

important information for predicting such phenomena.

17



363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Appendix A: Selection Algorithms for SAPS and DAPS

We look for SAPS and DAPS by applying fully automated algorithms (including all the
following) to the DMSP auroral zone transects used for our Poynting flux statistics, which
all have identified R1 and R2 ranges (see Section 2). As a preparation, from the magnetic
field slopes within the R1 and R2 ranges we automatedly determine the directions of the
R1 and R2 FACs (e.g., Figure 5e). These directions indicate which convection cell the
spacecraft transected—the dusk cell is given by an upward R1 FAC and the dawn cell by a
downward R1 FAC. This method is more accurate than using spacecraft ephemerides
because the convection cells do not stay at constant locations (see Walach et al., 2022
and references therein). We select SAPS and DAPS only from the dusk and dawn

convection cells, respectively, as consistent with their definitions.

We select SAPS and DAPS from DMSP’s cross-track flow measurements, which we treat
as (approximately) east-west flows. We smooth the original measurements veross using
the Kitagawa (1981) method with a half bandwidth equal to the inverse of the total
latitudinal width of the R1 and R2 currents. The goal of this smoothing is to remove

secondary flow variations that may confuse the selection for SAPS and DAPS.

A.1 SAPS Selection

A SAPS is defined as a significant westward flow equatorward of the prominent electron
aurora in the dusk convection cell (e.g., C. S. Lin & Hoffman, 1982). Thus, we first need to
find the equatorward boundary of the electron aurora from each DMSP transect of the
dusk convection cell. Because electron aurora intensity is proportional to ionospheric

conductance (Lam et al., 2019; Gabrielse et al., 2021), we look for the aurora boundary
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based on Xp, the Pederson conductance. This is a common practice for identifying
aurora boundaries from DMSP observations (e.g., Wang et al., 2008). After computing 2p
from electron precipitation using the Robinson et al. (1987) equation, we smooth it to
get f; (the third row from top of Figure A1) using the same method applied to the cross-

track flow. Next, we characterize the auroral zone using Aw, the latitudinal location of
the maximum X in the Region 1 and 2 range, and ZY;Au, the overall auroral brightness of

each DMSP transect, which is computed as the average Xp over the expected overall
range of auroral emissions. By default, we use the R1 range for this range, because the
R1 current in the dusk convection cell is an upward FAC carried by precipitating electrons
producing auroral emissions. However, the range of bright auroral emissions is not
always collocated with the R1 current (Carter et al., 2016), so Am sometimes falls outside
the R1 current (then it must be within the R2 range). Under such conditions, we extend
the averaging range to be from Awm to the poleward boundary of the R1 current to

include the significant auroral precipitation in the R2 range.

Next, we divide the time interval of the DMSP track between Awv and the equatorward
boundary of the R2 current (Az) into N equally spaced windows. N is chosen as follows: if
the whole interval is >50 seconds, N=10; otherwise, N is the maximum integer allowing

each window to be >5 seconds. Next, we identify the poleward-most window with every

window equatorward of it (including itself) having an average Xp smaller than O.ZﬁAuor
1 mho (the criterion values come from Wang et al. (2008)). If such a window can be
identified (Wiow), we look for the equatorward boundary of the electron auroral within

this window by dividing it into n small time windows—n is the smallest integer allowing
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each resultant window to be <5 seconds. We then repeat what we did to the N windows
above to these n small windows to identify a final low-conductance small window. If
such a small window can be identified, we take its poleward boundary as Aau, the
equatorward boundary of the electron aurora. Otherwise, we define Aau as the
equatorward boundary of Wiow. Figure Al illustrates examples of identified Aau (orange

dotted lines).

For SAPS selection, we first identify all westward peaks of the smoothed flow U,
within the range equatorward of Aau and poleward of A,. The generation mechanism of
SAPS requires it to be within this range (e.g., Anderson et al., 1993). For all the locations
of identified 7,,.,ss peaks, we examine whether their original vcross is at least 0.5 km/s
larger than v3., ., the flow in the unperturbed region (determined as the average of the
30 seconds of data immediately equatorward of the R2 range). We chose the 0.5 km/s
criterion following Zhang et al. (2020). Of the peaks satisfying this criterion (if any), we
select the one with the largest ¥,,,ss @s the SAPS peak. Figure A1 shows examples of

selected SAPS (with their peaks indicated by dotted magenta lines).

A.2 DAPS Selection

Our DAPS selection algorithm is designed based on the typical events reported by Liu et
al. (2020). First, we compute an average-sense eastward flow gradient as K, =

DX — v 0ss ) /DA, where T53¥ is the maximum eastward flow of the R1 and R2
range. Next, within the range between A, — AA,/3 and A;, + AA; /3, we find all data

points of d¥.,,ss/d|A| with the same sign as Ko and a magnitude exceeding 3|Ko|,

where A is the magnetic latitude. Each continuous group of such data points (if they

20



429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

exist) is regarded as a significant eastward flow gradient. For each significant gradient,
we examine the range immediately poleward of it with a latitudinal width of 0.3AA4; (if
this range’s poleward edge is poleward of the R1 current’s poleward boundary, we adjust
it to be that poleward boundary) and the one immediately equatorward of it with a
width of 0.3AA, (if this range’s equatorward edge is equatorward of the R2 current’s
equatorward boundary, we adjust it to that equatorward boundary). If the maximum
eastward Veross Of the former range is larger than that of the latter range and v .o by
>0.5 km/s, we mark this gradient as a candidate for final selection. Of all candidates, we
select the one with its poleward edge closest to the R1/R2 interface as that of a DAPS
and define the eastward flow poleward of it as a DAPS. Figure A2 shows examples of

selected DAPS.
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data in the Madrigal site, please go to http://cedar.openmadrigal.org/single and then

from the drop down menus select ‘Satellite Instruments’ -> ‘Defense Meteorological
Satellite Program’ -> Year -> Month -> Date -> Select experiment. All the DMSP datafiles
for the selected date will show up on the page. The software employed in this study is

available at the SPEDAS software page https://themis.ssl.berkeley.edu/software.shtml

and Zenodo (https://zenodo.org/records/11176127).
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Fig. 1. The locations of the observations used in our statistical study. Grids: magnetic
latitude and MLTs. Gray lines: Defense Meteorological Satellite Program trajectories in
the latitudinal range covered by R1 and R2 currents. Green, red, and blue dots: R1/R2
interface locations for transects identified to contain DAPS, those containing SAPS, and
all other ones, respectively. Please note that the dots do not indicate the exact locations

of SAPS or DAPS.
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Fig. 2. A Schematic illustration of how we segment a DMSP transect of the Region 1 and
2 currents in the ionosphere. Pink/light blue: upward/downward field-aligned currents.
Green line and diamond: schematic track of a DMSP spacecraft. Each dashed curve is of
a constant magnetic latitude. A1, A2, and A1z are the magnetic latitudes of the poleward
boundary of the R1 current, the equatorward boundary of the R2 current, and the R1/R2
interface, respectively. AA; and AA; are the widths of the R1 and R2 currents in magnetic
latitude, respectively. From these values we determine the orange segments for

computing average values (see Section 3).
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Fig. 3. Statistical distribution of typical Sp at various locations around the auroral zone
under (a-b) quiet, (c-d) active, (a, c) sunlit, and (b, d) dark conditions, as reconstructed
from DMSP transects of the auroral zone (including both northern and southern
hemispheres). Color of each bin: the median of the signature S, values of all spacecraft
trajectory segments falling inside that bin (see Section 3; the lower and upper quartiles
of the values are illustrated in Figures S1 and S2 of the supporting information,
respectively). A positive Sp means a Poynting flux downwards towards the ground. White

circles from small to large: the poleward boundary of the R1 current, the R1/R2
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interface, and the equatorward boundary of the R2 current. For each panel, the center
of the circles is the magnetic pole; a radially increasing distance from the center
represents a decreasing normalized magnetic latitude (normalized by the R1 or R2
current’s latitudinal width). Each bin’s normalized latitudinal width is 1/3; it has been
normalized by the latitudinal width of the R1 (R2) current if it is poleward (equatorward)

of the R1/R2 interface.
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Fig. 4. Distributions of (a-d) horizontal ion bulk speed, (e-h) horizontal perturbation
magnetic field strength, and (i-1) the sine function of the angle between the horizontal
electric field and the horizontal perturbation magnetic field under (a-b, e-f, i-j) quiet, (c-
d, g-h, k-l) active, (a, e, |, ¢, g, k) sunlit, and (b, f, j, d, h, I) dark conditions. Each panel is

presented in the same way as those in Figure 3.
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Fig. 5. Examples of (a-d) SAPS and (e-h) DAPS observations. (a, d) Horizontal
perturbation magnetic field. Blue (green) component: in the minimum (maximum)
variance direction; positive when approximately northward (eastward). We obtain these
directions by applying a principal axis analysis (Pearson, 1901) to the interval of R1 and
R2 currents. (b, e) Horizontal ion bulk velocity parallel and perpendicular to the
spacecraft trajectory, as illustrated by the blue and green curves, respectively. The blue
(green) component is positive when approximately northward (eastward). (c, f)

Perturbation Poynting flux. (d, g) Differential energy flux of electron precipitation.
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Fig. Al. Examples of SAPS identified by our selection algorithm. The top and bottom
rows present the same quantities as Figures 5a and 5d, respectively. Second row from
top: Horizontal ion bulk velocity perpendicular to the spacecraft trajectory, positive
when approximately eastward. The green and cyan curves are original and smoothed
data (see Appendix A for the smoothing technique), respectively. The dotted magenta
lines indicate the peaks of the identified SAPS. Third row from top: Pederson
conductance computed from the Robinson (1987) equation. The blue and cyan curves
are the original and smoothed data, respectively. The dotted orange lines indicate the

equatorward boundaries of the electron aurora as determined by our algorithm.
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Fig. A2. Examples of DAPS identified by our selection algorithm. The panels present the
same quantities as those in the first two rows of Figure Al. Magenta dotted lines
indicate DAPS (marked at the poleward edge of the significant gradients of the

smoothed flow; see Appendix A.2).
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