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Abstract

We compute the rational Borel–Moore homology groups for affine determinantal va-
rieties in the spaces of general, symmetric, and skew-symmetric matrices, solving a
problem suggested by the work of Pragacz and Ratajski. The main ingredient is the
relation with Hartshorne’s algebraic de Rham homology theory, and the calculation of
the singular cohomology of matrix orbits, using the methods of Cartan and Borel. We
also establish the degeneration of the Čech-de Rham spectral sequence for determinan-
tal varieties, and compute explicitly the dimensions of de Rham cohomology groups
of local cohomology with determinantal support, which are analogues of Lyubeznik
numbers first introduced by Switala. Additionally, in the case of general matrices we
further determine the Hodge numbers of the singular cohomology of matrix orbits and
of the Borel–Moore homology of their closures, based on Saito’s theory of mixed Hodge
modules.

1. Introduction

For an affine determinantal variety, it is well-known that both intersection homology and Chow
homology are concentrated in even degrees, and the first calculations of these groups appear in
work of Zelevinskii [Zel81, Section 3.3] and Pragacz [Pra88, Section 4]. By contrast, it was ob-
served by Pragacz and Ratajski [PR96, Remark 2.4] that Borel–Moore homology can be nonzero
in odd degrees, and hence that an explicit calculation of the groups is likely to be more subtle.
The goal of this note is to completely determine the ranks of the Borel–Moore homology groups
for determinantal varieties of general, symmetric and skew-symmetric matrices. Our approach
combines classical methods for computing singular cohomology of homogeneous spaces, going
back to the work of Cartan and Borel in the 50s, with the description of Borel–Moore homology
via the algebraic de Rham homology theory introduced by Hartshorne in [Har75]. We obtain in
addition several results of independent interest:

– We establish the degeneration of the Čech-de Rham spectral sequence for determinantal
(general, symmetric, and skew-symmetric) varieties. Such a degeneration statement is also
known to hold for complete intersections by work of Hartshorne–Polini [HP21], as well as
for subspace arrangements and in small dimensions by work of Reichelt–Walther–Zhang
[RWZ22], but remains open in general (see [Swi17, Question 8.2] for the complete local
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case).

– We determine explicitly the de Rham cohomology groups of local cohomology with determi-
nantal support, answering a question suggested to us by Switala. The dimensions of these
groups are called the Čech-de Rham numbers in [RWZ22, Definition 1.2].

– We describe the singular cohomology ring for the orbits of fixed rank matrices, following
the work of Cartan [Car51] and Borel [Bor53] (see also [Zac21, Proposition 3.6] for the case
of general matrices).

– In the case of general matrices, we also determine the Hodge numbers associated to the
mixed Hodge structures on the Borel–Moore homology of determinantal varieties and on
the cohomology of matrix orbits. This is based on the weight filtration on local cohomology
modules, determined in [Per21].

Before stating our results, we establish some notation and conventions. We study a matrix
space X with its rank stratification in the following three classical cases:

(a) X = Cm×n is the space of m×n matrices, m > n, and Op ⊂ X the set of matrices of rank p;

(b) X =
∧2Cn is the space of n× n skew-symmetric matrices, and Op ⊂ X the set of matrices

of rank 2p;

(c) X = Sym2Cn is the space of n× n symmetric matrices, and Op ⊂ X the set of matrices of
rank p.

All the cohomology groups we consider have coefficients in C. We write HBM
i (V ) = HBM

i (V,C)
for the Borel–Moore homology (see [BM60]), and H i(V ) = H i(V,C) for the singular cohomology
of a variety V , and write hBMi (V ) and hi(V ) for their respective vector space dimensions. If we
write dX for the (complex) dimension of the matrix space X then we have∑

i>0

hBMi (X) · qi = q2dX . (1)

To encode the Borel–Moore homology groups for the non-trivial orbit closures Op ( X, it is
useful to introduce the q-binomial coefficients

(
a
b

)
q
, which are polynomials in Z[q] defined for

a > b > 0 by (
a

b

)
q

=
(1− qa) · (1− qa−1) · · · (1− qa−b+1)

(1− qb) · (1− qb−1) · · · (1− q)
.

Theorem 1.1. The Hilbert–Poincaré polynomials for the Borel–Moore homology groups of the
orbit closures Op ( X are given as follows.

(a) If X = Cm×n and m > n, then∑
i>0

hBMi (Op) · qi =

p∑
s=0

q2s(m+n−s)+(p−s)(p−s+2) ·
(
n

s

)
q−2

·
(
n− 1− s
p− s

)
q2
.

(b) If X =
∧2Cn and m = bn/2c, then∑
i>0

hBMi (Op) · qi =

p∑
s=0

q2s(2n−1−2s)+(p−s)(2p−2s+3) ·
(
m

s

)
q−4

·
(
m− 1− s
p− s

)
q4
.

(c) If X = Sym2Cn, m = bn/2c, and if we let

εp =

{
1 if p is even and n = 2m+ 1 is odd,

0 otherwise,
(2)
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then∑
i>0

hBMi (Op) · qi =

p∑
s=0

s≡p (mod 2)

qs(2n+1−s)+ (p−s)(p−s+3)
2 ·

(
m+ εp
b s2c

)
q−4

·
(bn−s−12 c

p−s
2

)
q4

.

The reader may prefer to rewrite the formulas above using the identity(
a

b

)
q−1

= q−b(a−b) ·
(
a

b

)
q

. (3)

Our choice was made in order to connect more directly with the statement of Theorem 1.6 below.
To illustrate Theorem 1.1, we consider some examples of orbit closures that are affine cones over
familiar projective varieties.

Example 1.2. We consider the case p = 1, when O1 is the affine cone over a smooth projective
variety V.

(a) If X = Cm×n then V ' Pm−1 × Pn−1 is a Segre product, and∑
i>0

hBMi (O1) · qi = (q3 + q5 + · · ·+ q2n−1) + (q2m + q2m+2 + · · ·+ q2m+2n−2).

In particular, as noted in [PR96, Remark 2.3], we have that HBM
3 (O1) 6= 0.

(b) If X =
∧2Cn then V ' G(2, n) is a Grassmann variety, and if we let m = bn/2c then∑

i>0

hBMi (O1) · qi = (q5 + q9 + · · ·+ q4m−3) + (q4n−4m−2 + q4n−4m+2 + · · ·+ q4n−6).

(c) If X = Sym2Cn then V ' ν2(Pn−1) is the degree two Veronese embedding of Pn−1, and∑
i>0

hBMi (O1) · qi = q2n.

A key step in the proof of Theorem 1.1 is the calculation of the singular cohomology of the
orbits Op of fixed rank matrices, which is based on general methods for computing cohomology
of homogeneous spaces, pioneered by Cartan and Borel. The details, including the structure of
the cohomology ring, are given in Section 3, and in particular we get the following description
for the ranks of the singular cohomology groups.

Theorem 1.3. The Hilbert–Poincaré polynomials for the singular cohomology of the orbits
Op ⊂ X are given as follows.

(a) If X = Cm×n and m > n, then∑
i>0

hi(Op) · qi =

(
n

p

)
q2
· (1 + q2m−2p+1) · (1 + q2m−2p+3) · · · (1 + q2m−1).

(b) If X =
∧2Cn, m = bn/2c, and if we let ε = n− 2m, then∑

i>0

hi(Op) · qi =

(
m

p

)
q4
· (1 + q2(n+ε)−4p+1) · (1 + q2(n+ε)−4p+5) · · · (1 + q2(n+ε)−3).

(c) Suppose that X = Sym2Cn, let m = bn/2c, and let ε = n− 2m. If p = 2r then∑
i>0

hi(Op) · qi =

(
m

r

)
q4
· (1 + q2(n+ε)−4r+1) · (1 + q2(n+ε)−4r+5) · · · (1 + q2(n+ε)−3).
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If p = 2r + 1 then∑
i>0

hi(Op) ·qi =

(
m− 1 + ε

r

)
q4
· [(1+q4m−4r+1) · (1+q4m−4r+5) · · · (1+q4m−3)] · (1+q2n−1).

The relation between the invariants in Theorems 1.1 and 1.3 comes from the long exact
sequence (see for instance [PR96, Lemma 2.2])

· · · −→ HBM
i (Op−1)

di−→ HBM
i (Op) −→ H2dOp−i(Op) −→ HBM

i−1 (Op−1)
di−1−→ HBM

i−1 (Op) −→ · · ·
(4)

where dOp denotes the dimension of Op. We then obtain inequalities

h2dOp−i(Op) 6 h
BM
i (Op) + hBMi−1 (Op−1), (5)

and note that equality holds for all i if and only if the maps di vanish for all i. Quite remarkably,
this vanishing will occur most of the time.

Theorem 1.4. The maps di in (4) vanish for all i in the following cases:

(a) X = Cm×n and all p.

(b) X =
∧2Cn and all p.

(c) X = Sym2Cn and n− p even, or p = 1.

The following example shows that the assumption that (n − p) is even is necessary when
X = Sym2Cn.

Example 1.5. Suppose that X = Sym2Cn, p = 2, and n = 2m+1. We have using Theorem 1.3(c)
that ∑

i>0

hi(O2) · qi =

(
m

1

)
q4
· (1 + q2n−1) = (1 + q4 + · · ·+ q4(m−1)) · (1 + q4m+1),

and in particular we have

H2n−2(O2) = H4m(O2) = 0. (6)

Moreover, by Theorem 1.1(c) we have∑
i>0

hBMi (O2)·qi = q5·
(
m

1

)
q4

+q2n·
(
m+ 1

1

)
q4

= (q5+q9+· · ·+q4m+1)+(q2n+q2n+4+· · ·+q2n+4m)

and in particular we have HBM
2n (O2) = C. Recall from Example 1.2 that HBM

2n (O1) = C, hence
(4) gives an exact sequence

· · · −→ C d2n−→ C −→ H2dO2
−2n(O2) −→ · · ·

Using the fact that dO2 = 2n− 1, we get 2dO2 − 2n = 2n− 2, which combined with the vanishing
(6) shows that d2n is an isomorphism.

One can view (5) as a way to (collectively) bound from below the Borel–Moore homology of
the orbit closures. For an upper bound, we study the Čech–de Rham spectral sequence (using the
terminology in [RWZ22])

Eij2 = H i
dR(Hj

Op
(OX)) =⇒ HBM

2dX−i−j(Op), (7)
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which follows by combining [HP21, Proposition 4.2] with the identification in [HP21, Theo-
rem 3.1(7)] between Borel–Moore and de Rham homology. In (7), the groups Hj

Op
(OX) de-

note the local cohomology modules of the structure sheaf OX with support in Op, which are
regular holonomic DX -modules whose structure has been thoroughly analyzed in recent years
[RW14,RW16,LR20,Per20]. For a DX -module M , we denote by H i

dR(M) the cohomology groups
of the (algebraic) de Rham complex

DR(M) : 0 −→M −→ Ω1
X ⊗OX

M −→ · · · −→ ΩdX
X ⊗OX

M −→ 0, (8)

where Ωi
X is the module of i-differential forms. The formation of de Rham cohomology H i

dR(M)
agrees with the D-module-theoretic derived integration (pushforward) H i−dX (π+(M)), where
π : X → {pt} is the map to a point. It follows from [HTT08, Theorem 3.2.3] that if M is
holonomic then each H i

dR(M) is finite-dimensional, and this applies in particular to the groups

Eij2 in (7). With the usual convention, we write hidR(M) for the vector space dimension of
H i
dR(M). Note that although the Borel–Moore homology groups of Op are intrinsic invariants

(they to not depend on the embedding as a subvariety in X), the terms Eij2 in (7) do a priori
depend on both Op and X. Quite remarkably, after an appropriate reindexing, they do provide
intrinsic invariants of Op. More precisely, the Čech–de Rham numbers (see [RWZ22, Section 2])

ρi,j(Op) = hdX−idR (HdX−j
Op

(OX)) (9)

only depend on the variety Op and not on the choice of the ambient affine space X: this was
first proved by Switala over complete local rings [Swi17, Proposition 2.17], and the version we
use comes from [Bri20, Theorem 1.1] (see also [HP21, Theorem 6.2]).

Notice that the only non-vanishing Čech-de Rham number for X is

ρdX ,dX = h0dR(H0
X(OX)) = 1, (10)

and in particular (7) degenerates when Op = X, giving (1). Our focus will therefore be on orbit
closures Op ( X, where we have the following.

Theorem 1.6. The spectral sequence (7) degenerates on the E2 page for all the orbit closures
Op ( X. Moreover, the bivariate generating functions for the Čech–de Rham numbers are given
as follows.

(a) If X = Cm×n and m > n, then∑
i,j>0

ρi,j(Op) · qi · wj =

p∑
s=0

(qw)s(m+n−s) ·
(
n

s

)
q−2

· w(p−s)(p−s+2) ·
(
n− 1− s
p− s

)
w2

.

(b) If X =
∧2Cn, m = bn/2c, and if we let ε = n− 2m, then∑

i,j>0

ρi,j(Op) · qi · wj =

p∑
s=0

(qw)s(2n−1−2s) ·
(
m

s

)
q−4

· w(p−s)(2p−2s+3) ·
(
m− 1− s
p− s

)
w4

.

(c) If X = Sym2Cn, m = bn/2c, and if we take εp as in (2), then∑
i,j>0

ρi,j(Op) · qi · wj =

p∑
s=0

s≡p (mod 2)

(qw)
s(2n+1−s)

2 ·
(
m+ εp
b s2c

)
q−4

· w
(p−s)(p−s+3)

2 ·
(bn−s−12 c

p−s
2

)
w4

.

Notice that the degeneration of the spectral sequence (7) is equivalent to the fact that the
Euler–Poincaré polynomials in Theorem 1.1 are obtained from the generating functions in The-
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orem 1.6 via the specialization w = q. The expressions for the generating functions of Čech–de
Rham numbers in Theorem 1.6 illustrate the vanishing

ρi,j(Op) = 0 for i > j, (11)

which is established in general in [RWZ22, Proposition 2.1]. The inspiration for the study of
Čech–de Rham numbers comes from the work of Lyubeznik [Lyu93], where he defines using
local cohomology groups a set of local invariants which are now usually referred to as Lyubeznik
numbers. There are many parallels between Čech–de Rham and Lyubeznik numbers, including
the vanishing (11), and some are explored in [RWZ22]. In [LR20] and [Per20] the Lyubeznik
numbers are computed for the determinantal varieties Op in the spaces of general and skew-
symmetric matrices, respectively, but they remain unknown in the case of symmetric matrices
(see also the discussion in Sections 4.2, 5.2, and 6.2).

As Op (and its closure) is a complex algebraic variety, the groups H i(Op) and HBM
i (Op)

are naturally endowed with mixed Hodge structures, by the work of Deligne (e.g. see [PS08,
Corollary 14.9]). In general, a mixed Hodge structure M carries an (increasing) weight W•M
and a (decreasing) Hodge F •M filtration. The dimensions of the associated graded pieces are
encoded by the Hodge numbers

hp,q(M) = dimC GrpF GrWp+qM.

We say that the Hodge numbers of M are concentrated on the diagonal if hp,q(M) = 0 whenever
p 6= q. Note that in this case the weight filtration on M determines all of its Hodge numbers, as
for all p we have hp,p(M) = dimC GrW2pM , and further the vanishing GrW2p+1M = 0 must hold.

On the other hand, it follows from the work of Saito [Sai90] that the local cohomology modules
H i
Op

(OX) naturally carry the structure of mixed Hodge modules. This has been studied in detail

recently for the case (a) of general matrices by Perlman [Per21]. Based on his work, we compute
the Hodge numbers of the singular cohomology of Op and Borel–Moore homology of Op using
the degeneration of the mixed Hodge module variant of the spectral sequence (7), together with
Theorem 1.4 (a).

Theorem 1.7. Let X = Cm×n with m > n. The following bivariate generating functions record
the weight filtrations on the mixed Hodge structures on HBM

i (Op) and H i(Op), respectively:∑
i,j>0

dimC GrWj HBM
i (Op) · qi · wj =

p∑
s=0

wp−s · (qw−1)2sm+(p−s)(p−s+2) ·
(
n

s

)
(qw−1)2

·
(
n− 1− s
p− s

)
(qw−1)2

,

∑
i,j>0

dimC GrWj H i(Op) · qi · wj =

(
n

p

)
(qw)2

·
p−1∏
s=0

(1 + q2m−2s−1 · w2m−2s).

Moreover, all of the corresponding Hodge numbers are concentrated on the diagonal.

These formulas yield Hodge-theoretic refinements to the ones in Theorem 1.1 (a) and Theorem
1.3 (a), respectively, which are recovered by evaluating w 7→ 1. While this method of finding
Hodge numbers works in principle also in the case of skew-symmetric and symmetric matrices,
its implementation is contingent upon the determination of the weight filtration on the respective
local cohomology modules, analogous to [Per21].
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Proof strategy. We conclude this introduction with a summary of the strategy employed to
prove the results presented here, the details of which are going to be explained in the rest of the
paper.

(i) We describe the singular cohomology groups of the orbits Op using methods that go back
to the classical work of Cartan and Borel, and obtain the formulas in Theorem 1.3. This in
particular gives an explicit formula for the total Betti numbers

btot(Op) =
∑
i>0

hi(Op). (12)

(ii) Considering the total (Borel–Moore) Betti numbers,

bBMtot (Op) =
∑
i>0

hBMi (Op), (13)

we conclude using (5) that

btot(Op) 6 b
BM
tot (Op) + bBMtot (Op−1), (14)

with equality if and only if (5) is an equality for all i, which in turn is equivalent to the fact
that the maps di in the long exact sequence (4) are zero for all i.

(iii) If we define the total Čech-de Rham numbers by

ρtot(Op) =
∑
i,j

ρi,j(Op) =
∑
i,j

hidR(Hj

Op
(OX))

then it follows from the spectral sequence (7) that

bBMtot (Op) 6 ρ
tot(Op) (15)

with equality if and only if the spectral sequence degenerates at the E2 page.

(iv) For each of the local cohomology modules Hj

Op
(OX), a composition series in the category

of (equivariant) DX -modules is described in [RW14,RW16], and for each of the simple com-
position factors, the corresponding de Rham cohomology groups are calculated in [LR22].
This provides an upper bound

ρtot(Op) 6 Np for all p,

for certain explicit constants Np, with equality if and only if the de Rham cohomology of

each Hj

Op
(OX) is equal to the sum of the de Rham cohomology groups of its composition

factors.

(v) We show that if n− p is even then we have

btot(Op) = Np +Np−1, (16)

which implies that we must have equality throughout the chain of inequalities

btot(Op)
(14)

6 bBMtot (Op) + bBMtot (Op−1)
(15)

6 ρtot(Op) + ρtot(Op−1) 6 Np +Np−1.

In particular, we obtain the degeneration of the spectral sequence (7) for all p, and get that
the de Rham cohomology of local cohomology groups is the direct sum of the cohomologies
of the composition factors, which is used to prove Theorem 1.6, and by specializing w = q,
to prove Theorem 1.1. Moreover, we get that (5) is an equality whenever n− p is even, and
in fact for all p if X = Cm×n or X =

∧2Cn, proving Theorem 1.4.

7
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Organization. In Section 2 we review some basic notation and techniques used to describe our
computations, including aspects of de Rham cohomology, mixed Hodge structures, equivariant
D-modules, and representation theory of the general linear group. In Section 3 we compute the
singular cohomology groups of the orbits Op. We then proceed to considering in more detail
steps (2)–(5) of the strategy outlined above: for general matrices this is done in Section 4, for
skew-symmetric matrices in Section 5, and for symmetric matrices in Section 6. The results on
mixed Hodge structures for the case of general matrices are proved in Section 4.3. Finally, in
Section 7 we discuss the degeneration of another spectral sequence, that is closely related to (7).

2. Preliminaries

Throughout this section X is an irreducible smooth complex affine variety. We freely identify
OX -modules with their global sections. We always work with left D-modules.

2.1 De Rham cohomology

The (analytic) de Rham complex for D-modules plays a fundamental role in the Riemann-Hilbert
correspondence (for example, see [HTT08, Theorem 7.2.5]). In the special case when M = OX
is the structure sheaf, the celebrated comparison theorem of Grothendieck [Gro66] implies that
the space H i

dR(OX) agrees with the (singular) cohomology group H i(X,C). More generally,

for an irreducible closed subvariety Y ⊂ X, the local cohomology group HcodimX Y
Y (OX) has a

unique simple submodule L(Y,X) (called the Brylinski-Kashiwara module [BK81, Section 8])
whose associated de Rham complex is the (middle perversity) intersection cohomology sheaf of
Y . Hence, the de Rham cohomology groups of L(Y,X) agree with the intersection cohomology
groups of Y (for example, this follows from [HTT08, Theorem 7.1.1]).

In contrast with de Rham cohomology (see discussion after (8)), the Lyubeznik numbers
mentioned in the Introduction can be understood as the (derived) restriction to the origin of the
local cohomology modules. But pushforward of a module M from an affine space to the origin is
the same as the restriction to the origin of its Fourier transform F(M) (see [HTT08, Proposition
3.2.6]):

Hk(π+(M)) ∼= Hk(Li∗F(M)), (17)

where π : X → {0} is the projection and i : {0} → X the inclusion. While the latter uses only
the S = C[x1, . . . , xdX ]-module structure of M , the former uses only its C[∂1, . . . , ∂dX ]-structure,
as can be seen also from the differentials in the de Rham complex

di : M ⊗ Ωi
X →M ⊗ Ωi+1, di(mdxj1 ∧ · · · ∧ dxji) =

dX∑
s=1

∂s(m) dxs ∧ dxj1 ∧ · · · ∧ dxji . (18)

Hence, in a sense we should expect our calculations regarding the Čech–de Rham numbers to
reflect features dual to those encoded by the Lyubeznik numbers. We explain in detail why this
is indeed the case for our spaces of matrices in Sections 4.2, 5.2, and 6.2.

2.2 Mixed Hodge structure on de Rham cohomology

As mentioned, de Rham cohomology can be interpreted as (derived) pushforward to a point.
Thus, if M is a mixed Hodge module, as developed by Saito [Sai90], then H i

dR(M) naturally
carries a mixed Hodge structure for any i. If M is a mixed Hodge module, we denote by M(k)
its kth Tate twist, that shifts weights by −2k.

8
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We denote by OHX the constant (trivial) mixed Hodge module on X, for which the graded
pieces of the weight filtration give the DX -modules GrWdX O

H
X = OX , and GrWk OHX = 0, k 6= dX .

Let Z ( X be a closed subvariety, U = X \ Z the complement, and ι : U → X the open
embedding. Since

H1
Z(OX) ∼= ι∗OU/OX , and H i

Z(OX) ∼= Ri−1ι∗(OU ), for all i > 2, (19)

the local cohomology modules Hj
Z(OHX ) naturally carry mixed Hodge module structures for all

j (cf. [Sai90]).

In conclusion, de Rham cohomology of local cohomology H i
dR(Hj

Z(OHX )) acquires also a mixed
Hodge structure for all i, j. Furthermore, Borel–Moore homology HBM

i (Z) carries mixed Hodge
structure as well, for all i [PS08, Corollary 14.9]. The following relates these mixed Hodge struc-
tures through the spectral sequence (7).

Proposition 2.1. Let X = Cd and Z ( X a closed subvariety. The Čech–de Rham spectral
sequence

H i
dR(Hj

Z(OHX )) =⇒ HBM
2d−i−j(Z)(−d)

is a spectral sequence of mixed Hodge modules.

Proof. We reinterpret the spectral sequence using the identifications in (19) as follows. Let πU :
U → {pt} and πX : X → {pt} denote maps to a point. The (higher) pushforward of OHU via
πU yields cohomology of U , and factoring this through πU = πX ◦ ι yields the following spectral
sequence of mixed Hodge modules (cf. [PS08, Section 14.1.3])

H i
dR(Rjι∗OHU ) =⇒ H i+j(U). (20)

Since U is smooth, we have as mixed Hodge structures (see [PS08, Corollary 6.26])

Hk(U) ∼= HBM
2d−k(U)(−d). (21)

By the long exact sequence in Borel–Moore homology corresponding to ι : U → X (analogous to
(4)) and (1), we obtain

HBM
i (Z) ∼= HBM

i+1 (U), for i 6 2d− 2, HBM
2d (U) = C. (22)

Note that H0
dR(OX) = C and H i

dR(OX) = 0 when i > 0. Further, from (20) we get H0
dR(ι∗OU ) =

C. Applying de Rham cohomology to the exact sequence of mixed Hodge modules

0→ OHX → ι∗OHU → H1
Z(OHX )→ 0,

we obtain

H i
dR(H1

Z(OHX )) ∼= H i
dR(ι∗OHU ), for i > 1, H0

dR(H1
Z(OHX )) = 0.

Using this together with (19), (21), (22), we obtain the desired spectral sequence from the one
in (20).

2.3 Equivariant D-modules

Here we provide some background on equivariant D-modules. For more details, see [LW19].

Let a connected algebraic group G act on X. A (possibly infinite-dimensional) vector space
V is a rational G−module, if V is equipped with a linear action of G, such that every v ∈ V
is contained in some finite-dimensional G-stable subspace W ⊂ V with the map G → GL(W )
being a morphism of algebraic varieties.

9
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We call M a (strongly) G-equivariant D-module, if we have a DG×X -isomorphism

τ : p∗M → m∗M,

where p and m are the projection and multiplication maps

p : G×X → X, m : G×X → X

respectively, and τ satisfies the usual compatibility conditions on G × G × X (see [HTT08,
Definition 11.5.2]).

Let g be the Lie algebra of G. Differentiating the action of G on X yields a map g → DX .
Equivariance of a D-module M amounts to M having a rational G-module structure such that
differentiating the action of G coincides with the action of g induced from g→ DX .

We denote by mod(DX) the category of coherent DX -modules, and its subcategory of coherent
equivariant D-modules by modG(DX) which is abelian and stable under taking subquotients
within mod(DX).

For an equivariant D-module M and a (locally) closed G-stable subset Y ⊂ X, all local
cohomology modules H i

Y (M) are equivariant.

2.4 Representation theory of the general linear group

We recall some facts on the representation theory of GLn(C). We write Zndom for the set of
dominant weights in Zn, i.e. tuples λ = (λ1, · · · , λn) ∈ Zn with λ1 > λ2 > · · · > λn. When each
λi > 0 we identify λ with a partition with (at most) n parts, and write λ ∈ Nndom. For a partition,
we write λ ` k when |λ| := λ1 + · · · + λn = k, in which case we can associate its corresponding
Young diagram with k boxes that consists of λi boxes in the ith row. The Durfee size of λ is the
largest i with the property λi > i. We write λ′ for the conjugate partition of λ, where λ′i counts
the number of parts λj with λj > i. We partially order Zndom (and Nndom) by declaring λ > µ if
λi > µi for all i = 1, · · · , n. If a > 0 then we write a × b or (ba) for the sequence (b, b, · · · , b)
where b is repeated a times. Given a weight λ ∈ Zn we write for its dual

λ∨ = (−λn,−λn−1, · · · ,−λ1).

If V is a vector space with dim(V ) = n and λ ∈ Zndom we write SλV for the corresponding
irreducible representation of GL(V ) (or Schur functor). Our conventions are such that if λ =
(k, 0, · · · , 0) then SλV = Symk V , and if λ = (1r) then SλV =

∧r V .

For a > b > 0 we define the Gaussian (or q-)binomial coefficient
(
a
b

)
q

to be the polynomial in

Z[q] defined by (
a

b

)
q

=
(1− qa) · (1− qa−1) · · · (1− qa−b+1)

(1− qb) · (1− qb−1) · · · (1− q)
.

One significance of the q-binomial coefficients is that
(
a
b

)
q2

describes the Poincaré polynomial of

the Grassmannian Grass(b, a) of b-dimensional subspaces of Ca. As such, the coefficient of qj in(
a
b

)
q

computes the number of Schubert classes of (co)dimension j, or equivalently the number of

partitions λ of size j contained inside the rectangular partition (a− b)× b. We get(
a

b

)
q

=
∑

λ6(ba−b)

q|λ|. (23)

10
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3. Singular cohomology of matrix orbits

In this section, we compute the singular cohomology rings of the orbits Op of general, symmetric
and skew-symmetric matrices. Throughout, we work with singular cohomology over complex
coefficients. The computation of cohomology of homogeneous spaces is a well-studied problem in
topology that generated (e.g., see [Car51,Bor53,Bau68,May68]) and continues to generate (e.g.
[Fra21]) a lot of interest.

In order to determine the cohomology of the matrix orbits Op, we use the classical method
of H. Cartan [Car51]. Let K be a compact connected Lie group, and L ⊂ K a closed connected
Lie group. We have an induced map ρ : H∗(BK) → H∗(BL) between the cohomology rings of
their classifying spaces. The following isomorphism of algebras reduces the problem at hand to
an algebraic one (cf. [Car51])

H∗(K/L) ∼= TorH∗(BK)(C, H∗(BL)). (24)

We recall Cartan’s result in a form that is most convenient for our calculations (see [Ter01,
Theorem 8]).

Let TL ⊂ T be an inclusion of corresponding maximal tori, and consider the complexification
of their Lie algebras tL ⊂ t. Denote the Weyl groups by W (L) and W , which act naturally on the
polynomial rings C[tL] and C[t], respectively. We think of these rings having coordinate functions
in degree two. The map ρ takes the explicit form

ρ : C[t]W → C[tL]W (L). (25)

Let n = rankK and r = rankL. By a well-known theorem of Hopf (see [MT91, Theorem
6.26]) the cohomology of K is an exterior algebra

H∗(K) ∼=
∧

(z1, . . . zn),

where the generators zi have odd degrees. Our computations are based on the following version
of (24).

Theorem 3.1. Let f1, . . . , fn be homogeneous generators of the algebra C[t]W with deg fi =
deg zi+1. If ρ(fr+1), . . . , ρ(fn) belong to the ideal (ρ(f1), . . . , ρ(fr)), then we have an isomorphism
of graded algebras

H∗(K/L) ∼=
(
C[tL]W (L)/(ρ(f1), . . . , ρ(fr))

)
⊗
∧

(zr+1, . . . , zn).

In particular, the Hilbert–Poincaré polynomial of H∗(K/L) is given by

(1− qdeg f1) · · · (1− qdeg fr)

(1− qd1) · · · (1− qdr)
· (1 + qdeg fr+1−1) · · · (1 + qdeg fn−1),

where d1, . . . , dr are the degrees of the fundamental invariants in the polynomial ring C[tL]W (L).

Recall the facts about the cohomology of the Grassmannian Grass(p, n) described in Section
2.4 (also, see (26) in the proof below for an explicit presentation). We now proceed with de-
termining the cohomology of the orbits. While for our subsequent applications we only use the
Hilbert–Poincaré polynomials, for completeness we outline the argument yielding the explicit
ring structure. In fact, for the symmetric case (c) this approach is necessary, since the generic
stabilizers of Op (p > 0) are disconnected. We note that in case (a), a description for H∗(Op) has
been also obtained recently in [Zac21, Proposition 3.6]. For the standard notions and identities
involving symmetric functions, we refer the reader to [Mac79].

11
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Theorem 3.2. We have the following isomorphisms of graded algebras, and respective Hilbert–
Poincaré polynomials (with deg zi = 2i− 1):

(a) When X = Cm×n:

H∗(Op) ∼= H∗(Grass(p, n))⊗
∧

(zm−p+1, . . . , zm),(
n

p

)
q2
· (1 + q2m−2p+1) · (1 + q2m−2p+3) · · · (1 + q2m−1).

In particular, we have that

btot(Op) =

(
n

p

)
· 2p.

(b) When X =
∧2Cn, with m = bn/2c, and ε = n− 2m, then

H∗(Op) ∼= C[h1, . . . , hp]/(hm−p+1, . . . , hm)⊗
∧

(zn+ε−2p+1, zn+ε−2p+3, . . . , zn+ε−1),(
m

p

)
q4
· (1 + q2(n+ε)−4p+1) · (1 + q2(n+ε)−4p+5) · · · (1 + q2(n+ε)−3).

Here hi stands for the ith complete homogeneous symmetric polynomial in p variables and
deg hi = 4i. In particular, we have that

btot(Op) =

(
m

p

)
· 2p.

(c) Suppose that X = Sym2Cn, let m = bn/2c, and let ε = n− 2m. If p = 2r then

H∗(Op) ∼= C[h1, . . . , hr]/(hm−r+1, . . . , hm)⊗
∧

(zn+ε−p+1, zn+ε−p+3, . . . , zn+ε−1),(
m

r

)
q4
· (1 + q2(n+ε)−4r+1) · (1 + q2(n+ε)−4r+5) · · · (1 + q2(n+ε)−3),

and in particular we have that

btot(Op) =

(
m

r

)
· 2r.

If p = 2r + 1 then

H∗(Op) ∼= C[h1, . . . , hr]/(hm−r+ε, . . . , hm−1+ε)⊗
∧

(z2m−2r+1, z2m−2r+3, . . . , z2m−1, zn),(
m− 1 + ε

r

)
q4
· [(1 + q4m−4r+1) · (1 + q4m−4r+5) · · · (1 + q4m−3)] · (1 + q2n−1),

and in particular we have that

btot(Op) =

(
m

r

)
· 2r+1.

Here hi stands for the ith complete homogeneous symmetric polynomial in r variables and
deg hi = 4i.

Proof. We consider first part (a). It is easy to see that we have

Op ∼= (GLm(C)×GLn(C))/H,

12
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where H denotes the stabilizer of

[
Ip 0
0 0

]
, equal to the subgroup of pairs of matrices of the form([

A B
0 C

]
,

[
A 0
D E

])
, with

A ∈ GLp(C), B ∈ Cp×(m−p), C ∈ GLm−p(C), D ∈ C(n−p)×p, E ∈ GLn−p(C).

Since the product of unitary groups U(m)×U(n) is the maximal compact subgroup of GLm(C)×
GLn(C), we have by [Mos55, Theorem 3.1] that Op has the same homotopy type as K/L, where

K = U(m)× U(n), and L = U(p)× U(m− p)× U(n− p).

The rings of invariants from (25) are polynomial rings, generated by elementary symmetric
polynomials:

C[t]W = C[x1, . . . , xm, y1, . . . , yn], and C[tL]W (L) = C[a1, . . . , ap, b1, . . . , bm−p, c1, . . . , cn−p],

where deg xi = deg yi = deg ai = deg bi = deg ci = 2i (below we allow i = 0). The map ρ from
(25) is given by (compare [MT91, Theorem 5.8])

ρ(xk) =
∑
i+j=k

aibj , ρ(yk) =
∑
i+j=k

aicj .

Let I denote the ideal generated by all the elements ρ(xi) (1 6 i 6 m) and ρ(yj) (1 6 j 6 n).
Using successively that ρ(xk)− ρ(yk) ∈ I for k = 1, . . . ,m− p, we see that bk − ck ∈ I (1 6 k 6
n− p) and bj ∈ I (n− p+ 1 6 j 6 m− p). Therefore, we have

I =
(
ρ(x1), . . . , ρ(xm−p), ρ(y1), . . . , ρ(yn)

)
.

Hence, by Theorem 3.1 we obtain

H∗(K/L) ∼= R⊗
∧

(zm−p+1, . . . , zm),

with

R = C[tL]W (L)/I ∼= C[a1, . . . , ap, c1, . . . , cn−p]/(ρ(y1), . . . , ρ(yn)), (26)

which is a well-known presentation of H∗(Grass(p, n)) (see [MT91, Theorem 6.9]).

Now we turn to part (b). By working with the representative 0 Ip 0
−Ip 0 0

0 0 0

 ∈ Op,
we see as above by [Mos55, Theorem 3.1] that Op has the same homotopy type as K/L, with
K = U(n), and L = Sp(p) × U(n − 2p), where Sp(p) = Sp(2p,C) ∩ U(2p) is the compact
symplectic Lie group.

We let the Cartan subalgebra t be the set of diagonal matrices

diag(a1, . . . , ap, ap+1, . . . , a2p, b1, . . . , bn−2p)

(where ai, bi ∈ C), while the Cartan subalgebra tL ⊂ t to be the set of matrices

diag(a1, . . . , ap,−a1, · · · − ap, b1, . . . , bn−2p).

The corresponding Weyl groups are W = Sn and WL = (SpnZp2)×Sn−2p, acting in the obvious
way – the symmetric group by permutations, and Z2 = Z/2Z by sign changes. Let xi, yi be the

13
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coordinate functions corresponding to ai, bi, respectively, and for k ∈ Z>0 consider the power
sum polynomials

pk =

2p∑
i=1

xki +

n−2p∑
j=1

ykj , qk =

p∑
i=1

xki , rk =

n−2p∑
i=1

yki .

The respective rings of invariants are polynomial rings generated by

C[t]W = C[p1, . . . , pn], and C[tL]W (L) = C[q2, q4, . . . , q2p, r1, r2, . . . , rn−2p].

The map ρ from (25) is given by (where 1 6 k 6 n)

ρ(pk) = 2qk + rk, for k even, and ρ(pk) = rk, for k odd.

Since C[y1, . . . , yn−2p]
Sn−2p = C[r1, . . . , rn−2p], we see that ρ(pk) ∈ (r1, r3, . . . , rn−2p−1+ε) for all

odd k. By Theorem 3.1, we obtain

H∗(Op) ∼= (C[q2, . . . , q2p, r1, . . . , rn−2p]/I)⊗
∧

(zn+ε−2p+1, zn+ε−2p+3, . . . , zn+ε−1),

where I = (r1, r3, . . . , rn−2p−1+ε, 2q2 + r2, 2q4 + r4, . . . , 2qn−ε + rn−ε) and deg zi = 2i − 1. For
k ∈ N, let ek (resp. hk) denote the kth elementary (resp. complete) symmetric polynomial in the
variables y1, . . . , yn−2k (resp. in x21, . . . , x

2
p), so that if k > n− 2p then ek = 0. We claim that for

all 0 6 k 6 m we have

e2k − hk ∈ I, and e2k+1 ∈ I. (27)

The latter part follows readily by induction using the Girard–Newton identities and the fact that
ri ∈ I when 1 6 i 6 n− 2p is odd.

Now we prove that e2k − hk ∈ I, again by induction, the case k = 0 being trivial. We have
the following equalities modulo I, again using the Girard–Newton identities and that e2i+1 ∈ I:

2k · e2k ≡
2k∑
i=1

(−1)i−1e2k−i · ri ≡
k∑
i=1

−hk−i · (−2q2i) ≡ 2k · hk.

This proves the first claim in (27) as well, which now implies part (b) since

C[q2, . . . , q2p, r1, . . . , rn−2p]/I = C[h1, . . . , hp, e1, . . . , en−2p]/I ∼= C[h1, . . . , hp]/(hm−p+1, . . . , hm).

Now consider part (c). By choosing the representative[
Ip 0
0 0

]
∈ Op,

we see as before that that Op has the same homotopy type as K/L′, with

K = U(n), and L′ = O(p,R)× U(n− p).
We first use Theorem 3.1 in order to compute the cohomology ring of K/L, where L = L′0 =
SO(p,R)× U(n− p) is the connected component of L′ containing the identity.

Assume first that p is even. For a, a′ ∈ C, denote by R(a, a′) the 2 × 2 matrix 1/2 ·[
(a+ a′) a− a′
a′ − a (a+ a′)

]
. Let t be the Cartan subalgebra

diag(R(a1, ar+1), R(a2, ar+2), . . . , R(ar, a2r), b1, . . . , bn−p)

formed of block diagonal matrices, where ai, bi ∈ C. The Weyl group W = Sn acts by permuting
the entries a1, . . . , ap, b1, . . . , bn−p in the usual way. We choose tL ⊂ t to be

diag(R(a1,−a1), R(a2,−a2), . . . , R(ar,−ar), b1, . . . , bn−p).
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Here the first factor of the Weyl group WL = (SrnZr−12 )×Sn−p acts on a1, . . . , ar by permutations
and an even number of sign changes. Let xi, yi be the coordinate functions corresponding to ai, bi,
respectively, and for k ∈ Z>0 consider polynomials

pk =

p∑
i=1

xki +

n−p∑
j=1

ykj , qk =

r∑
i=1

xki , q =

r∏
i=1

xi, rk =

n−p∑
i=1

yki .

The respective rings of invariants are polynomial rings generated by

C[t]W = C[p1, . . . , pn], and C[tL]W (L) = C[q2, q4, . . . , qp−2, q, r1, r2, . . . , rn−p].

The map ρ from (25) is given by (where 1 6 k 6 n)

ρ(pk) = 2qk + rk, for k even, and ρ(pk) = rk, for k odd.

As in case (b), we obtain

H∗(K/L) ∼= (C[q2, . . . , qp−2, q, r1, . . . , rn−p]/I)⊗
∧

(zn+ε−p+1, zn+ε−p+3, . . . , zn+ε−1),

where I = (r1, r3, . . . , rn−p−1+ε, 2q2 + r2, 2q4 + r4, . . . , 2qn−ε + rn−ε) and deg zi = 2i − 1. Now
the action of −1 ∈ Z2

∼= O(p,R)/SO(p,R) leaves q2k (and zi, rj) invariant, but sends q to −q.
Hence, we have

H∗(Op) ∼= H∗(K/L)Z2

∼=
(
C[q2, . . . , qp−2, qp, r1, . . . , rn−p]/I

′)⊗∧(zn+ε−p+1, zn+ε−p+3, . . . , zn+ε−1),

with I ′ having the same generators as those given for I. The rest of the proof follows as (27) in
case (b).

Lastly, we consider case (c) with p odd. We use similar notation as in the even case. Choose
t to be

diag(R(a1, ar+1), R(a2, ar+2), . . . , R(ar, a2r), b0, b1, . . . , bn−p).

Then W = Sn acts by permuting the entries a1, . . . , a2r, b0, b1, . . . , bn−p. Choose tL ⊂ t to be

diag(R(a1,−a1), R(a2,−a2), . . . , R(ar,−ar), 0, b1, . . . , bn−p).

The first factor of WL = (Sr n Zr2)× Sn−p acts on a1, . . . , ar by permutations and sign changes.
Consider

pk =
2r∑
i=1

xki +

n−p∑
j=0

ykj , qk =
r∑
i=1

xki , rk =

n−p∑
i=1

yki .

The rings of invariants are

C[t]W = C[p1, . . . , pn], and C[tL]W (L) = C[q2, q4, . . . , q2r, r1, r2, . . . , rn−p].

The map ρ from (25) is given by (where 1 6 k 6 n)

ρ(pk) = 2qk + rk, for k even, and ρ(pk) = rk, for k odd.

As in case (b), we obtain

H∗(K/L) ∼= (C[q2, . . . , q2r, r1, . . . , rn−p]/I)⊗ (z2m−2r+1, z2m−2r+3, . . . , z2m−1, zn),

where I = (r1, r3, . . . , rn−p−ε, 2q2+r2, 2q4+r4, . . . , 2qn−2+ε+rn−2+ε) and deg zi = 2i−1 (here we
used also the fact that ρ(pn) ∈ I since y0 7→ 0). Now the action of −1 ∈ Z2

∼= O(p,R)/SO(p,R)
leaves all q2k, zi, rj invariant. Thus, H∗(Op) ∼= H∗(K/L)Z2 = H∗(K/L), and the rest of the proof
follows again as in case (b).
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4. The case of m× n matrices

In this section we let X = Cm×n denote the space of m × n complex matrices, endowed with
the natural action of G = GLm×GLn via row and column operations. The coordinate ring S of
X can be identified with the polynomial ring S = C[xij ], where 1 6 i 6 m and 1 6 j 6 n. We
assume that m > n, so the orbits of this action are the sets Op consisting of matrices of rank p,
for p = 0, · · · , n, and their closures are given by

Op =

p⋃
i=0

Oi.

The goal of this section is to prove the following result, which combined with (3) implies part a)
of Theorems 1.1, 1.4, and 1.6.

Theorem 4.1. Suppose that 0 6 p < n 6 m.

(a) The generating function for de Rham cohomology of local cohomology modules is∑
i,j>0

hidR(Hj

Op
(S)) · qi · wj =

p∑
s=0

q(m−s)·(n−s) ·
(
n

s

)
q2
· w(n−p)2+(n−s)·(m−n) ·

(
n− 1− s
p− s

)
w2

.

(b) The Hilbert–Poincaré polynomial for the Borel–Moore homology of the orbit closures is
given by ∑

i>0

hBMi (Op) · qi =

p∑
s=0

q2sm+(p−s)(p−s+2) ·
(
n

s

)
q2
·
(
n− 1− s
p− s

)
q2
.

(c) The Čech–de Rham spectral sequence (7) degenerates at the E2 page, and the maps di in
(4) vanish.

The restriction p < n in Theorem 4.1 is made in order to avoid the trivial case p = n when
On = X (see (1) and (10)). To prove Theorem 4.1 we follow closely the outline described in the
Introduction, and explain the details in Section 4.1. We then consider in Section 4.2 some further
consequences of Theorem 4.1 and discuss the relationship with Lyubeznik numbers.

4.1 The proof of Theorem 4.1

The simple objects in modG(DX) are D0, · · · , Dn, where Dp = L(Op, X) denotes the intersection
homology DX -module corresponding to the trivial local system on the orbit Op (see [Rai16,
Theorem 2.9]). By [LR22, Theorem 4.1] (see also [Zel81, Section 3.3]), the generating function
for the de Rham cohomology of the simples Ds is given by

∑
i>0

hidR(Ds) · qi =

(
n

s

)
q2
· q(m−s)·(n−s). (28)

Moreover, by [RW16, (1.3)], we have for p < n the formal identity∑
j>0

[Hj

Op
(S)] · wj =

p∑
s=0

[Ds] · w(n−p)2+(n−s)·(m−n) ·
(
n− 1− s
p− s

)
w2

. (29)

describing the simple DX -composition factors of the local cohomology modules Hj

Op
(S). Com-

bining (28) with (29), and using the fact that de Rham cohomology is subadditive in short exact
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sequences, we obtain the inequality∑
i,j>0

hidR(Hj

Op
(S)) · qi ·wj 6

p∑
s=0

q(m−s)·(n−s) ·
(
n

s

)
q2
·w(n−p)2+(n−s)·(m−n) ·

(
n− 1− s
p− s

)
w2

. (30)

Remark 4.2. In the case when m > n, the category modG(DX) is semi-simple by [LW19, Theorem
5.4], hence (29) encodes a direct sum decomposition of local cohomology modules into a sum of
simples. Taking de Rham cohomology is therefore additive, and we get that (30) is an equality.
This argument however fails in the case m = n when the groups Hj

Op
(S) are no longer direct

sums of simple modules (see Section 4.2 below).

We define Np, p < n, to be the specialization of the right side of (30) to q = w = 1, namely

Np =

p∑
s=0

(
n

s

)
·
(
n− 1− s
p− s

)
, (31)

and observe that specializing the left side of (30) to q = w = 1 we get

ρtot(Op) 6 Np.

Lemma 4.3. We have for p < n that (16) holds.

Proof. Since p < n, we have that

Np +Np−1 =

p∑
s=0

(
n

s

)
·
(
n− 1− s
p− s

)
+

p−1∑
s=0

(
n

s

)
·
(
n− 1− s
p− 1− s

)

=

p∑
s=0

(
n

s

)
·
(
n− s
p− s

)
=

p∑
s=0

(
n

p

)
·
(
p

s

)
=

(
n

p

)
· 2p.

The desired conclusion now follows from Theorem 3.2(a).

As explained in the Introduction, the equality (16) implies the degeneration of the spectral
sequence (7) (for both Op and Op−1), and the vanishing of the maps di in (4), hence Theo-
rem 4.1(c) holds. Moreover, (16) also implies that (30) is an equality, proving Theorem 4.1(a).
The degeneration of (7), together with the fact that dX = mn, implies that∑

k>0

hBMk (Op) · q2mn−k =
∑
i,j>0

hidR(Hj

Op
(S)) · qi+j

is obtained by specializing the equality in part (a) to w = q. Making the change of variable
q → q−1 and multiplying by q2mn we get∑

k>0

hBMk (Op) · qk =

p∑
s=0

q2mn−(m−s)·(n−s)−(n−p)
2−(n−s)·(m−n) ·

(
n

s

)
q−2

·
(
n− 1− s
p− s

)
q−2

,

and Theorem 4.1(b) now follows using the identity (3).

4.2 Comparison with Lyubeznik numbers

As explained in Remark 4.2, when m 6= n, the category modG(DX) is semisimple, yielding to
a simpler argument for obtaining the Čech–de Rham numbers. Since F(Dp) ∼= Dn−p (e.g. see
[Rai16, Remark 1.5]), by (17) the Čech–de Rham numbers are determined completely by the
Lyubeznik numbers, and vice-versa (up to relabeling).
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From now on we assume that m = n, when the situation is more interesting since modG(DX)
is no longer semisimple. Nevertheless, when p < n the D-module Hj

Op
(S) can be written as a

direct sum of the indecomposable D-modules Q0, Q1, . . . , Qp [LR20, Theorem 1.6], with

Qn = Sdet, Qp =
Sdet

〈detp−n+1〉D
(0 6 p 6 n− 1),

where Sdet denotes the localization of S at the determinant, and 〈detp−n+1〉D is the D-submodule
generated by detp−n+1. Note that Q0 = D0 and for 1 6 p 6 n, we have the short exact sequences
(cf. [LR20])

0 −→ Dp −→ Qp −→ Qp−1 −→ 0. (32)

The short exact sequence (32) is not split in the category of D-modules, but it is split in the
category of rational G-representations. We obtain a decomposition of Qp as a G-representation

Qp =

p⊕
s=0

Qsp, (33)

where Qsp ' Ds. As a rational G-representation, the decomposition of Dp is given in [RW14,
Theorem 6.1], [RW16, Main Theorem(1)], or [Rai17, Theorem 5.1]. We fix our conventions as
follows. Let V1, V2 be vector spaces, dim(Vi) = n, let S = Sym(V1 ⊗ V2), and identify X =
Spec(S) = V ∨1 ⊗V ∨2 ∼= Cm×n with the action of the group G = GL(V1)×GL(V2) as before. Then

Dp =
⊕

λ∈W (p)

SλV1 ⊗ SλV2, (34)

where

W (p) = {λ ∈ Zndom : λp > p− n > λp+1}.

Lemma 4.4. If ∂ ∈ V ∨1 ⊗ V ∨2 is a derivation and z ∈ Qsp then ∂(z) ∈ Qsp.

Proof. Without loss of generality, we may assume that z belongs to an isotypic component
SλV1⊗ SλV2, where λ ∈W (s). Since ∂ ∈ V ∨1 ⊗ V ∨2 , it follows from Pieri’s rule [Wey03, Corollary
2.3.5] and the fact that Qp is closed under the action of ∂, that

∂(z) =
∑
ν

zν ,

where for each ν we have that zν ∈ SνV1⊗ SνV2 for ν ∈W (t) with t 6 p, and ν is obtained from
λ by removing one box, i.e. there exists an index 1 6 r 6 n such that

νi = λi for i 6= r, and νr = λr − 1.

Since z ∈ ker(Qp � Qs−1) it follows that s 6 t 6 p. There are two possibilities:

– r 6= s. Then νs = λs > s−n, and νs+1 6 λs+1 6 s−n. So ν ∈W (s), which means zν ∈ Qsp.
– r = s. If λs > s − n then νs > s − n and zν ∈ Qsp. If λs = s − n then νs = s − n − 1, so
ν 6∈W (s). It follows that ν ∈W (t) for some t > s. However, this implies that

t− n 6 νt 6 νs = s− n− 1,

which yields t < s, a contradiction.

The significance of Lemma 4.4 is that the non-split exact sequence of D-modules (32) does
split in the category of (G-equivariant) C[∂ij ]-modules.
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Corollary 4.5. As C[∂ij ]-modules, we have Qp ∼=
⊕p

s=0Ds.

Proof. As Dp is a D-submodule of Qp, it is also a (G,C[∂ij ])-submodule. We consider the G-
complement M of Dp in Qp, which is unique since Qp is a multiplicity-free G-representation. We

get from (33) that M is isomorphic as a G-module to
⊕p−1

s=0 Q
s
p. By Lemma 4.4, M is a C[∂ij ]-

module, and therefore also a (G,C[∂ij ])-module. We get that in the category of (G,C[∂ij ])-
modules Qp ∼= Dp

⊕
M , the exact sequence (32) splits, and M is isomorphic to Qp−1. The

conclusion follows by induction on p.

Since the differentials (18) in the de Rham complex use only the C[∂ij ]-module structure of
a D-module, the following is an immediate consequence of Corollary 4.5.

Corollary 4.6. We have a decomposition of complexes

DR(Qp) =

p⊕
s=0

DR(Ds).

In particular,

H i
dR(Qp) =

p⊕
s=0

H i
dR(Ds).

Remark 4.7. In the case p = n the de Rham cohomology of Qn = Sdet coincides with the
singular cohomology of the complement On of the hypersurface det = 0, and that of Ds yields
intersection cohomology. Reinterpreting the result above in topological terms yields the following
formula (here cs = codimX Os):

H i(On,C) =
n∑
s=0

IH i−cs(Os), for all i > 0.

Remark 4.8. We end this subsection by concluding that the Čech–de Rham numbers only depend
on the class of the local cohomology modules in the Grothendieck group of modG(DX), whose
description is uniform for the square and non-square cases. This is in contrast to the case of
Lyubeznik numbers, where the formulas in the square case are different from the ones in the
non-square case (see [LR20, Theorems 1.3 and 1.5]). The explanation in the case of Lyubeznik
numbers comes from the fact that the sequence (32) is not split in the category of S-modules.
However, the sequence is split in the category of C[∂ij ]-modules, which is why the results on de
Rham cohomology are uniform.

4.3 Mixed Hodge structure on cohomology and Borel–Moore homology

In this section we compute the Hodge numbers of H i(Op) and HBM
i (Op). This is based on the

knowledge of the weight filtration on H i
Op

(OHX ) by [Per21, Theorem 1.1], and the degeneration of

the spectral sequence in Proposition 2.1 by Theorem 4.1 (c). We first record the following result
on intersection cohomology.

Lemma 4.9. For all i, p > 0, we have an isomorphism as mixed Hodge structures

IH i(Op) ∼= H i(Grass(p, n)).

In particular, IH i(Op) has a pure Hodge structure of weight i, and its Hodge numbers are
concentrated on the diagonal.

19
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Proof. By [Zel81, Section 3.3], there is a small resolution of singularities Z → Op, such that Z
is the total space of a vector bundle over Grass(p, n). This implies that we have an isomorphism
of mixed Hodge structures IH i(Op) ∼= H i(Z), for every i > 0 (see [HTT08, Proposition 8.2.30]).
Since the Serre spectral sequence corresponding to the fibration π : Z → Grass(p, n) degenerates,
the pullback via π induces isomorphisms H i(Z) ∼= H i(Grass(r, n)) of mixed Hodge structures,
for all i, thus proving the first claim. As Grass(p, n) is a smooth projective variety, this shows
that IH i(Op) has a pure Hodge structure of weight i. The claim regarding the Hodge numbers
follows from [Ful98, Example 19.1.11].

Next, we record the Hodge numbers on de Rham cohomology of local cohomology.

Theorem 4.10. The following trivariate generating function records the weight filtration on the
mixed Hodge structure of H i

dR(Hj

Op
(OHX )):∑

i,j,t>0

dimC GrWk H
i
dR(Hj

Op
(OHX )) · qiwjtk =

p∑
s=0

tp−s · (qt)(m−s)·(n−s) ·
(
n

s

)
(qt)2
· (wt)(n−p)2+(n−s)·(m−n) ·

(
n− 1− s
p− s

)
(wt)2
.

Moreover, the Hodge numbers of H i
dR(Hj

Op
(OHX )) are concentrated on the diagonal for all i, j > 0.

Proof. We write DH
p for the pure Hodge module of weight dOp corresponding to the intersection

cohomology sheaf of Op, isomorphic to L(Op, X) = Dp as D-modules. By the discussion in
Sections 2.1 and 2.2, we have isomorphisms of mixed Hodge structures

H i
dR(DH

p ) ∼= IH i−cp(Op). (35)

As seen in Section 4.1, the de Rham cohomology of Hj

Op
(S) is equal to the direct sum of

the de Rham cohomology of its D-module composition factors. By [Per21, Theorem 3.1], each of
these factors Ds carries the mixed Hodge module structure DH

s (dOs +s−mn−p− j), as a factor
of Hj

Op
(OHX ). Due to the additivity of Hodge numbers, by (35) each factor Ds thus contributes

with the Hodge numbers of IH i−cs(Op)((dOS
+ s−mn− p− j)/2). In particular, by Lemma 4.9

all of these are concentrated on the diagonal, and the contribution of the de Rham cohomology
of a factor Ds to H i

dR(Hj

Op
(OHX )) can occur only in weight p−s+i+j. Taking these into account,

the combination of (28) and (29) readily gives the desired formula.

Proof of Theorem 1.7. By Theorem 4.1 (c), we know that the spectral sequence of mixed Hodge
modules in Proposition 2.1 degenerates at the E2 page. As we did at the end of Section 4.1,
we readily recover the first formula in Theorem 1.7 from Theorem 4.10 by: specializing w 7→ q,
making a change of variable q 7→ q−1, multiplying by q2mn, putting t 7→ w, using (3), and taking
into account the Tate twist. The claim on the Hodge numbers also follows from Theorem 4.10.

Now we show the second formula in Theorem 1.7. By Theorem 4.1 (c) and [PS08, Corollary
2.26], for all i we have an exact sequence of mixed Hodge structures

0→ HBM
i (Op)→ H2dOp−i(Op)(dOp)→ HBM

i−1 (Op−1)→ 0.

From the first part, it follows readily that the Hodge numbers of H i(Op) are also concentrated
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on the diagonal, for all i. Using the first formula in Theorem 1.7, we have (putting t = qw−1)

dimC GrWj H2dOp−i(Op)(dOp) · qiwj =

p∑
s=0

wp−st2sm+(p−s)(p−s+2)

(
n

s

)
t2

(
n− 1− s
p− s

)
t2

+

+

p−1∑
s=0

q · wp−1−st2sm+(p−s−1)(p−s+1)

(
n

s

)
t2

(
n− 1− s
p− 1− s

)
t2

=

=

p∑
s=0

wp−s · t2sm+(p−s)2
(
n

s

)
t2
·
[
t2(p−s)

(
n− 1− s
p− s

)
t2

+

(
n− 1− s
p− 1− s

)
t2

]
.

Using the following identities(
a

b

)
q

= qb ·
(
a− 1

b

)
q

+

(
a− 1

b− 1

)
q

, and

(
a

b

)
q

(
a− b
c− b

)
q

=

(
a

c

)
q

(
c

b

)
q

,

we obtain (after putting s 7→ p− s)

dimC GrWj H2dOp−i(Op)(dOp) · qiwj =

(
n

p

)
t2
·

p∑
s=0

ws · ts2+2(p−s)m ·
(
p

s

)
t2
.

Using the Gaussian binomial theorem

n−1∏
k=0

(1 + akb) =
n∑
k=0

ak(k−1)/2
(
n

k

)
a

· bk,

we obtain by putting a = t2 and b = w · t1−2m

dimC GrWj H2dOp−i(Op)(dOp) · qiwj = t2pm ·
(
n

p

)
t2
·
p−1∏
s=0

(1 + t2s+1−2mw).

We replace q 7→ q−1, let u = qw, and multiply both sides with u2dOp (recall dOp = p(m+n− p)),
to get

dimC GrWj H i(Op) · qiwj = u2p(n−p) ·
(
n

p

)
u−2

·
p−1∏
s=0

(1 + u2m−2s−1w),

which, after using (3), yields the result.

Remark 4.11. Let CHi(Op) denote the Chow groups of Op. The determinantal varieties Op are
known to be spherical, hence, by a result of Totaro [Tot14, Theorem 3], the natural cycle map

CHi(Op)⊗ C −→W−2iH
BM
2i (Op)

is an isomorphism. Therefore, we recover the (rational) Chow groups computed in [Pra88, Sec-
tion 4] from the first formula in Theorem 1.7. More precisely, the summand with s = p in the
latter yields exactly the lowest piece of the filtration W−2iH

BM
2i (Op). Based on this circle of

ideas, a conceptual reason as to why the dimension of this agrees with that of the intersection
cohomology of Op (computed in [Zel81, Section 3.3]) would go as follows: in the spectral sequence
from Proposition 2.1, the only D-module composition factor contributing to the lowest pieces
W−2iH

BM
2i (Op) is Dp (appearing in Hj

Op
(OX) only when j = cp, in which case it does so once),

whose de Rham cohomology in turn yields the intersection cohomology groups of Op.
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As mentioned in the Introduction, the degeneration of the Čech–de Rham spectral sequence
is an open problem in general. We end this section by illustrating that even with the prior
knowledge of all the terms on its second page, one can not conclude that the spectral sequence
degenerates for weight reasons alone.

Example 4.12. Take m = n = 4 and p = 2 in Theorem 4.10, and consider for this case the third
page of the Čech–de Rham spectral sequence from Proposition 2.1. Then we obtain a differential

C = GrW16 H
12
dRH

4
O2

(OHX ) −→ GrW16 H
9
dRH

6
O2

(OHX ) = C.

Hence, this map is between non-trivial spaces of the same weight. We know, a posteriori, that
this is zero due to Theorem 4.1 (c).

5. The case of skew-symmetric matrices

In this section we let X =
∧2Cn denote the space of n × n skew-symmetric matrices, endowed

with the natural action of G = GLn. We let m = bn/2c and denote the G-orbits by Op as before,
where now Op consists of skew-symmetric matrices of rank 2p, 0 6 p 6 m. The goal of this section
is to prove the following result, which combined with (3) implies part b) of Theorems 1.1, 1.4,
and 1.6 (as before, we disregard the case p = m when Op = X).

Theorem 5.1. Suppose that 0 6 p < m = bn/2c, and let ε = n− 2m.

(a) The generating function for de Rham cohomology of local cohomology modules is∑
i,j>0

hidR(Hj

Op
(S)) · qi · wj =

p∑
s=0

q(
n
2)−s(2n−2s−1) ·

(
m

s

)
q4
· w2(m−p)2+p−m+2ε(m−s) ·

(
m− 1− s
p− s

)
w4

.

(b) The Hilbert–Poincaré polynomial for the Borel–Moore homology of the orbit closures is
given by∑

i>0

hBMi (Op) · qi =

p∑
s=0

q2s(n+ε−1)+(p−s)(2p−2s+3) ·
(
m

s

)
q4
·
(
m− 1− s
p− s

)
q4
.

(c) The Čech–de Rham spectral sequence (7) degenerates at the E2 page, and the maps di in
(4) vanish.

5.1 The proof of Theorem 5.1

The simple objects in modG(DX) are the intersection homology DX -modules Dp = L(Op, X).
By [LR22, Theorem 6.1], the generating function for the de Rham cohomology of the simples Ds

is given by

∑
i>0

hidR(Ds) · qi =

(
m

s

)
q4
· q(

n
2)−s(2n−2s−1). (36)

Moreover, by [RW16, (1.4)], we have for p < m the formal identity∑
j>0

[Hj

Op
(S)] · wj =

p∑
s=0

[Ds] · w2(m−p)2+p−m+2ε(m−s) ·
(
m− 1− s
p− s

)
w4

. (37)
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describing the simple DX -composition factors of the local cohomology modules Hj

Op
(S). Com-

bining (36) with (37) we obtain the inequality∑
i,j>0

hidR(Hj

Op
(S)) ·qi ·wj 6

p∑
s=0

q(
n
2)−s(2n−2s−1) ·

(
m

s

)
q4
·w2(m−p)2+p−m+2ε(m−s) ·

(
m− 1− s
p− s

)
w4

.

(38)
Specializing to q = w = 1, we obtain

ρtot(Op) 6 Np :=

p∑
s=0

(
m

s

)
·
(
m− 1− s
p− s

)
.

Using the proof of Lemma 4.3 (with n replaced by m, and part (a) of Theorem 3.2 replaced by
part (b)), we get (16), and conclude that (7) degenerates and that the maps di in (4) vanish.
Moreover, (38) is an equality, and by specializing it to w = q and using the degeneration of (7)
and dim(X) =

(
n
2

)
, we get∑

k>0

hBMk (Op) · qn(n−1)−k =
∑
i,j>0

hidR(Hj

Op
(S)) · qi+j .

Making the change of variable q → q−1, multiplying by qn(n−1), and using (3), we get Theo-
rem 5.1(b).

5.2 Comparison with Lyubeznik numbers

The contrast between the Čech-de Rham and Lyubeznik numbers is completely analogous to the
discussion in Section 4.2, and we explain this here briefly. When n is odd, the category modG(DX)
is semisimple [LW19, Theorem 5.7], which gives a more direct argument for the inequality in (38)
being an equality. Since F(Dp) ∼= Dm−p (e.g. see [Rai16, Remark 1.5]), the Čech–de Rham and
Lyubeznik numbers completely determine each other using (17).

We will therefore assume from now on that n = 2m is even, when modG(DX) is no longer
semisimple [LW19, Theorem 5.7]. When p < m the D-module Hj

Op
(S) can be written as a direct

sum of copies of the indecomposable D-modules Q0, Q1, . . . , Qp by [Per20, Theorem 1.1], which
are given by

Qm = SPf , Qp =
SPf

〈Pf2(p−m+1)〉
(0 6 p 6 m− 1),

where SPf denotes the localization of S at the Pfaffian. Note that Q0 = D0 and for 1 6 p 6 m,
we have the the non-split short exact sequences of D-modules

0 −→ Dp −→ Qp −→ Qp−1 −→ 0. (39)

We have a decomposition of Qp as a G-representation

Qp =

p⊕
s=0

Qsp,

where Qsp ' Ds. As a rational G-module, the decomposition of Dp is given in [Rai16, Section 6].

Our conventions are as follows: let S = Sym(
∧2 V ) with dimV = n, and identify X = Spec(S) =∧2 V ∨ endowed with the action of G = GL(V ). Then

Dp =
⊕

λ∈B(p)

SλV, (40)
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where

B(p) = {λ ∈ Zndom : λ2p > 2p− n, λ2p+1 6 2p− n+ 1, and λ2i−1 = λ2i for all i}. (41)

The next two results follow analogously to Lemma 4.4 and Corollary 4.6.

Lemma 5.2. If ∂ ∈
∧2 V ∨ is a derivation and z ∈ Qsp then ∂(z) ∈ Qsp.

Proof. We may assume that z belongs to an isotypic component SλV , where λ ∈ B(s). Since
∂ ∈

∧2 V ∨, it follows from Pieri’s rule [Wey03, Corollary 2.3.5] and the fact that Qp is closed
under the action of ∂, that

∂(z) =
∑
ν

zν ,

where for each ν we have that zν ∈ SνV for ν ∈ B(t) with t 6 p, and ν is obtained from λ by
removing two boxes from the same column, i.e. there exists r with 1 6 r 6 m such that

ν2i−1 = ν2i = λ2i−1 = λ2i for i 6= r, and ν2r−1 = ν2r = λ2r−1 − 1 = λ2r − 1.

Since z ∈ ker(Qp � Qs−1) it follows that s 6 t 6 p. We consider two cases:

– r 6= s. Then ν2s = λ2s > 2s− n, and ν2s+1 6 λ2s+1 6 2s− n+ 1. So ν ∈ B(s) and zν ∈ Qsp.
– r = s. If λ2s > 2s− n then ν2s > 2s− n and zν ∈ Qsp. If λ2s = 2s− n then ν2s = 2s− n− 1,

so ν 6∈ B(s). Thus, we must have ν ∈ B(t) for some t > s. However, this implies that

2t− n 6 ν2t 6 ν2s = 2s− n− 1,

which yields t < s, a contradiction.

Thus, the non-split exact sequence of D-modules (39) splits as C[∂ij ]-modules.

Corollary 5.3. We have a decomposition of complexes

DR(Qp) =

p⊕
s=0

DR(Ds).

In particular,

H i
dR(Qp) =

p⊕
s=0

H i
dR(Ds).

We note that the analogues of Remarks 4.7 and 4.8 hold in the Pfaffian setting as well.

6. The case of symmetric matrices

In this section we let X = Sym2Cn denote the space of n × n symmetric matrices, endowed
with the natural action of G = GLn. The orbits of the G-action on X are denoted by Op, where
Op consists of symmetric matrices of rank p, 0 6 p 6 n. The goal of this section is to prove
the following result, which combined with (3) implies part c) of Theorems 1.1, 1.4, and 1.6 (as
before, we disregard the case p = n when Op = X).

Theorem 6.1. Suppose that 0 6 p < n, let m = bn/2c, and define

εp =

{
1 if p is even and n = 2m+ 1 is odd;

0 otherwise.
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(a) The generating function for de Rham cohomology of local cohomology modules is∑
i,j>0

hidR(Hj

Op
(S)) · qi · wj =

p∑
s=0

s≡p (mod 2)

q(
n−s+1

2 ) ·
(
m+ εp
b s2c

)
q4
· w1+(n−s+1

2 )−(p−s+2
2 ) ·

(bn−s−12 c
p−s
2

)
w−4

.

(b) The Hilbert–Poincaré polynomial for the Borel–Moore homology of the orbit closures is
given by∑

i>0

hBMi (Op) · qi =

p∑
s=0

s≡p (mod 2)

q2(
n+1
2 )+(p−s+2

2 )−2(n−s+1
2 )−1 ·

(
m+ εp
b s2c

)
q−4

·
(bn−s−12 c

p−s
2

)
q4

.

(c) The Čech–de Rham spectral sequence (7) degenerates at the E2 page, and the maps di in
(4) vanish if n− p is even or if p = 1.

6.1 The proof of Theorem 6.1

For p with 0 6 p 6 n, we let Dp = L(Op, X) denote the intersection homology D-module
corresponding to the trivial local system on the orbit Op. Unlike in the case of general and skew-
symmetric matrices, modG(DX) contains other simple modules (see [Rai16, Theorem 2.9]), but
they do not contribute to the local cohomology groups Hj

Op
(S). Indeed, by [RW16, (1.5)], the

composition series of local cohomology modules is encoded for p < n by∑
j>0

[Hj

Op
(S)] · wj =

p∑
s=0

s≡p (mod 2)

[Ds] · w1+(n−s+1
2 )−(p−s+2

2 ) ·
(bn−s−12 c

p−s
2

)
w−4

. (42)

Moreover, by [LR22, Theorem 5.1] we have∑
i>0

hidR(Ds) · qi =

(
m+ εs
b s2c

)
q4
· q(

n−s+1
2 ), (43)

which combined with (42) yields (note that εp = εs when s ≡ p (mod 2))∑
i,j>0

hidR(Hj

Op
(S)) · qi ·wj 6

p∑
s=0

s≡p (mod 2)

q(
n−s+1

2 ) ·
(
m+ εp
b s2c

)
q4
·w1+(n−s+1

2 )−(p−s+2
2 ) ·

(bn−s−12 c
p−s
2

)
w−4

.

(44)
Specializing to q = w = 1, we obtain

ρtot(Op) 6 Np :=

p∑
s=0

s≡p (mod 2)

(
m+ εp
b s2c

)
·
(bn−s−12 c

p−s
2

)
.

It will be useful to extend the above formulas to p = n, where

Nn := ρtot(On) = ρtot(X)
(10)
= 1.

Lemma 6.2. If p 6 n and n− p is even, or if p = 1, then (16) holds.

Proof. Suppose first that p = 1, and note that N1 = N0 = 1. By Theorem 3.2(c) we have
btot(O1) = 2, hence (16) holds. We therefore assume from now on that n− 2p is even.

25
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Suppose first that p < n. If n = 2m and p = 2r are even, then we have (putting t = bs/2c)

Np +Np−1 =
r∑
t=0

(
m

t

)
·
(
m− t− 1

r − t

)
+

r−1∑
t=0

(
m

t

)
·
(
m− t− 1

r − t− 1

)
=

(
m

r

)
· 2r, (45)

where the last equality follows from the identity in the proof of Lemma 4.3. The equality (16)
now follows from Theorem 3.2(c).

If n = 2m+ 1 and p = 2r + 1 are odd then we have

Np +Np−1 =

r∑
t=0

(
m

t

)
·
(
m− t− 1

r − t

)
+

r∑
t=0

(
m+ 1

t

)
·
(
m− t
r − t

)
.

Using the fact that
(
m+1
t

)
=
(
m
t

)
+
(
m
t−1
)

and the second equality in (45), we conclude that

Np +Np−1 =

(
m

r

)
· 2r +

r∑
t=0

(
m

t

)
·
(
m− t
r − t

)
=

(
m

r

)
· 2r +

r∑
t=0

(
m

r

)
·
(
r

t

)
=

(
m

r

)
· 2r +

(
m

r

)
· 2r =

(
m

r

)
· 2r+1.

The equality (16) follows again from Theorem 3.2(c).

Finally, assume that p = n, so that Np = 1. If n = 2m then

Np−1 = Nn−1 =
m−1∑
t=0

(
m

t

)
= 2m − 1,

hence Np +Np−1 = 2m = btot(On). If n = 2m+ 1 then

Np−1 = Nn−1 =
m∑
t=0

(
m+ 1

t

)
= 2m+1 − 1,

hence Np +Np−1 = 2m+1 = btot(On), concluding our proof.

Since the equality (16) implies the degeneration of the spectral sequence (7) for both Op and
Op−1, it follows that in order to prove (7) degenerates for all p it suffices to prove that (16)
holds for every other value of p. This is indeed the case by Lemma 6.2, hence the first part of
Theorem 42(c) holds. It also follows from Lemma 6.2 that (5) is an equality when p = 1 or n− p
is even, hence as explained in the Introduction, the last conclusion of Theorem 42(c) holds. Parts
(a) and (b) of Theorem 42 now follow from the fact that (44) must be an equality, as in the case
of general and skew-symmetric matrices.

6.2 De Rham cohomology for the modules Qp

As mentioned in the Introduction, unlike for general and skew-symmetric matrices, the Lyubeznik
numbers of Op are unknown in the symmetric case. Furthermore, the explicit D-module decom-
position of the local cohomology modules H i

Op
(S) is also not known in general. Nevertheless,

we mention some partial results to this end, that lead naturally to the consideration of certain
D-modules Qp analogous to the ones considered in Sections 4.2 and 5.2.

Due to (42) and [LW19, Theorem 5.9], when n − p is even (0 6 p < n), the D-modules
H i
Op

(S) are semisimple. In particular, this readily proves in this case that equality holds in (44).

Additionally, if n is even (so p is also even), then F(Dp) ∼= Dn−p by [Rai16, Remark 1.5], hence
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the Čech-de Rham numbers of Op yield the Lyubeznik numbers of On−p by (17). On the other
hand, if n is odd (so p is also odd) then F(Dp) is a simple equivariant D-module corresponding
to a non-trivial local system of an orbit [Rai16, Remark 1.5], thus we do not obtain Lyubeznik
numbers in this way.

From now on we assume that n− p is odd. We write S for the coordinate ring of X, and in
order to make the formulas below uniform, we set Dn+1 := S. For 0 6 p 6 n + 1 (with n − p
odd) we consider the following indecomposables Qp ∈ modG(DX) (cf. [LW19, Section 5.3]):

Qn+1 = Ssdet, Qp =
Ssdet

〈sdet(p−n+1)/2〉
(0 6 p 6 n− 1),

where Ssdet denotes the localization of S at the symmetric determinant. We have short exact
sequences

0 −→ Dp −→ Qp −→ Qp−2 −→ 0. (46)

We note that for p < n (with n−p odd) the D-modules H i
Op

(S) are not semisimple in general. In

fact, by [LW19, Lemma 3.11] (see also [LRW19, Lemma 2.4]) and [LW19, Theorem 5.9], we have

H
codimX Op

Op
(S) ∼= Qp. Based on empirical evidence, and on the case of general and skew-symmetric

matrices, we conjecture that all the D-modules H i
Op

(S) are direct sums of the indecomposables

Qs, with s 6 p and s ≡ p (mod 2).

As in Sections 4.2 and 5.2, we now show that the non-split exact sequence of D-modules (46)
splits in the category of C[∂ij ]-modules, which via de Rham cohomology gives further indication
for the validity of the conjecture due to the fact that equality holds in (44).

We write S = Sym(Sym2 V ), so that X = Spec(S) = Sym2 V ∨, with dimV = n. We consider
the decomposition of the simple D-modules Dp as a direct sum of irreducible G-representations,
which is given in [Rai16, Theorem 4.1]. For 0 6 p 6 n+ 1 (with n− p odd), we have

Dp =
⊕
λ∈C(p)

SλV (47)

where

C(p) = {λ ∈ Zndom : λi
(mod 2)
≡ 0 for i = 1, · · · , n, λp−1 > p− n− 1 > λp+1}.

We have a decomposition of Qp as a G-representation

Qp =

p⊕
s=0

s≡p (mod 2)

Qsp,

where Qsp ' Ds. The next two results are the analogues of Lemma 4.4 and Corollary 4.6.

Lemma 6.3. If ∂ ∈ Sym2 V ∨ is a derivation and z ∈ Qsp then ∂(z) ∈ Qsp.

Proof. We can assume that z belongs to an isotypic component SλV , with λ ∈ C(s). As ∂ ∈
Sym2 V ∨, it follows from Pieri’s rule [Wey03, Corollary 2.3.5] and the fact that Qp is closed
under the action of ∂, that

∂(z) =
∑
ν

zν ,

where for each ν we have that zν ∈ SνV for ν ∈ C(t) with t 6 p and t ≡ p (mod 2), and ν is
obtained from λ by removing two boxes from the same row, i.e. there exists r with 1 6 r 6 n
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such that

νi = λi for i 6= r, and νr = λr − 2.

Since z ∈ ker(Qp � Qs−2) it follows that s 6 t 6 p. We have two cases:

– r 6= s − 1. Then νs−1 = λs−1 > s − n − 1, and νs+1 6 λs+1 6 s − n − 1. So ν ∈ C(s) and
zν ∈ Qsp.

– r = s − 1. If λs−1 > s − n− 1 (and so > s − n + 1) then νs−1 > s − n− 1 and zν ∈ Qsp. If
λs−1 = s− n− 1 then νs−1 = s− n− 3, so ν 6∈ C(s). Thus, we must have ν ∈ C(t) for some
t > s. However, then

t− n− 1 6 νt−1 6 νs−1 = s− n− 3,

which yields t < s, a contradiction.

Corollary 6.4. We have a decomposition of complexes

DR(Qp) =

p⊕
s=0

s≡p (mod 2)

DR(Ds).

In particular,

H i
dR(Qp) =

p⊕
s=0

s≡p (mod 2)

H i
dR(Ds).

Note that the analogue of Remark 4.7 holds in the symmetric setting as well.

7. A related spectral sequence

There is a spectral sequence similar to (7) involving singular cohomology and the local cohomol-
ogy modules H i

Op
(OX), which also degenerates for most of our matrix orbits Op.

First, consider the more general setting when X is an affine space, and Z ⊂ X a locally closed
irreducible smooth subvariety. Consider the D-module pushforward of the structure sheaf OZ via
the map Z → {pt}, which yields singular cohomology (see Introduction). If we factor this map
as the composition Z → X \ {Z \ Z} → X → {pt}, we obtain the following spectral sequence of
D-modules (cf. [HTT08, Proposition 1.7.1])

Eij2 = H i
dR(Hj

Z(OX)) =⇒ H i+j−2c(Z), (48)

where c = codimX Z. Naturally, this can also be viewed as a spectral sequence of mixed Hodge
modules, as we did for the Čech–de Rham spectral sequence in Section 2.2.

Proposition 7.1. With the notation above, assume that the Čech–de Rham spectral sequence

Eij2 = H i
dR(Hj

Y (OX)) =⇒ HBM
2dX−i−j(Y )

degenerates on the second page for Y = Z and Y = Z \ Z, and that the following maps di are
zero for all i:

· · · −→ HBM
i (Z \ Z)

di−→ HBM
i (Z) −→ H2 dimZ−i(Z) −→ HBM

i−1 (Z \ Z)
di−1−→ HBM

i−1 (Z) −→ · · ·

Then the spectral sequence (48) also degenerates on the second page, and we have for all i, j > 0

hidR(Hj
Z(OX)) = hidR(Hj

Z
(OX)) + hidR(Hj+1

Z\Z(OX)).
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Proof. Consider the long exact sequence in local cohomology corresponding to the inclusion
Z ⊂ Z:

· · · → H i
Z\Z(OX)

di−→ H i
Z

(OX)→ H i
Z(OX)→ H i+1

Z\Z(OX)
di+1

−−−→ H i+1
Z

(OX)→ · · · (49)

In particular, we have for all i, j > 0

hidR(Hj
Z(OX)) 6 hidR(Hj

Z
(OX)) + hidR(Hj+1

Z\Z(OX)).

Summing these up for all i, j, the spectral sequence (48) together with the degeneration of the
two Čech-de Rham spectral sequences gives

btot(Z) 6 bBMtot (Z) + bBMtot (Z \ Z).

Now the vanishing of the maps di implies that equality holds in all of the above inequalities (cf.
also (14)), and that the spectral sequence (48) degenerates as claimed.

In the case of our matrix orbits Op, Proposition 7.1 together with Theorems 1.4 and 1.6
readily yields the following result.

Corollary 7.2. When Z = Op, the spectral sequence (48) degenerates on the second page in
all of the cases from Theorem 1.4.

While the claim about the de Rham cohomology of H i
Op

(OX) from Proposition 7.1 is also
valid in the cases above, we can show a sharper claim about these local cohomology modules as
follows.

Due to parity reasons, we see from the formulas (29), (37), and (42) that the D-modules
H i
Op−1

(OX) and H i
Op

(OX) have no common composition factors. Thus, the maps di in (49)

(with Z = Op) are all zero, and the long exact sequence breaks up into short exact sequences

0→ H i
Op

(OX)→ H i
Op

(OX)→ H i+1
Op−1

(OX)→ 0.

We claim that these exact sequences of equivariant D-modules split. For the case of general
matrices, this follows from [LR20, Theorem 6.1 and Lemma 6.5] and [LW19, Theorem 5.4], for
skew-symmetric matrices from [Per20, Theorem 1.1] and [LW19, Theorem 5.7], and for symmetric
matrices due to parity reasons by the formula (42) and [LW19, Theorem 5.9]. Hence, for all i > 0
and p > 1 we have (as DX -modules)

H i
Op

(OX) ∼= H i
Op

(OX)⊕H i+1
Op−1

(OX), (50)

which is much stronger than the second claim in Proposition 7.1.
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