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ABSTRACT

We compute the rational Borel-Moore homology groups for affine determinantal va-
rieties in the spaces of general, symmetric, and skew-symmetric matrices, solving a
problem suggested by the work of Pragacz and Ratajski. The main ingredient is the
relation with Hartshorne’s algebraic de Rham homology theory, and the calculation of
the singular cohomology of matrix orbits, using the methods of Cartan and Borel. We
also establish the degeneration of the Cech-de Rham spectral sequence for determinan-
tal varieties, and compute explicitly the dimensions of de Rham cohomology groups
of local cohomology with determinantal support, which are analogues of Lyubeznik
numbers first introduced by Switala. Additionally, in the case of general matrices we
further determine the Hodge numbers of the singular cohomology of matrix orbits and
of the Borel-Moore homology of their closures, based on Saito’s theory of mixed Hodge
modules.

1. Introduction

For an affine determinantal variety, it is well-known that both intersection homology and Chow
homology are concentrated in even degrees, and the first calculations of these groups appear in
work of Zelevinskii [Zel81, Section 3.3] and Pragacz [Pra88, Section 4]. By contrast, it was ob-
served by Pragacz and Ratajski [PR96, Remark 2.4] that Borel-Moore homology can be nonzero
in odd degrees, and hence that an explicit calculation of the groups is likely to be more subtle.
The goal of this note is to completely determine the ranks of the Borel-Moore homology groups
for determinantal varieties of general, symmetric and skew-symmetric matrices. Our approach
combines classical methods for computing singular cohomology of homogeneous spaces, going
back to the work of Cartan and Borel in the 50s, with the description of Borel-Moore homology
via the algebraic de Rham homology theory introduced by Hartshorne in [Har75]. We obtain in
addition several results of independent interest:

— We establish the degeneration of the Cech-de Rham spectral sequence for determinantal
(general, symmetric, and skew-symmetric) varieties. Such a degeneration statement is also
known to hold for complete intersections by work of Hartshorne-Polini [HP21], as well as
for subspace arrangements and in small dimensions by work of Reichelt—Walther—Zhang
[RWZ22], but remains open in general (see [Swil7, Question 8.2] for the complete local
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case).

— We determine explicitly the de Rham cohomology groups of local cohomology with determi-
nantal support, answering a question suggested to us by Switala. The dimensions of these
groups are called the Cech-de Rham numbers in [RWZ22, Definition 1.2].

— We describe the singular cohomology ring for the orbits of fixed rank matrices, following
the work of Cartan [Car51] and Borel [Borb3] (see also [Zac21, Proposition 3.6] for the case
of general matrices).

— In the case of general matrices, we also determine the Hodge numbers associated to the
mixed Hodge structures on the Borel-Moore homology of determinantal varieties and on
the cohomology of matrix orbits. This is based on the weight filtration on local cohomology
modules, determined in [Per21].

Before stating our results, we establish some notation and conventions. We study a matrix
space X with its rank stratification in the following three classical cases:

(a) X = C™ ™ is the space of m x n matrices, m > n, and O, C X the set of matrices of rank p;

(b) X = /\2 C™ is the space of n x n skew-symmetric matrices, and O, C X the set of matrices
of rank 2p;

(¢) X = Sym?C" is the space of n x n symmetric matrices, and O, C X the set of matrices of
rank p.

All the cohomology groups we consider have coefficients in C. We write HZM (V) = HPM(V,C)
for the Borel-Moore homology (see [BM60]), and H* (V') = H*(V, C) for the singular cohomology
of a variety V, and write h?M (V') and hi(V) for their respective vector space dimensions. If we
write dx for the (complex) dimension of the matrix space X then we have

D RPM(X) g = g*, (1)
0
To encode the Borel-Moore homology groups for the non-trivial orbit closures O, C X, it is

useful to introduce the g-binomial coefficients (‘Z)q, which are polynomials in Z[g] defined for
a>b>0by

b (1=¢")-(1-¢"1)-(1-9q)
THEOREM 1.1. The Hilbert—Poincaré polynomials for the Borel-Moore homology groups of the
orbit closures O, C X are given as follows.

(a) If X = C™*™ and m > n, then

P
_ . —1—3
WEM (DY . i — N g2s(mn—s)+(p—s)(p—s+2) | (") (” ) .
> m7M(0y)q" =) g s), .

=0 s=0

(a)q _ (1—¢¥)-Q1—q¢“ Y- (1— qa—b—&-l).

(b) If X = N*C" and m = |n/2], then
p

_ . 1—98) 4 (p—s)(2p—2s m m—1—s
thBM(Op) . qz _ q23(2n 1-2s)+(p—s)(2p—2s+3) | < ) X < ) )
g* 7t

=0 s=0
(c) If X = Sym?C", m = |n/2], and if we let
{1 if p is even and n = 2m + 1 is odd,
€p =

0 otherwise,
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then
p n—s—1
— . _pe=9)e=s+3)  [m + € I ]
WEMO,) - = S 19+ 5 ) ( P> . < 2 ) .
g l ’ SZ:(:) SIS R
s=p (mod 2)

The reader may prefer to rewrite the formulas above using the identity

(), ),

Our choice was made in order to connect more directly with the statement of Theorem 1.6 below.
To illustrate Theorem 1.1, we consider some examples of orbit closures that are affine cones over
familiar projective varieties.

EXAMPLE 1.2. We consider the case p = 1, when O is the affine cone over a smooth projective
variety V.

(a) If X = C™" then V ~ P™~1 x P"~1 js a Segre product, and
thBM(bl) . qi — (q3 +q5 I q2n—1) + (q2m +q2m+2 4. +q2m+2n—2).
i>0
In particular, as noted in [PR96, Remark 2.3], we have that HSM (Oy) # 0.

(b) If X = N>C" then V ~ G(2,n) is a Grassmann variety, and if we let m = |n/2| then
thBM(él) . qi — (q5 + q9 NI q4m73) + (q4n74m72 + q4n74m+2 I q4n76).
i>0

(c) If X = Sym? C" then V ~ 1y(P"~!) is the degree two Veronese embedding of P"~!, and

> wPM(04) - ="
120

A key step in the proof of Theorem 1.1 is the calculation of the singular cohomology of the
orbits O, of fixed rank matrices, which is based on general methods for computing cohomology
of homogeneous spaces, pioneered by Cartan and Borel. The details, including the structure of
the cohomology ring, are given in Section 3, and in particular we get the following description
for the ranks of the singular cohomology groups.

THEOREM 1.3. The Hilbert—Poincaré polynomials for the singular cohomology of the orbits
O, C X are given as follows.

(a) If X = C™ ™ and m > n, then
Zhl(Op) i qi _ <n> ) (1 + q2m72p+1) . (1 + q2mf2p+3) . (1 + q2m71).
0 P/ g
(b) If X = N>C", m = |n/2], and if we let € = n — 2m, then
th(o ) . qi _ (m> _ (1 + q2(n+e)—4p+l) . (1 + q2(n+e)—4p+5) . (1 + q2(n+6)—3>.
~ b D)
120 q
(c) Suppose that X = Sym®C", let m = |n/2|, and let € = n — 2m. If p = 2r then
Z hz(Op) . qi _ <m> ) (1 + q2(n+e)_4r+1) . (1 + q2(n+5)_4r+5> . (1 + q2(n+e)—3)'
T

i>0 q*
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If p=2r+1 then

21O = <m _'rl ’ €> AT (L) (L )] (L™,

120

The relation between the invariants in Theorems 1.1 and 1.3 comes from the long exact
sequence (see for instance [PR96, Lemma 2.2])

_ d; _ . _ d;_ _
- — HPM(0p-1) = HPM(O,) — H*0071(0,) — HPY (0p-1) = HPY(Op) — -+
(4)
where dp, denotes the dimension of O,. We then obtain inequalities
h*100=1(0p) < BPM(Op) + W (0p-1), (5)
and note that equality holds for all 4 if and only if the maps d; vanish for all 7. Quite remarkably,

this vanishing will occur most of the time.

THEOREM 1.4. The maps d; in (4) vanish for all i in the following cases:
(a) X =C™*™ and all p.

(b) X = A>C" and all p.

(c) X =Sym?C" and n — p even, or p = 1.

The following example shows that the assumption that (n — p) is even is necessary when
X = Sym?C".

EXAMPLE 1.5. Suppose that X = Sym? C", p = 2, and n = 2m+1. We have using Theorem 1.3(c)
that

SO0 a = (1) T = kg D) (1 ),
i>0 q7*
and in particular we have

H?*""2(04) = H*™(05) = 0. (6)
Moreover, by Theorem 1.1(c) we have
ZhiBM(OQ)‘ql :q5'< ) +q2n‘< ) — (q5+q9+'“+q4m+1)+(q2n+q2n+4+‘_'+q2n+4m)
: 1) .4 1 4
120 q q
and in particular we have HEM(O5) = C. Recall from Example 1.2 that HEM(O;) = C, hence
(4) gives an exact sequence

i C B ¢ H207(0y) — -

Using the fact that do, = 2n —1, we get 2dp, — 2n = 2n — 2, which combined with the vanishing

(6) shows that da,, is an isomorphism.

One can view (5) as a way to (collectively) bound from below the Borel-Moore homology of
the orbit closures. For an upper bound, we study the Cech—de Rham spectral sequence (using the
terminology in [RWZ22))

By = HcilR(H%p(OX)) = Hyjy—i—;(Op), (7)
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which follows by combining [HP21, Proposition 4.2] with the identification in [HP21, Theo-
rem 3.1(7)] between Borel-Moore and de Rham homology. In (7), the groups H]5 (Ox) de-
p

note the local cohomology modules of the structure sheaf Ox with support in O,, which are
regular holonomic Dyx-modules whose structure has been thoroughly analyzed in recent years
[RW14,RW16,LR20,Per20]. For a Dx-module M, we denote by HéR(M) the cohomology groups
of the (algebraic) de Rham complex

DR(M): 0—M— Q% @0y M — - — Q¥ ®0, M — 0, (8)

where QY is the module of i-differential forms. The formation of de Rham cohomology H) (M)
agrees with the D-module-theoretic derived integration (pushforward) H=x (7, (M)), where
m : X — {pt} is the map to a point. It follows from [HTTO8, Theorem 3.2.3] that if M is
holonomic then each Hé (M) is finite-dimensional, and this applies in particular to the groups
E;j in (7). With the usual convention, we write h%p(M) for the vector space dimension of
HZZR(M ). Note that although the Borel-Moore homology groups of O, are intrinsic invariants

(they to not depend on the embedding as a subvariety in X), the terms E;j in (7) do a priori
depend on both O, and X. Quite remarkably, after an appropriate reindexing, they do provide
intrinsic invariants of O,. More precisely, the Cech—de Rham numbers (see [RWZ22, Section 2])

pij(Op) = hi ™ (HZ 7 (Ox) (9)

only depend on the variety O, and not on the choice of the ambient affine space X: this was
first proved by Switala over complete local rings [Swil7, Proposition 2.17], and the version we
use comes from [Bri20, Theorem 1.1] (see also [HP21, Theorem 6.2]).

Notice that the only non-vanishing Cech-de Rham number for X is

Pdx.dx = th(Hg]((OX)) =1, (10)

and in particular (7) degenerates when O, = X, giving (1). Our focus will therefore be on orbit
closures O, C X, where we have the following.

THEOREM 1.6. The spectral sequence (7) degenerates on the Es page for all the orbit closures
O, € X. Moreover, the bivariate generating functions for the Cech-de Rham numbers are given
as follows.

(a) If X = C™*"™ and m > n, then
P
— P n n—1-—s
i O . qz . w-] — qw s(m—l—n—s) . < > . w(p_s)(p_s+2) . < > .
g?:Op 0] SZ:;( ) 5/ q2 P—=5 Jye

(b) If X = N>C", m = |n/2], and if we let € = n — 2m, then
P

_ S —1-—s
(0)) ¢ - wd = s(2n—1-2s) (™ oy (@=5)2p—2s+3) [T .
> 0i(Op) 4wl = 3 (aw) V) s )
4,720 s=0 q w
(c) If X = Sym®C", m = |n/2], and if we take ¢, as in (2), then
P s(2n+1—s p—s)(p—s n—s—1

S a0t = 30 (g (M) e (B2
i,j>0 s=0 15 g4 3t
’ s=p (mod 2)

Notice that the degeneration of the spectral sequence (7) is equivalent to the fact that the
Fuler—Poincaré polynomials in Theorem 1.1 are obtained from the generating functions in The-
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orem 1.6 via the specialization w = ¢. The expressions for the generating functions of Cech-de
Rham numbers in Theorem 1.6 illustrate the vanishing

pij(Op) =0 for i > j, (11)
which is established in general in [RWZ22, Proposition 2.1]. The inspiration for the study of
Cech-de Rham numbers comes from the work of Lyubeznik [Lyu93], where he defines using
local cohomology groups a set of local invariants which are now usually referred to as Lyubeznik
numbers. There are many parallels between Cech-de Rham and Lyubeznik numbers, including
the vanishing (11), and some are explored in [RWZ22|. In [LR20] and [Per20] the Lyubeznik
numbers are computed for the determinantal varieties 5]) in the spaces of general and skew-
symmetric matrices, respectively, but they remain unknown in the case of symmetric matrices

(see also the discussion in Sections 4.2, 5.2, and 6.2).

As O, (and its closure) is a complex algebraic variety, the groups HY(O,) and HPM(O,)
are naturally endowed with mixed Hodge structures, by the work of Deligne (e.g. see [PS08,
Corollary 14.9]). In general, a mixed Hodge structure M carries an (increasing) weight WeM
and a (decreasing) Hodge F*M filtration. The dimensions of the associated graded pieces are
encoded by the Hodge numbers

hP9(M) = dimg Grl, Gryli, M.

We say that the Hodge numbers of M are concentrated on the diagonal if h??(M) = 0 whenever
p # q. Note that in this case the weight filtration on M determines all of its Hodge numbers, as
for all p we have hPP(M) = dim¢ Grg‘; M, and further the vanishing Grgg 1M = 0 must hold.

On the other hand, it follows from the work of Saito [Sai90] that the local cohomology modules
Hi@) (Ox) naturally carry the structure of mixed Hodge modules. This has been studied in detail

recently for the case (a) of general matrices by Perlman [Per21]. Based on his work, we compute
the Hodge numbers of the singular cohomology of O, and Borel-Moore homology of O,, using
the degeneration of the mixed Hodge module variant of the spectral sequence (7), together with
Theorem 1.4 (a).

THEOREM 1.7. Let X = C™*"™ with m > n. The following bivariate generating functions record
the weight filtrations on the mixed Hodge structures on H?*(0,) and H*(O,), respectively:

Z dimc Gr}/V HPM(O,) - ¢' - w’ =

i.j>0

p
pr—s . (qw—1)25m+(p—s)(p—s+2) . <n> . <n —1- S> ,
5/ (qu1)2 P=5 /(qu-1)

s=0

p—1
> dime Gr) H'(0)) -¢' - w/ = <n> JIa Pt w2,
1,50 P/ (qu)z o
Moreover, all of the corresponding Hodge numbers are concentrated on the diagonal.

These formulas yield Hodge-theoretic refinements to the ones in Theorem 1.1 (a) and Theorem
1.3 (a), respectively, which are recovered by evaluating w +— 1. While this method of finding
Hodge numbers works in principle also in the case of skew-symmetric and symmetric matrices,
its implementation is contingent upon the determination of the weight filtration on the respective
local cohomology modules, analogous to [Per21].
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Proof strategy. We conclude this introduction with a summary of the strategy employed to
prove the results presented here, the details of which are going to be explained in the rest of the

paper.

(i)

(iii)

We describe the singular cohomology groups of the orbits O, using methods that go back
to the classical work of Cartan and Borel, and obtain the formulas in Theorem 1.3. This in
particular gives an explicit formula for the total Betti numbers

tht(Op) = Z hi(op)- (12)
>0

Considering the total (Borel-Moore) Betti numbers,

bt (0p) =) hM(O (13)
120
we conclude using (5) that
b'(0p) < byt (Op) + bt (Op-1), (14)

with equality if and only if (5) is an equality for all 4, which in turn is equivalent to the fact
that the maps d; in the long exact sequence (4) are zero for all i.

If we define the total Cech-de Rham numbers by
0 = X 00) = it (0)
()

then it follows from the spectral sequence (7) that
biat (Op) < p'*(Op) (15)
with equality if and only if the spectral sequence degenerates at the Es page.

For each of the local cohomology modules H J ((9 x ), a composition series in the category

of (equivariant) Dx-modules is described in [RW14 RW16], and for each of the simple com-
position factors, the corresponding de Rham cohomology groups are calculated in [LR22].
This provides an upper bound

p"'(0,) < N, for all p,
for certain explicit constants N,, with equality if and only if the de Rham cohomology of
each Hjb (Ox) is equal to the sum of the de Rham cohomology groups of its composition
p
factors.

We show that if n — p is even then we have
tht(Op) = Np + Np-1, (16)

which implies that we must have equality throughout the chain of inequalities

(14) (15)
tht(Op) < bgiw(O >+btot (Op—1> < PtOt(O )+Pt0t(0 1) < Np + Np—1

In particular, we obtain the degeneration of the spectral sequence (7) for all p, and get that
the de Rham cohomology of local cohomology groups is the direct sum of the cohomologies
of the composition factors, which is used to prove Theorem 1.6, and by specializing w = g,
to prove Theorem 1.1. Moreover, we get that (5) is an equality whenever n — p is even, and
in fact for all p if X = C™*" or X = /\2 C", proving Theorem 1.4.
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Organization. In Section 2 we review some basic notation and techniques used to describe our
computations, including aspects of de Rham cohomology, mixed Hodge structures, equivariant
D-modules, and representation theory of the general linear group. In Section 3 we compute the
singular cohomology groups of the orbits O,. We then proceed to considering in more detail
steps (2)—(5) of the strategy outlined above: for general matrices this is done in Section 4, for
skew-symmetric matrices in Section 5, and for symmetric matrices in Section 6. The results on
mixed Hodge structures for the case of general matrices are proved in Section 4.3. Finally, in
Section 7 we discuss the degeneration of another spectral sequence, that is closely related to (7).

2. Preliminaries

Throughout this section X is an irreducible smooth complex affine variety. We freely identify
Ox-modules with their global sections. We always work with left D-modules.

2.1 De Rham cohomology

The (analytic) de Rham complex for D-modules plays a fundamental role in the Riemann-Hilbert
correspondence (for example, see [HTTO08, Theorem 7.2.5]). In the special case when M = Ox
is the structure sheaf, the celebrated comparison theorem of Grothendieck [Gro66] implies that
the space H'p(Ox) agrees with the (singular) cohomology group H'(X,C). More generally,
for an irreducible closed subvariety ¥ C X, the local cohomology group H;Odimx Y(C’)X) has a
unique simple submodule £(Y, X) (called the Brylinski-Kashiwara module [BK81, Section 8])
whose associated de Rham complex is the (middle perversity) intersection cohomology sheaf of
Y. Hence, the de Rham cohomology groups of L(Y, X) agree with the intersection cohomology
groups of Y (for example, this follows from [HTTO08, Theorem 7.1.1]).

In contrast with de Rham cohomology (see discussion after (8)), the Lyubeznik numbers
mentioned in the Introduction can be understood as the (derived) restriction to the origin of the
local cohomology modules. But pushforward of a module M from an affine space to the origin is
the same as the restriction to the origin of its Fourier transform F (M) (see [HTT08, Proposition
3.2.6)):

H"(my (M) = H*(Li* F(M)), (17)
where 7 : X — {0} is the projection and i : {0} — X the inclusion. While the latter uses only
the S = Clzy, ..., 24, ]-module structure of M, the former uses only its C[01, ..., 04, |-structure,

as can be seen also from the differentials in the de Rham complex
dx
d: My Mo, d(mdrj, A Adaj,) = 0s(m)dog Adaj, A~ Adzj,. (18)
s=1

Hence, in a sense we should expect our calculations regarding the Cech-de Rham numbers to
reflect features dual to those encoded by the Lyubeznik numbers. We explain in detail why this
is indeed the case for our spaces of matrices in Sections 4.2, 5.2, and 6.2.

2.2 Mixed Hodge structure on de Rham cohomology

As mentioned, de Rham cohomology can be interpreted as (derived) pushforward to a point.
Thus, if M is a mixed Hodge module, as developed by Saito [Sai90], then H! (M) naturally
carries a mixed Hodge structure for any i. If M is a mixed Hodge module, we denote by M (k)
its kth Tate twist, that shifts weights by —2k.
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We denote by O)fg the constant (trivial) mixed Hodge module on X, for which the graded
pieces of the weight filtration give the Dx-modules Grg; O)I? = Ox, and GrZV (’))I? =0,k #dx.

Let Z C X be a closed subvariety, U = X \ Z the complement, and ¢ : U — X the open
embedding. Since

H}(Ox) 2 1.0y/Ox, and Hy(Ox) = R, (Op), foralli> 2, (19)
the local cohomology modules H JZ((’))I;( ) naturally carry mixed Hodge module structures for all
J (cf. [Sai90]).

In conclusion, de Rham cohomology of local cohomology HY,(H%(O4)) acquires also a mixed
Hodge structure for all 4, j. Furthermore, Borel-Moore homology HiBM (Z) carries mixed Hodge

structure as well, for all ¢ [PS08, Corollary 14.9]. The following relates these mixed Hodge struc-
tures through the spectral sequence (7).

PROPOSITION 2.1. Let X = C? and Z C X a closed subvariety. The Cech-de Rham spectral
sequence

Hap(Hy(0F)) = H3Yi ;(Z)(~d)

is a spectral sequence of mixed Hodge modules.

Proof. We reinterpret the spectral sequence using the identifications in (19) as follows. Let 7y :
U — {pt} and mx : X — {pt} denote maps to a point. The (higher) pushforward of Of via
my yields cohomology of U, and factoring this through 7y = wx o« yields the following spectral
sequence of mixed Hodge modules (cf. [PS08, Section 14.1.3])

Hip(RIL,Of) = H™(U). (20)
Since U is smooth, we have as mixed Hodge structures (see [PS08, Corollary 6.26])
HU) = H3M (U)(—d). (21)
By the long exact sequence in Borel-Moore homology corresponding to ¢ : U — X (analogous to
(4)) and (1), we obtain
aPM(z) = B (), fori<2d -2, HIMU)=C. (22)

7

Note that H),(Ox) = C and H)5(Ox) = 0 when i > 0. Further, from (20) we get H{,(¢.Oy) =
C. Applying de Rham cohomology to the exact sequence of mixed Hodge modules

0— O = .08 — HL(0F) -0,
we obtain
Hip(Hy(0X)) & Hjp(10ff), fori>1, Hyp(Hz(0¥)) =0.

Using this together with (19), (21), (22), we obtain the desired spectral sequence from the one
in (20). 0

2.3 Equivariant D-modules
Here we provide some background on equivariant D-modules. For more details, see [LW19].

Let a connected algebraic group G act on X. A (possibly infinite-dimensional) vector space
V is a rational G—module, if V' is equipped with a linear action of GG, such that every v € V'
is contained in some finite-dimensional G-stable subspace W C V with the map G — GL(W)
being a morphism of algebraic varieties.
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We call M a (strongly) G-equivariant D-module, if we have a D¢« x-isomorphism
T:p"M — m*M,
where p and m are the projection and multiplication maps
p:Gx X =X, m: Gx X —- X

respectively, and 7 satisfies the usual compatibility conditions on G x G x X (see [HTTOS,
Definition 11.5.2]).

Let g be the Lie algebra of G. Differentiating the action of G on X yields a map g — Dx.
Equivariance of a D-module M amounts to M having a rational G-module structure such that
differentiating the action of G coincides with the action of g induced from g — Dx.

We denote by mod(Dy ) the category of coherent Dx-modules, and its subcategory of coherent
equivariant D-modules by modg(Dx) which is abelian and stable under taking subquotients
within mod(Dx).

For an equivariant D-module M and a (locally) closed G-stable subset Y C X, all local
cohomology modules Hi (M) are equivariant.

2.4 Representation theory of the general linear group

We recall some facts on the representation theory of GL,(C). We write Z} = for the set of
dominant weights in Z", i.e. tuples A = (A1, ,Ap) € Z™ with A\; > A2 > --- > \,,. When each
Ai = 0 we identify A with a partition with (at most) n parts, and write A € Nj . For a partition,
we write A F k& when |A| := A\; + -+ + A\, = k, in which case we can associate its corresponding
Young diagram with k boxes that consists of A; boxes in the ith row. The Durfee size of X is the
largest ¢ with the property A; > i. We write A’ for the conjugate partition of A, where X, counts
the number of parts A; with A\; > i. We partially order Z}; ~ (and N7} ) by declaring A\ > p if

Ai = p foralli =1,--- ,n. If a > 0 then we write a x b or (b*) for the sequence (b,b,--- ,b)
where b is repeated a times. Given a weight A € Z" we write for its dual

A = (=M =An_1, 0, —A1).

If V is a vector space with dim(V) =n and A € Z] = we write S\V for the corresponding
irreducible representation of GL(V') (or Schur functor). Our conventions are such that if A =

(k,0,---,0) then SyV = Sym* V, and if A = (17) then SyV = A" V.
For a > b > 0 we define the Gaussian (or ¢-)binomial coefficient (Z)q to be the polynomial in
Z|q] defined by

<a> (=g -(1—g¢" ) (1 —g "

b/, (I-¢"-1—=¢1)--(1-q

One significance of the g-binomial coefficients is that (Z) , describes the Poincaré polynomial of
q

the Grassmannian Grass(b, a) of b-dimensional subspaces of C%. As such, the coefficient of ¢/ in
(Z)q computes the number of Schubert classes of (co)dimension j, or equivalently the number of
partitions A of size j contained inside the rectangular partition (a — b) x b. We get

(Z)q: M (23)

)\g(bafb)

10
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3. Singular cohomology of matrix orbits

In this section, we compute the singular cohomology rings of the orbits O,, of general, symmetric
and skew-symmetric matrices. Throughout, we work with singular cohomology over complex
coefficients. The computation of cohomology of homogeneous spaces is a well-studied problem in
topology that generated (e.g., see [Car51, Bor53, Bau68, May68]) and continues to generate (e.g.
[Fra21]) a lot of interest.

In order to determine the cohomology of the matrix orbits O,, we use the classical method
of H. Cartan [Carb1]. Let K be a compact connected Lie group, and L C K a closed connected
Lie group. We have an induced map p : H*(BK) — H*(BL) between the cohomology rings of
their classifying spaces. The following isomorphism of algebras reduces the problem at hand to
an algebraic one (cf. [Car51])

H*(K/L) = Torg«pr)(C, H*(BL)). (24)

We recall Cartan’s result in a form that is most convenient for our calculations (see [Ter01,
Theorem 8]).

Let 17, C T be an inclusion of corresponding maximal tori, and consider the complexification
of their Lie algebras t;, C t. Denote the Weyl groups by W (L) and W, which act naturally on the
polynomial rings C[t7] and C[t], respectively. We think of these rings having coordinate functions
in degree two. The map p takes the explicit form

p: CHW — Cltg )V D), (25)

Let n = rank K and r = rank L. By a well-known theorem of Hopf (see [MT91, Theorem
6.26]) the cohomology of K is an exterior algebra

H*(K) = \(z1,. . 20),
where the generators z; have odd degrees. Our computations are based on the following version

of (24).

THEOREM 3.1. Let fi,...,f, be homogeneous generators of the algebra C[|!'" with deg f; =
deg zi+1. If p(fr41), - - -, p(fn) belong to the ideal (p(f1), ..., p(fr)), then we have an isomorphism
of graded algebras

H(K/L) 2 (CLa) /(o)1 p(£)) © (v 2.
In particular, the Hilbert—Poincaré polynomial of H*(K /L) is given by
(1-— qdegfl) (1 — gles fr)
(1 —qdl)---(l — qdr)

where dy, ..., d, are the degrees of the fundamental invariants in the polynomial ring C[ty,

(14 glesfrai=ly (1 4 gdegfnly,

]W(L)‘

Recall the facts about the cohomology of the Grassmannian Grass(p,n) described in Section
2.4 (also, see (26) in the proof below for an explicit presentation). We now proceed with de-
termining the cohomology of the orbits. While for our subsequent applications we only use the
Hilbert—Poincaré polynomials, for completeness we outline the argument yielding the explicit
ring structure. In fact, for the symmetric case (c) this approach is necessary, since the generic
stabilizers of O, (p > 0) are disconnected. We note that in case (a), a description for H*(O,) has
been also obtained recently in [Zac21, Proposition 3.6]. For the standard notions and identities
involving symmetric functions, we refer the reader to [Mac79].

11
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THEOREM 3.2. We have the following isomorphisms of graded algebras, and respective Hilbert—
Poincaré polynomials (with degz; = 2i —1):

(a) When X = C™*":

H*(0,) = H*(Grass(p,n)) ® /\(Zm—p+l7 ey Zm),

<n> . (1 + q2m72p+1) . (1 + q2m72p+3) . (1 + q2m71).
q?

p
In particular, we have that
boH(0,) = (") L,
(Op) »
(b) When X = \*C", with m = |n/2], and € = n — 2m, then
H*(Op) = C[hh AR hp]/(hm—p-l—la RRE) hm) X /\(Zn+e—2p+17 Zn4e—2p+3; -+ zn+6—1)7

(m) ) (1 + q2(n+6)—4p+1) . (1 + q2(n+e)—4p+5) . (1 + q2(n+e)—3)‘
P/

Here h; stands for the ith complete homogeneous symmetric polynomial in p variables and
deg h; = 41. In particular, we have that

b 0,) = <m> 2P,

p
(c) Suppose that X = Sym?C", let m = |n/2|, and let € = n — 2m. If p = 2r then

H*(Op) = (C[hh B hr]/(hm—r—i-h ) hm) ® /\(Zn+e—p+la Znte—p+3s - ZTL+6—1)7

m —4ar N—TE€)—4r n—re)—
<r> (L gPTTEE (1 ORI L (1 g2,
q

and in particular we have that

boH(0,) = <m> Lor,

r

If p=2r+1 then

H*(Op) = C[hla ceey hr]/(hm—r+ey ) hm—l—i—e) ® /\(ZZm—Qr—i-l’ Z22m—2r+3 - -+ 22m—1, Zn)’

m—1+4¢
r

) . [(1 + q4m—4r+1) . (1 + q4m—4r+5) . (1 + q4m—3)] . (1 + an_l),
g4

and in particular we have that

b 0,) = <m> LorL,

r

Here h; stands for the ith complete homogeneous symmetric polynomial in r variables and
deg h; = 4.

Proof. We consider first part (a). It is easy to see that we have

Op = (GLn(C) x GL,(C))/H,

12
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where H denotes the stabilizer of [{)p 8

(o e[ &) v

A e GL,(C), B € CP*(m™P) ¢ € GLy,_,(C),D € C"P*P E ¢ GL,_,(C).

Since the product of unitary groups U(m) x U(n) is the maximal compact subgroup of GL,,(C) x
GL,,(C), we have by [Mosb5, Theorem 3.1] that O, has the same homotopy type as K /L, where

K =U(m)xU(n), and L =U(p) x U(m —p) x U(n —p).

} , equal to the subgroup of pairs of matrices of the form

The rings of invariants from (25) are polynomial rings, generated by elementary symmetric
polynomials:

(C[t]W =Clz1,..  Tm,Y1,---,Yn), and C[tL]W(L) =Cla1,...,ap,b1,...,by—p,C1,. .., Cn_pl,

where deg z; = degy; = dega; = degb; = degc; = 2i (below we allow ¢ = 0). The map p from
(25) is given by (compare [MT91, Theorem 5.8])

plxy) = Z a;bj, p(yk) = Z aiCj.

i+j=k i+j=k
Let I denote the ideal generated by all the elements p(x;) (1 < i < m) and p(y;) (1 < j < n).
Using successively that p(xy) — p(yx) € I for k=1,...,m —p, we see that by —c € I (1 <k <
n—p)and bj € I (n —p+1<j<m—p). Therefore, we have
I=(p(x1), s p@m—p); p(y1), -, P(Yn)).
Hence, by Theorem 3.1 we obtain
H(K/L) =2 R® \(zm-p1,-- - 2m);

with

R=C[t,))" B /T =Clay,....,ap.c1,. . cnp)/(p(y1), - - p(Yn)), (26)

which is a well-known presentation of H*(Grass(p,n)) (see [MT91, Theorem 6.9]).

Now we turn to part (b). By working with the representative

0 I, 0
~I, 0 0| €0,
0 0 0

we see as above by [Mos55, Theorem 3.1 that O, has the same homotopy type as K/L, with
K = U(n), and L = Sp(p) x U(n — 2p), where Sp(p) = Sp(2p,C) N U(2p) is the compact
symplectic Lie group.
We let the Cartan subalgebra t be the set of diagonal matrices
diag(al, <oy py Qpg1y -+ -5 A2p, bl, ey bn_gp)
(where a;, b; € C), while the Cartan subalgebra t;, C t to be the set of matrices
diag(ay,...,ap, —a1, -+ —ap, b1, ..., bn_2p).

The corresponding Weyl groups are W = S,, and Wy, = (S, X Zb) x S,,_p, acting in the obvious
way — the symmetric group by permutations, and Zs = Z/2Z by sign changes. Let x;,y; be the

13
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coordinate functions corresponding to a;, b;, respectively, and for k € Z~ consider the power
sum polynomials

2p n—2p p n—2p
k k k k
pkzzxiJrZyj, %ZZ%, Tkzzyi'
=1 7=1 i=1 i=1

The respective rings of invariants are polynomial rings generated by
(C[t]W =C[p1,..-,pn], and C[tL}W(L) =Clg2,q4,- -, q2ps 71,72, - - - s Tn—2p).
The map p from (25) is given by (where 1 < k < n)
p(px) = 2q;, + 1, for keven, and p(pg) = rg, for k odd.
Since Cly1, -, Yn—2p) =2 = C[r1,...,mn_2p], we see that p(px) € (11,73, ..., Tn—2p—1+¢) for all
odd k. By Theorem 3.1, we obtain
H*(0p) = (Clag, .-, q2ps 11, - -+, Tn—2p) /) ® /\(Zn+e—2p+la Znte—2p+3; - - -3 Znte—1),

where I = (r1,73,...,"n—2p—14e, 22 + 72,24 + 74, ..., 2¢pn—c + Tn—c) and degz; = 2i — 1. For
k € N, let e, (resp. hi) denote the kth elementary (resp. complete) symmetric polynomial in the
variables y1, . .., yn_ok (resp. in z3, ... ,m}%), so that if k > n — 2p then e, = 0. We claim that for
all 0 < k£ < m we have

eor —hip € I, and egpyq € 1. (27)

The latter part follows readily by induction using the Girard-Newton identities and the fact that
ri € I when 1 <7< n—2pis odd.

Now we prove that esp, — hg € I, again by induction, the case kK = 0 being trivial. We have

the following equalities modulo I, again using the Girard—Newton identities and that eg; 1 € I:

2k k
2k - €2 = Z(—l)i_lezk_i Ty = Z _hk—i . (—2q2i) =2k - hk.
1=1 i=1

This proves the first claim in (27) as well, which now implies part (b) since
Claz, .- ap, 715, Tn—2p]/T = Clha, ... hp, €1, ... engp] /T = Clha, ..., hp]/(him—pt1, -, hm).

Now consider part (c). By choosing the representative

I, 0
v o on

we see as before that that O, has the same homotopy type as K/L', with
K =U(n), and L' =O(p,R) x U(n — p).
We first use Theorem 3.1 in order to compute the cohomology ring of K/L, where L = L' =

SO(p,R) x U(n — p) is the connected component of L' containing the identity.

Assume first that p is even. For a,a’ € C, denote by R(a,a’) the 2 x 2 matrix 1/2 -
(a+d) a-d
, |- Let t be the Cartan subalgebra

ad—a (a+a)
diag(R(a1, ar+1), R(ag, ary2), ..., R(ap,az.),b1,...,byp_p)

formed of block diagonal matrices, where a;,b; € C. The Weyl group W = §,, acts by permuting
the entries a1,...,ap,b1,...,b,—p in the usual way. We choose t;, C t to be

diag(R(a1, —a1), R(ag, —a2), ..., R(ar, —ay),b1,...,bn—p).

14
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Here the first factor of the Weyl group Wy, = (S, x Zg_l) X Sp_p actsonay, . ..,a, by permutations
and an even number of sign changes. Let x;, y; be the coordinate functions corresponding to a;, b;,
respectively, and for k € Z~q consider polynomials

p n—p r r n—p
=1 7j=1 =1 =1 =1

The respective rings of invariants are polynomial rings generated by
CHYV =Clp1,...,pn], and (C[tL]W(L) =Clg2,q4, -, qp—2,¢,71,72, ..., Tn_p).
The map p from (25) is given by (where 1 < k < n)
p(pr) = 2qi + 1, for keven, and p(pg) =rg, for k odd.

As in case (b), we obtain

H*(K/L) = (C[QQ, <o qp—2,4,7T1, - - - arnfp]/l) & /\(zn+efp+1azn+efp+3a . 'aZnJrefl)v

where I = (r1,73,...,"Tn—p—1+e, 2q2 + 72,2q4 + 74, ..., 2¢n—c + n—c) and degz; = 2i — 1. Now
the action of —1 € Zy = O(p,R)/SO(p,R) leaves qo, (and z;,7;) invariant, but sends ¢ to —g.
Hence, we have

H*(0,) = H*(K/L)*
= (C[q27 <o qp—2,qp,T15 - - - arnfp]/I/) & /\(2n+efp+17 Znte—p+3y - ZnJréfl)a

with I’ having the same generators as those given for I. The rest of the proof follows as (27) in
case (b).

Lastly, we consider case (c) with p odd. We use similar notation as in the even case. Choose
t to be

diag(R(ala a?”-i—l)a R(CLQ, aT‘+2)7 R R(a’r‘a a27“)7 bOa b17 s 7bn—p)~
Then W = S, acts by permuting the entries a1,...,as., bo,b1,...,b,—p. Choose t;, C t to be

diag(R(a1, —a1), R(az, —a2), ..., R(ay, —a,),0,b1,...,bp—p).

The first factor of Wy, = (S, x Z5) x S, acts on ai, ..., a, by permutations and sign changes.
Consider

2r n—p r n—p
= b+ uf, ae=> af,  m=)_ul

=1 J=0 i=1 i=1

The rings of invariants are
(C[t]w :(C[pla‘-'vpn]a and (C[tL]W(L) :C[Q27Q4a~-7(]2r77’1,7'27~~-77'n—p]-
The map p from (25) is given by (where 1 < k < n)
p(pr) = 2qi + 1, for keven, and p(pg) = rg, for k odd.
As in case (b), we obtain
H*(K/L) = ((C[(D: s q2r, Ty .- arn—p]/I) ® (ZQm—2r+17 22m—2r+35 -3 22m—1, zn)7

where I = (r1,73,...,"n—p—c, 2q2+72,2q4+ 74, . .., 2qn—24¢ +Tn—2+¢) and deg z; = 2i—1 (here we
used also the fact that p(p,) € I since ygp — 0). Now the action of —1 € Zy = O(p,R)/SO(p,R)
leaves all o, 2;,7j invariant. Thus, H*(0,) = H*(K/L)%2 = H*(K/L), and the rest of the proof
follows again as in case (b). O

15
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4. The case of m X n matrices

In this section we let X = C™*™ denote the space of m x n complex matrices, endowed with
the natural action of G = GL,, x GL,, via row and column operations. The coordinate ring S of
X can be identified with the polynomial ring S = (C[a:ij], where 1 <i<mand 1< j<n We
assume that m > n, so the orbits of this action are the sets O, consisting of matrices of rank p,
for p=20,--- ,n, and their closures are given by

The goal of this section is to prove the following result, which combined with (3) implies part a)
of Theorems 1.1, 1.4, and 1.6.

THEOREM 4.1. Suppose that 0 < p < n <

(a) The generating function for de Rham cohomology of local cohomology modules is

i ] m—s)-(n—s n—p)2+(n—s)-(m—n n—1-s
3 Hin(H (S)) g - = Zq ). () =) >.< o >w2'

i,j>0
(b) The Hilbert—Poincaré polynomial for the Borel-Moore homology of the orbit closures is
given by

p
Z ]’LBM Zq2sm+ p—s)(p—s+2) | (n) ) (TZ -1 - S) .
S q? p—S q2

120 s=0

(c) The Cech-de Rham spectral sequence (7) degenerates at the Ey page, and the maps d; in
(4) vanish.

The restriction p < n in Theorem 4.1 is made in order to avoid the trivial case p = n when
O, = X (see (1) and (10)). To prove Theorem 4.1 we follow closely the outline described in the
Introduction, and explain the details in Section 4.1. We then consider in Section 4.2 some further
consequences of Theorem 4.1 and discuss the relationship with Lyubeznik numbers.

4.1 The proof of Theorem 4.1

The simple objects in modg(Dx) are Dy, - - - , Dy, where D, = £(O,, X) denotes the intersection
homology Dx-module corresponding to the trivial local system on the orbit O, (see [Rail6,
Theorem 2.9]). By [LR22, Theorem 4.1] (see also [Zel81, Section 3.3]), the generating function
for the de Rham cohomology of the simples Dy is given by

7 ) n m—s)-(n—s
> hip(Ds)-q' = <8> . L), (28)
q

i>0
Moreover, by [RW16, (1.3)], we have for p < n the formal identity
p

Z[HJ (S)] Cwd = Z[Ds] P+ (n=s)-(m—n) | <n —1- 8) K (29)

— S
7>0 O s=0 p

describing the simple Dx-composition factors of the local cohomology modules H% (S). Com-
P
bining (28) with (29), and using the fact that de Rham cohomology is subadditive in short exact
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sequences, we obtain the inequality
P
, . S 1
" hig(HD (8)) 'l <3 glmsh ). (”) =B Hn=s)(mn). (” » ) . (30)
1,j20 ! s=0 > p w?

Remark 4.2. In the case when m > n, the category modg(Dy) is semi-simple by [LW19, Theorem
5.4], hence (29) encodes a direct sum decomposition of local cohomology modules into a sum of
simples. Taking de Rham cohomology is therefore additive, and we get that (30) is an equality.
This argument however fails in the case m = n when the groups H%p(S) are no longer direct

sums of simple modules (see Section 4.2 below).

We define N, p < n, to be the specialization of the right side of (30) to ¢ = w = 1, namely

-0 (51

and observe that specializing the left side of (30) to ¢ = w = 1 we get
Pwt(ap) < Np.
LEMMA 4.3. We have for p < n that (16) holds.

Proof. Since p < n, we have that
1

wens £ (00500 £ 0 610)
2620200 0-0)

The desired conclusion now follows from Theorem 3.2(a). O

As explained in the Introduction, the equality (16) implies the degeneration of the spectral
sequence (7) (for both O, and O,_1), and the vanishing of the maps d; in (4), hence Theo-
rem 4.1(c) holds. Moreover, (16) also implies that (30) is an equality, proving Theorem 4.1(a).
The degeneration of (7), together with the fact that dx = mn, implies that

ZhBM(O 2mn k _ Z h i+j
k>0 1,720

is obtained by specializing the equality in part (a) to w = ¢. Making the change of variable
q — ¢~ ' and multiplying by ¢*™" we get

p
>

(Op) - ¢" g2mn=(m=s)-(n=3)=(n—p)>~(n—s)-(m—n) (n> : (n ~1- S) :
0 = 5/ q2 P=58 Jg2

and Theorem 4.1(b) now follows using the identity (3).

4.2 Comparison with Lyubeznik numbers

As explained in Remark 4.2, when m # n, the category modg(Dx) is semisimple, yielding to
a simpler argument for obtaining the Cech-de Rham numbers. Since F(D,) = D,,_, (e.g. see
[Rail6, Remark 1.5]), by (17) the Cech-de Rham numbers are determined completely by the
Lyubeznik numbers, and vice-versa (up to relabeling).

17



ANDRAS C. LOrINCZ AND CLAUDIU RAICU

From now on we assume that m = n, when the situation is more interesting since modg(Dx)
is no longer semisimple. Nevertheless, when p < n the D-module H% (S) can be written as a

direct sum of the indecomposable D-modules Qq, Q1, ..., Q, [LR20, Tﬁeorem 1.6], with

S det

n — S ety = T il
Q det Qp <detp_n+1>D

where Sget denotes the localization of S at the determinant, and (det? _”+1>D is the D-submodule
generated by det? "1, Note that Qo = Dy and for 1 < p < n, we have the short exact sequences
(cf. [LR20])

0—Dp — Qp — Qp_1 —0. (32)
The short exact sequence (32) is not split in the category of D-modules, but it is split in the
category of rational G-representations. We obtain a decomposition of @), as a G-representation

p
Q=Pa; (33)
s=0

where @5 ~ D,. As a rational G-representation, the decomposition of D, is given in [RW14,
Theorem 6.1], [RW16, Main Theorem(1)], or [Rail7, Theorem 5.1]. We fix our conventions as
follows. Let V1, Va be vector spaces, dim(V;) = n, let S = Sym(V; ® V2), and identify X =
Spec(S) = V)Y @ VoY = C™*" with the action of the group G = GL(V;) x GL(V2) as before. Then

Dy = @ SAVi @ SxVa, (34)
AEW (p)

where
W(p) = {)‘ € Zgom : )‘p > p—n 2 )‘PJrl}'
LEMMA 4.4. If 0 € V)Y ® V/ is a derivation and z € Q5 then 9(z) € Q3.

Proof. Without loss of generality, we may assume that z belongs to an isotypic component
SaVi @ S\Va, where X € W (s). Since 9 € V}Y @ V', it follows from Pieri’s rule [Wey03, Corollary
2.3.5] and the fact that @), is closed under the action of 0, that

d(z) = Z 2y,

where for each v we have that z, € S, V1 ® S, V5 for v € W (t) with ¢ < p, and v is obtained from
A by removing one box, i.e. there exists an index 1 < r < n such that

vi= M\ fori#r, and v, = A\, — 1.
Since z € ker(Q), - Qs—1) it follows that s <t < p. There are two possibilities:

— r#s. Then vs = A; > s—n, and vey1 < Asp1 < s—n. So v € W(s), which means z, € Q;.

—r=s.1If \; >s—nthen vy > s—n and z, GQ;. If \¢ =s—nthenvs =s5s—n—1, so
v & W(s). It follows that v € W (¢t) for some ¢t > s. However, this implies that

t—nm<y<rys=s—n—1,
which yields ¢ < s, a contradiction. O

The significance of Lemma 4.4 is that the non-split exact sequence of D-modules (32) does
split in the category of (G-equivariant) C[0;;]-modules.
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COROLLARY 4.5. As C[9;j]-modules, we have Q, = @"_, Ds.

Proof. As D, is a D-submodule of @, it is also a (G, C[0;;])-submodule. We consider the G-
complement M of D, in @p, which is unique since @), is a multiplicity-free G-representation. We
get from (33) that M is isomorphic as a G-module to @?;5 Q;- By Lemma 4.4, M is a C[9;j]-
module, and therefore also a (G, C[0;;])-module. We get that in the category of (G,C[0;])-
modules @, = D, M, the exact sequence (32) splits, and M is isomorphic to Q,—1. The
conclusion follows by induction on p. O

Since the differentials (18) in the de Rham complex use only the C[0;;]-module structure of
a D-module, the following is an immediate consequence of Corollary 4.5.

COROLLARY 4.6. We have a decomposition of complexes

L) = é DR(D
s=0

In particular,
Hjp(Qp) @Hd}%

Remark 4.7. In the case p = n the de Rham cohomology of @), = Sget coincides with the
singular cohomology of the complement O,, of the hypersurface det = 0, and that of Dy yields
intersection cohomology. Reinterpreting the result above in topological terms yields the following
formula (here ¢s = codimx Os):

H'(0,,C) = ZIHZ o ( for all i > 0.

Remark 4.8. We end this subsection by concluding that the Cech-de Rham numbers only depend
on the class of the local cohomology modules in the Grothendieck group of modg(Dx ), whose
description is uniform for the square and non-square cases. This is in contrast to the case of
Lyubeznik numbers, where the formulas in the square case are different from the ones in the
non-square case (see [LR20, Theorems 1.3 and 1.5]). The explanation in the case of Lyubeznik
numbers comes from the fact that the sequence (32) is not split in the category of S-modules.
However, the sequence is split in the category of C[0;;]-modules, which is why the results on de
Rham cohomology are uniform.

4.3 Mixed Hodge structure on cohomology and Borel-Moore homology

In this section we compute the Hodge numbers of H*(O,) and H?*(0,). This is based on the
knowledge of the weight filtration on H% (O by [Per21, Theorem 1.1], and the degeneration of
p

the spectral sequence in Proposition 2.1 by Theorem 4.1 (c). We first record the following result
on intersection cohomology.

LEMMA 4.9. For all +,p > 0, we have an isomorphism as mixed Hodge structures
TH'(O,) = H'(Grass(p,n)).

In particular, IHZ(O ) has a pure Hodge structure of weight i, and its Hodge numbers are
concentrated on the diagonal.
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Proof. By [Zel81, Section 3.3], there is a small resolution of singularities Z — O,, such that Z
is the total space of a vector bundle over Grass(p,n). This implies that we have an isomorphism
of mixed Hodge structures TH'(0,) = H'(Z), for every i > 0 (see [HTTO08, Proposition 8.2.30]).
Since the Serre spectral sequence corresponding to the fibration 7 : Z — Grass(p, n) degenerates,
the pullback via 7 induces isomorphisms H*(Z) = H*(Grass(r,n)) of mixed Hodge structures,
for all 4, thus proving the first claim. As Grass(p,n) is a smooth projective variety, this shows
that IH? (O,) has a pure Hodge structure of weight i. The claim regarding the Hodge numbers
follows from [Ful98, Example 19.1.11]. O

Next, we record the Hodge numbers on de Rham cohomology of local cohomology.

THEOREM 4.10. The following trivariate generating function records the weight filtration on the
mixed Hodge structure of HéR(H% (0):
p

Z dimc Gr,‘?/HéR(H% (O)) - glwith =
i7,1>0 P

p
th—s . (qt)(m—s)~(n—s) . <n> . (wt)(n—p)z-l-(n—s)-(m—n) . (n —1- S) .
5/ (qt =S /(w2

s=0 )2 p

Moreover, the Hodge numbers ofHéR(H% (O1)) are concentrated on the diagonal for all i, j > 0.
p

Proof. We write Df for the pure Hodge module of weight do, corresponding to the intersection

cohomology sheaf of O,, isomorphic to £(0,, X) = D, as D-modules. By the discussion in
Sections 2.1 and 2.2, we have isomorphisms of mixed Hodge structures

Hip(D') = IH=%(0). (35)

As seen in Section 4.1, the de Rham cohomology of H% (S) is equal to the direct sum of
p

the de Rham cohomology of its D-module composition factors. By [Per21, Theorem 3.1], each of

these factors Dy carries the mixed Hodge module structure DH(dp, +s—mn—p—j), as a factor

of H% (0. Due to the additivity of Hodge numbers, by (35) each factor D thus contributes
p

with the Hodge numbers of TH=%(0,)((dog + s —mn — p — j)/2). In particular, by Lemma 4.9

all of these are concentrated on the diagonal, and the contribution of the de Rham cohomology

of a factor D, to HQR(H% (O)) can occur only in weight p—s+i+ 5. Taking these into account,
P

the combination of (28) and (29) readily gives the desired formula. O

Proof of Theorem 1.7. By Theorem 4.1 (c), we know that the spectral sequence of mixed Hodge
modules in Proposition 2.1 degenerates at the Fo page. As we did at the end of Section 4.1,
we readily recover the first formula in Theorem 1.7 from Theorem 4.10 by: specializing w + g,
making a change of variable ¢ — ¢~!, multiplying by ¢*™", putting ¢ > w, using (3), and taking
into account the Tate twist. The claim on the Hodge numbers also follows from Theorem 4.10.

Now we show the second formula in Theorem 1.7. By Theorem 4.1 (c) and [PS08, Corollary
2.26], for all ¢ we have an exact sequence of mixed Hodge structures

0 — HPM(O,) — H*"r~"(0p)(do,) — HEY (0p_1) — 0.

From the first part, it follows readily that the Hodge numbers of H*(O,) are also concentrated
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on the diagonal, for all 4. Using the first formula in Theorem 1.7, we have (putting t = quw™1!)

p
i W rr2do,—t i,J § : —s2sm+(p—s)(p—s+2) [ T n—1-—s
dimc Grj H=or (OP)(dOP) 4 w = s=0 v v ) (S>t2 < p—3s >t2

p—1
n n—1—s
+ . wpflfstQSer(pfsfl)(pfs+1) ( > ( ) _
Z q $)p\p—1—5/,

s=0

b 1 1
=Y b e (”) . {tz(p@ <”— - 5) N <”— - 5) } ‘
gt 5/ 42 p—3s .2 p—1—s /2

Using the following identities

)= (), 6o 6),020),20),0),

we obtain (after putting s — p — s)

p
dime Grj” H¥©07(0,)(do,) - g'v = @ 'Zws'ﬁ”(“)m'@) |
t2 s—0 t2

Using the Gaussian binomial theorem

n—1 n
TL(1+a") =3 akt-1r2 (”) "
k=0 k=0 k a
we obtain by putting @ = t? and b = w - t}72™
n pl
dim¢ Gr}-/v H?dop “(Op)(do,) - ¢w’ = ™. (p) : H(l + 2 HL=2myy).
[S—
We replace g — ¢, let u = qw, and multiply both sides with u?%0» (recall do, = p(m +n—p)),
to get
n r
dim¢ Gr}’v H'(Op) - ¢'w’ = u?Pp) < ) : H(l + w2y,
P/ y-2 s=0
which, after using (3), yields the result. O

Remark 4.11. Let CH;(O,) denote the Chow groups of O,. The determinantal varieties O,, are
known to be spherical, hence, by a result of Totaro [Tot14, Theorem 3], the natural cycle map

CHi(ép) ®C — W_QiHQBiM(ép)

is an isomorphism. Therefore, we recover the (rational) Chow groups computed in [Pra88, Sec-
tion 4] from the first formula in Theorem 1.7. More precisely, the summand with s = p in the
latter yields exactly the lowest piece of the filtration W_QngM (O,). Based on this circle of
ideas, a conceptual reason as to why the dimension of this agrees with that of the intersection
cohomology of O, (computed in [Zel81, Section 3.3]) would go as follows: in the spectral sequence
from Proposition 2.1, the only D-module composition factor contributing to the lowest pieces
W_9, HEM(0O,) is D, (appearing in H]@,(O x) only when j = ¢,, in which case it does so once),

whose de Rham cohomology in turn yields the intersection cohomology groups of O,.
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As mentioned in the Introduction, the degeneration of the Cech-de Rham spectral sequence
is an open problem in general. We end this section by illustrating that even with the prior
knowledge of all the terms on its second page, one can not conclude that the spectral sequence
degenerates for weight reasons alone.

EXAMPLE 4.12. Take m = n = 4 and p = 2 in Theorem 4.10, and consider for this case the third
page of the Cech—de Rham spectral sequence from Proposition 2.1. Then we obtain a differential

C = Grig HyzHg, (0X) — Grig HapH (0X) = C.

Hence, this map is between non-trivial spaces of the same weight. We know, a posteriori, that
this is zero due to Theorem 4.1 (c).

5. The case of skew-symmetric matrices

In this section we let X = /\2 C™ denote the space of n x n skew-symmetric matrices, endowed
with the natural action of G = GL,,. We let m = |n/2| and denote the G-orbits by O, as before,
where now O, consists of skew-symmetric matrices of rank 2p, 0 < p < m. The goal of this section
is to prove the following result, which combined with (3) implies part b) of Theorems 1.1, 1.4,
and 1.6 (as before, we disregard the case p = m when O, = X).

THEOREM 5.1. Suppose that 0 < p < m = |n/2], and let € = n — 2m.
(a) The generating function for de Rham cohomology of local cohomology modules is

> har(H5 (8)) ¢ - w! =

1,720

p
Z q(g)is@nizs*l) . <m> - q2(m—p)*+p—m+2e(m—s) | <m —-1- 8) _
s=0 5/ ¢ P—5 )

(b) The Hilbert—Poincaré polynomial for the Borel-Moore homology of the orbit closures is
given by

p
Z hBM Z q28 (n+e—1)+(p—s)(2p—2s+3) . <m> . <m -1- 8> )
i>0 5=0 5/ ¢t p=s /g

(c) The Cech-de Rham spectral sequence (7) degenerates at the Ey page, and the maps d; in
(4) vanish.

5.1 The proof of Theorem 5.1

The simple objects in modg(Dx) are the intersection homology Dx-modules D, = £(O0,, X).
By [LR22, Theorem 6.1], the generating function for the de Rham cohomology of the simples D,
is given by

S tin(D) = () aleenzen, (30

i>0
Moreover, by [RW16, (1.4)], we have for p < m the formal identity
P
. 11—
STIHL ()] w! = [Dy] - wmop)pmmazem=s). (m . S) . (37)
j=0 : s=0 p w?
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describing the simple D x-composition factors of the local cohomology modules H% (S). Com-
p
bining (36) with (37) we obtain the inequality

P
. . o n 1
S Hi(H ()" w? < Y gla) o2, <m> w2m PP 2tms). (m ! ) |
i.j>0 : 5=0 S/ q P—5 )t

(38)
Specializing to ¢ = w = 1, we obtain

— " /m m—1—s
Foven-$(0) (1)
s=0
Using the proof of Lemma 4.3 (with n replaced by m, and part (a) of Theorem 3.2 replaced by
part (b)), we get (16), and conclude that (7) degenerates and that the maps d; in (4) vanish.
Moreover, (38) is an equality, and by specializing it to w = ¢ and using the degeneration of (7)
and dim(X) = (), we get

2
DM (Op) "I = Y T hp(HE (9)) g™,
k=0 1,20

1 n(n—1)

Making the change of variable ¢ — ¢~ , and using (3), we get Theo-

rem 5.1(b).

, multiplying by ¢

5.2 Comparison with Lyubeznik numbers
The contrast between the Cech-de Rham and Lyubeznik numbers is completely analogous to the
discussion in Section 4.2, and we explain this here briefly. When n is odd, the category modg(Dx)
is semisimple [LW19, Theorem 5.7], which gives a more direct argument for the inequality in (38)
being an equality. Since F(D,) = D,,_, (e.g. see [Rail6, Remark 1.5]), the Cech-de Rham and
Lyubeznik numbers completely determine each other using (17).

We will therefore assume from now on that n = 2m is even, when modg(Dx) is no longer
semisimple [LW19, Theorem 5.7]. When p < m the D-module H% (S) can be written as a direct
sum of copies of the indecomposable D-modules Qq, Q1,...,Qp bpy [Per20, Theorem 1.1}, which

are given by

_ _ Spt
Qm = Sps, Qp - W

where Sps denotes the localization of S at the Pfaffian. Note that Qg = Dg and for 1 < p < m,
we have the the non-split short exact sequences of D-modules

0— D, —Qp— Qp—1 —0. (39)

We have a decomposition of (), as a G-representation

p
Q=pa;
s=0

where (), ~ D;s. As a rational G-module, the decomposition of D), is given in [Rail6, Section 6].

Our conventions are as follows: let S = Sym(A? V) with dim V' = n, and identify X = Spec(S) =
A’ VY endowed with the action of G = GL(V). Then

D,= P sV, (40)
AEB(p)
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where
B(p) = {N€ L, : Aap = 2p—n, Agpy1 < 2p—n+1, and A1 = Ag; for all i}. (41)
The next two results follow analogously to Lemma 4.4 and Corollary 4.6.

LEMMA 5.2. Ifd € A* V'V is a derivation and z € Q;, then d(z) € Q.

Proof. We may assume that z belongs to an isotypic component S)V', where A € B(s). Since
d € N> VY, it follows from Pieri’s rule [Wey03, Corollary 2.3.5] and the fact that @, is closed
under the action of 0, that
d(z) = Z Zu,
v

where for each v we have that z, € S,V for v € B(t) with ¢t < p, and v is obtained from A\ by
removing two boxes from the same column, i.e. there exists » with 1 < r < m such that

Voi—1 =9 = Agj—1 = Ag; for i £ 7, and v, 1 = vor = g1 — 1 = Ao — 1.
Since z € ker(Q), - Qs—1) it follows that s <t < p. We consider two cases:

— r# s. Then vog = Ags = 2s — n, and vos11 < Aost1 < 2s—n+ 1. Sov € B(s) and z, € Qf,.

— r=2s.If Aoy > 2s—n then 19, > 2s—n and z, € Q; If Aoy = 25 —n then 1oy =25 —n —1,
so v € B(s). Thus, we must have v € B(t) for some ¢t > s. However, this implies that

2t —n < vy Ky =25 —n—1,
which yields ¢ < s, a contradiction. O
Thus, the non-split exact sequence of D-modules (39) splits as C[0;;]-modules.

COROLLARY 5.3. We have a decomposition of complexes
p
DR(Qp) = €D DR(D,).
s=0
In particular,
p
Hip(Qp) = @ Hir(Ds).
s=0

We note that the analogues of Remarks 4.7 and 4.8 hold in the Pfaffian setting as well.

6. The case of symmetric matrices

In this section we let X = Sym?C"™ denote the space of n x n symmetric matrices, endowed
with the natural action of G = GL,,. The orbits of the G-action on X are denoted by O, where
O,, consists of symmetric matrices of rank p, 0 < p < n. The goal of this section is to prove
the following result, which combined with (3) implies part c¢) of Theorems 1.1, 1.4, and 1.6 (as
before, we disregard the case p = n when O, = X).

THEOREM 6.1. Suppose that 0 < p < n, let m = |n/2], and define

1 ifpiseven andn=2m+ 1 is odd;
€, =
P 0 otherwise.
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(a) The generating function for de Rham cohomology of local cohomology modules is

Z hilR(H%p(S)) g’ =

1,520

s=0 2 2 w
s=p (mod 2)

(b) The Hilbert—Poincaré polynomial for the Borel-Moore homology of the orbit closures is
given by

n—s—1

S = Y P ey (B

i>0 L%J q*4 pQ;S q4

(c) The Cech-de Rham spectral sequence (7) degenerates at the Ey page, and the maps d; in
(4) vanish if n — p is even or if p = 1.

6.1 The proof of Theorem 6.1

For p with 0 < p < n, we let D, = £(0p, X) denote the intersection homology D-module
corresponding to the trivial local system on the orbit O,. Unlike in the case of general and skew-
symmetric matrices, modg(Dx) contains other simple modules (see [Rail6, Theorem 2.9]), but
they do not contribute to the local cohomology groups H]@, (S). Indeed, by [RW16, (1.5)], the

composition series of local cohomology modules is encoded for p < n by

S (S w3 [DS}.wH("-;“)—(p-;“).(L”p?ﬂ) @
320 S=p S(;?)d 2) ’ v

Moreover, by [LR22, Theorem 5.1] we have
. . m —|'- € n—s+1
> hip(Dy) -4 = ( s ) ), (43)
i>0 LQJ g

which combined with (42) yields (note that €, = €, when s = p (mod 2))

p n—s—1
S" hp(HD (S) -0l <Y ") (m:rep> (T (L 2 J) _
ij=0 Or 5—0 13] g S/ s
s=p (mod 2)

Specializing to ¢ = w = 1, we obtain

. p m+e Lnfsflj
ptOt(OP) < NP = Z ( S P> ’ < pzs >
s=0 LiJ
s=p (mod 2)

It will be useful to extend the above formulas to p = n, where

(0.

Ny i= p(0,) = (X)
LEMMA 6.2. If p < n and n — p is even, or if p =1, then (16) holds.

Proof. Suppose first that p = 1, and note that N; = Ny = 1. By Theorem 3.2(c) we have
bt (O1) = 2, hence (16) holds. We therefore assume from now on that n — 2p is even.
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Suppose first that p < n. If n = 2m and p = 2r are even, then we have (putting ¢ = [s/2])

v B0 (0B ) () o

where the last equality follows from the identity in the proof of Lemma 4.3. The equality (16)
now follows from Theorem 3.2(c).

If n=2m+1 and p = 2r + 1 are odd then we have

" /m m—t—1 m+1
sene= (7)) e () ()

Using the fact that (m;rl) = (") + (,"",) and the second equality in (45), we conclude that

wen= (1) 2o (0)- () = ()2 -2 0)-()
_ <T:> o (7:}) g (T) s

The equality (16) follows again from Theorem 3.2(c).
Finally, assume that p = n, so that N, = 1. If n = 2m then

m—1
Npy=Noo1 =) (T) =2" -1,

=0
hence N, + Np_1 = 2™ = b'(O,,). If n = 2m + 1 then

- m+1 m+1
Npa=Noa=) |, )=2""-1,

=0
hence N, + N1 = 2™+ = 4!!(0,,), concluding our proof. O

Since the equality (16) implies the degeneration of the spectral sequence (7) for both O, and
Op_1, it follows that in order to prove (7) degenerates for all p it suffices to prove that (16)
holds for every other value of p. This is indeed the case by Lemma 6.2, hence the first part of
Theorem 42(c) holds. It also follows from Lemma 6.2 that (5) is an equality when p=1orn—p
is even, hence as explained in the Introduction, the last conclusion of Theorem 42(c) holds. Parts
(a) and (b) of Theorem 42 now follow from the fact that (44) must be an equality, as in the case
of general and skew-symmetric matrices.

6.2 De Rham cohomology for the modules @,

As mentioned in the Introduction, unlike for general and skew-symmetric matrices, the Lyubeznik
numbers of O, are unknown in the symmetric case. Furthermore, the explicit D-module decom-
position of the local cohomology modules H% (S) is also not known in general. Nevertheless,

P
we mention some partial results to this end, that lead naturally to the consideration of certain
D-modules @, analogous to the ones considered in Sections 4.2 and 5.2.

Due to (42) and [LW19, Theorem 5.9], when n — p is even (0 < p < n), the D-modules
H% (S) are semisimple. In particular, this readily proves in this case that equality holds in (44).
p

Additionally, if n is even (so p is also even), then F(D,) = D,,_, by [Rail6, Remark 1.5], hence
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the Cech-de Rham numbers of O, yield the Lyubeznik numbers of O,,_, by (17). On the other
hand, if n is odd (so p is also odd) then F(D,) is a simple equivariant D-module corresponding
to a non-trivial local system of an orbit [Rail6, Remark 1.5], thus we do not obtain Lyubeznik
numbers in this way.

From now on we assume that n — p is odd. We write S for the coordinate ring of X, and in
order to make the formulas below uniform, we set Dy,11 := S. For 0 < p < n+1 (with n —p
odd) we consider the following indecomposables @, € modg(Dx) (cf. [LW19, Section 5.3]):

_ _ Ssdet
Qn+1 = Ssdet, Qp—m 0<p<n—-1),

where Sgqet denotes the localization of S at the symmetric determinant. We have short exact
sequences

0— D), — Qp — Qp—2 —0. (46)
We note that for p < n (with n—p odd) the D-modules Hz L (S) are not semisimple in general. In
fact, by [LW19, Lemma 3.11] (see also [LRW19, Lemma 2. 4]) and [LW19, Theorem 5.9], we have

peodimx Or (S) = @Qp. Based on empirical evidence, and on the case of general and skew-symmetric

O
ma‘:rices, we conjecture that all the D-modules H%p(S ) are direct sums of the indecomposables
Qs, with s < p and s = p (mod 2).

As in Sections 4.2 and 5.2, we now show that the non-split exact sequence of D-modules (46)
splits in the category of C[0;;]-modules, which via de Rham cohomology gives further indication
for the validity of the conjecture due to the fact that equality holds in (44).

We write S = Sym(Sym? V), so that X = Spec(S) = Sym? V", with dim V = n. We consider
the decomposition of the simple D-modules D), as a direct sum of irreducible G-representations,
which is given in [Rail6, Theorem 4.1]. For 0 < p < n+ 1 (with n — p odd), we have

D,= P s\v (47)

AeC(p)

where
(mod 2)

Clp) ={ eZijyy: N = Ofori=1,---,n, Mpo12p—n—12X 1}
We have a decomposition of ), as a G-representation
P
Q= P o,
s=0
s=p (mod 2)
where @) >~ Ds. The next two results are the analogues of Lemma 4.4 and Corollary 4.6.

LEMMA 6.3. If @ € Sym? V'V is a derivation and z € Q;, then 9(z) € Q;.

Proof. We can assume that z belongs to an isotypic component S)\V, with A € C(s). As 9 €
Sym2 V"V, it follows from Pieri’s rule [Wey03, Corollary 2.3.5] and the fact that Qp is closed
under the action of d, that

=2

where for each v we have that z, € S,V for v € C(t) with ¢t < p and ¢t = p (mod 2), and v is
obtained from A by removing two boxes from the same row, i.e. there ex1sts rwithl <r<n

27



ANDRAS C. LOrINCZ AND CLAUDIU RAICU

such that
vi =\ for i #r, and v, = A\, — 2.
Since z € ker(Q), — Qs—2) it follows that s <t < p. We have two cases:

—r#s—1.Thenvs 1 =Xs-1 =2s—n—1,and vgy; < X411 <s—n—1. Sorv € C(s) and
z,,EQS

—r=s—1IfA_1>s—n—1(andso >s—n-+ )thenus_l>s—n—1ansz€Q§.If
As—1=8—n—1then vs_; =s—n—3,s0 v ¢&C(s). Thus, we must have v € C(t) for some
t > s. However, then

t—m—1<1r1<vs_1=8—n—23,

which yields ¢ < s, a contradiction. O

COROLLARY 6.4. We have a decomposition of complexes

DR(Qy) = P DR(D,).

In particular,

p
Hip(Qy)= € Hir(Dy).
s=0
s=p (mod 2)

Note that the analogue of Remark 4.7 holds in the symmetric setting as well.

7. A related spectral sequence

There is a spectral sequence similar to (7) involving singular cohomology and the local cohomol-
ogy modules Hép (Ox), which also degenerates for most of our matrix orbits O,,.

First, consider the more general setting when X is an affine space, and Z C X a locally closed
irreducible smooth subvariety. Consider the D-module pushforward of the structure sheaf Oz via
the map Z — {pt}, which yields singular cohomology (see Introduction). If we factor this map
as the composition Z — X \ {Z\ Z} — X — {pt}, we obtain the following spectral sequence of
D-modules (cf. [HTTO08, Proposition 1.7.1])

Ej = Hjp(H}(Ox)) = H™/7(2), (48)

where ¢ = codimyx Z. Naturally, this can also be viewed as a spectral sequence of mixed Hodge
modules, as we did for the Cech—de Rham spectral sequence in Section 2.2.

PROPOSITION 7.1. With the notation above, assume that the Cech-de Rham spectral sequence
E;j = HZZR(H{/(OX)) H 2dx —i— ](Y)

degenerates on the second page for Y = Z and Y = Z \ Z, and that the following maps d; are
zero for all i:

— HBM(Z\ 7) % gBM(Z) — H2AmZ=i(zy . gBM(7\ 7)Y gBM(7) — ...
Then the spectral sequence (48) also degenerates on the second page, and we have for all i,j > 0

ar(H(Ox)) = hyr(HL(Ox)) + hip(HE, ,(Ox))-
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Proof. Consider the long exact sequence in local cohomology corresponding to the inclusion
ZC Z:

7 . . . i+1 .
2 2(0x) 5 Hy(Ox) = Hy(Ox) — HL(Ox) “— HF'(Ox) =+ (49)

\zZ

In particular, we have for all 4,57 > 0

Bin(HL(Ox)) < Wip(HL(Ox)) + By (HEL(Ox)).

Summing these up for all 7, j, the spectral sequence (48) together with the degeneration of the
two Cech-de Rham spectral sequences gives
b (Z) < bt (Z) + b (Z\ 2).

Now the vanishing of the maps d; implies that equality holds in all of the above inequalities (cf.
also (14)), and that the spectral sequence (48) degenerates as claimed. O

In the case of our matrix orbits O, Proposition 7.1 together with Theorems 1.4 and 1.6
readily yields the following result.

COROLLARY 7.2. When Z = O,, the spectral sequence (48) degenerates on the second page in
all of the cases from Theorem 1.4.

While the claim about the de Rham cohomology of Hép((’)x) from Proposition 7.1 is also
valid in the cases above, we can show a sharper claim about these local cohomology modules as
follows.

Due to parity reasons, we see from the formulas (29), (37), and (42) that the D-modules
H% 1((’)X) and H% (Ox) have no common composition factors. Thus, the maps d’ in (49)
- P

p
(with Z = O,) are all zero, and the long exact sequence breaks up into short exact sequences
0— H%p((’)x) — Hp (Ox) = ng‘il(ox) — 0.

We claim that these exact sequences of equivariant D-modules split. For the case of general
matrices, this follows from [LR20, Theorem 6.1 and Lemma 6.5] and [LW19, Theorem 5.4], for
skew-symmetric matrices from [Per20, Theorem 1.1] and [LW19, Theorem 5.7], and for symmetric
matrices due to parity reasons by the formula (42) and [LW19, Theorem 5.9]. Hence, for all i > 0
and p > 1 we have (as Dx-modules)

Hp,(0x) = Hg (Ox) @ Hf! (Ox), (50)

which is much stronger than the second claim in Proposition 7.1.
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