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Abstract. This study investigates high-order face and edge elements in finite element
methods, with a focus on their geometric attributes, indexing management, and prac-
tical application. The exposition begins by a geometric decomposition of Lagrange
finite elements, setting the foundation for further analysis. The discussion then ex-
tends to H(div)-conforming and H(curl)-conforming finite element spaces, adopting
variable frames across differing sub-simplices. The imposition of tangential or normal
continuity is achieved through the strategic selection of corresponding bases. The pa-
per concludes with a focus on efficient indexing management strategies for degrees
of freedom, offering practical guidance to researchers and engineers. It serves as a
comprehensive resource that bridges the gap between theory and practice.
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Key words: Implementation of finite elements, nodal finite elements, H(curl)-conforming, H(div)-
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1 Introduction

This paper introduces node-based basis functions for high-order finite elements, specif-
ically focusing on Lagrange, BDM (Brezzi-Douglas-Marini) [8, 9, 18], and second-kind
Nédélec elements [6, 18]. These elements are subsets of the spaces H

1, H(div), and
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H(curl), with their shape functions being the full polynomial space Pn

k
, where k repre-

sents the polynomial degree, and n the geometric dimension. Notably, varying continuity
across these elements gives rise to distinct characteristics. When n=3, for the lowest de-
gree k=1, degrees of freedom (DoFs) of the H(div)-conforming finite element are posed
on faces and DoFs of the H(curl)-conforming finite element are posed on edges. There-
fore, conventionally an H(div)-conforming finite element is referred to as a face element,
and an H(curl)-conforming element is an edge element. They are also known as the sec-
ond family of face and edge element as the shape function space is the full polynomial
space while the first family consists of incomplete polynomial spaces [6].

In the realm of Lagrange finite elements, nodal basis functions stand out for their
simplicity and ease of computation. In contrary, constructing basis functions for face and
edge elements is more intricate. Traditional approaches involve the Piola transforma-
tions, where basis functions are first devised on a reference element and subsequently
mapped to the actual element using either covariant (to preserve tangential continuity,
in the case of edge elements) or contravariant (to maintain normal continuity, for face
elements) Piola transformations. Detailed explanations of this approach can be found
in [17, 20], and implementation is in open-source software such as MFEM [5] and Fen-
ics [4].

Arnold, Falk and Winther, in [7], introduced a geometric decomposition of polyno-
mial differential forms. Basis functions based on Bernstein polynomials were proposed,
paving the way for subsequent advancements. In [1,3], basis functions founded on Bern-
stein polynomials were explored, accompanied by fast algorithms for the matrix assem-
bly. Additionally, hierarchical basis functions for H(curl)-conforming finite elements
were introduced in [2, 22–24].

While these methods offer valuable insights, they can be quite complex. Researchers
have thus ventured into simpler approaches. In [14], a method multiplying scalar nodal
finite element methods by vectors was introduced, resulting in H(div) and H(curl) con-
forming finite elements that exhibit continuity on both vertices and edges.

We propose a straightforward method to construct nodal bases for the second family
face and edge elements. Initially, we clarify the basis of Lagrange elements by consid-
ering them dual to the degrees of freedom, which are determined by values at interpo-
lation points. We then extend this principle to vector polynomial spaces, wherein each
interpolation point establishes a frame that includes both tangential and normal (t-n)
directions. We impose the continuity of either tangential or normal components by ap-
propriate choice of the t-n decomposition. We explicitly derive the dual basis functions
for these elements from the basis functions of Lagrange elements.

This idea has been previously explored in [10, 15, 16] for constructing a hierarchical
basis of H(div) elements in two and three dimensions. Through a rotation process, it was
also adapted for H(curl) elements in two dimensions, as detailed in [15, 16]. However,
extending their methodology to higher dimensions presented significant challenges. Our
work advances this field by developing a geometric decomposition of the second family
face and edge elements in arbitrary dimensions and orders. Additionally, we introduce
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degrees of freedom that are dual to the basis functions, aspects not covered in the afore-
mentioned studies.

An essential aspect of practical finite element implementations is the management of
local DoFs, ensuring proper mapping to global DoFs. This is critical for maintaining the
correct continuity between elements and correctly integrating matrices and vectors across
the system. Despite its importance, there is a scarcity of literature specifically addressing
DoF management for high-order finite elements. In this paper, we explore the global
indexing of interpolation points in Lagrange finite elements of arbitrary degree. Our
discussion comprehensively covers DoF management for Lagrange, the second family
face and edge elements. Our goal is to facilitate the implementation of high-order finite
element methods by simplifying their DoF management.

The subsequent sections of this paper are organized as follows. Section 2 elucidates
foundational concepts such as simplicial lattices, interpolation points, bubble polynomi-
als, and triangulations. Sections 3, 4, and 5 delve into the construction of basis functions
for Lagrange, the second family face and edge elements, respectively. Section 6 addresses
the management of degrees of freedom, a critical aspect of effective matrix assembly. Fi-
nally, Section 7 presents two numerical examples, solving the mixed Poisson problem
and Maxwell problem using the second family face and edge elements, respectively, to
validate the correctness of the proposed basis function construction method.

2 Preliminaries

In this section, we provide essential foundations for our study. We introduce multi-
indices, simplicial lattices, and interpolation points. We explain sub-simplices and their
relations. Furthermore, we introduce the dictionary ordering of simplicial lattices and
the concept of bubble polynomials.

2.1 Simplicial lattice

A multi-index of length n+1 is an array of non-negative integers:

a=(a0,a1,··· ,an), ai 2N,i=0,··· ,n.

The degree or sum of the multi-index is |a|=Ân

i=0 ai and factorial is a!=’n

i=0(ai!). The
set of all multi-indices of length n+1 and degree k will be called a simplicial lattice and
denoted by Tn

k
, i.e.,

Tn

k
={a2Nn+1 : |a|= k}.

The elements in Tn

k
can be linearly indexed by the dictionary ordering Rn:

Rn(a)=
n

Â
i=1

✓
ai+ai+1+···+an+n�i

n+1�i

◆
.



1048 C. Chen et al. / Commun. Comput. Phys., 35 (2024), pp. 1045-1072

For example, for an element a in T2
k
, the index is given by the mapping:

R2(a)=
(a1+a2)(a1+a2+1)

2
+a2.

Notice that a0 is not used in the calculation of Rn(a).

2.2 Interpolation points

Let x0,x1,··· ,xn be n+1 points in Rn and

T=Convex(x0,x1,··· ,xn)=

(
n

Â
i=0

lixi : 0li 1,
n

Â
i=0

li =1

)
,

be an n-simplex, where l=(l0,··· ,ln) is called the barycentric coordinate. We can have
a geometric embedding of the algebraic set Tn

k
as follows:

XT =

(
xa =

1
k

n

Â
i=0

aixi : a2Tn

k

)
,

which is called the set of interpolation points with degree k on T; see Fig. 1 for k=4 and
n= 2. In literature [19], it is called the k-th order principal lattice of n-simplex T. Given
a2Tn

k
, the barycentric coordinate of a is given by

l(a)=(a0,a1,··· ,an)/k.

The ordering of XT is also given by Rn(a). Note that the indexing map Rn(a) is only a lo-
cal ordering of the interpolation points on one n-simplex. In Section 6, we will discuss the
global indexing of all interpolation points on the triangulation composed of simplexes.

By this geometric embedding, we can apply operators to the geometric simplex T.
For example, X

T̊
denotes the set of interpolation points in the interior of T and X∂T is the

set of interpolation points on the boundary of T.

Figure 1: The interpolation points of T2
4 and their linear indices and multi-indexes.
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2.3 Sub-simplexes and sub-simplicial lattices

Following [7], let D(T) denote all the subsimplices of T, while D`(T) denotes the set of
subsimplices of dimension ` for `=0,··· ,n. The capital letter F is reserved for an (n�1)-
dimensional face of T and Fi 2Dn�1(T) denotes the face opposite to xi for i=0,1,··· ,n.

For a sub-simplex f 2D`(T), following [13], we will overload the notation f for both
the geometric simplex and the algebraic set of indices. Namely f = { f (0),··· , f (`)}✓
{0,1,··· ,n} and

f =Convex(x f (0),··· ,x f (`))2D`(T)

is the `-dimensional simplex spanned by the vertices x f (0),··· ,x f (`).
If f 2D`(T), then f

⇤ 2Dn�`�1(T) denotes the sub-simplex of T opposite to f . When
treating f as a subset of {0,1,··· ,n}, f

⇤ ✓{0,1,··· ,n} so that f [ f
⇤={0,1,··· ,n}, i.e., f

⇤ is
the complement of set f . Geometrically,

f
⇤=Convex(x f ⇤(1),··· ,x f ⇤(n�`))2Dn�`�1(T)

is the (n�`�1)-dimensional simplex spanned by vertices not contained in f .
Given a sub-simplex f 2D`(T), through the geometric embedding f ,!T, we define

the prolongation/extension operator E :T`
k
!Tn

k
as follows:

E(a) f (i) =ai, i=0,··· ,`, and E(a)j =0, j 62 f . (2.1)

Take f = {1,3,4} for example, then the extension E(a) = (0,a0,0,a1,a2,··· ,0) for a =
(a0,a1,a2)2T`

k
( f ). With a slight abuse of notation, for a node a f 2T`

k
( f ), we still use the

same notation a f 2Tn

k
(T) to denote such extension. The geometric embedding xE(a)2 f

which justifies the notation T`
k
( f ) and its geometric embedding will be denoted by X f ,

which consists of interpolation points on f . T`
k
( f̊ ) is the set of lattice points whose geo-

metric embedding is in the interior of f , i.e., X
f̊
.

The Bernstein representation of polynomial of degree k on a simplex T is

Pk(T) :=span{la =la0
0 la1

1 ···lan

n , a2Tn

k
}.

The bubble polynomial of f is a polynomial of degree `+1:

b f :=l f =l f (0)l f (1) ···l f (`)2P`+1( f ).

2.4 Triangulation

Let W be a polyhedral domain in Rn, n�1. A geometric triangulation Th of W is a set of
n-simplices such that

[T2Th
T=W, T̊i\ T̊j =∆, 8 Ti,Tj 2Th, Ti 6=Tj.

The subscript h denotes the diameter of each element and can be understood as a piece-
wise constant function on Th. A triangulation is conforming if the intersection of two
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simplexes are common lower dimensional sub-simplex. We shall restrict to conforming
triangulations in this paper.

The interpolation points on a conforming triangulation Th is

X =
[

T2Th

XT. (2.2)

Note that a lot of duplications exist in (2.2). A direct sum of the interpolation set is given
by

X =D0(Th)��n

`=1� f2D`(Th)
X

f̊
, (2.3)

where D`(Th) denotes the set of `-dimensional subsimplices of Th. In implementation,
computation of local matrices on each simplex is based on (2.2) while to assemble a matrix
equation, (2.3) should be used. As Lagrange element is globally continuous, the indexing
of interpolation points on vertices, edges, faces should be unique and a mapping from
the local index to the global index is needed. The index mapping from (2.2) to (2.3) will
be discussed in Section 6.

3 Geometric decompositions of Lagrange elements

In this section, we present a geometric decomposition for Lagrange finite elements on
n-dimensional simplices. We introduce the concept of Lagrange interpolation basis func-
tions, where function values at interpolation points serve as degrees of freedom.

3.1 Geometric decomposition

For the polynomial space Pk(T) with k�1 on an n-dimensional simplex T, we have the
following geometric decomposition of Lagrange element [7, (2.6)] and a proof can be
found in [12]. The integral at a vertex is understood as the function value at that vertex
and Pk(x)=R. When k<0, Pk(T)=?.

Theorem 3.1 (Geometric decomposition of Lagrange element). For the polynomial space

Pk(T) with k�1 on an n-dimensional simplex T, we have the following decomposition

Pk(T)=�n

`=0� f2D`(T)
b f Pk�(`+1)( f ). (3.1)

The function u2Pk(T) is uniquely determined by DoFs

Z

f

u pds, p2Pk�(`+1)( f ), f 2D`(T), `=0,1,··· ,n. (3.2)

Introduce the bubble polynomial space of degree k on a sub-simplex f as

Bk( f ) :=b f Pk�(`+1)( f ), f 2D`(T), 1 `n.
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When `� k, Bk( f )=?. It is called a bubble space as

trgrad
u :=u|∂ f =0, u2Bk( f ).

Then we can write (3.1) as

Pk(T)=P1(T)��n

`=1� f2D`(T)
Bk( f ). (3.3)

That is a polynomial of degree k can be decomposed into a linear polynomial plus bubbles
on edges, faces, and all sub-simplexes.

Based on a conforming triangulation Th, the k-th order Lagrange finite element space
V

L
k
(Th) is defined as

V
L
k
(Th)={v2C(W) : v|T 2Pk(T), T2Th, and DoFs (3.2) are single valued},

and will have a geometric decomposition

V
L
k
(Th)=V

L
1 (Th)��n

`=1� f2D`(Th)
Bk( f ). (3.4)

Here we extend the polynomial on f to each element T containing f by the Bernstein form
and extension of multi-index; see E(a) defined in (2.1). Consequently the dimension of
V

L
k
(Th) is

dimV
L
k
(Th)=

n

Ầ
=0
|D`(Th)|

✓
k�1
`

◆
,

where |D`(Th)| is the cardinality of number of D`(Th), i.e., the number of `-dimensional
simplices in Th. We understand (k�1

` )=0 if `> k�1. That is the degree of the polynomial
dictates the dimension of the sub-simplex in the geometric decompositions (3.1) and (3.4).

The geometric decomposition (3.1) can be naturally extended to vector Lagrange ele-
ments. For k�1, define

Bn

k
( f ) :=b f Pk�(`+1)( f )⌦Rn.

Clearly we have

Pn

k
(T)=Pn

1(T)��n

`=1� f2D`(T)
Bn

k
( f ). (3.5)

For an f 2D`(T), we choose a t�n coordinate {t f

i
,n f

j
, i=1,··· ,`, j=1,··· ,n�`} so that

• T f :=span{t f

1 ,··· ,t f

`} is the tangential plane of f ;

• N f :=span{n f

1 ,··· ,n f

n�`} is the normal plane of f .

When `=0, i.e., for vertices, no tangential component, and for `=n, no normal compo-
nent. We abbreviate nF

1 as nF for F2Dn�1(T), and te

1 as te for e2D1(T). We have the trivial
decompositions

Rn =T f �N f , Bn

k
( f )=

h
Bk( f )⌦T f

i
�

h
Bk( f )⌦N f

i
. (3.6)
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Restricted to an `-dimensional sub-simplex f 2D`(T), define

B`
k
( f ) :=Bk( f )⌦T f ,

which is a space of `-dimensional vectors on the tangential space T f with vanishing trace
trgrad on ∂ f .

When move to a triangulation Th, we shall call a basis of T f or N f is global if it
depends only on f not the element T containing f . Otherwise it is called local and may
vary in different elements.

3.2 Lagrange interpolation basis functions

Previously DoFs (3.2) are given by moments on sub-simplexes. Now we present a set of
DoFs as function values on the interpolation points and give its dual basis for the k-th
order Lagrange element on an n-simplex.

Lemma 3.1 (Lagrange interpolation basis functions [19]). A basis function of the k-th order

Lagrange finite element space on T is:

fa(x)=
1
a!

n

’
i=0

ai�1

’
j=0

(kli(x)� j), a2Tn

k
,

with the DoFs defined as the function value at the interpolation points:

Na(u)=u(xa), xa 2XT.

Proof. It is straightforward to verify the duality of the basis and DoFs

Nb(fa)=fa(xb)=da,b =

(
1 if a=b,
0 otherwise.

As
|Tn

k
|=

✓
n+k

k

◆
=dimPk(T),

{fa,a2Tn

k
} is a basis of Pk(T) and {Na,a2Tn

k
} is a basis of the dual space P⇤

k
(T).

Given a triangulation Th and degree k, recall that

XTh
=

[

T2Th

XT =D0(Th)��n

`=1� f2D`(Th)
X

f̊
.

Denote by
Tn

k
(Th) :=�xi2D0(Th)

T0
k
(xi)��n

`=1� f2D`(Th)
T`

k
( f̊ ).

For a lattice a2T`
k
( f̊ ), we use extension operator E defined in (2.1) to extend a to each

simplex T containing f . We also extend the polynomial on f to T by the Bernstein form.
Hereafter, for simplicity, we set Xv̊ :=Xv and T0

k
(v̊) :=T0

k
(v) for vertex v2D0(Th).
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Theorem 3.2 (DoFs of Lagrange finite element on Th). A basis for the k-th Lagrange finite

element space V
L
k
(Th) is

{fa,a2Tn

k
(Th)}

with DoFs

Na(u)=u(xa), xa 2XTh
.

Proof. For F 2 Dn�1(Th), thanks to Lemma 3.1, fa|F is uniquely determined by DoFs
{u(xa),xa 2XF} on face F, hence fa 2V

L
k
(Th). Clearly the cardinality of {fa,a2Tn

k
(Th)}

is same as the dimension of space V
L
k
(Th). Then we only need to show these func-

tions are linearly independent, which follows from the fact Nb(fa) = fa(xb) = da,b for
a,b2Tn

k
(Th).

We now generalize the basis for a scalar Lagrange element to a vector Lagrange ele-
ment. For an interpolation point x2XT, let {ex

i
, i= 0,··· ,n�1} be a basis of Rn, and its

dual basis is denoted by {êx
i
, i=0,··· ,n�1}, i.e.,

(êx
i
,ex

j
)=di,j,

where (a,b)=a·b is the inner product of two vectors in Rn. When {ex
i
, i=0,··· ,n�1} is

orthonormal, its dual basis is itself.

Corollary 3.1. A polynomial function u2Pn

k
(T) can be uniquely determined by the DoFs:

N
i

a(u) :=u(xa)·exa
i

, xa 2XT, i=0,··· ,n�1.

The basis function on T dual to this set of DoFs can be explicitly written as:

fi

a(x)=fa(x)êxa
i

, a2Tn

k
, i=0,··· ,n�1.

Proof. It is straightforward to verify the duality

N
j

b(f
i

a)=fi

a(xb)·e
xb

j
=fa(xb)êxa

i
·exb

j
=di,jda,b,

for a,b2Tn

k
, i, j=0,··· ,n�1.

If the basis {e f

i
, i=0,··· ,n�1} is global in the sense that it is independent of element

T containing x, we get the continuous vector Lagrange elements. Choose different basis
will give different continuity.
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4 Geometric decompositions of face elements

Define H(div,W) := {v 2 L
2(W;Rn) : divv 2 L

2(W)}. For a subdomain K ✓ W, the trace
operator for the div operator is

trdiv
K

v=n·v|∂K for v2H(div,W),

where n denotes the outwards unit normal vector of ∂K. Given a triangulation Th and
a piecewise smooth function u, it is well known that u2 H(div,W) if and only if nF ·u is
continuous across all faces F2Dn�1(Th), which can be ensured by having DoFs on faces.
An H(div)-conforming finite element is thus also called a face element.

4.1 Geometric decomposition

Define the polynomial div bubble space

Bk(div,T)=ker(trdiv
T

)\Pn

k
(T).

Recall that B`
k
( f )=Bk( f )⌦T f consists of bubble polynomials on the tangential plane of

f . For u2B`
k
( f ), as u is on the tangent plane, u·nF = 0 for f ✓ F. When f 6✓ F, b f |F = 0.

So B`
k
( f )✓Bk(div,T) for k�2 and dim f �1. In [12], we have proved that the div-bubble

polynomial space has the following decomposition.

Lemma 4.1. For k�2,

Bk(div,T)=�n

`=1� f2D`(T)
B`

k
( f ).

Notice that as no tangential plane on vertices, there is no div-bubble associated to
vertices and consequently the degree of a div-bubble polynomial is greater than or equal
to 2. Next we present two geometric decompositions of a div-element.

Theorem 4.1. For k�1, we have

Pn

k
(T)=Pn

1(T)�
��n�1

`=1� f2D`(T)
(Bk( f )⌦N f )

�
�Bk(div,T), (4.1)

Pn

k
(T)=

��F2Dn�1(T)
(Pk(F)nF)

�
�Bk(div,T). (4.2)

Proof. The first decomposition (4.1) is a rearrangement of (3.5) by merging the tangential
component B`

k
( f ) into the bubble space Bk(div,T).

Next we prove the decomposition (4.2). For an `-dimensional, 0  `  n�1, sub-
simplex f 2 D`(T), we choose the n�` face normal vectors {nF : F 2 Dn�1(T), f ✓ F}
as the basis of N f . Therefore we have

Bk( f )⌦N f =�F2Dn�1(T), f✓F
Bk( f )nF.

Then (4.1) becomes

Pn

k
(T)=Pn

1(T)�
��n�1

`=1� f2D`(T)�F2Dn�1(T), f✓F
Bk( f )nF

�
�Bk(div,T).
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At a vertex v, we choose {nF : F2Dn�1(T), v2F} as the basis of Rn and write

Pn

1(T)=�x2D0(T)�F2Dn�1(T),x2D0(F)span{lxnF}
=�F2Dn�1(T)�x2D0(F)span{lxnF}
=�F2Dn�1(T)

P1(F)nF.

Then by swapping the ordering of f and F in the direct sum, i.e.,

�n�1
`=1� f2D`(T)�F2Dn�1(T), f✓F

!�F2Dn�1(T)�n�1
`=1� f2D`(F),

and using the decomposition (3.1) of Lagrange element, we obtain the decomposition
(4.2).

In decomposition (4.1), we single out Pn

1(T) to emphasize an H(div)-conforming el-
ement can be obtained by adding div-bubble and normal component on sub-simplexes
starting from edges. In (4.2), we group all normal components facewisely which leads to
the classical BDM element.

As H(div,W)-conforming elements require the normal continuity across each F, the
normal vector nF is chosen globally. Namely nF depends on F only. It may coincide with
the outwards or inwards normal vector for an element T containing F. On the contrary,
all tangential basis for T f are local and thus the tangential component are multi-valued
and merged to the element-wise div bubble function Bk(div,T).

4.2 A nodal basis for the BDM element

For the efficient implementation, we employ the DoFs of the function values at interpola-
tion nodes and combine with t�n decompositions to present a nodal basis for the BDM
element.

Given an f 2 D`(T), we choose {nF, F 2 Dn�1(T), f ✓ F} as the basis for its normal
plane N f and an arbitrary basis {t f

i
, i=1,··· ,`} for the tangential plane. We shall choose

{n̂Fi
2N f , i2 f

⇤} a basis of N f dual to {nFi
2N f , i2 f

⇤}, i.e.,

(nF,n̂F0)=dF,F0 , F,F0 2Dn�1(T), f 2F\F
0.

Similarly choose a basis {t̂ f

i
} dual to {t f

j
}.

We can always choose an orthonormal basis for the tangential plane T f but for the
normal plane N f with basis {nFi

2N f , i2 f
⇤}, we use Lemma 4.2 to find its dual basis.

For f 2D`(T) and e2∂ f , let ne

f
be an unit normal vector of e but tangential to f . When

`=1, f is an edge and e is a vertex. Then ne

f
is the edge vector of f . Using these notations

we can give an explicit expression of the dual basis {n̂Fi
2N f , i2 f

⇤}.



1056 C. Chen et al. / Commun. Comput. Phys., 35 (2024), pp. 1045-1072

Lemma 4.2. For f 2D`(T),
⇢

n̂Fi
=

1

n f

f+i
·nFi

n f

f+i
, i2 f

⇤
�

, (4.3)

where f +i denotes the (`+1)-dimensional face in D`+1(T) with vertices f (0),··· , f (`) and i for

i2 f
⇤
, is a basis of N f

dual to {nFi
2N f , i2 f

⇤}.

Proof. Clearly n f

f+i
2N f for i2 f

⇤. It suffices to prove

n f

f+i
·nFj

=0 for i, j2 f
⇤, i 6= j,

which follows from n f

f+i
2T f+i and f +i✓Fj.

By Corollary 3.1, we obtain a nodal basis for BDM face elements.

Theorem 4.2. For each f 2D`(T), we choose {e f

i
,i=0,··· ,n�1}={t f

i
, i=1,··· ,`, nFi

, i2 f
⇤}

and its dual basis {ê f

i
, i=0,··· ,n�1}={t̂ f

i
, i=1,··· ,`, n̂Fi

, i2 f
⇤}. A basis function of the k-th

order BDM element space on T is:

{fa(x)ê f

i
, i=0,1,··· ,n�1, a2T`

k
( f̊ )} f2D`(T), `=0,1,···,n,

with the DoFs at the interpolation points defined as:

{u(xa)·e f

i
, i=0,1,··· ,n�1, xa 2X

f̊
} f2D`(T), `=0,1,···,n. (4.4)

By choosing a global normal basis in the sense that nF depending only on F not the el-
ement containing F, we impose the continuity on the normal direction. We choose a local
t f , i.e., for different element T containing f , fa(x)t f (T) is different, then no continuity is
imposed for the tangential direction.

Define the global finite element space

V
div
h,k :={u2L

2(W;Rn) : u|T 2Pk(T;Rn) for each T2Th,

all the DoFs u(xa)·nF in (4.4) across F2Dn�1(Th) are single-valued}.

By Theorem 4.1, V
div
h,k ⇢H(div,W) and is equivalent to the BDM space.

The novelty is that we only need a basis of Lagrange element which is well docu-
mented; see Section 3.2. Coupling with different t�n decomposition at different sub-
simplex, we obtain the classical face elements. This concept has been explored in the
works of [15, 16] and [10], focusing on the implementation of the H(div) element in two
and three dimensions. Additionally, the adaptation of a 2D H(curl) element through ro-
tation is discussed in [15, 16]. As we will demonstrate in the subsequent section, extend-
ing the edge element to higher dimensions presents significant challenges. This exten-
sion necessitates a comprehensive characterization of the curl operator and its associated
polynomial bubble space.
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5 Geometric decompositions of edge elements

In this section we present geometric decompositions of H(curl)-conforming finite ele-
ment space on an n-dimensional simplex. We first generalize the curl differential oper-
ator to n dimensions and study its trace which motivates our decomposition. We then
give an explicit basis dual to function values at interpolation points.

5.1 Differential operator and its trace

Denote by S and K the subspace of symmetric matrices and skew-symmetric matrices of
Rn⇥n, respectively. For a smooth vector function v, define

curlv :=2skw(gradv)=gradv�(gradv)|,

which is a skew-symmetric matrix function. In two dimensions, for v=(v1,v2)|,

curlv=
✓

0 ∂x2 v1�∂x1 v2
∂x1 v2�∂x2 v1 0

◆
=mskw(rotv),

where
mskwu :=

✓
0 �u

u 0

◆
, rotv :=∂x1 v2�∂x2 v1.

In three dimensions, for v=(v1,v2,v3)|,

curlv=

0

@
0 ∂x2 v1�∂x1 v2 ∂x3 v1�∂x1 v3

∂x1 v2�∂x2 v1 0 ∂x3 v2�∂x2 v3
∂x1 v3�∂x3 v1 ∂x2 v3�∂x3 v2 0

1

A=mskw(r⇥v),

where

mskwu :=

0

@
0 �u3 u2
u3 0 �u1
�u2 u1 0

1

A

with u=(u1,u2,u3)|. Hence we can identify curlv as scalar rotv in two dimensions, and
vector r⇥v in three dimensions. In general, curlu is understood as a skew-symmetric
matrix.

Define Sobolev space

H(curl,W) :={v2L
2(W;Rn) : curlv2L

2(W;K)}.

Given a face F2Dn�1(T), define the trace operator of curl as

trcurl
F

v=2skw(vn|
F
)|F =(vn|

F
�nFv|)|F.

We define trcurl as a piecewise defined operator as

(trcurl v)|F = trcurl
F

v, F2Dn�1(T).
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For a vector v2Rn and an (n�1)-dimensional face F, the tangential part of v on F is

PFv :=v|F�(v|F ·nF)nF =
n�1

Â
i=1

(v|F ·tF

i
)tF

i
,

where {tF

i
, i=1,··· ,n�1} is an orthonormal basis of F. As we treat curlv as a matrix, so

is the trace trcurl
F

v, while the tangential component of v is a vector. Their relation is given
in the following lemma.

Lemma 5.1. For face F2Dn�1(T), we have

trcurl
F

v=2skw
�
(PFv)n|

F

�
, PFv=(trcurl

F
v)nF. (5.1)

Proof. By the decomposition v|F =PFv+(v|F ·nF)nF,

trcurl
F

v=2skw
�
(PFv)n|

F
+(v|F ·nF)nFn|

F

�
=2skw

�
(PFv)n|

F

�
,

which implies the first identity. Then by n|
F
nF =1 and (PFv)|nF =0,

(trcurl
F

v)nF =
�
(PFv)n|

F
�nF(PFv)|

�
nF =PFv,

i.e. the second identity holds.

Thanks to (5.1), the vanishing tangential part PFv and the vanishing tangential trace
(trcurl

F
v) are equivalent.

Lemma 5.2. Let v2 L
2(W;Rn) and v|T 2 H

1(T;Rn) for each T 2 Th. Then v2 H(curl,W) if

and only if PFv |T1=PFv |T2 for all interior face F2Dn�1(Th), where T1 and T2 are two elements

sharing F.

Proof. It is an immediate result of Lemma 5.1 in [6] and (5.1).

5.2 Polynomial bubble space

Define the polynomial bubble space of degree k for the curl operator as

Bk(curl,T)=ker(trcurl)\Pn

k
(T).

For Lagrange bubble space Bn

k
(T), all components of the vector function vanish on ∂T

and consequently on all sub-simplex with dimension  n�1. For u 2Bk(curl,T), only
the tangential component vanishes, which will imply u vanishes on sub-simplex with
dimension n�2.

Lemma 5.3. For u2Bk(curl,T), it holds u| f =0 for all f 2D`(T), 0 `n�2. Consequently

Bk(curl,T)⇢Bn

k
(T)��F2Dn�1(T)

Bn

k
(F).
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Proof. It suffices to consider a sub-simplex f 2 Dn�2(T). Let F1,F2 2 Dn�1(T) such that
f =F1\F2. By trcurl

Fi
u=0 for i=1,2, we have PFi

u=0 and consequently

(u·t f

i
)| f =0, (u·n f

F1
)| f =(u·n f

F2
)| f =0 for i=1,··· ,n�2,

where n f

Fi
is a normal vector f sitting on Fi. As span{t f

1 ,··· ,t f

n�2,n f

F1
,n f

F2
}=Rn, we acquire

u| f =0. By the property of face bubbles, we conclude u is a linear combination of element
bubble and (n�1)-dimensional face bubbles.

Obviously Bn

k
(T)⇢Bk(curl,T). As trcurl contains the tangential component only, the

normal component Bk(F)nF is also a curl bubble. The following result says their sum is
precisely all curl bubble polynomials.

Theorem 5.1. For k�1, it holds that

Bk(curl,T)=Bn

k
(T)��F2Dn�1(T)

Bk(F)nF, (5.2)

and

trcurl :Pn

1(T)��n�2
`=1� f2D`(T)

Bn

k
( f )��F2Dn�1(T)

Bn�1
k

(F)! trcurlPn

k
(T) (5.3)

is a bijection.

Proof. It is obvious that

Bn

k
(T)��F2Dn�1(T)

Bk(F)nF ✓Bk(curl,T).

Then apply the trace operator to the decomposition (3.5) to conclude that the map trcurl

in (5.3) is onto.
Now we prove it is also injective. Take a function u2Pn

1(T)��n�2
`=1� f2D`(T)

Bn

k
( f )�

�F2Dn�1(T)
Bn�1

k
(F) and trcurl u=0. By Lemma 5.3, we can assume u=ÂF2Dn�1(T)uF

k
with

uF

k
2Bn�1

k
(F). Take F2Dn�1(T). We have u|F=uF

k
|F2Bn�1

k
(F). Hence (uF

k
·t)|F=(u·t)|F=0

for any t2T F, which results in uF

k
=0. Therefore u=0.

Once we have proved the map tr in (5.3) is bijection, we conclude (5.2) from the de-
composition (3.5).

We will use curl f to denote the curl operator restricted to a sub-simplex f with dim f�
1. For f 2D`(T), `=2,··· ,n�1, by applying Theorem 5.1 to f , we have

Bk(curl f , f )=B`
k
( f )��e2∂ f

Bk(e)ne

f
. (5.4)

Notice that the curl f -bubble function is defined for `�2 not including edges. Indeed, for
an edge e and a vertex x of e, nx

e is te if x is the ending vertex of e and �te otherwise. Then
for `=1

Bk(e)te��x2∂e
span{lxnx

e }=Pk(e)te, (5.5)

which is the full polynomial not vanishing on ∂e.
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5.3 Geometric decompositions

For e2D`(T), we choose the basis {ne

f
: f = e+i, i2 e

⇤} for N e and a basis {te

i
, i=1,··· ,`}

for T e. So we have the following geometric decompositions of Pn

k
(T).

Theorem 5.2. For k�1, we have

Pn

k
(T)=Pn

1(T)��n

`=1�e2D`(T)
(Bk(e)⌦span{te

i
}`

i=1)

�(Bk(e)⌦span{ne

e+i
,i2 e

⇤}), (5.6)
Pn

k
(T)=�e2D1(T)

Pk(e)te��n

`=2� f2D`(T)
Bk(curl f , f ). (5.7)

Proof. Decomposition (5.6) is the component form of decomposition (3.5). We can write
Bk(e)⌦span{ne

e+i
, i2 e

⇤}=� f2D`+1(T),e✓ f
Bk(e)ne

f
. Then in the summation (5.6), we shift

the normal component one level up and switch the sum of e and f :

�n

`=1�e2D`(T)

⇥
B`

k
(e)� f2D`+1(T),e✓ f

Bk(e)ne

f

⇤

=�e2D1(T)
Bk(e)te��n

`=2� f2D`(T)

⇥
B`

k
( f )�e✓∂ f

Bk(e)ne

f

⇤
.

Then by the characterization (5.4) of Bk(curl f , f ) and (5.5), we get the decomposition
(5.7).

Decomposition (5.7) is the counterpart of (3.3) for Lagrange element.

5.4 Tangential-normal decomposition of the second family of edge elements

Recall that for e 2 D`�1(T), the basis {ne

f
: f 2 D`(T), e ✓ f } of N e is dual to the basis

{nF : F2Dn�1(T), e✓F}; see Lemma 4.2.

Theorem 5.3. Take Pn

k
(T) as the shape function space. Then it is determined by the following

DoFs
Z

e

u·t pds, p2Pk(e), e2D1(T), (5.8a)
Z

f

u·pds, p2Bk(curl f , f ), f 2D`(T), `=2,··· ,n. (5.8b)

Proof. Based on the decomposition (5.6), the shape function Pn

k
(T) is determined by the

following DoFs
Z

e

u·t pds, p2Pk(e), e2D1(T), (5.9a)
Z

f

(u·t f

i
) pds, p2Pk�(`+1)( f ), i=1,··· ,`, (5.9b)

Z

e

(u·ne

f
) pds, p2Pk�`(e), e2∂ f (5.9c)

for f 2D`(T), `=2,··· ,n. By (5.2) and (5.4), DoFs (5.9) are equivalent to DoFs (5.8).
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Remark 5.1. The DoFs of the second kind Nédélec edge element in [6, 18] are
Z

e

u·t pds, p2Pk(e), e2D1(T),
Z

f

u·pds, p2P`
k�`( f )+(P f x)Pk�`( f ), f 2D`(T), `=2,··· ,n.

There is an isomorphism between P`
k�`( f )+(P f x)Pk�`( f ) and Bk(curl f , f ) for f 2D`(T)

with `=2,··· ,n, that is Bk(curl f , f ) is uniquely determined by DoF
Z

f

u·pds, p2P`
k�`( f )+(P f x)Pk�`( f ),

whose proof can be found in Lemma 4.7 in [6].

Given an e 2 D`�1(Th), we choose a global {ne

f
, e ✓ f 2 D`(Th)} as the basis for the

normal plane N e and a global basis {te

i
} of T e. Define the global finite element space

V
curl
h,k ={u2L

2(W;Rn) : u|T 2Pk(T;Rn) for each T2Th,

all the DoFs (5.8) are single-valued}.

Lemma 5.4. We have V
curl
h

⇢H(curl,W).

Proof. For an F2Dn�1(T), DoFs (5.9) related to PFu are
Z

e

(PFu·te

i
) pds, i=1,··· ,`�1, p2Pk�`(e), e2D`�1(F), `=2,··· ,n,

Z

e

(PFu·ne

f
) pds, f 2D`(F), e✓ f , p2Pk�`(e), e2D`�1(F), `=1,··· ,n�1,

thanks to DoFs (5.9), which uniquely determine PFu.

5.5 The second family of edge elements

By Corollary 3.1, we obtain a nodal basis for the second-kind Nédélec edge element.

Theorem 5.4. For each e 2 D`(T), `= 0,1,··· ,n, we choose {ee

i
, i = 0,··· ,n�1}= {te

i
, i =

1,··· ,`, ne

f
, f = e+i, i2 e

⇤} and its dual basis {êe

i
, i=0,··· ,n�1}={t̂e

i , i=1,··· ,`, nFi
/(nFi

·
ne

e+i
), i2 e

⇤}. A basis function of the k-th order second kind Nédélec edge element space on T is:

{fa(x)êe

i
, i=0,1,··· ,n�1, a2T`

k
(e̊)}e2D`(T), `=0,1,···,n,

with the DoFs at the interpolation points defined as:

{u(xa)·ee

i
, i=0,1,··· ,n�1, xa 2Xe̊}e2D`(T), `=0,1,···,n. (5.10)
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Notice that the basis {te

i
} depends only on e and ne

f
depends on e and f but inde-

pendent T. By asking the corresponding DoFs single valued, we obtain the tangential
continuity. We can define the edge finite element space as

V
curl
h,k ={u2L

2(W;Rn) : u|T 2Pk(T;Rn) for each T2Th, the DoFs u(xa)·te

i
, u(xa)·ne

f

in (5.10) are single-valued across all e and f with dime,dim f n�1}.

5.5.1 2D basis on triangular meshes

Let T be a triangle, for lattice point x located in different sub-simplices, we shall choose
different frame {e0

x,e1
x} at x and its dual frame {ê0

x, ê1
x} as follows:

1. If x2D0(T), assume the two adjacent edges are e0 and e1, then

e0
x = te0 , e1

x = te1 , ê0
x =

ne1

ne1 ·te0

, ê1
x =

ne0

ne0 ·te1

.

2. If x2Xe̊,e2D1(T), then

e0
x = te, e1

x =ne, ê0
x = te, ê1

x =ne.

3. If x2X
T̊

, then

e0
x =(1,0), e1

x =(0,1), ê0
x =(1,0), ê1

x =(0,1).
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Figure 2: The left figure shows {e0,e1} at each interpolation point, the right figure shows {ê0, ê1} at each
interpolation point.

5.5.2 3D basis on tetrahedron meshes

Let T be a tetrahedron, for any x2XT, define a frame {e0
x,e1

x,e2
x} at x and its dual frame

{ê0
x, ê1

x, ê2
x} as follows:
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Figure 3: The left figure shows {e0,e1,e2} at each interpolation point, the right figure shows {ê0, ê1, ê2} at each
interpolation point.

1. If x2D0(T) and adjacent edges of x are e0, e1, e2, adjacent faces of x are f0, f1, f2,
then

e0
x = te0 , e1

x = te1 , e2
x = te2 ,

ê0
x =

n f0

n f0 ·te0

, ê1
x =

n f1

n f1 ·te1

, ê2
x =

n f2

n f2 ·te2

.

2. If x2Xe̊,e2D1(T) and adjacent faces are f0, f1 then

e0
x = te, e1

x =n f0⇥te, e2
x =n f1⇥te,

ê0
x = te, ê1

x =
n f1

n f1 ·(n f0⇥te)
, ê2

x =
n f0

n f0 ·(n f1⇥te)
.

3. If x2X
f̊
, f 2D2(T), the first edge of f is e, then

e0
x = te, e1

x = te⇥n f , e2
x =n f ,

ê0
x = te, ê1

x = te⇥n f , ê2
x =n f .

4. If x2X
T̊

, then

e0
x =(1,0,0), e1

x =(0,1,0), e2
x =(0,0,1),

ê0
x =(1,0,0), ê1

x =(0,1,0), ê2
x =(0,0,1).

6 Indexing management of degrees of freedom

In Section 2, we have already discussed the dictionary indexing rule for interpolation
points in each element. In this section, we will address the global indexing rules for La-
grange interpolation points, ensuring that interpolation points on a sub-simplex, shared
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by multiple elements, have a globally unique index. Given the one-to-one relationship
between interpolation points and DoFs, this is equivalent to providing an indexing rule
for global DoFs in the scalar Lagrange finite element space. Based on this, we will further
discuss the indexing rules for DoFs in face and edge finite element spaces.

6.1 Lagrange finite element space

We begin by discussing the data structure of the tetrahedral mesh, denoted by Th. Let
the numbers of nodes, edges, faces, and cells in Th be represented as NN, NE, NF, and NC,
respectively. We utilize two arrays to represent Th:

• node (shape: (NN,3)): node[i,j] represents the j-th component of the Cartesian
coordinate of the i-th vertex.

• cell (shape: (NC,4)): cell[i,j] gives the global index of the j-th vertex of the i-th
cell.

Given a tetrahedron denoted by [0,1,2,3], we define its local edges and faces as:

• SEdge = [(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)];

• SFace = [(1,2,3),(0,2,3),(0,1,3),(0,1,2)];

• OFace = [(1,2,3),(0,3,2),(0,1,3),(0,2,1)].

Here, we introduced two types of local faces. The prefix S implies sorting, and O indicates
outer normal direction. Both SFace[i,:] and OFace[i,:] represent the face opposite to
the i-th vertex but with varied ordering. The normal direction as determined by the
ordering of the three vertices of OFace matches the outer normal direction of the tetrahe-
dron. This ensures that the outer normal direction of a boundary face points outward
from the mesh. Meanwhile, SFace aids in determining the global index of the interpola-
tion points on the face. For an in-depth discourse on indexing, ordering, and orientation,
we direct readers to sc3 in iFEM [11].

Leveraging the unique algorithm for arrays, we can derive the following arrays from
cell, SEdge, and OFace:

• edge (shape: (NE,2)): edge[i,j] gives the global index of the j-th vertex of the i-th
edge.

• face (shape: (NF,3)): face[i,j] provides the global index of the j-th vertex of the
i-th face.

• cell2edge (shape: (NC,6)): cell2edge[i,j] indicates the global index of the j-th
edge of the i-th cell.

• cell2face (shape: (NC,4)): cell2face[i,j] signifies the global index of the j-th
face of the i-th cell.
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Figure 4: Local indexing (left) and global indexing (right) of DoFs for a face of tetrahedron, where the local
vertex order is [17, 0, 21] and global vertex order is [0, 17, 21]. Due to the di↵erent ordering of
vertices in local and global representation of the face, the ordering of the local indexing and the global indexing
is di↵erent.

Having constructed the edge and face arrays and linked cells to them, we next estab-
lish indexing rules for interpolation points on Th. Let k be the degree of the Lagrange
finite element space. The number of interpolation points on each cell is

ldof=dimPk(T)=
(k+1)(k+2)(k+3)

6
,

and the total number of interpolation points on Th is

gdof=NN+n
k

e ·NE+n
k

f
·NF+n

k

c ·NC,

where

n
k

e = k�1, n
k

f
=

(k�2)(k�1)
2

, n
k

c =
(k�3)(k�2)(k�1)

6
,

are numbers of interpolation points inside edge, face, and cell, respectively. We need an
index mapping from [0:ldof�1] to [0:gdof�1]. See Fig. 4 for an illustration of the local
index and the global index of interpolation points.

The tetrahedron’s four vertices are ordered according to the right-hand rule, and the
interpolation points adhere to the dictionary ordering map R3(a). As Lagrange element
is globally continuous, the indexing of interpolation points on the boundary ∂T should
be global. Namely a unique index for points on vertices, edges, faces should be used and
a mapping from the local index to the global index is needed.

We first set a global indexing rule for all interpolation points. We sort the index by
vertices, edges, faces, and cells. For the interpolation points that coincide with the ver-
tices, their global index are set as 0,1,··· ,NN�1. When k>1, for the interpolation points
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that inside edges, their global index are set as

0
1
...

NE�1

0

BB@

0·nk
e ··· 1·nk

e�1
1·nk

e ··· 2·nk
e�1

...
...

(NE�1)·nk
e ··· NE·nk

e�1

1

CCA+NN.

Here recall that n
k
e =k�1 is the number of interior interpolation points on an edge. When

k>2, for the interpolation points that inside each face, their global index are set as

0
1
...

NF�1

0

BBB@

0·nk

f
··· 1·nk

f
�1

1·nk

f
··· 2·nk

f
�1

...
...

(NF�1)·nk

f
··· NF·nk

f
�1

1

CCCA
+NN+NE·nk

e ,

where n
k

f
=(k�2)(k�1)/2 is the number of interior interpolation points on f . When k>3,

the global index of the interpolation points that inside each cell can be set in a similar way.
Then we use the two-dimensional array named cell2ipoint of shape (NC,ldof) for

the index map. On the j-th interpolation point of the i-th cell, we aim to determine its
unique global index and store it in cell2ipoint[i,j].

For vertices and cell interpolation points, the mapping is straightforward by the
global indexing rule. Indeed cell is the mapping of the local index of a vertex to
its global index. However, complications arise when the interpolation point is located
within an edge or face due to non-unique representations of an edge and a face.

We use the more complicated face interpolation points as a typical example to illus-
trate the situation. Consider, for instance, the scenario where the j-th interpolation point
lies within the 0th local face F0 of the i-th cell. Let a= m = [m0,m1,m2,m3] be its lattice
point. Given that F0 is opposite to vertex 0, we deduce that l0|F0 =0, which implies m0 is
0. The remaining components of m are non-zero, ensuring that the point is interior to F0.

Two representations for the face with global index cell2face[i,0] are subsequently
acquired:

• LFace = cell[i,SFace[0,:]] (local representation)

• GFace = face[cell2face[i,0],:] (global representation)

Although LFace and GFace comprise identical vertex numbers, their ordering differs. For
example, LFace = [5 6 10] while GFace =[10 6 5].

The array m = [m1,m2,m3] has a one-to-one correspondence with the vertices of
LFace. To match this array with the vertices of GFace, a reordering based on argument
sorting is performed:

1 i0 = argsort(argsort(GFace ));
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2 i1 = argsort(LFace);

3 i2 = i1[i0];

4 m = m[i2];

In the example of LFace = [5 6 10] while GFace = [10 6 5], the input
m = [m1,m2,m3] will be reordered to m = [m3,m2,m1].

From the reordered m = [m1,m2,m3], the local index ` of the j-th interpolation point
on the global face f = cell2face[i,0] can be deduced:

`=
(m2�1+m3�1)(m2�1+m3�1+1)

2
+m3�1

=
(m2+m3�2)(m2+m3�1)

2
+m3�1.

It’s worth noting that the index of interpolation points solely within the face needs con-
sideration. Finally, the global index for the j-th interpolation point within the 0th local
face of the i-th cell is:

cell2ipoint[i j]=NN+n
k

e ·NE+n
k

f
·f+`.

Here, we provide a specific example. Consider a 5th-degree Lagrange finite element
space on the c-th tetrahedron in a mesh depicted in Fig. 4. The vertices of this tetrahedron
are [5,17,0,21], and its 0th face is denoted as f, with vertices [0,17,21]. Assuming
that

NN+n
k

e ·NE+n
k

f
·f=1240.

For the 39th local DoF on tetrahedron, its corresponding multi-index is [0,3,1,1] on
cell and [3,1,1] on face. Since the local face is [17,0,21] and the global face is
[0,17,21], then m=[1,3,1] and ` =3 thus

cell2ipoint[c,39] = 1243.

Similar, for the 43th local DoF on tetrahedron, m = [1,2,2] and `=4 thus

cell2ipoint[c,43] = 1244.

Fig. 4 shows the correspondence between the local and the global indexing of DoFs for
the cell.

In conclusion, we have elucidated the construction of global indexing for interpola-
tion points inside cell faces. This method can be generalized for edges and, more broadly,
for interior interpolation points of the low-dimensional sub-simplex of an n-dimensional
simplex. Please note that for scalar Lagrange finite element spaces, the cell2ipoint
array is the mapping array from local DoFs to global DoFs.
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6.2 Face and edge finite element spaces

First, we want to emphasize that the management of DoFs is to manage the continuity of
finite element space.

The face element space and edge element space are vector finite element spaces,
which define DoFs of vector type by defining a vector frame on each interpolation point.
At the same time, they define their vector basis functions by combining the Lagrange
basis function and the dual frame of the DoFs.

Alternatively, we can say each DoF in the face element or edge element corresponds
to a unique interpolation point p and a unique vector e, and each basis function also
corresponds to a unique Lagrange basis function which is defined on p and a vector ê
which is the dual to e.

The management of DoFs is essentially a counting problem. First of all, we need
to set global and local indexing rules for all DoFs. We can globally divide the DoFs
into shared and unshared among simplexes. The DoFs shared among simplexes can be
further divided into on-edge and on-face according to the dimension of the sub-simplex
where the DoFs locate. First count the shared DoFs on each edge according to the order
of the edges, then count the shared DoFs on each face according to the order of the faces,
and finally count the unshared DoFs in the cell. On each edge or face, the DoFs’ order
can follow the order of the interpolation points. Note that, for the face element space
and edge element space there are no DoFs shared on nodes. And for the 3D face element
space there are no DoFs shared on edges. So the global numbering rule is similar with
the Lagrange interpolation points.

According to the global indexing rule, we also can get a array named dof2vector with
shape (gdof, GD), where gdof is the number of global DoFs and GD represent geometry
dimensions. And dof2vector[i, :] store the vector of the i-th DoF.

Next we need to set a local indexing rules and generate an array cell2dof with shape
(NC,ldof), where ldof is the number of local DoFs on each cell. Note that each DoF
was determined by an interpolation point and a vector. And for each interpolation point,
there is a frame (including GD vectors) on it. Given a DoF on the i-th cell, denote the
local index of its interpolation point as p, and the local index of its vector in the frame
denote as q, then one can set a unique local index number j by p and q, for example
j= n·q+p, where n is the number of interpolation points in the i-th cell. Furthermore,
we can compute the cell2dof[i,j] by the global index cell2ipoint[i, p], the sub-
simplex that the interpolation point locate, and the global indexing rule.

Remark 6.1. Note that the local and global number rules mentioned above are not
unique. Furthermore, with the array cell2dof, the implementation of these higher-order
finite element methods mentioned in this paper is not fundamentally different from the
conventional finite element in terms of matrix vector assembly and boundary condition
handling.
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7 Numerical examples

In this section, we numerically verify the 3-dimensional face element basis and edge ele-
ment basis using two test problems over the domain W=(0,1)3 partitioned into a struc-
tured tetrahedron mesh Th. All the algorithms and numerical examples are implemented
based on the FEALPy package [21].

7.1 High order elements for Poisson equation in the mixed formulation

Consider the Poisson problem:
8
><

>:

u+rp=0 in W,
divu= f in W,
p= g on ∂W.

The variational problem is : find u2H(div,W), p2L
2(W) to satisfy:

Z

W
u·v dx�

Z

W
pdivv dx=�

Z

∂W
g(v·n) ds, 8 v2H(div,W),

�
Z

W
(divu)q dx=�

Z

W
f q dx, 8 q2L

2(W).

Let V
div
h,k be the BDM space with degree k on Th and piecewise polynomial space of degree

k�1 on Th by Vk�1. The corresponding finite element method is: find uh 2V
div
h,k ,ph 2Vk�1,

such that
Z

W
uh ·vh dx�

Z

W
pdivvh dx=�

Z

∂W
g(vh ·n) ds, 8 vh 2V

div
h,k , (7.1)

�
Z

W
(divuh)qh dx=�

Z

W
f qh dx, 8 qh 2Vk�1. (7.2)

To test the convergence order of BDM space, we set

u=

0

@
�psin(px)cos(py)cos(pz)
�pcos(px)sin(py)cos(pz)
�pcos(px)cos(py)sin(pz)

1

A,

p=cos(px)cos(py)cos(pz), f =3p2cos(px)cos(py)cos(pz).

The numerical results are shown in Fig. 5 and it is clear that

ku�uhk0Ch
k+1, kp�phk0Ch

k.
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Figure 5: Errors ku�uhk0 and kp�phk0 of finite element method (7.1) and (7.2) on uniformly refined mesh
with k=2,3,4.

7.2 High order elements for Maxwell equations

Consider the time harmonic Maxwell equation
(
r⇥(µ�1r⇥E)�w2ẽE= J in W,
n⇥E=0 on ∂W,

where µ is the relative permeability, ẽ is the relative permittivity, and w is the wavenum-
ber. The variational problem is: find E2H0(curl,W) to satisfy

Z

W
µ�1(r⇥E)·(r⇥v) dx�

Z

W
w2ẽE·v dx=

Z

W
J ·v dx, 8 v2H0(curl,W).

Let V̊
curl
h,k =V

curl
h,k \H0(curl,W), where V

curl
h,k is the edge element space defined in Section

5.5. The corresponding finite element method is: find Eh 2 V̊
curl
h,k s.t.

Z

W
µ�1(r⇥Eh)·(r⇥vh) dx�

Z

W
w2ẽEh ·vh dx=

Z

W
J ·vh dx, 8 vh 2 V̊

curl
h,k . (7.3)

To test the convergence rate of second-kind Nédélec space, we choose

w= ẽ=µ=1, E=( f ,sin(x) f ,sin(y) f ),

f =(x
2�x)(y2�y)(z2�z), J=r⇥r⇥E�E.

The numerical results are shown in Fig. 6 and it is clear that

kE�Ehk0Ch
k+1, kr⇥(E�Eh)k0Ch

k.
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Figure 6: Errors kE�Ehk0 and kr⇥(E�Eh)k0 of finite element method (7.3) on uniformly refined mesh with
k=2,3,4.
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