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AFFILIATIONS
1Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
2Department of Chemistry, New York University, New York, New York 10003, USA
3Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
4NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China

a)Authors to whom correspondence should be addressed: felker@chem.ucla.edu and zlatko.bacic@nyu.edu

ABSTRACT
We present the computational methodology, which for the first time allows rigorous twelve-dimensional (12D) quantum calculations of the
coupled intramolecular and intermolecular vibrational states of hydrogen-bonded trimers of flexible diatomic molecules. Its starting point
is the approach that we introduced recently for fully coupled 9D quantum calculations of the intermolecular vibrational states of noncova-
lently bound trimers comprised of diatomics treated as rigid. In this paper, it is extended to include the intramolecular stretching coordinates
of the three diatomic monomers. The cornerstone of our 12D methodology is the partitioning of the full vibrational Hamiltonian of the
trimer into two reduced-dimension Hamiltonians, one in 9D for the intermolecular degrees of freedom (DOFs) and another in 3D for the
intramolecular vibrations of the trimer, and a remainder term. These two Hamiltonians are diagonalized separately, and a fraction of their
respective 9D and 3D eigenstates is included in the 12D product contracted basis for both the intra- and intermolecular DOFs, in which
the matrix of the full 12D vibrational Hamiltonian of the trimer is diagonalized. This methodology is implemented in the 12D quantum
calculations of the coupled intra- and intermolecular vibrational states of the hydrogen-bonded HF trimer on an ab initio calculated poten-
tial energy surface (PES). The calculations encompass the one- and two-quanta intramolecular HF-stretch excited vibrational states of the
trimer and low-energy intermolecular vibrational states in the intramolecular vibrational manifolds of interest. They reveal several inter-
esting manifestations of significant coupling between the intra- and intermolecular vibrational modes of (HF)3. The 12D calculations also
show that the frequencies of the v = 1, 2 HF stretching states of the HF trimer are strongly redshifted in comparison to those of the isolated
HF monomer. Moreover, the magnitudes of these trimer redshifts are much larger than that of the redshift for the stretching fundamental
of the donor-HF moiety in (HF)2, most likely due to the cooperative hydrogen bonding in (HF)3. The agreement between the 12D results
and the limited spectroscopic data for the HF trimer, while satisfactory, leaves room for improvement and points to the need for a more
accurate PES.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156976
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I. INTRODUCTION

Noncovalently bound molecular complexes resulting from
hydrogen bonding or Van der Waals interactions between the con-
stituent monomers have attracted the attention of experimentalists
and theorists for decades. To date, high-resolution spectroscopic
studies and theoretical treatments of the rovibrational states and
infrared and Raman spectra have largely been focused on the weakly
bound binary molecular complexes. In the large majority of quan-
tum bound-state calculations of these systems, the monomers have
been treated as rigid, taking advantage of the fact that the fre-
quencies of the intramolecular monomer vibrations are generally
much higher than those of the intermolecular vibrations of the
complexes.1–5 The rigid-monomer approximation reduces signifi-
cantly the dimensionality and the cost of the computations relative
to those for flexible monomers. Moreover, accurate potential energy
surfaces (PESs) available for weakly bound complexes where the
monomers are taken to be rigid greatly outnumber full-dimensional
dimer PESs obtained for flexible monomers. However, the rigid-
monomer calculations suffer from a number of fundamental lim-
itations: (1) the neglect of coupling between the intramolecular
and intermolecular degrees of freedom (DOFs) inevitably intro-
duces errors of hard-to-determine magnitude in all the results
(bound states, tunneling splittings) obtained in this way already
for monomers in their ground states. (2) It is impossible to calcu-
late intramolecular vibrational frequencies and their complexation-
induced shifts from the gas-phase monomer values, as well as the
effects of intramolecular vibrational excitations on the intermolecu-
lar vibrational frequencies and tunneling splittings. These important
and often measured spectroscopic properties can be obtained only
from rigorous quantum calculations in full dimensionality, where
the monomers are treated as flexible.

The first steps in this direction were already taken a couple
of decades ago, with the fully coupled quantum six-dimensional
(6D) calculations of the (ro)vibrational states of (HF)2, (DF)2, and
HFDF,6,7 as well as (HCl)2,7,8 for the monomers in their ground
vibrational states. However, extending such full-dimensional calcu-
lations to the case when one or both monomers are vibrationally
excited presented an entirely new set of challenges. One of them is
the greatly increased dimensionality of the problem since the accu-
rate description of vibrationally excited monomers in the dimer
requires a basis for the intramolecular DOFs that are considerably
larger than when they are in the ground state. The second challenge
stems from the order-of-magnitude (or greater) difference between
the high frequencies of the intramolecular vibrations and those
(much lower) of the intermolecular vibrations typical for noncova-
lently bound molecular complexes. This gives rise to a high density
of intermolecular vibrational states below and at the energies of the
intramolecular fundamentals and overtones, which was thought for
a long time to present a daunting obstacle to full-dimensional quan-
tum bound-state calculations for excited monomer vibrations. As a
result, until a couple of years ago, only a few such calculations were
reported for HF-stretch excited (HF)29,10 and HCl-stretch excited
(HCl)2.11 With greatly increased computing power, it became possi-
ble, with great computational effort, to compute directly, from the
ground state up, the 6D monomer-excited states of (HF)212 and
also the vibrational states of (H2O)2 with monomer-bend excita-
tion in 12D.13 For the latter, the density of states in the region of the

energies of the monomer stretch excitations was prohibitively high
for the computational approach employed, which used contracted
basis functions for the intramolecular vibrational DOFs but not for
the intermolecular coordinates.13

The situation changed with the introduction of the general
approach for full-dimensional and fully coupled quantum com-
putation of (ro)vibrational states of noncovalently bound binary
molecular complexes,14,15 in which contracted basis functions are
used for both intramolecular and intermolecular DOFs. In this
computational scheme, the full rovibrational Hamiltonian of the
binarymolecular complex is partitioned into a rigid-monomer inter-
molecular vibrational Hamiltonian, two intramolecular vibrational
Hamiltonians—one for each monomer, and a remainder term. Each
of the three reduced-dimension Hamiltonians is diagonalized sep-
arately. Only a small fraction of the intermolecular eigenstates,
with energies much lower than those of the intramolecular vibra-
tional excitations of interest, is included, together with the selected
intramolecular eigenstates, in a compact final product contracted
basis covering all internal, intra- and intermolecular DOFs of the
complex. The use of contracted eigenstate bases for intramolecu-
lar and intermolecular coordinates makes it particularly easy to take
advantage of the key insight regarding the extremely weak coupling
between the two sets of internal DOFs that emerged from the quan-
tum 6D calculations of the vibration-translation-rotation eigenstates
of flexible H2, HD, and D2 inside the clathrate hydrate cage.16 This
methodology, initially applied to the 6D monomer-excited vibra-
tional states of (HF)2,14 was soon extended to the 9D rovibrational
states of the triatom-diatom noncovalently bound complexes.17 Its
effectiveness was demonstrated by the fully coupled 9D quantum
calculations of the J = 0, 1 rovibrational states of H2O–CO and
D2O–CO complexes, including those associated with all monomer
intramolecular vibrational fundamentals,17 the first of this kind for
a noncovalently bound molecular complex with more than four
atoms.

The eigenstates of intermediate reduced-dimensionHamiltoni-
ans have long been used in various computational schemes devised
to decrease the size of the final full-dimensional basis for bound-state
calculations. The sequential diagonalization-truncation method of
Bačić and Light18–21 was applied very successfully to floppy isomer-
izing molecules, e.g., LiCN/LiNC and HCN/HNC, as well as weakly
bound molecular complexes. Carrington and co-workers22–25, on
the other hand, have developed approaches in which the internal
coordinates of (covalently bound) polyatomic molecules are divided
into two groups, referred to as stretch and bend, and contracted
basis functions are used for both groups, subject to two differ-
ent energy cutoffs. However, they did not extend this approach to
noncovalently bound molecular complexes. Zou et al.,26 in their
quantum 6D calculations of the vibrational states of the isomer-
izing acetylene/vinylidene system to energies above the threshold
for the formation of vinylidene states, combined the eigenfunc-
tions of the physically motivated reduced-dimension 4D and 2D
Hamiltonians into the final 6D basis in which the full-dimensional
vibrational Hamiltonian was diagonalized. A certain number of the
intermediate 4D eigenstates below and above the lowest-energy (4D)
vinylidene state were included in the 6D basis.

In a rather short time, the methodology of Felker and
Bačić14,15,17 described earlier, which uses contracted eigenstate bases
for both intermolecular and intramolecular coordinates, has proved
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to be remarkably versatile.15 Besides H2O/D2O–CO,17 it has enabled
full-dimensional (9D) and fully coupled quantum treatments of
other noncovalently bound triatom-diatom complexes inmonomer-
excited states, such as HDO-CO,27 H2O–HCl,28 and several of its
H/D isotopologues.29,30 In addition, this approach was success-
fully implemented in rigorous 8D quantum calculations of the
intramolecular stretch fundamentals of two H2 molecules in the
large clathrate hydrate cage,31 the fully coupled 9D quantum treat-
ment of the intra- and intermolecular vibrational levels of flexible
H2O in (rigid) C60,32 and the fully coupled 9D quantum calculations
of flexible H2O/HDO intramolecular excitations and intermolecular
states of the benzene–H2O and benzene–HDO complexes (for rigid
benzene).33 Finally, very recently, Wang and Carrington employed
contracted intermolecular and intramolecular basis functions, com-
prised of the eigenstates of the corresponding reduced-dimension
Hamiltonians, to calculate in 12D the excited OH-stretch states of
the water dimer.34

All this naturally raises the question of whether these and sim-
ilar approaches can be extended to noncovalently bound molecular
trimers and, eventually, larger molecular clusters. Among noncova-
lently bound molecular clusters, molecular trimers are of particular
interest as the smallest clusters in which nonadditive many-body
(three-body in this case) interactions can manifest. Their accurate
description is of great importance since they play a crucial role
in shaping the structural and dynamical properties of condensed
phases. Molecular trimers provide the best opportunity for testing
the accuracy of the computed three-body interactions through a
comparison of high-level quantum bound-state calculations on the
potential surfaces (PESs) that incorporate them with the spectro-
scopic data. However, the methodology that existed until recently
was rudimentary and not up to the task. Prior to our study described
below,35 the only molecular trimer for which fully coupled quan-
tum bound-state calculations were reported about 20 years ago was
the very weakly bound (H2)3, in the rigid-monomers approxima-
tion36 and in full dimensionality.37 Both calculations found only one
bound state for each symmetry, and the computational approaches
employed were not applied to any other more strongly bound
molecular trimer.

Clearly, it is desirable to develop rigorous bound-state method-
ologies with a wider range of applicability capable of treating
accurately more strongly bound, hydrogen-bonded (HB) molecu-
lar trimers with many excited intra- and intermolecular vibrational
states. HB trimers formed by diatomic molecules, e.g., (HF)3 and
(HCl)3, present a more realistic and tractable initial target than
those involving triatomic molecules, such as (H2O)3. This is primar-
ily due to the lower dimensionality of the former, 12D for flexible
monomers and 9D if they are taken to be rigid. In comparison, for
(H2O)3, the problem is 21D for flexible monomers and 12D in the
rigid-monomer approximation. However, even for HF trimers, the
two variational bound-state calculations in the literature treated only
the intermolecular bending (or torsional) levels, while the remaining
DOFs, the three intermonomer center-of-mass (c.m.) distances, and
HF bond lengths were held fixed. The first such study by Kolebran-
der et al.38 treated the three in-plane bends as decoupled from the
three out-of-plane bends, leading to two separate 3D quantum cal-
culations. Later, Wang and Carrington went one step further and
performed 6D quantum calculations of the bending levels of (HF)3
and (DF)3,39 treating the in-plane and out-of-plane bends as coupled

and all other degrees of freedom (DOFs), intra- and intermolecu-
lar, as frozen. Consequently, left unanswered by both studies was the
key question of the extent of the coupling between the intermolecu-
lar bending and stretching DOFs of the trimer and its effects on the
intermolecular vibrational states.

In order to fill this methodological gap very recently in
Ref. 35, hereafter denoted as I, we introduced a computational
approach allowing efficient and rigorous 9D quantum calculations
of the intermolecular vibrational states of general noncovalently
bound trimers of diatomic molecules. The more strongly bound
molecular trimers, such as the hydrogen-bonded (HF)3 and (HCl)3,
where three-body interactions are expected to be important, are the
main intended targets of this approach. The intermolecular trimer
coordinates and the corresponding rigid-monomer 9D vibrational
(J = 0) Hamiltonian of Wang and Carrington40 are employed. In
this treatment, the intermolecular stretching and bending vibrations
are fully coupled, and the only dynamical approximation made is to
keep the bond lengths of the three monomers fixed.35

In I, we chose to implement the new methodology first on
(HF)3 for several reasons. Chief among them was its stature as
a paradigmatic hydrogen-bonded trimer and the availability of a
full-dimensional PES. From several PESs constructed by Quack,
Stohner, and Suhm for (HF)3 and larger HF aggregates,41–43 all of
them represented as a sum of many-body terms, we selected the
one that combines the SO-3 two-body potential44 with the three-
body term designated HF3BG.42 Wang and Carrington used the
same PES in their quantum 6D calculations of the bending energy
eigenstates of (HF)3,39 so a direct comparison was possible between
their 6D results and ours in 9D. On the experimental side, the
infrared (IR) spectra of the HF and HD trimers in supersonic molec-
ular beams demonstrated that the two isotopologues have a cyclic
structure that, due to the vibrational averaging, is that of an oblate
symmetric top.45,46 IR spectroscopy of the trimers in molecular
beams also led to the determination of their degenerate HF and
DF stretch fundamentals38,45,47 and revealed two bands attributed to
the in-plane and out-of-plane bending fundamentals, respectively.46
Additional limited but valuable experimental information regarding
the intermolecular vibrations of the HF and DF trimers comes from
the IR spectra in the Ar and Ne matrices.48–50

The quantum 9D rigid-monomer calculations on the HF trimer
in I yielded frequencies of the intermolecular bending fundamentals
that are about 10% lower than those from the earlier 6D quan-
tum calculations that considered only the bending modes of the
trimer.39 This demonstrated conclusively that the stretch-bend cou-
pling in (HF)3 is strong and must be included in any quantitative
treatment of its vibrations, assessment of the quality of the PES
employed, and comparison with spectroscopic results. Moreover,
the 9D quantum calculations performed on the two-body (SO-3)
trimer PES, in which the three-body term is not included, gave vibra-
tional energies that are invariably significantly below those obtained
for the 2+3-body SO-3 + HF3BG PES (and also in worse agreement
with the available experimental data). This led to the conclusion
that the contribution that the three-body interaction makes to the
(HF)3 PES is large, and its inclusion is mandatory if accurate results
are desired.

However, only rigorous full-dimensional quantum calculations
of their vibrational levels can provide definitive results for the PES
employed and an unambiguous assessment of the quality of the PES
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by comparison with the relevant spectroscopic data. Therefore, here
we take this final step and, extending the rigid-monomer methodol-
ogy in I, present the computational approach for full-dimensional
(12D) and fully coupled quantum calculations of the inter- and
intramolecular vibrational states of noncovalently bound trimers of
flexible diatomic molecules. It incorporates the key elements of the
methodology introduced by us14,17 and successfully implemented on
binarymolecular complexes15—the use of contracted basis functions
for both intermolecular and intramolecular DOFs of the trimer.
These are obtained by diagonalizing separately a 9D rigid-monomer
intermolecular vibrational Hamiltonian (as performed in I) and a
3D intramolecular vibrational Hamiltonian for the three monomers,
respectively. A fraction of the lower-energy eigenstates of these two
reduced-dimension Hamiltonians is included in the final 12D prod-
uct on a contracted basis, covering all intra- and intermolecular
DOFs in which the matrix of the full vibrational Hamiltonian of the
trimer is diagonalized. Owing to this development, it is now possible
for the first time to calculate the inter- and intramolecular vibra-
tional levels of hydrogen-bonded trimers of diatomic molecules in
full dimensionality and with the degree of rigor that was so far pos-
sible only for the dimers of diatomic molecules. This methodology
is used to calculate the 12D vibrational states of (HF)3, encom-
passing the one- and two-quanta intramolecular HF-stretch excited
vibrational states of the trimer and low-energy intermolecular vibra-
tional states in the intramolecular vibrational manifolds of interest.
As in I, the 2+3-body SO-3 + HF3BG PES of the HF trimer42,44 is
employed in these calculations. In this paper, the emphasis is on the
results involving the intramolecular HF-stretch DOFs of the trimer
that lie outside the scope of the rigid-monomer treatment in I. This
includes the intramolecular vibrational energy levels and their fre-
quency shifts caused by the complexation, as well as the effects of the
coupling between the intra- and intermolecular vibrational modes
of the trimer. Particular attention is given to the manifestations of
cooperative hydrogen bonding due to the three-body interactions in
the vibrational, structural, and energetic properties of the HF trimer
characterized by the 12D calculations.

The paper is organized as follows. The computational method-
ology is described in Sec. II. In Sec. III, we present and discuss the
results. Section IV contains the conclusions.

II. COMPUTATIONAL METHODOLOGY
A. Coordinates, Hamiltonian, and general approach

The full vibrational (J = 0) Hamiltonian for HF trimers and
flexible monomers can be written as

Ĥ = K̂F(R) +V′(R) + K̂M(R,ω) + K̂FM(R,ω)
+ K̂M,rot(ω, r) + K̂M,vib(r) +V(R,ω, r). (1)

Here, we use the coordinates introduced by Wang and Carrington40
and illustrated in Fig. 1. For the most part, they are identical to the
coordinates shown in Fig. 1 of Ref. 35, where rigid HF monomers
were assumed. Therefore, R represents (R1,R2, and R3), the three
coordinates giving the distances between the centers of mass of the
monomers; in effect, they are the intermolecular stretching coordi-
nates of the trimer. ω represents the ωk ≡ (θk,ϕk), k = 1–3, the polar
and azimuthal angles, respectively, describing the orientations of the
three monomer-k internuclear vectors rk (which point from the F

FIG. 1. Schematic depiction of the coordinates used for the cyclic HF timer, assum-
ing flexible monomers. Shown explicitly are the six in-plane coordinates: the three
monomer-c.m.-to-monomer-c.m. distances Rk (k = 1–3) and the three azimuthal
angles ϕk (k = 1–3). In addition, shown are the (in-plane) x̂k and ŷk axes of
local Cartesian systems centered at the c.m. of monomer k (k = 1–3). The (out-
of-plane) ẑk (k = 1–3) axes (not shown) are parallel to the vector R1 × R2, i.e.,
perpendicular to the plane defined by the c.m. of the three monomers. For each
monomer k, the polar angle θk is the angle between the HF internuclear vector
rk (k = 1–3) and the local ẑk axis. Together, θk and ϕk define the orientation of
rk relative to the local Cartesian axis system attached to monomer k. The
intramolecular HF-stretch coordinate of the k-th monomer is rk ≡ ∣rk ∣. In the equi-
librium geometry on the SO-3 + HF3BG PES, for r̄ = re, R1 = R2 = R3 = 4.76007
bohrs, θk = 90○ (k = 1–3), and ϕk = 54.01 979○ (k = 1–3). For additional
details, see the text.

nucleus to the H nucleus of monomer k) with respect to a local
cartesian axis system centered at the c.m. of monomer k. Three new
coordinates that appear in Fig. 1 are the intramolecular HF-stretch
coordinates rk, k = 1–3, where rk ≡ ∣rk∣. The various kinetic-energy
terms in Eq. (1) (all the terms but the last one in the equation)
were derived by Wang and Carrington.40 With the exception of the
flexible-monomer terms, they are also given in Ref. 35 [see Eqs. (3)
to (9) of that work]. The flexible-monomer terms are

K̂M,rot(ω, r) ≡
3

∑
k=1

BM(rk)l̂ 2k, (2)

where BM(rk) ≡ 1/(2μMr2k), μM is the reduced mass of HF
monomer, and l̂ 2k is the operator associated with square of the
rotational angular momentum of monomer k, and

K̂M,vib(r) ≡
3

∑
k=1
− 1
2μM

∂2

∂r2k
. (3)

As mentioned earlier, the potential-energy function, V , that we use
here is the SO-3 +HF3BG surface of Quack, Stohner, and Suhm.42,44

The volume element corresponding to Ĥ is of the Wilson type:
dτ = Π3

k=1 sin θkdθkdϕkdRkdrk.
If one defines

Ĥinter(R,ω; r̄) ≡ K̂F(R) +V′(R) + K̂M(R,ω) + K̂FM(R,ω)
+ K̂M,rot(ω; r̄) +Vinter(R,ω; r̄), (4)

and

Ĥintra(r) ≡ K̂M,vib(r) +Vintra(r; R̄, ω̄), (5)

J. Chem. Phys. 158, 234109 (2023); doi: 10.1063/5.0156976 158, 234109-4

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0156976/18005141/234109_1_5.0156976.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

where

Vinter(R,ω; r̄) ≡ V(R,ω, r̄), (6)

Vintra(r1, r2, r3; R̄, ω̄) ≡
1
2
[V(R̄, ω̄, r1, r2, r3)

+V(R̄, ω̄, r2, r1, r3)], (7)

and R̄, ω̄, and r̄ are collections of constants, then

Ĥ = Ĥinter(R,ω; r̄) + Ĥintra(r; R̄, ω̄) + ΔĤ(R,ω, r; R̄, ω̄, r̄). (8)

Here,

ΔĤ(R,ω, r; R̄, ω̄, r̄) ≡
3

∑
k=1
[BM(rk) − BM(r̄)]l̂ 2k

+ ΔV(R,ω, r; R̄, ω̄, r̄), (9)

and

ΔV(R,ω, r; R̄, ω̄, r̄) ≡ V(R,ω, r) −Vinter(R,ω; r̄) −Vintra (r; R̄, ω̄).
(10)

To solve for the eigenstates of Ĥ, we first solve for the eigen-
states of Ĥinter and Ĥintra in Eqs. (4) and (5), respectively. The former
(a 9D problem) yields eigenvectors ∣I⟩ and corresponding eigenval-
ues Einter

I , while the latter (a 3D problem) yields eigenvectors ∣γ⟩ and
corresponding eigenvalues Eintra

γ . We then construct the 12D basis
states as symmetrized products of the form

∣I, γ⟩ ≡ ∣I⟩∣γ⟩, (11)

and diagonalize the matrix of Ĥ in that basis. In the ∣I, γ⟩ basis, the
matrix elements of Ĥ are given by

⟨I′, γ′∣Ĥ∣I, γ⟩ = (Einter
I + Eintra

γ )δI′ ,Iδγ′ ,γ + ⟨I
′, γ′∣ΔĤ∣I, γ⟩. (12)

One sees that once the eigenstates of Ĥinter and Ĥintra are computed,
the main task in constructing the Ĥ matrix (and, indeed, the main
task in the whole 12D calculation) is to evaluate the ⟨I′, γ′∣ΔĤ∣I, γ⟩
matrix elements.

B. Diagonalization of Ĥinter

In our first work on the HF trimer,35 we present in detail the
procedure employed to solve for the eigenstates of Ĥinter. We use
substantially the same method here. Briefly, we first solve for the
eigenstates of the 3D “frame” Hamiltonian, ĤF(R; ω̄, r̄), and the
6D “bend” Hamiltonian, ĤB(ω; R̄, r̄). These operators are defined,
respectively, in Eqs. (10) and (11) of Ref. 35. The eigenvectors of
these operators, denoted ∣ρ⟩ (ρ = 1, . . . ,NF) for the frame problem
and ∣κ⟩ (κ = 1, . . . ,NB) for the bend problem, are then used to con-
struct a symmetrized product basis for the diagonalization of the 9D
Ĥinter operator, which can be expressed as

Ĥinter(R,ω; r̄) = ĤF(R; ω̄, r̄) + ĤB(ω; R̄, r̄) + ΔHinter(R,ω; r̄). (13)

1. The frame problem
The 3D frame eigenvalue problem is solved by employing a

basis consisting of the product of three one-dimensional potential-
optimized discrete-variable representations (PODVRs) covering the

R1, R2, and R3 coordinates, respectively. The construction of the 1D
PODVRs is described in Sec. II C 2 of Ref. 35. The 3D basis functions
are of the form

∣n1,n2,n3⟩ ≡ ∣R1,n1⟩∣R2,n2⟩∣R3,n3⟩; nk = 1, . . .NR, (14)

where Rk,nk is the DVR quadrature point corresponding to the 1D
PODVR function ∣Rk,nk⟩, and each ∣R2,n⟩ and ∣R3,n⟩ can be obtained,
respectively, from ∣R1,n⟩ by changing the variable from R1 to R2 and
R1 to R3. In this work, as in Ref. 35, we use NR = 12. Therefore, the
full frame basis consists of 1728 functions. The matrix of ĤF in this
basis is diagonalized by direct diagonalization. The ĤF eigenvectors
transform into one of the three even-parity irreducible representa-
tions (“irreps”), A′1, A

′
2, or E

′, of the G12 molecular symmetry group.
Those pairs of degenerate eigenvectors belonging to the E′ irrep are
then further processed (see Sec. II C 3 of Ref. 35) so that the resulting
orthogonal pairs of states transform according to the specific repre-
sentation of the E′ irrep that we used throughout our earlier paper.35
One member of such a pair, the one whose eigenvalue with respect
to the (23) permutation operator is −1, belongs to what we call the
E′a subirrep. The other, whose eigenvalue with respect to (23) is +1,
belongs to what we call the E′b subirrep.

2. The bend problem
The 6D bend eigenvalue problem is solved by employing a

basis consisting of the product of three spherical harmonic functions
covering the ω1, ω2, and ω3 local-angle coordinates,

∣l1m1, l2m2, l3m3⟩ ≡ Ym1
l1 (θ1,ϕ1)Y

m2
l2 (θ2,ϕ2)Y

m3
l3 (θ3,ϕ3), (15)

where lk = 0, . . . , lmax and mk = −lmax, . . . , lmax. In this work, as pre-
viously,35 we use lmax = 13. This gives rise to 3 766 140 even-parity
basis functions and 3 763 396 odd-parity basis functions. The matrix
of ĤB in this basis is diagonalized by a symmetry-specific version
of the Chebyshev variant51 of filter diagonalization.52 We imple-
ment this by starting with a random initial state vector expressed
on the basis of Eq. (15) and then projecting out of that state vector
that portion that corresponds to one of the eight irreps/subirreps of
G12 (i.e., A′1, A

′
2, E

′
a, E′b, A

′′
1 , A

′′
2 , E

′′
a , and E′′b .) The Chebyshev/filter-

diagonalization procedure initializes the resulting (filtered) state
vector and then produces eigenvectors/eigenvalues corresponding to
the relevant symmetry block of ĤB. In this process, repeated appli-
cations of ĤB to the state vector are required. This is accomplished
by direct matrix-vector multiplication for the kinetic-energy portion
of ĤB. Operation with the potential-energy portion of ĤB is affected
by (a) transforming the state vector to a 6D Gaussian grid repre-
sentation, (b) multiplying that representation of the state vector at
each grid point by the value ofVB at that point, and (c) transforming
the result of (b) back to the original basis representation. The Gaus-
sian grid consisted of 14 Gauss–Legendre quadrature points and 28
Fourier grid points per monomer, corresponding to the cos θk and
ϕk degrees of freedom, respectively, for a total grid size of 60 236 288
points.

3. The Ĥinter problem
The 9D basis on which the matrix of Ĥinter was expressed

was constructed from frame-bend product functions of the form
∣ρ, κ⟩ ≡ ∣ρ⟩∣κ⟩. The NF lowest-energy frame eigenvectors of all sym-
metries were included in the basis, and the NB,Γ lowest-energy bend
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eigenvectors of each symmetry (i.e., of each irrep/subirrep) were
included. We performed calculations for NF = 150 and 201 and for
NB,Γ = 30 (for a total number of bend functions of each parity equal
to NB = 120). Therefore, the full 9D basis consisted of either 18 000
or 24 120 states of each parity. Symmetry-specific basis functions
belonging to each of the 1D irreps and subirreps of G12 were con-
structed per the procedure outlined in Sec. II E 1 of Ref. 35 from
this product basis. Matrix elements of Ĥinter corresponding to each
of the eight G12 symmetry blocks were computed by first calculating
matrix elements in the unsymmetrized ∣ρ, κ⟩ basis and then trans-
forming to the symmetrized basis. The procedures for calculating
the Ĥinter matrix elements in the ∣ρ, κ⟩ basis are described in Secs. II
E 2–II E 4 of Ref. 35. Of these matrix elements, those correspond-
ing to the potential-energy portion of ΔHinter are by far the most
costly to compute. In this work, we have reduced this load by spread-
ing it over multiple processors (typically 30) by utilizing open-MPI.
Once all the matrix elements of Ĥinter were computed, each sym-
metry block was diagonalized by direct diagonalization. Ultimately,
the intermolecular eigenvectors, which we label ∣I⟩, are obtained as
expansions over the ∣ρ, κ⟩ basis states,

∣I⟩ =∑
ρ,κ
∣ρ, κ⟩⟨ρ, κ∣I⟩. (16)

The eigenvectors and eigenvalues of Ĥinter (as well as those
of ĤF and ĤB) depend on the value chosen for r̄, the fixed intra-
monomer bond distance that enters into that operator as a para-
meter. In this work, we have performed calculations for several r̄
values, each of which is different than the ones employed in Ref. 35.
The values used herein (1.7813, 1.7843, 1.7950, and 1.8069 bohrs)
were chosen with an eye toward facilitating the convergence of
the 12D results. They correspond to estimates of ⟨rk⟩ for the low-
energy intramolecular excitations of the trimer, as obtained from the
computed eigenvectors of Ĥintra (see Sec. II C).

4. Fixing the symmetry of the Ĥinter eigenstates
In order to make maximal use of symmetry in the 12D Ĥ-

diagonalization problem (see Sec. II D 5 below), one needs to work
with intermolecular eigenstates that transform as the 1D irreps of
G12 and the Ea/Eb subirreps of G12. This requirement is automati-
cally satisfied for the ∣I⟩ obtained by diagonalization of the blocks
of Ĥinter that correspond to the 1D irreps. However, for those aris-
ing from the subirrep blocks (i.e., E′a, E′b, E

′′
a , and E′′b ), the relation

between a computed Ea-type intermolecular eigenvector and its cor-
responding computed degenerate Eb-type partner may not conform
to our chosen E-type representation—the relative phase of the two
states is not fixed by their separate calculations. Hence, we need
a way to guarantee that every E′a, E′b (or E′′a , E′′b ) degenerate pair
of intermolecular eigenstates transforms according to our choice of
representation. Themost straightforward way of doing this is to gen-
erate the Eb eigenvector (we will call it ∣b⟩) of any given pair directly
from the Ea eigenvector (∣a⟩) obtained from the Ĥinter diagonaliza-
tion. This is possible because for all the operations, R̂, of G12 [apart
from E∗, (23) and (23)∗],

∣b⟩ = R̂∣a⟩ +D(E)aa (R̂)∣a⟩
D(E)ba (R̂)

, (17)

where the matrix elements D(E)i j (R̂) ≡ ⟨i∣R̂∣ j⟩ (i, j = a, b) define the
specific E-type representation that we desire. (These are given
in Sec. I of the supplementary material of Ref. 35.) Hence, one
needs only compute, for example, (123)∣a⟩ in order to determine
∣b⟩ from ∣a⟩. That calculation, in turn, requires determining how
(123) transforms each of the individual basis states in terms of
which each ∣a⟩ is expressed. We treat this problem in Sec. I of
the supplementary material and show in detail how each Eb-type
intermolecular eigenvector can be computed from its Ea-type part-
ner. All of the intermolecular eigenvectors of E′b and E′′b symmetry
that we employ in the construction of the bases used to diagonal-
ize Ĥ were obtained from their E′a/E′′a partners by making use of
these relations.

C. Diagonalization of Ĥintra

1. Definition of the problem
The three-dimensional eigenvalue equation involving Ĥintra

[Eq. (5)] is specified once the constants R̄ and ω̄ that define V intra
[Eq. (7)] are specified. We choose R̄k = 5.0 bohrs, ω̄k ≡ (θ̄k, ϕ̄k)
= (90○, 60○), k = 1–3. These values are close to the vibrationally
averaged values of Rk and ωk associated with the ground state
of Ĥinter (see Ref. 35). Hence, V intra represents a “trimer-
adapted” potential for the collective intramonomer motions in
the trimer rather than a sum of three isolated-monomer poten-
tials. By taking this approach, we anticipate that a substantial
part of the effect of intermonomer interactions on the intra-
monomer vibrations in the trimer can be captured in the 3D
∣γ⟩ eigenvectors. It should also be noted that the average that
appears on the rhs of Eq. (7), the definition of V intra, ren-
ders that function invariant with respect to the operations of
G12, the molecular symmetry group characterizing the HF trimer.
Hence, Ĥintra is also invariant with respect to those operations,
and each of its eigenvectors transforms according to one of
the irreps of G12.

2. Primitive intramolecular basis and matrix elements
To solve

Ĥintra∣γ⟩ = [
3

∑
k=1
(− 1

2μM
∂2

∂r2k
) +Vintra(r)]∣γ⟩ = Eintra

γ ∣γ⟩, (18)

we work on a 3D potential-optimized discrete-variable-
representation (PODVR) basis consisting of product functions
of the form

∣ j⟩ ≡ ∣ j1, j2, j3⟩ ≡ ∣r j⟩ ≡ ∣r1, j1⟩∣r2, j2⟩∣r3, j3⟩; jk = 1, . . . ,Nr , (19)

where the meta index j represents ( j1, j2, j3) and the ∣rk, jk⟩ are 1D
PODVR functions. The latter are derived from the Nr lowest-energy
eigenvectors of the 1D equation

[− 1
2μM

∂2

∂r2k
+V1D(rk)]∣ f ⟩ = E∣ f ⟩, (20)

where V1D(rk) is the potential obtained from V intra by fixing the
two ri (i ≠ k) coordinates to identical constants corresponding to
a value close to the monomer ground-state bond-distance expec-
tation value. These energy eigenvectors were computed by direct
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diagonalization of Eq. (20) on the basis of 200 sinc-DVR functions
corresponding to rk quadrature points ranging from 1 to 3.2 bohrs.
The PODVR functions were then obtained by diagonalizing the
matrix of rk in the energy-eigenvector basis. Each of the 1D PODVR
functions is denoted by the rk eigenvalue (i.e., the PODVR quadra-
ture point rk, jk ) to which it corresponds. Due to the permutation
symmetry characterizing the HF trimer, the determination of the
PODVR functions for k = 1, say, yields those for the other two sim-
ply by replacing the coordinate r1 in those functions with r2 and r3,
respectively.

The matrices in the PODVR basis of each of the three terms
in the kinetic-energy portion of Ĥintra were computed by first evalu-
ating the matrix elements of (∂2/∂r2k) in the 1D particle-in-a-box
basis from which the sinc-DVR basis used to solve Eq. (20) was
derived. These matrix elements were then transformed to the sinc-
DVR basis and, finally, to the PODVR basis. The matrix elements
of V intra in the PODVR basis were evaluated by quadrature. The
Ĥintra matrix in the PODVR basis was diagonalized directly. The
Ĥintra eigenvectors are obtained as expansions over the primitive
intramolecular basis,

∣γ⟩ =∑
j
∣ j⟩⟨ j∣γ⟩ = ∑

j1 , j2 , j3
∣ j1, j2, j3⟩⟨ j1, j2, j3∣γ⟩. (21)

To obtain the ∣γ⟩ employed in constructing the 12D bases,
we primarily used Nr = 8 and Nr = 10. Hence, the 3D primitive
basis consisted of 512 PODVR functions for Nr = 8 and 1000
PODVR functions for Nr = 10. This basis is the smallest that pro-
duces reasonable convergence of the intramolecular eigenenergies
corresponding to the 3D ground state (converged to within 0.01
cm−1) and the v = 1 (converged to a few 0.1 cm−1) and v = 2 (con-
verged to a few cm−1) excited states. Since the 12D computational
cost scales as (Nr)3 (see below), it is advantageous to keep Nr as
small as is reasonable. In order to assess the convergence of the
3D eigenstates, we also performed calculations for which Nr = 12
and 16.

3. Symmetry considerations
An eigenstate of Ĥintra transforms into one of the even-parity

irreps of G12: A′1, A
′
2, or E′. As with the frame, bend, and Ĥinter

doubly-degenerate eigenstates, we find it convenient to work with
doubly-degenerate Ĥintra eigenstates that transform like the spe-
cific E-type representation detailed in Sec. I of the supplementary
material of Ref. 35. Hence, doubly-degenerate E′ eigenvector pairs
produced by the diagonalization of Ĥintra were subjected to further
processing so as to fix their transformation properties with respect
to the operations of G12. For any given degenerate pair of states
obtained by solving Eq. (20), we accomplish this by diagonalizing
the matrix of the (23) permutation operator in the basis consisting
of that pair. We then choose (a) the resulting (23) eigenstate having
eigenvalue −1 as one of the states with the desired transformation
properties (the E′a member of the pair) and (b) the other state, with
(23) eigenvalue of +1, to be the other state (the E′b member of the
pair) after adjusting its phase so that it has the correct transfor-
mation properties with respect to the (123) permutation operation.
(This procedure is analogous to that described in greater detail for
the frame eigenstates in Sec. II C 3 of Ref. 35.) The result is a pair
of orthogonal, degenerate E′ states that transform according to our
desired representation.

D. Diagonalization of Ĥ
1. The symmetrized 12D basis

As mentioned in Sec. II A, the basis we use to diagonalize
Ĥ consists of symmetrized functions composed of products of the
form ∣I, γ⟩ ≡ ∣I⟩∣γ⟩. In the case where either ∣I⟩ and/or ∣γ⟩ belongs
to a 1D irrep of G12, the symmetrized function constructed from
∣I, γ⟩ is ∣I, γ⟩ itself. However, if both ∣I⟩ and ∣γ⟩ are members of a
doubly-degenerate pair, then the symmetrized basis functions that
are constructed from the four relevant ∣I, γ⟩ belong, respectively,
to the irreps As

1, A
s
2, and subirreps Es

a and Es
b (s =′ or ′′ depend-

ing on whether ∣I⟩ is of even or odd parity, respectively). These
symmetrized basis functions are of the form

∣I, γ⟩As
1
=
√

1
2
[∣Ia, γa⟩ + ∣Ib, γb⟩], (22)

∣I, γ⟩As
2
=
√

1
2
[∣Ia, γb⟩ − ∣Ib, γa⟩], (23)

∣I, γ⟩Esa =
√

1
2
[∣Ia, γb⟩ + ∣Ib, γa⟩], (24)

and

∣I, γ⟩Esb =
√

1
2
[∣Ia, γa⟩ − ∣Ib, γb⟩]. (25)

From all this, one sees that the Ĥinter + Ĥintra portion of Ĥ [see
Eq. (8)] is diagonal in the symmetrized basis with matrix elements
that are simply sums of intermolecular and intramolecular eigen-
values. The matrix elements of ΔĤ in the symmetrized 12D basis
are easily obtained from the matrix elements of ΔĤ in the ∣I, γ⟩
basis. We concentrate on the calculation of these quantities in what
follows.

2. ΔĤ matrix elements: General
In order to calculate matrix elements of the form

⟨I′, γ′∣ΔĤ∣I, γ⟩, we first express the ∣I⟩ in terms of the frame
(∣ρ⟩), bend (∣κ⟩) basis states ∣ρ, κ⟩ [Eq. (16)] and the ∣γ⟩ in terms of
the 3D DVR states [Eq. (21)]. Then, the kinetic-energy term in the
ΔĤ matrix element is given by

⟨I′, γ′∣[
3

∑
k=1
[BM(rk) − BM(r̄)]l̂ 2k]∣I, γ⟩

=∑
κ′ ,κ
∑
ρ
∑
j
[

3

∑
k=1
⟨κ′∣l̂ 2k∣κ⟩[BM(rk, jk) − BM(r̄)]]

× ⟨I′∣ρ, κ′⟩⟨ρ, κ∣I⟩⟨γ′∣ j⟩⟨ j∣γ⟩. (26)

The potential-energy term is given by

⟨I′, γ′∣ΔV(R,ω, r)∣I, γ⟩
=∑

κ′ ,κ
∑
ρ′ ,ρ
∑
j
⟨ρ′, κ′, j∣ΔV(R,ω, r)∣ρ, κ, j⟩

× ⟨I′∣ρ′, κ′⟩⟨ρ, κ∣I⟩⟨γ′∣ j⟩⟨ j∣γ⟩
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=∑
κ′ ,κ
∑
ρ′ ,ρ
∑
j
⟨ρ′, κ′∣ΔV(R,ω, r j)∣ρ, κ⟩

× ⟨I′∣ρ′, κ′⟩⟨ρ, κ∣I⟩⟨γ′∣ j⟩⟨ j∣γ⟩. (27)

3. Computing the matrix elements
of the kinetic-energy portion of ΔĤ

The matrix elements on the rhs of Eq. (26) can be evalu-
ated by expressing the ∣κ⟩ in terms of the primitive basis states
∣l1m1, l2m2, l3m3⟩ [Eq. (15)]. One has

⟨κ′∣l̂ 2k∣κ⟩ =∑
l,m

lk(lk + 1)⟨κ′∣lm⟩⟨lm∣κ⟩, (28)

with ∣lm⟩ ≡ ∣l1m1, l2m2, l3m3⟩. One can also define the quantities

⟨γ′∣ΔB(k)∣γ⟩ ≡ ∑
j1 , j2 , j3

⟨γ′∣ j1, j2, j3⟩⟨ j1, j2, j3∣γ⟩

× [BM(rk, jk) − BM(r̄)], (29)

so that Eq. (26) becomes

⟨I′, γ′∣[
3

∑
k=1
[BM(rk) − BM(r̄)]l̂ 2k]∣I, γ⟩

=∑
κ′ ,κ
∑
ρ
[

3

∑
k=1
⟨κ′∣l̂ 2k∣κ⟩⟨γ′∣ΔB(k)∣γ⟩]

× ⟨I′∣ρ, κ′⟩⟨ρ, κ∣I⟩. (30)

All of the required ⟨κ′∣l̂ 2k∣κ⟩ [Eq. (28)] and the ⟨γ′∣ΔB(k)∣γ⟩
[Eq. (29)] can be computed separately prior to the evaluation of
Eq. (30), and such evaluation for all I′, I, γ′, and γ is ultimately not
especially expensive.

4. Computing the matrix elements of ΔV :
General procedure

The ΔV matrix elements that appear on the rhs of Eq. (27)
are identical to those that enter into the 9D (i.e., intermolecu-
lar) trimer problem. They are readily evaluated by expressing the
∣ρ⟩ in terms of the primitive 3D DVR basis states ∣n⟩ ≡ ∣n1,n2,n3⟩
≡ ∣R1,n1⟩∣R2,n2⟩∣R3,n3⟩ [Eq. (14)], which gives

⟨ρ′, κ′∣ΔV(R,ω, r j)∣ρ, κ⟩ =∑
n
⟨κ′∣ΔV(Rn,ω, r j)∣κ⟩⟨ρ′∣n⟩⟨n∣ρ⟩.

(31)
One sees that it is necessary to evaluate 6D integrals over an ω grid
at each of the R, r DVR points. That is, one needs to compute the
quantities

ΔVκ′ ,κ
n, j ≡ ⟨κ′∣ΔV(Rn,ω, r j)∣κ⟩

=
Nω

∑
i=1
⟨κ′∣ωi⟩ΔV(Rn,ωi, r j)⟨ωi∣κ⟩, (32)

for all j, n, κ, and κ′. (This is a variation of the “F-matrix” approach
to the calculation of PES matrix elements introduced by Carrington
et al.22,53) With Eqs. (31) and (32), Eq. (27) becomes

⟨I′, γ′∣ΔV(R,ω, r)∣I, γ⟩ =∑
j
⟨γ′∣ j⟩⟨ j∣γ⟩∑

κ′ ,κ
∑
n
ΔVκ′ ,κ

n, j

×∑
ρ′ ,ρ
⟨I′∣ρ′, κ′⟩⟨ρ′∣n⟩⟨n∣ρ⟩⟨ρ, κ∣I⟩. (33)

We evaluate Eq. (33) as follows. First, in a loop over n = 1
to nmax for the initial value j = 1, we (1) compute the PES val-
ues ΔV(Rn,ωi, rj) for all i, (2) compute ΔVκ′ ,κ

n, j for all κ′, κ, and (3)
accumulate the quantities

FI′ ,I
n, j = FI′ ,I

n−1, j +∑
κ′ ,κ

ΔVκ′ ,κ
n, j ⟨I′∣n, κ′⟩⟨n, κ∣I⟩; FI′ ,I

0, j = 0, (34)

for all I′, I as the n loop progress. Here, the

⟨n, κ∣I⟩ ≡∑
ρ
⟨n∣ρ⟩⟨ρ, κ∣I⟩, (35)

are quantities that are only calculated and stored as needed for the
current value of n in the n loop. With the n loop finished (n = nmax),
one has computed the quantities

GI′ ,I
j ≡ FI′ ,I

nmax , j =∑
n
∑
κ′ ,κ

ΔVκ′ ,κ
n, j ⟨I′∣n, κ′⟩⟨n, κ∣I⟩

= ⟨I′, j∣ΔV(R,ω, r)∣I, j⟩, (36)

for all I′, I for the specific value of j. Once this is completed, we
advance to the next j and repeat the whole procedure. This process
continues until the GI′ ,I

j for all I′, I is computed for all j. Finally, we
compute the desired matrix elements

⟨I′, γ′∣ΔV(R,ω, r)∣I, γ⟩ =∑
j
GI′ ,I

j ⟨γ′∣ j⟩⟨ j∣γ⟩. (37)

5. Computing the matrix elements of ΔV :
Exploitation of symmetry

The intermolecular eigenstate ∣I⟩ has either positive or nega-
tive parity, while all the intramolecular eigenstates ∣γ⟩ have positive
parity. As such, and since ΔV(R,ω, r) is invariant with respect to
inversion, ⟨I′, γ′∣ΔV(R,ω, r)∣I, γ⟩ = 0 unless ∣I⟩ and ∣I′⟩ have the
same parity. Therefore, one only needs to work through the whole
⟨I′, γ′∣ΔV(R,ω, r)∣I, γ⟩ evaluation process for intermolecular states
that have the same parity. Furthermore, since the frame eigenstates
∣ρ⟩ all have positive parity, the only bend eigenstates, ∣κ⟩, that con-
tribute to any given ∣I⟩ must have the same parity as that ∣I⟩. In
consequence, there is no need to evaluateΔVκ′ ,κ

n, j quantities for which
∣κ′⟩ and ∣κ⟩ have different parity (indeed, such quantities equal zero).
The upshot of all this is that the procedure of Sec. II D 4 can be
made parity-specific without losing any accuracy. This allows for
a reduction of about a factor of two in the cost of the entire 12D
calculation.

In the procedure of Sec. II D 4, one can also use the
permutation-symmetry operations of G12 to reduce the number of
iterations in the j loop by focusing on the quantities GI′ ,I

j produced
in each iteration of that loop. One has
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GI′ ,I
j = ⟨I′, j∣ΔV(R,ω, r)∣I, j⟩
= ⟨I′, j∣R̂−1[R̂ΔV(R,ω, r)R̂−1]R̂∣I, j⟩
= ⟨I′, j∣R̂−1[ΔV(R,ω, r)]R̂∣I, j⟩, (38)

where R̂ is an operation of G12, and we have used the invariance of
the ΔV function to such operations. Now, note that

R̂∣I, j⟩ = R̂∣I⟩ × R̂∣ j1, j2, j3⟩. (39)

For the permutation operations of G12, the functions R̂∣ j1, j2, j3⟩ are
easily obtained. The R̂∣I⟩, in turn, are given by

R̂∣I⟩ = χ(ΓI)(R̂)∣I⟩, (40)

where χ(ΓI)(R̂) is the character corresponding to R̂ for 1D irrep ΓI , if
∣I⟩ is singly-degenerate, and by

R̂∣Ik⟩ = ∑
k′=a,b

D(ΓI)k′ ,k (R̂)∣Ik′⟩; k = a, b, (41)

if it is one of a doubly-degenerate pair.
The upshot is that one can express the GI′ ,I

j for one value of j in
terms of those evaluated for another j value. There are three cases.
When ∣I⟩ and ∣I′⟩ are both singly-degenerate then

GI′ ,I
j ≡ GI′ ,I

( j1 , j2 , j3) = χ
(ΓI′ )(R̂)χ(ΓI)(R̂)GI′ ,I

R̂( j1 , j2 , j3), (42)

or, equivalently,

GI′ ,I
R̂( j) ≡ G

I′ ,I
R̂( j1 , j2 , j3) = χ

(ΓI′ )(R̂−1)χ(ΓI)(R̂−1)GI′ ,I
( j1 , j2 , j3). (43)

When ∣I′⟩ is doubly-degenerate and ∣I⟩ is nondegenerate, then one
has

GI′k ,I
R̂( j) ≡ G

I′k ,I
R̂( j1 , j2 , j3)

= ∑
k′=a,b

D(ΓI′ )k′ ,k (R̂
−1)χ(ΓI)(R̂−1)GI′

k′
,I

( j1 , j2 , j3); k = a, b. (44)

Hermiticity can then be used to obtain

GI,I′k
R̂( j) = [G

I′k ,I
R̂ ( j)]

∗
. (45)

Finally, when both ∣I⟩ and ∣I′⟩ are doubly-degenerate

GI′k ,I
′

m

R̂( j) ≡ G
I′k ,I
′

m

R̂( j1 , j2 , j3)

= ∑
k′=a,b

∑
m′=a,b

D(ΓI′ )k′ ,k (R̂
−1)

×D(ΓI)m′ ,m(R̂
−1)GI′

k′
,Im′

( j1 , j2 , j3); k = a, b, m = a, b. (46)

It turns out that there are N̄ j ≡ Nr(Nr + 1)(Nr + 2)/6 sets of
j = ( j1, j2, j3) triplets, within which sets the triplets are transformed
into one another by the permutation operations of G12. Hence,
given Eqs. (43)–(46), the j loop needs only encompass j values
consisting of just one representative of each such set. TheGI′ ,I

j quan-
tities not computed directly in the loop can then be obtained from

those that are from Eqs. (43)–(46). Therefore, symmetry can be
used to reduce the iterations of the j loop by a factor of N j/N̄ j

= 6N3
r /[Nr(Nr + 1)(Nr + 2)]. For the Nr = 8 and Nr = 10 values

employed here, this reduction is by a factor of about 4.27 and 4.55,
respectively.

A further reduction in computational steps can be affected
by choosing to deal with the following representatives of the N̄ j
symmetry-connected sets of j triplets: (1) type-1 triplets of the
form j1 = j2 = j3, of which there are N̄(1)j = Nr , are the sole mem-
bers of the symmetry-connected sets for which all three of the
jk values are equal; (2) type-2 triplets of the form j1 ≠ j2, j2 = j3,
of which there are N̄(2)j = Nr(Nr − 1), cover all of the symmetry-
connected sets for which precisely two of the j values are the same;
and (3) type-3 triplets of the form j1 < j2 < j3, of which there are
N̄(3)j = Nr(Nr − 1)(Nr − 2)/6, cover all of the symmetry-connected
sets of j for which j1, j2, and j3 are all different. Now, when the
value of j in the j = 1-to-N̄ j loop is type-3, there is nothing fur-
ther to be gained by making use of symmetry than what has
already been described. However, when j is type-1 or type-2, sym-
metry can be used to reduce the number of direct calculations of
ΔVκ′ ,κ

n, j values [Eq. (32)] in the n loop. We present in Sec. II of the
supplementary material, the details of how this can be performed
and show therein that the total number of iterations required in
the nested j and n loops when permutation symmetry is exploited
is NrNR(NrNR + 1) (NrNR + 2)/6, which compares to the (NrNR)3
iterations required when such symmetry is neglected. In short, the
speed-up obtainable by exploiting permutation symmetry is almost a
factor of six.

6. Computing the matrix elements of ΔV : Limiting
the size of the ωi grid

In the method described earlier, the calculation of all the
required ΔVκ′ ,κ

n, j represents, by far, the largest cost in the entire 12D
calculation. The number of such evaluations is on the order of
[NB(NB + 1)/2] × [NrNR(NrNR + 1) (NrNR + 2)/6]. With the typ-
ical values NB = 120, Nr = 8, and NR = 12, this amounts to about 1.1
× 109 evaluations for a given parity. In addition, each such evalua-
tion requires a sum overNω grid points. Such a grid must nominally
consist of Nω = (266)3 ≃ 1.9 × 107 Lebedev points to accommodate
the lmax = 13 primitive angle basis that we require to compute the
converged bend states ∣κ⟩. In short, even when permutation sym-
metry is fully exploited, one is nominally faced with sums over a
total of about 2 × 1016 points in order to compute all of the ΔVκ′ ,κ

n, j
required. A reduction in this number of operations by a signifi-
cant factor reduces the cost of the overall 12D calculation by about
the same factor. Hence, one is interested in trying to effect such a
reduction.

Elsewhere,35 we have shown that a reduction in the size of the
6D angle grid (Nω) by about a factor of two can, by making use of
parity, be affected without loss of any accuracy. Here, we introduce
an approximation leading to a further significant reduction in the ωi
grid size. The approximation relies on the assumption that for many
i, the ⟨κ′∣ωi⟩⟨ωi∣κ⟩ quantities that enter Eq. (32) are vanishingly small
for all κ, κ′. If this is true, then these grid points can be neglected
in every evaluation of Eq. (32), and Nω can be effectively reduced.
The physical basis for this approximation is the evidence that the
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wavefunctions of the low-energy bend excitations in HF trimers are
substantially localized in angle space35 so that nowhere near the
entire 6D space is required to produce accurate grid representations
of them.

In order to implement this approximation, one needs an effi-
cient way to search for those ωi for which ∣⟨ωi∣κ⟩∣ is very small for
all κ. We do this as follows: We construct the aggregate probability
density,

ρtot(ωi) ≡
NB

∑
κ=1
∣⟨ωi∣κ⟩∣2, (47)

at every grid point. We then sort the grid points into those for which

ρtot(ωi) ≥
A

NBNω
, (48)

whereA is an adjustable, dimensionless constant of the order 0.1.We
retain these grid points in computing Eq. (32) and discard all of the
others. We can get a sense of the accuracy of this procedure by com-
puting the norm of each of the bend eigenstates over this trimmed
grid,

⟨κ∣κ⟩trim ≡
Nωtrim

∑
itrim=1

∣⟨ωitrim ∣κ⟩∣2, (49)

and comparing these values to unity. We find that for A = 0.1, all of
these trimmed norms for the set of ∣κ⟩ that we retain in the Ĥinter
bases differ by less than three parts in 104 from 1. Furthermore, at
this level of approximation, the trimmed grid size is only about 7%
of the size of the exact parity-reduced grid. By reducing A by a factor
of five to 0.02, all of the trimmed norms for the set of ∣κ⟩ that we use
differ by less than seven parts in 105 from unity, and the trimmed
grid size is about 10% of the full grid.

Of course, the rigorous test of this trimming approximation is
an assessment of how the magnitude of A affects the solutions to
the 12D problem. We find a negligible increase (of order 0.01 cm−1)
in computed 12D eigenenergies in going from A = 0.1 to A = 0.02.
As such, we are confident that the A = 0.1 results are an accurate
approximation to those associated with the untrimmed grid.

E. 12D expectation values of geometrical quantities
In examining the nature of the eigenstates of Ĥ, it is of inter-

est to compute the expectation and root-mean-squared values of
various geometrical quantities, e.g., intra- and intermolecular bond
lengths, distances, and angles. Such computations are nontrivial
but straightforward, given that the 12D eigenstates are obtained as
expansions over products of lower-dimension functions. We out-
line the calculation of such quantities in detail in Sec. III of the
supplementary material.

III. RESULTS AND DISCUSSION
A. Convergence tests

The parameters of the basis sets used in the 12D calcula-
tions utilizing the methodology of Sec. II were carefully tested for
convergence. Eight different 12D basis sets representative of the con-
vergence testing performed are listed in Table I. As mentioned in

TABLE I. Compositions of the various 12D basis sets. The Nr values pertain to the
computation of the Ĥintra eigenstates included in the 12D basis. The NR values pertain
to the computation of the frame states included in the 9D basis. The r̄ values are those
used to produce the frame and bend states included in the 9D basis. NF is the total
number of 3D frame states of all symmetries used to build the 9D basis. NB is the total
number of 6D bend states of a given parity used to build the 9D basis. Ninter is the
total number of 9D intermolecular states of a given parity used to build the 12D basis.
Nintra is the total number of 3D intramolecular states used to build the 12D basis. NA

and NE are the dimensions of the A and E blocks of the 12D Ĥ matrices.

Basis r̄/bohrs Nr NR NF NB N inter N intra NA NE

I 1.7950 8 12 201 120 600 56 5700 11 100
IA 1.7950 10 12 201 120 600 56 5700 11 100
II 1.7950 8 12 201 120 540 56 5100 10 020
III 1.7950 8 14 201 120 480 56 4560 8 880
IV 1.7950 8 12 150 120 396 56 3762 7 326
V 1.7843 8 12 201 120 600 56 5700 11 100
VI 1.7843 8 12 150 120 240 56 2280 4 440
VII 1.7813 8 12 150 120 280 56 2660 5 180

Sec. II B 3, the eigenvectors and eigenvalues of Ĥinter depend on the
value chosen for r̄, the rigid-HF monomer bond length that appears
in that operator as a parameter. Meanwhile, in the limit of a very
large 9D intermolecular basis, the final 12D results would be insen-
sitive to the r̄ value; judicious choice can facilitate their convergence.
The r̄ values in Table I are 1.7950 bohrs for bases I/IA–IV, 1.7843
bohrs for bases V and VI, and 1.7813 bohrs for basis VII. The ratio-
nale for choosing these values and the effect they have on the 12D
results are presented below. In the first two groups of bases, the
numbering of the bases increases with decreasing N inter, from 600
to 396 for bases I/IA–IV and from 600 to 240 for bases V–VI. Dif-
ferent bases are further distinguished by NF , the total number of 3D
frame states (Sec. II B 1) included in the 9D intermolecular basis.
Nr , the number of 1D PODVR basis functions per HF-stretch coor-
dinate rk (k = 1–3) used in diagonalizing the Ĥintra matrix, is set to
8 in all bases except basis IA, where Nr = 10. The significance of this
is discussed later. For all bases in Table I NB, the total number of
6D bend states (Sec. II B 2) of a given parity used to build the 9D
basis is set to 120, or 30 bend states per irrep. In addition, for all
bases, N intra is equal to 56, which encompasses all 3D eigenstates
of Ĥintra with up to and including five quanta of HF stretch excita-
tion. Test 12D calculations were performed with N intra = 35 (which
covers all intramolecular states up to and including four HF-stretch
quanta), and a negligible difference was found from the results
for N intra = 56.

Inspection of Table II reveals that increasing r̄ from 1.7843
bohrs in basis V to 1.7950 bohrs in basis I while keeping all other
basis-set parameters the same has a small but visible effect on the
intramolecular v = 1, 2 HF stretching states in the HF trimer. The
energies of the v = 1 HF-stretch states, νHF

sym and νHF
asym, from the

12D calculations decrease only by about 0.4 cm−1. However, for
the four states with two quanta in HF-stretch modes of the trimer,
including 2νHF

sym and νHF
sym + νHF

asym, their energies computed using basis
I are 1.2–1.9 cm−1 lower than those obtained with basis V. This
should not be surprising. The r̄ = 1.7950 bohrs value in basis I was
chosen to be between the expectation values of the HF monomer
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TABLE II. Basis-set dependence of the energiesa of the v = 1, 2 HF stretching states in the HF trimer from 12D calculations
for the intermolecular modes in the ground state. Nr = 8 in basis sets I–VII. All energies are in cm−1.

I II III IV V VI VII Assign.

3679.04 3679.10 3679.17 3679.19 3679.52 3680.39 3680.50 νHF
sym

3742.69 3742.76 3742.77 3742.81 3743.06 3743.78 3743.82 νHF
asym

7201.27 7201.65 7201.81 7201.97 7202.72 7206.42 7206.54 2νHF
sym

7221.25 7222.59 νHF
sym + νHF

asym

{7397.49}b {7399.38}b 2νHF
asym(A′1)

7452.90 7454.13 2νHF
asym(E′)

aThe listed energies are all relative to the relevant ground-state energy.
bSignificant basis-state mixing leading to small BSN.

bond length for the ground state and the intramolecular symmetric-
stretch fundamental of the HF trimer, 1.7843 and 1.8069 bohrs,
respectively, from the reduced-dimension quantum 3D calculations
of the intramolecular vibrational states of (HF)3 (Sec. II C). In con-
trast, the r̄ value of 1.7843 bohrs used in basis V is equal to that of
the quantum 3D expectation value for the ground state of the trimer.
Therefore, the larger value of r̄ in basis I better reflects the increase
of the vibrationally averaged HF bond length upon intramolecu-
lar vibrational excitation than the smaller r̄ value used in basis V,
making it more appropriate for the HF-stretch excited states of the
trimer. It should be added that quantum 12D calculations were also
performed for r̄ = 1.8069 bohrs, equal to the expectation value of
the HF bond length for the intramolecular symmetric-stretch fun-
damental of the HF trimer, with all other basis-set parameters as in
basis I. The energies of the v = 1 HF-stretch states of the trimer they
yielded are about 0.4 cm−1 lower than those obtained for r̄ = 1.7950
(basis I), while those of the v = 2 trimer states decrease by about
1 cm−1. However, the energies of some intermolecular bending
states for r̄ = 1.8069 bohrs are 1–2 cm−1 higher than those computed
with r̄ = 1.7950. Given thismixed performance, r̄ = 1.8069 bohrs was
given no further consideration.

Table II also shows that the 12D energies of the v = 1 HF-
stretch states of the HF trimer, νHF

sym and νHF
asym, hardly change for

bases I–IV, which all have r̄ = 1.7950 but differ in the value of N inter,
from 600 (basis I) to 396 (basis IV), implying that these states are
well-converged with respect to this important parameter. For the
same bases I–IV, increasing N inter from 396 to 600 lowers the energy
of the v = 2 trimer state 2νHF

sym by no more than 0.70 cm−1.
Table III displays the basis-set dependence of the selected

low-energy intermolecular vibrational states of HF trimer from
12D quantum calculations, for the monomers in their ground
intramolecular vibrational state. A comparison of the results
obtained for bases I and V, respectively, shows that they change very
little in going from r̄ = 1.7950 bohrs to r̄ = 1.7843 bohrs. Further-
more, the differences between the energy levels calculated for bases
I–IV are generally very small, although N inter changes from 396 to
600. In particular, the results obtained using basis I (N inter = 600)
and basis II (N inter = 540) differ by about 0.1 cm−1, demonstrating
good convergence with respect to N inter.

The 12D results in Tables II and III discussed so far are cal-
culated using Nr = 8. This value is expected (and confirmed below)
to be sufficient for the calculations where the HF monomers are in
the ground vibrational state. However, since we are also interested in

the vibrational states of the trimer for excited HF-stretch states, it is
necessary to investigate their convergence with respect to the value
of Nr . Performing the convergence tests for increasing Nr values
by means of 12D calculations would be very demanding since their
computational cost scales as (Nr)3. Therefore, the Nr-convergence
of the v = 1, 2 HF stretching states of the trimer is assessed by diag-
onalizing the matrix of the 3D intramolecular Hamiltonian Ĥintra
for Nr = 8, 10, 12, 16. It is reasonable to assume that the value of
Nr , which gives converged HF-stretch fundamentals and overtones
in the 3D calculations, will do the same in the 12D calculations
as well.

The results of such 3D calculations are presented in Table IV.
It is evident from them that for the v = 1 states νHF

sym and νHF
asym, (a)

the energies calculated with Nr = 8 differ by about −0.5 cm−1 from
those obtained for the larger Nr values, and (b) using Nr = 10 gives
results that differ by at most −0.05 cm−1 from those calculated with
Nr = 12 and 16. Similar observations hold for the four v = 2 HF-
stretch states. Their energies forNr = 8 differ by up to −7 cm−1 from
their counterparts obtained with Nr = 10, 12, and 16. In contrast,
the Nr = 10 results agree with those for Nr = 12 and 16 to within
−0.6 cm−1. The “convergence from below” behavior with respect to
increasing Nr implies that for the v = 1 and 2 intramonomer excited
states, Nr = 8 is not a dense enough grid for accurate quadrature
over the r coordinates. In view of this, the 12D results discussed
in the following sections are those calculated using Nr = 10, with
other basis-set parameters being those of basis I. This basis set, with
Nr = 10, is designated as IA in Table I and elsewhere.

It should be emphasized that for the intermolecular vibrational
states of HF trimers listed in Table III from 12D calculations and for
the monomers in the ground intramolecular vibrational state, the
energies computed using bases IA (Nr = 10) and I (Nr = 8) are vir-
tually identical. For this reason, the second column of Table III is
labeled I/IA.

B. Intermolecular vibrational eigenstates
Selected low-energy intermolecular vibrational states of HF

trimers from full-dimensional 12D quantum calculations using basis
set IA for the monomers in their ground intramolecular vibrational
states, and also the rigid-monomer 9D quantum calculations, are
presented in Table V. Inspection of the results shows that the 12D
and 9D level energies typically differ by 1–4 cm−1, but the differences
can go up to 7 cm−1. This demonstrates that the coupling between
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TABLE III. Basis-set dependence of the energiesa of selected low-energy intermolecular vibrational eigenstates of HF trimer
from 12D calculations for the HF monomers in their ground intramolecular vibrational state. All energies are in cm−1.

Basis I/IAb II III IV V VI VII Assign.

A′1,A
′
2

1 0 0 0 0 0 0 0 g.s.
2 186.90 187.03 187.09 187.11 187.00 188.00 187.84 νss
3 328.24 328.34 328.39 328.66 328.24 329.32 328.73 2νas
4 368.92 369.66 369.64 369.76 369.37 371.37 371.31 2νss
18 776.71 776.64 776.71 776.67 776.10 775.68 775.66 νisb

E′

1,2 170.91 170.93 171.23 171.46 171.04 173.50 172.17 νas
3,4 332.73 332.84 334.04 335.35 332.93 334.78 334.74 2νas
5,6 351.43 351.52 352.74 353.49 351.92 353.07 353.08 νas + νss
9,10 501.44 501.42 501.54 501.73 501.25 502.01 501.86 νiab

A′′1 ,A
′′
2

1 556.17 556.26 556.30 νas + νoab
2 583.98 584.06 584.09 νas + νoab
3 617.99 618.01 618.14 νosb

E′′a ,E′′b

1,2 416.77 416.76 417.06 νoab
3,4 576.47 576.50 576.33 νas + νoab
5,6 599.23 599.22 599.10
7,8 699.77 699.86 699.39
aThe listed energies are all relative to the relevant ground-state energy.
bThe listed energies are from basis IA. The basis-I energies differ from the IA ones by 0.02 cm−1 or less. The D0 values corre-
sponding to the ground states of bases I/IA to VII are, respectively, 3662.37/3662.35, 3662.35, 3662.28, 3662.25, 3662.18, 3661.31,
and 3661.30 cm−1 . These compare to the De value of −5391.33 cm−1 for the complete dissociation of the trimer on the SO-3
+HF3BG PES.39

TABLE IV. Low-energy eigenstates of Ĥintra for four different values of Nr from 3D
calculations. The ΔE(Nr) values are eigenenergies (cm−1) relative to the relevant
ground-state energy.a

Assign. Irrep ΔE(8) ΔE(10) ΔE(12) ΔE(16)

g.s. A′1 0.00 0.00 0.00 0.00
νHF
sym A′1 3733.36 3733.90 3733.94 3733.95
νHF
asym E′ 3784.82 3785.34 3785.38 3785.39
2νHF

sym A′1 7325.44 7331.92 7332.43 7332.48
νHF
sym + νHF

asym E′ 7337.21 7344.03 7344.57 7344.62
2νHF

asym A′1 7510.38 7511.83 7511.94 7511.96
2νHF

asym E′ 7550.57 7551.86 7551.75 7551.77
aThe ground-state energies for Nr = 8, 10, 12, and 16 are, respectively, 880.88, 880.95,
880.96, and 880.96 cm−1 relative to the potential energy of the three isolated monomers
in their equilibrium geometries.

the intra- and intermolecular vibrational modes of the trimer is not
negligible already for the ground states of the HF monomers. It has
to be taken into account in accurate bound-state calculations and
comparisons with experiments.

The states in Table V are assigned in terms of the fundamentals,
overtones, and combinations of the intermolecular symmetric and
asymmetric stretch modes (νss and νas), respectively, as well as the
following bending modes: a nondegenerate symmetric mode—νisb
(irrep A′1) and νosb (irrep A′′1 ), for the in- and out-of-plane cases,
respectively—and two doubly-degenerate asymmetric modes—νiab
(irrep E′) and νoab (irrep E′′) for the in- and out-of-plane cases,
respectively. The assignments are made in the way described in I. It
is evident that the fundamental frequencies of the stretching modes
νss and νas, 186.9 and 170.9 cm−1, respectively, are much lower than
those of the bending modes, all of which are above 400 cm1. In addi-
tion, shown for each 12D state is the basis-state norm (BSN), which
measures the contribution of the dominant product inter/intra-basis
state to the given eigenstate. For all 12D states shown, the BSN is
very close to 1, meaning that these eigenstates are highly pure, i.e.,
dominated by a single inter/intra-basis state.

Table VI shows for selected 12D eigenstates the expectation val-
ues ⟨rk⟩, ⟨Rk⟩, and ⟨∣ϕk∣⟩ of the coordinates defined in Sec. II A,
together with the corresponding root-mean-square (rms) ampli-
tudes Δrk, ΔRk, Δ∣ϕk∣, and Δθk. These quantities are sensitive to the
excitation of different intermolecular and intramolecular DOFs of
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TABLE V. Low-energy intermolecular vibrational states of HF trimer from 12D and 9D
(rigid-monomer) calculations, basis set IA (in cm−1). The 12D results are for the HF
monomers in their ground intramolecular vibrational state.

ΔE (12D) ΔE (9D) BSNa Assignment

A′1,A
′
2

1 0.0b 0.0c 0.996 g.s.
2 186.90 190.77 0.995 νss
3 328.24 329.51 0.996 2νas
4 368.92 376.08 0.993 2νss
5 476.00 479.90 0.992
18 776.71 775.96 0.896 νisb

E′

1,2 170.91 171.09 0.996 νas
3,4 332.73 333.96 0.992 2νas
5,6 351.43 353.97 0.991 νas + νss
9,10 501.44 498.29 0.994 νiab

A′′1 ,A
′′
2

1 556.17 554.98 0.996 νas + νoab
2 583.98 582.26 0.996 νas + νoab
3 617.99 614.25 0.996 νosb
4 707.98 709.14 0.993

E′′

1,2 416.77 414.32 0.996 νoab
3,4 576.47 573.27 0.994 νas + νoab
5,6 599.23 597.69 0.993
7,8 699.77 698.27 0.995
aBasis-state norm of dominant basis state. It refers to the 12D results. See the text for a
definition.
bThe 12D ground-state energy is −3662.35 cm−1 relative to the energy of separated
flexible monomers.
cThe 9D ground-state energy is −3812.81 cm−1 relative to the energy of the separated
rigid monomers.

the trimer. Therefore, as expected, ⟨Rk⟩ (and ΔRk) increases with
the number of quanta in the symmetric stretch mode, 4.953 bohrs
for νss and 5.007 bohrs for 2νss, relative to the ground-state value of
4.901 bohrs. Interestingly, and somewhat unexpectedly, ⟨Rk⟩ values
for the fundamentals of nondegenerate symmetric bending modes
νisb and νosb, 4.992 and 4.959 bohrs, respectively, are in fact larger
than or comparable to those for the νss symmetric-stretch funda-
mental, 4.953 bohrs. In all likelihood, this reflects the stretch-bend
coupling present in the intermolecular modes, so their “stretch” and
“bend” designations need to be used with caution.

C. Intramolecular vibrational eigenstates
and frequency shifts

Table VII gives the energies of the v = 1, 2 HF stretching states
of the HF trimer from 12D calculations for intermolecular modes in
the ground state, using the basis IA withNr = 10. In addition, shown
for comparison are the corresponding results from the 12D calcula-
tions with basis I, where Nr = 8. One can see that for the v = 1 states

TABLE VI. Expectation values of some coordinates of the HF trimer for selected 12D
eigenstates. ⟨rk⟩, Δrk , ⟨Rk⟩, and ΔRk are in bohrs, while ⟨∣ϕk ∣⟩, Δ∣ϕk ∣, and Δθk are
in degrees. See the text for definitions.

State ⟨rk⟩ (Δrk) ⟨Rk⟩ (ΔRk) ⟨∣ϕk∣⟩ (Δ∣ϕk∣) Δθka

g.s. 1.790(0.129) 4.901(0.181) 56.2(10.9) 11.9
νss 1.789(0.129) 4.953(0.260) 56.5(11.3) 12.1
2νss 1.787(0.129) 5.007(0.319) 56.8(11.6) 12.3
νisb 1.786(0.128) 4.992(0.204) 58.4(15.3) 14.8
νosb 1.787(0.129) 4.959(0.196) 57.1(11.8) 15.4
νHF
sym 1.815(0.171) 4.853(0.176) 55.4(10.6) 11.5
2νHF

sym 1.841(0.212) 4.815(0.171) 54.9(10.4) 11.2
aThe values of ⟨θk⟩ are all 90○ by symmetry.

TABLE VII. Energies (in cm−1) of the v = 1, 2 HF stretching states of HF trimer for
intermolecular modes in the ground state, from 12D calculations using bases IA (Nr =

10) and I (Nr = 8).

IA I Assign.

3679.40a 3679.04a νHF
sym

3743.05 3742.69 νHF
asym

7205.00 7201.27 2νHF
sym

7225.31 7221.25 νHF
sym + νHF

asym

{7400.04}b {7397.49}b 2νHF
asym(A′1)

7453.88 7452.90 2νHF
asym(E′)

aThe listed energies are all relative to the relevant ground-state energy.
bSignificant basis-state mixing leading to small BSN.

νHF
sym and νHF

asym, the energies calculated using bases IA and I differ by
less than 0.4 cm−1. This agrees with the observation made earlier in
Sec. III A, in connection with the results of the reduced-dimension
3D calculations of HF trimer displayed in Table IV, that the 3D v = 1
HF-stretch eigenstates calculated with bases IA and I differ by about
0.5 cm−1. The conclusion is that basis set I,Nr = 8, when used in 12D
calculations, gives accurate energies of the v = 1 HF-stretch states
of the trimer as well as the intermolecular vibrational states in this
intramolecular manifold (and, of course, intermolecular vibrational
states for the ground intramolecular state of HF monomers).

For the v = 2 HF-stretch states of the trimer in Table VII, their
energies from the 12D calculation using bases IA and I differ by up
to 4 cm−1. Again, this is in line with the corresponding results for
these states from 3D calculations reported in Table IV, which show
that their energies for bases IA and I differ by up to 6.8 cm−1.

Evidently, the trends in the 12D results for bases IA and I mir-
ror those from the 3D calculations for the two bases. As already
discussed in Sec. III A based on Table IV, the energies of v = 2
HF-stretch states from 3D calculations with Nr = 10 agree to within
0.6 cm−1 with those obtained for Nr = 12 and 16. This gives us
confidence that the corresponding results of the 12D calculations
using basis IA (Nr = 10) are converged to the same degree with
respect to Nr .

Complex formation shifts the frequencies of the intramolecular
vibrations of the constituent monomers away from the vibrational
frequencies of the isolated monomers. Such vibrational frequency
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shifts were characterized accurately in our recent full-dimensional
calculations of the inter- and intramolecular vibrational states of
binary molecular complexes of H2O/D2O–CO,17 HDO-CO,27 and
HCl–H2O.28 The 12D results in Table VII allow us to calculate vibra-
tional frequency shifts for HF trimers. On the PES employed, for the
monomers at large separation, the v = 1 and v = 2 vibrational levels
of the isolated HF are at 3959.83 and 7728.99 cm−1, respectively. A
glance at the 12D results in Table VII shows that the frequencies
of the v = 1, 2 HF stretching states of the HF trimer are substan-
tially redshifted in comparison to those of the isolated HFmonomer.
Therefore, using the results for the IA basis, the frequency shifts
(redshifts) of the states νHF

sym and νHF
asym are −280.43 and −216.78

cm−1, respectively. Based on themeasured frequencies of the isolated
HF-stretch fundamental,54 3961 cm−1, and that of the asymmet-
ric H–F stretch νHF

asym fundamental,47 3712 cm−1, the experimental
value of the frequency shift of the νHF

asym fundamental of the trimer is
−249 cm−1, in good agreement with our theoretical result of
−217 cm−1. In Sec. III E, the calculated trimer redshifts are compared
to those calculated for the HF dimer in the context of cooperative
hydrogen bonding.

D. Effects of HF-stretch intramolecular excitation
on the intermolecular vibrational states of HF trimer

The degree to which the intramolecular HF-stretch excitation
affects the energies of the intermolecular vibrational states reflects
the strength of the coupling between the intramolecular and inter-
molecular DOFs of the trimer. In order to gain insight into this
intra/inter coupling, Table VIII lists the energies of the fundamentals
of the intermolecular stretching and bending modes of the trimer in
both the ground-state and excited v = 1 νHF

sym and νHF
asym intramolec-

ular vibrational manifolds from 12D calculations using basis IA. It
is immediately evident that the energies of all intermolecular vibra-
tional modes considered increase significantly upon the excitation of
either HF-stretch intramolecular state relative to those in the ground
intramolecular vibrational state. In the HF-excited νHF

sym intramolec-
ular manifold, the energies of the stretching mode fundamentals νas
and νss increase by 12.9 and 12.1 cm−1, respectively, while for the
fundamentals of the four bending modes, the energy increases are
larger, ranging from 26.5 cm−1 (νoab) to 34.9 cm−1 (νiab). Excitation
of the νHF

asym intramolecular vibrational mode results in comparable

TABLE VIII. Intermolecular excitation energies (in cm−1) in the ground-state (g.s.)
and v = 1 νHF

sym and νHF
asym intramolecular manifolds of the HF trimer, from 12D

calculations using basis set IA.

Excitation g.s. νHF
sym

a νHF
asym

b

νas 170.91 183.82 (179.28,185.75,180.76)c

νss 186.89 198.94 196.35
νiab 501.43 536.30 (526.67,534.31,529.43)
νisb 776.70 {827}d ⋅ ⋅ ⋅
νoab 416.77 443.29 (433.88,440.72,438.05)
νosb 617.99 651.59 644.57

aEnergies relative to the intramolecular excitation energy of 3679.40 cm−1 .
bEnergies relative to the intramolecular excitation energy of 3743.05 cm−1 .
cCombinations of two E-type excitations produce three distinct energy levels.
dApproximate value due to significant state mixing.

increases in the energies of the intermolecular vibrational modes
considered.

Additional evidence for the coupling between the intra- and
intermolecular vibrational DOFs is provided by the two entries at
the bottom of Table VI pertaining to the fundamental and the first
overtone of the νHF

sym intramolecular mode, respectively. As expected,
the vibrationally averaged HF bond length increases with the num-
ber of quanta in the νHF

sym mode, from 1.790 bohrs in the ground-state
to 1.815 bohrs for the νHF

sym fundamental and 1.841 bohrs for the 2νHF
sym

overtone. However, what is interesting and surprising is that excita-
tion of the νHF

sym mode also results in an appreciable shortening of the
(vibrationally averaged) distance between the HF monomers, from
4.901 bohrs in the ground state to 4.853 bohrs for the νHF

sym funda-
mental and 4.815 bohrs for the 2νHF

sym overtone. Clearly, the coupling
between intra- and intermolecular modes of the HF trimer manifests
itself in the changes in both its vibrational energy level structure and
geometric features due to the intramolecular vibrational excitations.

E. Manifestations of cooperative hydrogen bonding
A distinguishing feature of HF trimers and molecular trimers

in general relative to HF dimers is the cooperative hydrogen bond-
ing resulting from the three-body interactions which, of course, are
absent in the dimer(s). The results of the 12D calculations in this
paper reveal several manifestations of the cooperativity in the hydro-
gen bonding of HF trimers. One of them pertains to the vibrational
frequency shifts of the HF-stretching states of the HF trimer rel-
ative to the stretch fundamental of the isolated HF monomer. In
Sec. III D, we stated that based on the 12D calculations, the fre-
quency shifts (redshifts) of the symmetric and asymmetric H–F
stretch fundamentals of the trimer, νHF

sym and νHF
asym, are −280.43

and −216.78 cm−1, respectively. It is instructive to compare these
two trimer redshifts to the bound-HF (ν2) stretching fundamen-
tals of the HF dimer, calculated in 6D10 on the SO-3 PES to be
−92.74 cm−1. Evidently, the calculated redshifts of the symmet-
ric and asymmetric H–F stretch fundamentals of the HF trimer
are much larger by magnitude than the redshift of the stretching
fundamental of the hydrogen-bond donor (bound) HF in the HF
dimer. This can only be due to the cooperative hydrogen bonding
and the three-body interactions present in HF trimers but not in
HF dimers.

Another manifestation of the cooperative hydrogen bonding
in the HF trimer involves the separation of the monomers in the
trimer. From Table VI, the 12D vibrationally averaged ground-
state distance between the centers of mass of the monomers in the
HF trimer is 4.901 bohrs. It is significantly shorter than the vibra-
tionally averaged separation of the monomers in the ground state
of the HF dimer, 5.24 bohrs, from the 6D calculations on the SO-
3 PES.10 This decrease in the intermonomer distance in the HF
trimer relative to the dimer can also be attributed to the cooper-
ative hydrogen bonding, i.e., the three-body interactions. Similar
shortening of the intermonomer distance with increasing cluster size
has been reported for H2O clusters55 and interpreted in terms of
hydrogen-bond cooperativity.

Cooperative hydrogen bonding manifests in the energetics of
the HF trimer as well. The 12D binding energy of the HF trimer rela-
tive to the energy of the three separated HFmonomers in the ground
state is 3662.35 cm−1 (footnote of Table V). The binding energy of
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the isolated HF dimer is 1061.73 cm−1, according to the 6D calcula-
tions on the SO-3 PES.10 In the absence of three-body interactions,
the trimer binding energy would be simply three times that of the
isolated HF dimer, i.e., 3 × 1061.73 = 3185.19 cm−1. However, this
is 477.16 cm−1 less than the actual 12D-calculated binding energy
of the trimer, 3662.35 cm−1, evidence that the three-body interac-
tions contribute to and significantly increase the binding energy of
the trimer.

The binding energy of the HF trimer with respect to the
(HF)2 (g.s.) + HF channel can also be readily calculated. Since the
12D binding energy of the HF trimer relative to that of the three
HF (g.s.) monomers is 3662.35 cm−1, and the 6D binding energy
of the isolated HF dimer is 1061.73 cm−1,10 the binding energy
of the HF trimer relative to (HF)2 (g.s.) + HF is 3662.35 − 1061.73
= 2600.62 cm−1.

F. Comparison between theory and experiment
Spectroscopic data regarding the vibrational frequencies of

HF trimers are limited. The available information from spectro-
scopic measurements in the gas phase and the Ne and Ar matrices
is presented in Table IX, together with the corresponding theo-
retical results from the 12D calculations. Closer inspection shows
that the calculated fundamental frequencies of the intermolecular
νas, νiab, and νosb modes are 1.4%–2.7% higher than the respective
experimental values measured in the Ne matrix (νas) and the gas
phase (νiab and νosb). As for the intramolecular vibrational funda-
mentals, only one (gas phase) experimental piece of information
is available, 3712 cm−1, for the νHF

asym mode. The corresponding
calculated (12D) value is 3743 cm−1, 0.8% larger than the mea-
sured value. Therefore, at this point, the overall agreement between
theory and the scant experimental data can be described as rea-
sonable but not excellent. Since the quantum calculations are full-
dimensional and well-converged, the discrepancies between theory

TABLE IX. Comparison of the fundamental frequencies (in cm−1) of the HF trimer
from 12D calculations and spectroscopic measurements in the gas phase and neon
(Ne) and argon (Ar) matrices. The calculated frequencies of the intermolecular modes,
shown in the first six rows of the table, are for HF monomers in their ground
intramolecular vibrational state.

Modea Calc.b Gas Ne matrixc Ar matrixd

νas (ν7) 170.91 167 152.5
νss (ν3) 186.90
νiab (ν6) 501.44 495e 477 446
νisb (ν2) 776.71
νoab (ν8) 416.77
νosb (ν4) 617.99 602e 590 560
νHF
sym (ν1) 3679.40
νHF
asym (ν5) 3743.05 3712f 3706 3702

aThe literature mode notation is given in parentheses.
b12D calculations in this work, basis IA.
cReference 49.
dReference 50.
eReference 46.
fReference 47.

and experiment can be attributed to the shortcomings of the PES
employed.

IV. CONCLUSIONS
In this paper, we present the methodology for full-dimensional

(12D) quantum calculations of the coupled intramolecular and
intermolecular vibrational states of noncovalently bound trimers of
flexible diatomic molecules. It builds on our recently introduced
approach for fully coupled 9D quantum calculations of the vibra-
tional states of trimers comprised of diatomics treated as rigid35
and extends it to include in a rigorous manner the intramolecular
stretching coordinates of the three diatomic monomers. The coor-
dinates and the 12D vibrational Hamiltonian for the HF trimer
developed by Wang and Carrington40 are employed. At the heart of
our methodology is the use of the eigenstates of reduced-dimension
Hamiltonians as contracted basis functions for both intermolec-
ular and intramolecular DOFs of the trimer. This computational
strategy introduced by us14,17 has proven to be very successful in
full-dimensional quantum calculations of the (ro)vibrational states
of a variety of binary molecular complexes.15,34 Here, a 9D rigid-
monomer intermolecular vibrational Hamiltonian of the trimer is
diagonalized as performed previously,35 in a product contracted
basis of the eigenvectors of a 3D “frame” (intermolecular stretch-
ing) Hamiltonian and a 6D “bend” Hamiltonian. In addition, a
3D intramolecular vibrational Hamiltonian for the three monomers
is diagonalized separately. A certain number of the lower-energy
9D intermolecular and 3D intramolecular vibrational eigenstates
are included in the 12D product contracted basis, in which the
full vibrational Hamiltonian of the trimer is diagonalized. There-
fore, what makes these 12D calculations feasible is a sequence
of diagonalizations of lower-dimensional Hamiltonians, each step
generating a contracted eigenstate basis for diagonalizing a Hamil-
tonian of higher dimensionality in the next step. Heavy use is
made of the G12 symmetry of (HF)3 to block-diagonalize the matrix
of the full 12D Hamiltonian into the blocks associated with the
G12 irreps by constructing symmetry-adapted product-contracted
basis functions. As in Ref. 35, the 2+3-body SO-3 + HF3BG PES
of the HF trimer42,44 is employed in the calculations reported
in this paper.

The present rigorous 12D quantum calculations of the fully
coupled intra- and intermolecular vibrational states of the HF
trimer are the first such calculations for a hydrogen-bonded trimer
of diatomic molecules treated as flexible. From the earlier 9D
rigid monomer calculations,35 we concluded that the intermolec-
ular vibrations exhibit strong stretch-bend coupling and that the
nonadditive three-body interactions make a large contribution to
the (HF)3 PES and affect the intermolecular vibrational energy
levels. These conclusions remain unchanged in the 12D calcula-
tions. The novel aspects of the vibrational quantum dynamics of
the trimer that the present 12D calculations elucidate are those
associated with the intramolecular HF-stretch vibrational coordi-
nates of the three monomers and their coupling with the inter-
molecular DOFs of the trimer. They are beyond the scope of the
rigid-monomer treatment. Therefore, the energies of the 12D inter-
molecular vibrational states of the trimer differ from those from
the 9D rigid-monomer calculations typically by 1–4 cm−1 and by as
much as 7 cm−1 already when the monomers are in their ground

J. Chem. Phys. 158, 234109 (2023); doi: 10.1063/5.0156976 158, 234109-15

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0156976/18005141/234109_1_5.0156976.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

intramolecular vibrational state. This points to the non-negligible
coupling between the intra- and intermolecular vibrational DOFs of
the trimer even when the monomers are not vibrationally excited. In
addition, reported are the energies of the v = 1, 2 HF-stretch excited
intramolecular vibrational states, together with the intermolecular
vibrational states in these intramolecular manifolds. These results
provide additional evidence for substantial coupling between the
intramolecular and intermolecular DOFs of the trimer. Excita-
tion of either of the two v = 1 HF-stretch intramolecular states
causes a significant increase in the energies of all intermolecu-
lar vibrational modes considered relative to their values in the
ground intramolecular vibrational state. In another manifestation
of the coupling between the inter- and intramolecular DOFs, one-
and two-quanta excitations of the νHF

sym mode result in appreciable
shortening of the (vibrationally averaged) distance between the HF
monomers.

Complexation results in the shift of the frequencies of the
intramolecular vibrations of the monomers forming (HF)3 away
from the vibrational frequencies of the isolated monomers. The
12D calculations show that the frequencies of the v = 1, 2 HF
stretching states of the HF trimer are strongly redshifted in com-
parison to those of the isolated HF monomer, in agreement with
spectroscopic data. Moreover, the magnitudes of these trimer red-
shifts are much larger than those of the redshift of the stretch-
ing fundamental of the hydrogen-bond donor (bound) HF in the
HF dimer. The most likely explanation for this is the coopera-
tive hydrogen bonding in the HF trimer arising from the three-
body interactions, which do not exist in the HF dimer. The 12D
calculations also reveal manifestations of cooperative hydrogen
bonding in the structural properties and the energetics of the HF
trimer.

A comparison is made between the 12D theoretical results
and the limited experimental information from the spectroscopic
measurements of (HF)3 in the gas phase and the Ne and Ar matri-
ces. The fundamental frequencies of the intermolecular νas, νiab,
and νosb modes from the 12D calculations are 1.4%–2.7% higher
than the respective experimental values from the spectroscopic mea-
surements in the Ne matrix and the gas phase. An experimental
value is available for only one intramolecular vibrational funda-
mental, that of the νHF

asym mode. It can be compared to the 12D
result, which is 0.8% larger. Clearly, there is room for improve-
ment in the agreement between theory and experiment regarding
the intra- and intermolecular vibrations of the HF trimer. Given
that the 12D quantum calculations are full-dimensional and well-
converged, what remains is to develop an improved 12D PES of
(HF)3. More comprehensive spectroscopic data pertaining to the
intra- and intermolecular vibrational excitations of this trimer are
needed as well.

The 12D methodology presented here can and will be applied
to other similar trimers, e.g., the HCl trimer. It can also provide
a starting point for the rigorous quantum treatment of differ-
ent but related molecular trimers such as halide dihydrates. It is
reasonable to expect that this approach will soon enable fully cou-
pled 12D quantum calculations of the vibration-rotation-tunneling
states of the H2O trimer in the rigid-monomer approximation.
They would allow a comprehensive interpretation of the remark-
able measured low-frequency spectra of water trimer in helium
nanodroplets.56

SUPPLEMENTARY MATERIAL

The procedure for computing the Ĥinter eigenstates of E′b/E′′b
symmetry directly from the E′a/E′′a eigenstates of Ĥinter is given in
Sec. I of the supplementary material. The full exploitation of per-
mutation symmetry in computing the 12D matrix elements of ΔV is
presented in Sec. II of the supplementary material. The calculation
of 12D expectation values for geometric quantities is described in
Sec. III of the supplementary material.
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1Z. Bačić and R. E. Miller, J. Phys. Chem. 100, 12945 (1996).
2P. E. S. Wormer and A. van der Avoird, Chem. Rev. 100, 4109 (2000).
3T. Carrington, Jr. and X.-G. Wang, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1,
952 (2011).
4A. van der Avoird, “Vibration-rotation-tunneling levels and spectra of Van der
Waals molecules,” in Vibrational dynamics of molecules, edited by J. M. Bowman
(World Scientific, Singapore, 2022), p. 194.
5E. Mátyus, A. Martín Santa Daría, and G. Avila, Chem. Commun. 59, 366 (2023).
6D. H. Zhang, Q. Wu, J. Z. H. Zhang, M. von Dirke, and Z. Bačić, J. Chem. Phys.
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150, 154303 (2019).
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32P. M. Felker and Z. Bačić, J. Chem. Phys. 152, 014108 (2020).
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