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ABSTRACT

Actor concurrency is becoming increasingly important in the real-

world andmission-critical software. This requires these applications

to be free from actor bugs, that occur in the real world, and have

tests that are e�ective in �nding these bugs. Mutation testing is a

well-established technique that transforms an application to induce

its likely bugs and evaluate the e�ectiveness of its tests in �nding

these bugs. Mutation testing is available for a broad spectrum of

applications and their bugs, ranging from web to mobile to ma-

chine learning, and is used at scale in companies like Google and

Facebook. However, there still is no mutation testing for actor con-

currency that uses real-world actor bugs. In this paper, we propose

`Akka, a framework for mutation testing of Akka actor concur-

rency using real actor bugs. Akka is a popular industrial-strength

implementation of actor concurrency. To design, implement, and

evaluate `Akka, we take the following major steps: (1) manually

analyze a recent set of 186 real Akka bugs from Stack Over�ow and

GitHub to understand their causes; (2) design a set of 32 mutation

operators, with 138 source code changes in Akka API, to emulate

these causes and induce their bugs; (3) implement these operators

in an Eclipse plugin for Java Akka; (4) use the plugin to generate

11.7k mutants of 10 real GitHub applications, with 446.4k lines of

code and 7.9k tests; (5) run these tests on these mutants to measure

the quality of mutants and e�ectiveness of tests; (6) use PIT to

generate 26.2k mutants to compare `Akka and PIT mutant quality

and test e�ectiveness. PIT is a popular mutation testing tool with

traditional operators; (7) manually analyze the bug coverage and

overlap of `Akka, PIT, and actor operators in a previous work; and

(8) discuss a few implications of our �ndings. Among others, we

�nd that `Akka mutants are higher quality, cover more bugs, and

tests are less e�ective in detecting them.
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1 INTRODUCTION

Actor concurrency is becoming increasingly important in the real-

world and mission-critical software. For example, PayPal uses actor

concurrency to serve more than a billion �nancial transactions per

day [104], Spark to shu�e hundreds of terabytes of big data [35],

and Groupon to personalize coupons for 48 million customers in

real-time [103]. NASA, Microsoft, Twitter, Verizon, CapitalOne, and

Weight Watchers are among many other users of actor concurrency

[67, 102]. This requires these applications to be free from actor

bugs, that occur in the real world, and have tests that are e�ective in

�nding these bugs, which can cost large sums ofmoney or even lives.

Unlike multithreaded concurrency, in which lower-level threads

communicate using shared memory and locks, in actor concurrency,

higher-level actors communicate using asynchronous messages

[47, 48]. This makes not only actor concurrency but also its bugs [58,

87, 108] fundamentally di�erent from multithreaded concurrency

[68, 98]. Previous work [58, 60, 61, 87, 107, 108] discusses some of

these di�erences.

Mutation testing [16, 76, 91] is a well-established technique that

transforms, the source or the binary, code of an application to

induce its likely bugs and evaluate the e�ectiveness of its tests

in �nding these bugs. Mutation testing is available for a broad

spectrum of applications and their bugs, ranging from web [124]

to mobile [106] to machine learning [88], and is used at scale in

companies like Google [122, 123] and Facebook [64]. However,
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there still is no mutation testing for actor concurrency that uses real-

world actor bugs. The only relevant work is the work by Jagannath

et al. [89] that proposes 12mutation operators in ActorFoundry [57].

However, these operators are based on the individual experiences of

the authors, and not a curated set of real bugs, are not implemented,

are not evaluated, and are often speci�c to ActorFoundry’s syntax

and semantics and not applicable to today’s industrial-strength

implementations of actor concurrency. ActorFoundry is a now-

defunct research prototype actor language with no industrial use.

We discuss this work further in detail throughout the paper.

In this paper, we propose `Akka, a framework for mutation

testing of Akka actor concurrency using real actor bugs. Akka [105],

from LightBend, is an industrial-strength implementation of actor

concurrency, among others such as Orleans [65], from Microsoft,

and Erlang [56], from Ericsson. We focus on Akka because it is

growing faster than others. For example, in the past �ve years,

there are 3,727 Akka questions and answers [55] in Stack Over�ow,

which is 1.8 and 34.2x more than Erlang and Orleans, respectively.

Similarly, there are 10,034 Akka applications [54] in GitHub, which

is 1.5 and 7.3x more than Erlang and Orleans.

To design, implement, and evaluate `Akka, we take the follow-

ing major steps:

(1) manually analyze a recent set of 186 real Akka bugs [58] from

Stack Over�ow and GitHub to understand their causes.

(2) design a set of 32 mutation operators, with 138 source code

changes in Akka API, to emulate these causes and induce bugs.

(3) implement these operators in an Eclipse plugin for Java Akka.

(4) use the plugin to generate 11,736 mutants of 10 real GitHub

applications, with 446,444 lines of code and 7,871 tests.

(5) run these tests on these mutants to measure the quality of

mutants and the e�ectiveness of tests in detecting and killing

these mutants, using ease-of-killing, duplicity, subsumption,

and mutation score metrics that previous work uses often.

(6) use PIT [72] to generate 26,177 mutants to compare `Akka and

PIT mutant quality and test e�ectiveness.

(7) manually analyze the bug coverage and overlap of `Akka, PIT

and Jagannath et al.’s [89] actor operators.

(8) discuss the implications of our �ndings.

PIT is a popular [99] mutation testing tool with traditional logic op-

erators such asMath that replacesmathematical operands+,−, ∗, /,%.

Among others, we �nd that:

• Mutant quality : `Akka mutants are high quality: 2x harder to

kill, 3x less duplicate, and 1.3x less subsumed than PIT.

• Test e�ectiveness : Tests are ine�ective for `Akka mutants: 1.3x

less e�ective in covering and 2.3x less e�ective in killing `Akka

mutants than PIT.

• Bug coverage : `Akka bug coverage is high: 3.3x more bug cov-

erage than Jagannath et al.’s. And `Akka bug coverage bene�ts

from the addition of PIT: `Akka + PIT cover 1.1x more bugs

than `Akka alone and 9.5x more than PIT alone.

A few implications of our �ndings are in predictive, selective, and

sampling mutation testing and actor concurrency testing.

2 BACKGROUND

In this section, we discuss the basics of actor concurrency, Akka,

and mutation testing that we use throughout the paper.

2.1 Actor Concurrency

Basic actor concurrency Unlike multithreaded concurrency, in

which a program is a set of threads that communicate using shared

memory and locks, in basic actor concurrency [47, 48], the pro-

gram is a set of actors that communicate by sending, receiving,

and processing of asynchronous messages. An actor has its own

thread of execution and behavior and makes its state accessible

only through messages, to avoid sharing. To send a message, a

sender actor sends a �re-and-forget message without waiting and

blocking for its response. To receive the message, a receiver actor

enqueues the message in its mailbox. To process the message, the

receiver dequeues the message from its mailbox and executes it

sequentially and to the end before processing the next message in

the mailbox. During the processing, an actor can change state and

behavior, send a message, or create a new actor.

Akka actor concurrency To allow for the development of real-

world applications, Akka extends the basic actor concurrency with

several necessary features, most of which are programmatic and

dynamic. These features are actor path to locate a local or remote

actor, life cycle to manage the actor life, parental hierarchy and

supervision to manage the actor creation and failure, con�gura-

tion to con�gure an application settings, actor system to provide

the actor dispatch and scheduling, dispatch to assign threads to

the actor message processings, scheduling to schedule the actor

message sendings, interaction patterns to support more ways of

actor interactions, stashing to bu�er the actor messages for delayed

processing, deployment to deploy remote actors, and clustering for

distribution of actors over network. These features are often the

causes for Akka bugs [58, 87] and are discussed further throughout

the paper. ActorFoundry [57] lacks most of these features.

2.2 Mutation Testing

Basics Mutation testing [16, 76, 91] transforms, the source or

binary, code of an application to induce its likely bugs and evaluate

the e�ectiveness of its tests in �nding these bugs. For each bug, a

mutation operator slightly changes the application code to emulate

the cause of the bug and induce the bug. The operator generates a

mutant of the application which is the original application plus the

induced bug. A test is e�ective if it can detect and kill a mutant by

distinguishing its behavior from the original application behavior;

otherwise the mutant stays alive. A test cannot kill a mutant that it

does not cover. A test covers a mutant if its execution executes the

mutated part of the mutant. Intuitively, the more mutants the tests

cover and kill the more e�ective the tests are.

Types of mutants There are di�erent types of mutants, includ-

ing stillborn, easy-to-kill, trivial, redundant, duplicate, subsuming,

subsumed, and equivalent. For a mutant< of an original application

? and the set of tests T <
2>E4A and T <

:8;;
that, respectively, cover and

kill<,< is stillborn if it includes syntactic and semantic errors that

a compiler can catch and thus prevent its compilation. A mutant<

is easy-to-kill if a large number : of tests in T <
2>E4A kill it. Following

previous work [117], we set : to 97.5%. A mutant< is trivial if all

the tests in T <
2>E4A can kill<. Triviality is a special case of ease-of-

killing. A mutant< is redundant if tests that kill another mutant

<′ can also kill<. A redundant mutant is either duplicate or sub-

sumed. A mutant< is the duplicate of<′ if their behaviors are the
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functional equivalent of each other, but not equal to ? . Duplicate

mutants are syntactically di�erent from each other but semantically

the same. A subsuming mutant< subsumes a subsumed mutant

<′ if T <
:8;;

is a subset of T <′

:8;;
.< is equivalent if its behavior is the

functional equivalent of ? . An equivalent mutant is syntactically

di�erent from the original application but semantically the same.

Automatic determination of all duplicate and equivalent mutants

is proven to be undecidable [53, 69]. Our de�nition approximates

duplicity using the execution of tests [118]. Approximation of equiv-

alence requires complex heuristics and analyses, such as weakest

precondition [62], and is out of the scope of this work.

Our de�nitions follow similar de�nitions from previous work for

stillborn [16, 91], easy-to-kill [117], trivial [85, 94], redundant [16,

52, 94, 115], duplicate [16, 119], subsuming [16, 52, 94], subsumed

[16, 52, 94], and equivalent [16, 52, 91, 94, 119].

Quality of mutants The quality of mutants is critical to muta-

tion testing since non-quality mutants could bias the testing. For

example, previous work [118] shows that using subsumed mutants,

which are non-quality, could, on average, bias the conclusions of

62% of arbitrary sets of mutation testings. A mutant< is quality,

useful [92, 94], or valuable to mutation testing, if it is killable and

its killing requires the addition of a new test to set of tests T <
2>E

that cover it; otherwise it is non-quality. Trivial, easy-to-kill, re-

dundant, and equivalent mutants are among the most well-known

non-quality mutants [16, 93, 94, 117]. This is because, all and a

large subset of tests in T <
2>E can kill a trivial and easy-to-kill <,

respectively, with no need for a new test; a non-empty subset of

T <
2>E that kills<

′ can also kill its redundant< with no need for

new tests; and there is no test that can kill an equivalent<. Our

de�nition follows similar de�nitions from previous work for quality

mutants [16, 92, 94, 117–119].

E�ectiveness of tests Mutation testing evaluates the e�ective-

ness of tests in �nding bugs that it induces. Mutation score [91] is

the most well-known metric to measure the e�ectiveness of tests.

For the set of all tests T2>E that cover at least a mutant, the tradi-

tional mutation score is the ratio of the number of mutants that

tests in T2>E kill to the number of all mutants. Our de�nitions fol-

low similar de�nitions from previous work for the mutation score

[16, 91, 115].

Mutant coverage Neither all tests cover all the mutants nor all

mutants are covered by all the tests. Mutant coverage is the metric

that measures the coverage of mutants. Our de�nition follows the

standard de�nition of coverage [86].

Bug coverage Amutation operator covers a bug if it can emulate

the cause of the bug and induce the bug. Our de�nition follows

similar de�nitions from previous work for bug coverage [106].

3 METHODOLOGY

In this section, we discuss our methodology to analyze Akka actor

bugs, design and group `Akka mutation operators for these bugs,

and measure the quality of mutants that `Akka and PIT operators

generate, the e�ectiveness of tests to identify these mutants, and

the coverage of bugs by `Akka and Jagannath et al.’s operators.

3.1 Akka Actor Bugs

For Akka bugs, we use a set B of 186 real bugs from a recent

previous work [58]. B includes 130 bugs from Stack Over�ow ques-

tions and answers and 56 bugs from GitHub applications. These

bugs cover a broad spectrum of causes, ranging from API confu-

sion to model confusion to missteps in the application logic, and a

broad spectrum of symptoms, ranging from incorrect messaging to

incorrect termination to unexpected application behavior.

3.2 Mutation Operators

Design For each bug in B, we take the following steps to design

the mutation operator that induces the bug. First, we manually

analyze the bug to understand its cause. For example, there is a bug

[19] in B in which an actor cannot be created with a cause that its

name is not unique. Akka requires unique actor names. Second, we

manually search Akka API and its documentation to identify meth-

ods that can emulate this cause by small changes in their syntax

[46, 76, 91]. Several methods may emulate the same cause. For ex-

ample, actorOf(String name) and actorOf() are two Akka methods that,

their invocations, create an actor with a given and random name, re-

spectively. Changing these invocations to actorOf(String name') could

emulate the cause in which the actor name is not unique, if name'

is an actor name that exists already. We ensure that the syntactic

changes of our operators do not violate the compile-time syntax

and semantic requirements of Akka Java API. Third, we select a

name for the mutation operator that describes the changes it makes.

For example, we give the name Change Name to the operator that

changes actorOf(String name) and actorOf() to actorOf(String name'). For

a Stack Over�ow bug, we analyze its questions, answers, and com-

ments to understand its cause and design its operator. Similarly,

for a GitHub bug, we analyze its commit, messages, original and

modi�ed code snippets, pull requests, and issues.

We use the open card sort [79] to identify API methods, their

source code changes, and the name of a mutation operator. In the

open card sort, there are no prede�ned API methods, source code

changes, and operator names; instead they are developed during

the sorting process. To sort, the �rst and second authors individu-

ally analyze the bugs and reiterate and re�ne until they agree. The

second author is a Software Engineer and Programming Languages

professor with extensive expertise in actor and multithreaded con-

current systems. The �rst author is a Ph.D. student with extensive

coursework in concurrent and mobile systems. The third and fourth

authors are Software Engineer professors with extensive expertise

in concurrent and streaming systems, and testing and fault localiza-

tion, respectively. First three authors have several years of extensive

industrial work experience. In total, we design 32 mutation oper-

ators using source code changes in 138 Akka API. Table 1 shows

these operators and their short descriptions. The formalization and

API source code changes for these operators can be found in our

replication package [27].

Grouping Weuse the same open card sort to group themutation

operators, based on the semantic relation between the bug causes

they emulate. For example, Change Path groups together Change

Name and Change Hierarchy operators that change the related

name and the hierarchy parts of the path of an actor. In Akka,

the path of an actor denotes its physical location in a system and
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includes its name and hierarchy, among others. In total, we group

our operators into 8 groups. Table 1 shows these groups.

Compile-time and logic bugs To avoid the generation of still-

born mutants, we do not design mutation operators for compile-

time bugs. Generation and compilation attempts for stillborn mu-

tants decrease the e�ciency of mutation testing because they can

neither be compiled nor executed. A bug is a compile-time bug if

its cause is a syntactic or semantic issue that prevents its successful

compilation. For example, there is a bug [18] in B in which the

compilation fails because of using an undeclared variable. There

are 21 (11.3%) compile-time bug in B. Similarly, to avoid the re-

designing of non-Akka and traditional operators, that already exist

[16], we do not emulate logic bugs. A bug is a logic bug if its cause

is a misstep in the application logic. For example, there is a bug [20]

in B in which the lookup and message delivery for a remote actor

fails because an skipped if conditional creates the wrong path for

the actor. The traditional operator Negate Conditional in PIT [72]

can emulate this bug by negating the condition of the conditional.

There are 65 (35.0%) logic bugs in B. In total, we design mutation

operators to emulate the causes of 100 (53.8%) bugs in B that are

neither compile-time nor logic bugs.

3.3 Evaluation

Quality of mutants We use three well-known metrics to measure

the quality of mutants that `Akka and PIT operators generate.

Thesemetrics are ease-to-killing, duplicity, and subsumption, which

Section 2 de�nes. Intuitively, the lower the number of easy-to-kill,

duplicate, and subsumed mutants the higher the quality. Previous

work uses the number of ease-of-killing [117], duplicity [16, 75, 119],

and subsumption [16, 52, 94] often to measure mutant quality.

E�ectiveness of tests We use the well-known metric mutation

score, that Section 2 de�nes, tomeasure the e�ectiveness of our tests

to identify `Akka and PIT mutants. Previous work uses mutation

score [95, 120] often to measure the e�ectiveness of tests.

We execute the tests to measure the mutant quality and test

e�ectiveness. However, a test can be �aky and produce di�erent

outcomes for di�erent executions. To prevent �aky tests from skew-

ing measurements [121], we follow previous work [63] and use the

average of three executions of our tests to calculate our metrics.

Bug coverage We use the same open card sort to identify B

bugs that Jagannath et al.’s [89] operators can induce and cover

and their overlap with `Akka.

4 MUTATION OPERATORS AND GROUPS

In this section, we discuss and illustrate the mutation operators

using real bug examples. In addition, we compare our operators

with Jagannath et al.’s [89]. Table 1 shows our 32 mutation opera-

tors, their eight groups 8 groups Path, Configuration, Commu-

nication type, Life cycle, Exception, Interaction, Race, and

Cluster, and their short descriptions.

4.1 Path

In Akka, an actor has a path that denotes its physical location

in a system. The path includes an address and a name. The ad-

dress can be either local or remote. An actor is local if it is in

the same Java Virtual Machine (JVM) and is remote otherwise. A

local address speci�es the actor system that the actor resides in

and a hierarchy of its ancestors, following akka://actor system/hier-

archy/name format. Actors form a hierarchy in which a parent

creates its children. A remote address, also speci�es a host, protocol,

and a port for remote connections, following akka.protocol://actor

system@host:port/hierarchy/name format. An Akka developer is

responsible to understand actor paths and their di�erent parts, and

their programmatic and dynamic modi�cations, and manually pro-

vide correct values for these parts; otherwise incorrect actor paths

can cause bugs, as the previous work [58] shows.

Path group includes six mutation operators that Change the

Name, Protocol, Actor System, Host, Port, and Hierarchy

parts of an actor path to induce the bugs that are caused by the

use of incorrect values for these parts. For example, there are three

bugs [1, 14, 19] in B in which an actor cannot be created because

its name is not unique. Akka requires actor names to be unique

in a system. Change Name incudes these bugs by changing the

name of an actor to an actor name that already exists in the system.

Similarly, there is a bug [3] in which an actor cannot be looked up

and messages sent to it cannot be delivered because its hierarchy

is missing an ancestor. Change Hierarchy induces this bug by

changing the hierarchy of an actor to a hierarchy with one less

random ancestor. Table 1 describes all the mutation operators in

Path and the bug causes they emulate.

Jagannath et al. [89] use their individual experiences to propose

12 unimplemented mutation operators in 3 groups for the research

actor language ActorFoundry. These operators, inside parenthe-

ses, and their groups, outside parentheses are: Messaging (Remove

Send/Receive, Modify Message Parameters, Reorder Message Pa-

rameter, Modify Message Name, Modify Message Recipient, and

Change Synchronization Type), Constraint (Remove Constraint and

Modify Constraint), and Creation/Deletion (Remove Creation/Dele-

tion, Modify Creation Parameter, and Reorder Creation Parameters).

All six mutation operators in Path are new and cannot be found

in the previous work by Jagannath et al.’s.

4.2 Configuration

A con�guration de�nes the properties of an application using a set

of parameter and value pair settings. In Akka, a default con�gu-

ration [50] de�nes 255 default settings. These settings de�ne the

properties of actors and actor systems of an application and their

deployment, mailboxes, dispatchers, and routers, among others. For

example, the mailbox can be con�gured to be either unbounded or

bounded with a speci�c capacity for the number of its messages. An

application con�guration can override the default settings, de�ne

new settings, such as a new dispatcher [13] with a di�erent max

and min number of threads in its thread pool, or fallback on an-

other con�guration for the settings that it does not de�ne. An Akka

developer is responsible to understand the default and application

con�gurations, their parameter and value settings, overriding, and

fallback, and their programmatic modi�cations, and manually con-

�gure non-default settings; otherwise incorrect con�gurations can

cause bugs [58].

Configuration includes six mutation operators that Change

Application, Fallback, Mailbox, Dispatch, Routing, and De-

ployment settings to induce bugs that are caused by using incorrect
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Group Mutation Operator Description

Path

name change the name of an actor to an existing or random actor name

protocol change the local protocol of an actor to a remote protocol and vice versa

actor system change the actor system name of an actor to an existing or random actor system name

host change the host name or IP address of an actor to a random host name or IP address

port change the port number of an actor’s host to a random port number

hierarchy change the ancestral hierarchy of an actor to a hierarchy with one less random ancestor

Configuration

application change the application con�guration to an empty con�guration or drop it

fallback change the fallback con�guration to an empty con�guration or drop it

mailbox change the mailbox con�guration of an actor to an empty or random con�guration or drop it

dispatch change the dispatch con�guration of an actor to an empty or random con�guration or drop it

routing change the routing con�guration of an actor to the default or no router con�guration or drop it

deployment change the deployment con�guration of an actor to the default or drop the con�guration

Communication type

send type change the set of message types that an actor sends to a set with one more random type

receive type change the set of message types that an actor receives to a set with one less random type

Life cycle

lookup change the lookup of an actor to occur in another existing or random actor system

starting change the starting pre- and post-behaviors of an actor to empty or supertype behaviors

stopping change the stopping pre- and post-behaviors of an actor to empty or supertype behaviors

restarting change the restarting pre- and post-behaviors of an actor to empty or supertype behaviors

termination change the termination of an actor or actor system by removing or delaying the termination

monitoring change monitoring of an actor by removing the monitoring

Exception

failure change the failure behavior of an actor to throw an exception

supervision change the supervisory behavior of an actor to another random behavior

Interaction

synchrony change the synchrony of a message that an actor sends from sync to asynch and vice versa

blocking change the blocking behavior of an actor by increasing or decreasing its wait or sleep durations

timeout change the timeout behavior of an actor by increasing or decreasing its timeout durations

forwarding change the sender of a message that actor forwards to a random actor reference

sender change the sender of a message that an actor sends to an existing actor reference

receiver change the receiver of a message that an actor sends to an existing actor reference

scheduling change the scheduling of a message that an actor sends by increasing or decreasing its delays

Race sharing change the sharing of data between an actor and its concurrent future or async tasks

ordering change the ordering between two messages by delaying the �rst message

Cluster

subscription change a cluster event that an actor subscribes for to another Akka cluster event

unsubscription change a cluster event that an actor unsubscribes from to another Akka cluster event

Table 1: Mutation operators for actor concurrency in `Akka, their groups, and descriptions.

settings for these con�gurations. For example, there is a bug [8]

in B in which an actor system cannot be con�gured and created

because its application con�guration does not load. Change Appli-

cation induces this bug by replacing the application con�guration

with an empty con�guration with no settings. Similarly, there is a

bug [30] in which an actor cannot stash its messages because its

mailbox is not con�gured properly. Change Mailbox induces this

bug by removing the mailbox con�guration of an actor.

All six mutation operators in Configuration are new and can-

not be found in Jagannath et al.’s.

4.3 Communication Type

In Classic Akka, unlike Akka Typed [51], an actor neither knows

about the types of messages that it may receive nor the type of

messages it can send. An Akka developer is responsible to manually

discover these message types and ensure that the actor can receive

all the messages that others send to it and sends only messages that
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others can receive; otherwise, sending or receiving messages with

incorrect types can cause bugs [58].

Communication type includes two mutation operators Change

Receive Type and Send Type that change the type of messages that

an actor can receive or send to induce the bugs that are caused by

receiving or sending incorrect message types. For example, there

are two bugs [22, 23] in B in which the application behavior is

undesired [22] or terminates prematurely [22] because an actor

receives a message of a type that it cannot process.Change Receive

Type induces these bugs by changing the set of message types that

a receiver actor can receive to another set with one less random

message type. Similarly, Change Send Type can induce these bugs

by changing the set of message types that a sender actor can send

to another set with one more random message type.

Our Change Receive Type partially overlaps with Jagannath

et al.’s Remove Send/Receive (RSR) operator, in their Messaging

group, that “mimics the omission of messages by removing send-

s/receives”. Similarly, our Change Send Type overlaps with their

Messaging Modify Message Name (MMN) operator, in Messaging,

that “modi�es the name [type] of a message being sent”.

4.4 Life Cycle

In Akka, an actor and its enclosing actor system go through dif-

ferent stages in their life cycle, such as creation, lookup, starting,

stopping, restarting, termination, andmonitoring. An Akka developer

is responsible to understand these life cycles and their program-

matic stages and manually manage these stages and their pre- and

post-behaviors correctly; otherwise incorrect management of life

cycles can cause bugs [58, 87].

Life cycle includes six mutation operators thatChange Lookup,

Starting, Stopping, Restarting, Termination, andMonitoring

of an actor and its actor system to induce the bugs that are caused by

the incorrect managements of these stages. For example, there are

two bugs [17, 25] in B in which the application does not shutdown

[17] or consumes all its available memory [25] because its actor

system and actors do not terminate. Change Termination induces

these bugs by removing the termination of an actor and its enclosing

actor system. Similarly, there is a bug [26] in which the termination

of an actor goes unnoticed because the actor that is responsible to

manage the termination is not monitoring the terminating actor.

ChangeMonitoring induces this bug by removing the termination

monitoring of an actor.

Our Change termination partially overlaps with Jagannath

et al.’s Remove Creation/Deletion (RCD) operator, from their Cre-

ation/Deletion group, that “mimics the omission of creation/dele-

tion of an actor by removing an actor creation/deletion”. All other

�ve mutation operators in Life cycle are new.

4.5 Exception

In Akka, a parent actor is not only responsible to create but also

supervise its child actors and manage their failure when they throw

exceptions. The supervision strategy of the parent speci�es to either

stop, resume, or restart the failed child or escalate the exception

up the supervision hierarchy to the parent of the parent. An Akka

developer is responsible to understand actor failures and exceptions,

programmatic supervisory hierarchies, and supervision strategies

and handle these exceptions correctly; otherwise, incorrect han-

dling of exceptions can cause bugs [58].

Exception includes two mutation operators that Change Fail-

ure and Supervision behavior of an actor to induce the bugs that

are caused by incorrect handlings of exceptions. For example, there

are two bugs [6, 11] in B in which the application does not ter-

minate [6] or swallows an exception [11] because an actor throws

an exception that its ancestor does not handle properly. Change

Failure induces these bugs by changing the behavior of an actor to

throw an exception. Similarly, there are two bugs [2, 29], in which

an actor does not restart properly because its parent is using the

wrong supervision strategy. Change Supervision incudes these

bugs by changing the supervision strategy of an actor.

Both mutation operators in Exception are new.

4.6 Interaction

In Akka, there are several ways in which an actor can interact with

another. In addition to an asynchronous �re-and-forget message, a

sender actor can send a synchronous request-response message to a

receiver and wait and block for its response in a future variable for

a timeout period. A future is a placeholder for an incomplete task

with a result that is not ready yet. Similarly, a receiver can forward a

message it receives to another actor, without changing the sender of

the message, or schedule to send a message in speci�c intervals. An

Akka developer is responsible to understand these programmatic

interactions and their semantics and use them correctly; otherwise

incorrect interactions can cause bugs [58, 108].

Interaction includes seven mutation operators that Change

Synchrony, Blocking, Timeout, Forwarding, Sender, Receiver,

and Scheduling of actor interactions to induce bugs that incorrect

uses can cause. For example, there are two bugs [9, 12] in B in

which a receiver actor cannot respond to its sender more than

once because the temporary actor that a request-response message

creates to receive the response, terminates after receiving the �rst

response. Change Synchrony induces these bugs by changing an

asynchronous �re-and-forget message to a synchronous request-

reply message. Similarly, there is a bug [34] in which a receive

cannot process its messages because the messages are sent too fast.

Change Scheduling induces this bug by decreasing the initial and

interval delays between messages that a scheduler sends.

OurChange Synchrony overlapswith Jagannath et al.’s Change

message Synchronization Type (CST), in Messaging, that “changes

a synchronous send to an asynchronous send and vice versa”. Simi-

larly, our Change Receiver overlaps with their Modify Message

Recipient (MMR), in Messaging, that “modi�es the recipient of a

message”. All other �ve operators in Interaction are new.

4.7 Race

A race occurs if two concurrent computations access the same mem-

ory and one modi�es the memory. In Akka, to avoid races, an actor

processes its messages sequentially and one at a time. However,

both lower-level data races and higher-level message races [60] are

still possible. A data race occurs when a concurrent future or async

task that runs outside the actor shares memory with the actor and

either the actor or the task modi�es the memory. Similarly, a mes-

sage race occurs when two messages arrive at the same actor out
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of their desired order and the processing of either of the messages

modi�es the actor memory. An Akka developer is responsible to un-

derstand data sharings and message orderings among all actors and

non-actor concurrent computations of a system and make sure they

are free from races; otherwise races could cause bugs [58, 87, 108].

Race includes two mutation operators that Change Sharing of

data and Ordering of messages to induce the bugs that incorrect

sharing and message ordering can cause. For example, there are

seven bugs [4, 5, 7, 10, 28, 32, 33] in B in which a response is not

delivered to a sender actor [4, 5, 10, 28, 32] or the application does

not behave as desired [7, 33] because an actor and its future task

share the variable sender which the actor modi�es. The variable

sender is the sender of the current message that the actor is process-

ing and changes when the actor starts to process another message.

Change Sharing induces this bug by changing a random actor

reference in a future or async task with getSender(). The method

getSender accesses, reads and returns the value of the shared vari-

able sender. Similarly, there is a bug [21] in which the application

produces incorrect results because two messages that initiate the

warmup of a simulation and production of the results arrive out of

order. Change Sharing induces this bug by delaying the sending

of a message to reorder the arrival of messages.

Our Change Sharing overlaps with Jagannath et al.’s Change

(message) Reference Type (CRT), in Messaging, that “changes a

message sent by reference to a message sent by value and vice

versa” to change the sharing between actors. Change Ordering is

new.

4.8 Cluster

In Akka, a cluster is a group of actor systems that provide distribu-

tion, load balancing, and failover for their actors. An actor system

is a logical node of the cluster. An actor in the cluster can subscribe

for the membership, domain, and reachability events of the clus-

ter, receive messages when these events occur and process these

messages accordingly. Similarly, the actor can unsubscribe from

these events. An Akka developer is responsible to understand these

events, their semantics, and their subscriptions and unsubscriptions

and manage them correctly; otherwise incorrect subscriptions or

unsubscriptons can cause bugs [58].

Cluster includes two mutation operators that Change Sub-

scription and Unsubscription of actors in a cluster to induce

bugs that are caused by incorrect subscriptions. For example, there

is a bug [31] in B in which an actor misses a cluster leader change

event because it subscribes for an incorrect member event instead

of the correct domain event. The leader change event is a domain

event. Change Subscription induces this bug by changing the

cluster event that an actor subscribes to another random cluster

event. Similarly, Change Unsubscription can induce this bug by

changing the cluster event that an actor unsubscribes from.

Both mutation operators in Cluster are new.

5 EVALUATION

In this section, we discuss the implementation of our mutation op-

erators in `Akka, evaluate the mutant quality and test e�ectiveness

of real application in `Akka and PIT, and study the bug coverage

and overlap of `Akka, Jagannath et al.’s [89], and PIT operators.

5.1 Implementation

For real-world applicability, we implement our mutation operators

as an Eclipse plugin, in a framework that we call `Akka. `Akka

uses 138 source code changes of Java Akka API [90] to implement

our 32 operators. For e�ciency, in addition to not generating still-

born mutants, we integrate the following popular techniques, from

previous work, into `Akka. First, we use conditional mutation [93]

that uses conditional statements to integrate all the mutants and

the original application into a single application. This allows a sin-

gle compilation to compile all mutants all at once and e�ciently

instead of one by one and ine�ciently. Second, we generate and use

coverage information to execute mutants only if they are covered

by tests [74]. This allows to not execute the tests that do not cover

mutants and mutants that are not covered by tests.

5.2 Akka Applications

Id Project LOC Domain Stars

ditto ditto [36] 261,951 internet of things (IoT) 390

lms sunbird-lms [37] 78,633 learning management 29

wot wot-servient [38] 52,019 web of things 23

�ower �ower [39] 21,648 reactive microservices 518

comb servicecomb [40] 15,527 transactional data 481

rhino rhino [41] 13,882 web performance testing 16

parc parallec [42] 13,209 asyncronous web 800

�ink �ink-rpc [43] 8,326 web performance testing 19,600

fuse fuse [44] 3,483 REST server 15

mony money-transfer [45] 3,136 money transfer API 5

Total 446,444

Table 2: Real-world Akka applications from GitHub.

We use GitHub to randomly select a set of 10 mature and real-

world Java Akka applications with a total of 446,444 lines of code.

Table 2 shows these applications, which cover a broad spectrum

of sizes, ranging from 261,951 to 15,527 to 3,136 lines of code, of

domains, from internet of things (IoT) to web performance testing to

money transfer, and of starts, from 19,600 to 390 to 5. An application

is considered to be an Akka application if it uses Java Akka APIs

in its source code. Due to compilation issues in Eclipse, we include

connectivity, internal, things, gateway, and base subsystems of ditto

and the rpc subsystem of �ink, and not all their subsystems.

5.3 `Akka’s Mutant Generation and Coverage

Table 3 shows the number of mutants that di�erent mutation oper-

ator groups generate, Gen , and the number of these mutants that

the tests can cover, Cov . The table shows these numbers in aggre-

gate, for all applications, and separately, for individual applications.

Gen
%
is the ratio of the number of mutants that an operator gen-

erates to the number of mutants that all operators generate. Cov
%

is the ratio of the covered mutants of an operator to its generated

mutants. Dark gray , light gray , and boxed denote higher, lower,

and average values, respectively.

Generation According to Table 3, rowGen
%
, for all applications

in aggregate, the number of mutants that di�erent mutation opera-

tor groups generate are substantially di�erent, with Interaction
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Id Mutation group Total

Path Config Comm Life Excep Inter Race Cluster

Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov

ditto 117 64 27 15 993 410 1,626 580 71 48 2,161 802 724 240 1 1 5,720 2,160

lms 0 0 3 1 125 82 706 425 0 0 759 499 468 320 0 0 2,061 1327

wot 23 19 39 4 84 32 235 90 5 3 207 91 124 52 2 0 719 291

�ower 13 7 7 7 30 9 72 30 5 4 73 26 28 4 0 0 228 87

comb 12 12 1 1 29 24 43 43 2 2 49 49 4 4 0 0 140 135

rhino 7 5 1 1 24 11 29 15 3 2 38 23 8 4 0 0 110 61

parc 17 10 3 1 296 82 410 236 8 8 450 228 220 112 0 0 1,404 677

�ink 4 4 2 2 34 19 110 61 6 6 115 56 56 24 0 0 372 172

fuse 68 18 3 0 22 7 53 14 3 2 32 10 12 0 0 0 193 51

mony 15 12 1 1 98 38 272 24 4 4 304 23 140 4 0 0 834 106

Total 276
,
151 87 33 1,735 714 1,518 622 107 79 4,188 1,807 1,784 764 3 1 11,732 5,067

Gen
%

2.4 0.8 14.8 30.3 1.0 35.7 15.3 0.1

Cov
%

54.8 38.0 41.2 42.7 73.9 43.2 42.9 33.4 43.2

Table 3: Mutant generation, Gen, and coverage, Cov , for di�erent mutation operator groups.

alone generating more than a third (35.7%) of the mutants, which

is the most, and Configuration generating the least (0.8%). This

excludes the outlier Cluster that generates 0.1% of mutants with

only 3 mutants. Four operator groups, Interaction, Life cycle,

Race, and Communication type, that include 17 out of 32 (53.1%)

`Akka operators, together generate the majority (96.1%) of mutants

whereas the other four, Cluster, Configuration, Exception, and

Path, generate only a small minority (3.9%).

Finding 1: ∼ 1

2
of `Akka operators generate > 9

10
of mutants.

Coverage Similarly, according to row Cov
%
, tests can cover

less than half (43.2%) of `Akka mutants, and leave more than

half (57.8%) uncovered, with substantially di�erent coverage for

mutants of di�erent operators. Exception mutants are the most

(73.9%) covered and Configuration the least (38.0%), excluding

Cluster.

Finding 2: Tests are ine�ective in covering > 1

2
of `Akka mu-

tants.

5.4 `Akka’s Quality of Mutants

Table 4 shows the numbers of easy-to-kill, Eas, duplicate, Dup ,

and subsumed mutants, Sub , for `Akka mutation operator groups.

Eas
%
,Dup

%
, and Sub

%
, respectively, are ratios of easy-to-kill, dupli-

cate, and subsumed mutants of an operator to its covered mutants.

Ease-of-killing According to Table 4, row Eas
%
, less than a

�fth (17.4%) of mutants are easy-to-kill and non-quality, whereas

more than four �fth (82.6%) are hard-to-kill and quality, with sub-

stantially di�erent ease-of-killing for mutants of di�erent operators.

Configurationmutants are the most (33.4%) easy-to-kill and Path

the least (8.7%), excluding Cluster.

Finding 3: > 4

5
of `Akka mutants are hard-to-kill and quality.

Duplicity According to row Dup
%
, more than a seventh (14.6%)

of mutants are duplicate and non-quality, whereas about six sev-

enth (85.4%) are unique and quality, with substantially di�erent

duplicity for mutants of di�erent operators. Path mutants are the

most (24.6%) duplicate and Exception the least (6.4%), excluding

Cluster.

Finding 4: ∼ 6

7
of `Akka mutants are unique and quality.

Subsumption According to row Sub
%
, less than a quarter

(24.2%) of mutants are subsumed and non-quality, whereas more

than three quarters (75.8%) are subsuming and quality, with sub-

stantially di�erent subsumption for mutants of di�erent operators.

Path mutants are the most (29.9%) subsumed and Race the least

(8.0%), excluding Cluster.

Finding 5: > 3

4
of `Akka mutants are subsuming and quality.

Altogether The quality of `Akka mutants di�er substantially

for its di�erent operators. Race mutants are the highest quality as

the second least easy-to-kill, third least duplicate, and the second

least subsumed, whereas Configuration mutants are the lowest

quality as the seventh easy-to-kill, most duplicate, and subsumed.

Finding 6: Race, Interaction, Cluster, Exception, Life, Commu-

nication, Path, and Con�g are highest to lowest `Akka mutants.

5.5 `Akka’s Test E�ectiveness

Table 4 shows the traditional mutation scores for tests of di�erent

applications. According to Table 4, tests are e�ective in killing only

a sixth (16.6%) of `Akka mutants, and leave about �ve sixth (83.3%)

alive. In addition, Finding 2 says that the tests are ine�ective in

covering more than half of `Akka mutants.

Finding 7: Tests are ine�ective not only in covering > 1

2
of

`Akka mutants but also in killing > 5

6
.

5.6 PIT’s Mutant Quality and Test E�ectiveness

Table 5 shows the generation, coverage, and the quality of PIT

mutants of our applications. Due to compilation and execution

issues in PIT, we include six applications ditto, lms, wot, �ower,

parc, and fuse that we used previously. Generation, coverage, and
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In Figure 1, `Akka covers B’s non-logic bugs and there is an

overlap between bugs that `Akka’s Communication type, Inter-

action, and Life cycle cover and Jagannath et al.’s Messaging and

Creation/Deletion. In total, Jagannath et al.’s cover about a third

(30.7%=31/101) of non-logic bugs that `Akka covers.

Finding 11: `Akka covers 3.3x more bugs than Jagannath et al.

For non-logic bugs that `Akka does not cover, PIT covers less

than a �fth (18.5%=12/65) of these bugs. Together, `Akka and PIT

cover more than two third (68.1%=113/166) of non-logic and logic

bugs which is 1.1x the 60.8% coverage of `Akka alone and 9.5x the

7.2% coverage of PIT alone.

Finding 12: `Akka + PIT cover 1.1x more bugs than `Akka.

6 IMPLICATIONS

Predictive mutation testing for actor concurrency To improve

e�ciency, previous work [112, 126] uses characteristics of mutants

as features to build and train models that can predict mutant killing

without executing the mutants. For example, Mao et al. [112] uses

characteristics such as the coverage of a mutant (numTestCover)

and the operator group that generates themutant (MutatorClass) for

their 0.85 accurate predictions of mutant killing in 654 real-world

Java applications with more than 4 million lines of code. While

still non-existent, future prediction mutation testing tools for actor

concurrency can use `Akkamutants, and their characteristics, such

as mutation operator group, coverage, ease-of-killing, duplicity, and

subsumption, to build and train models that predict the killing of

actor concurrency mutants.

N-selective andN%-samplingmutation testing for actor con-

currency Similarly, to improve e�ciency, previous work [111, 114]

approximates mutation testing using a select set of mutation op-

erators, that excludes N operators that generate the most/more

mutants, while maintaining the mutation score. For example, Of-

futt and Rothermel [114] use 2- and 4-selective mutation testing,

with 22 operators, in 10 Fortran applications and achieve mutant

reductions of 24.0% and 41.4%. While still non-existent, future actor

concurrency mutation testing can use `Akka operators, mutants,

and statistics about their generation for N-selective testing. Accord-

ing to Table 3, a 4-selective testing that excludes the four operators

in Communication type and Race groups, could potentially re-

duce our mutant numbers by 30.1%, if their exclusion maintains the

mutation score. Similarly, previous work [83, 127] approximates

mutation testing by sampling N% of mutants per criteria such muta-

tion operator, method, or class. Future actor concurrency mutation

testing can use `Akka operators, operator groups, and mutant

quality as new guiding criteria for sampling.

Actor concurrency testing To improve tests, previous work

[73, 80] uses mutation testing to guide where to test and what to

improve. For example, Fraser and Zeller [80] `TEST uses alive

mutants to generate oracles and tests that kill 75% of all mutants

in 10 Java libraries with 1,416 classes. Future actor concurrency

testing can use `Akka to guide similar oracle and test generations.

7 THREATS TO VALIDITY

Some of our decisions during this work could be a threat to its

validity. The bug set B that we use to understand Akka bugs and

their causes may not be representative of all Akka bugs and could

be a threat. However, the large number of bugs in B from both

popular Stack Over�ow and GitHub and the large number of Stack

Over�ow posts and GitHub commits that the previous work [58]

uses to construct B could help mitigate this threat. The manual

analysis that we use to understand the bugs, design and group

mutation operators, and understand bug coverages can be a threat.

To minimize this threat, we use well-known sorting techniques [79],

with multiple sorters, that previous work proposes and often uses

[49, 58, 59, 70, 125]. The metrics that we use to measure the mutant

quality and test e�ectiveness can be another threat. Tominimize this

threat, we use well-knownmetrics that previous work proposes and

often uses for mutant quality [16, 52, 75, 91, 94, 117, 119] and test

e�ectiveness [52, 91, 95, 118, 120]. The applications that we use in

our evaluations may not be a representative of all Akka applications

and could be a threat. To minimize this threat, we select a random

set of applications that are di�erent in sizes, domains, number of

stars, and developers.

8 RELATED WORK

Concurrency The work by Jagannath et al. [89] is the closest to our

work. We discuss this work and its semantic and bug coverage over-

lap with out work in detail in Sections 1, 4, and 5. Jagannath et al.

[89] propose 12 mutation operators, in 3 groups, for ActorFoundry

[57], that are based on individual experiences of authors and not a

curated set of real bugs, are not implemented, are not evaluated, and

are speci�c to the syntax and semantics of ActorFoundry and not

applicable to today’s industrial-strength implementations of actor

concurrency. Six out of our 32 mutation operators (18.8%) and the

remaining twenty-six (81.2%) in Path, Configuration, Life cycle,

Interaction, Race, and Cluster groups are new. There are six

operators that are unique to Jagannath et al.’s. Two Remove Con-

straint (RC) and Modify Constraint (MC) are inapplicable to Akka

because Akka does not allow conditional constraints to disable the

receiving of messages. For the remaining four, Modify Message

Parameter (MMP), Reorder Message Parameter (RMP), Modify Cre-

ation Parameter (MCP), and Reorder Creation Parameter (RCP),

there were no bugs in B that required a similar operator.

Previous work proposes ConMan [68] and CCMutator [98] tomu-

tate multithreaded concurrency and its constructs, such as threads,

locks, conditional variables, and atomic blocks, in languages like

Java and C/C++. However, the fundamental di�erences between

actor and multithreaded concurrency, the syntax and semantics

of their constructs, and their bugs make multithreaded mutation

testing inapplicable to actor concurrency.

Languages and paradigms Previous work proposes mutation

testing for di�erent programming paradigms, such as functional

[100], object- [109], aspect- [116], and declarative-oriented [24] pro-

gramming, and di�erent programming models, such web [124], mo-

bile [106], and machine learning [88]. Previous work also proposes

mutation testing for speci�cation [66], modeling [78] and a broad

range of programming languages, such as Java [110], JavaScript

[113], C [71], C++ [15], C# [77], and Ruby [101]. However, none of

these works design, implement, and evaluate mutation testing for

actor concurrency using real bugs.
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Mutant quality Previous work propose several techniques,

such as subsuming [52, 96], dominator [97], disjoint [95], mini-

mal [52], and surface [84] mutants to reduce non-quality trivial,

redundant, and equivalent mutants. Others, quantify the mutant

usefulness using the triviality, equivalence and dominance of the

mutant and relate the usefulness to the program context of the

mutant [92]. However, none evaluate the quality of actor mutants.

E�ciency Previous work proposes Comutation [82] to select a

small subset of multithreaded mutation operators with less number

of mutants but the same test e�ectiveness and MutMut [81] for

e�cient execution of multithreaded mutants. However, selective

and e�cient mutation testing are outside the scope of this paper.

9 CONCLUSIONS AND FUTUREWORK

In this work, we propose `Akka for mutation testing of Akka ac-

tor concurrency. To design, implement, and evaluate `Akka, we

manually analyze a set of 186 real Akka bugs, design 32 mutation

operators to induce these bugs, implement these operators in an

Eclipse plugin, generate 11.7k mutants of 10 real applications, mea-

sure the quality of mutants and e�ectiveness of tests, generate 26.2k

PIT mutants and compare with `Akka, analyze the bug coverage

and overlap between `Akka, PIT, and actor operators in Jagannath

et al.’s, and discuss a few implications of our �ndings. One avenue

of future work is to use program context to predict and avoid gen-

eration of lower quality mutants [92]. Another avenue is predictive

mutation testing for actor concurrency using machine learning.

DATA AVAILABILITY

All the data and tools that we use in this work are publicly available

in our replication package [27]. These include `Akka’s mutation

operators, their formal de�nitions, Akka API source code changes,

and the source code of our Eclipse plugin.
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