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ABSTRACT

Actor concurrency is becoming increasingly important in the real-
world and mission-critical software. This requires these applications
to be free from actor bugs, that occur in the real world, and have
tests that are effective in finding these bugs. Mutation testing is a
well-established technique that transforms an application to induce
its likely bugs and evaluate the effectiveness of its tests in finding
these bugs. Mutation testing is available for a broad spectrum of
applications and their bugs, ranging from web to mobile to ma-
chine learning, and is used at scale in companies like Google and
Facebook. However, there still is no mutation testing for actor con-
currency that uses real-world actor bugs. In this paper, we propose
piAkka, a framework for mutation testing of Akka actor concur-
rency using real actor bugs. Akka is a popular industrial-strength
implementation of actor concurrency. To design, implement, and
evaluate pAkka, we take the following major steps: (1) manually
analyze a recent set of 186 real Akka bugs from Stack Overflow and
GitHub to understand their causes; (2) design a set of 32 mutation
operators, with 138 source code changes in Akka API, to emulate
these causes and induce their bugs; (3) implement these operators
in an Eclipse plugin for Java Akka; (4) use the plugin to generate
11.7k mutants of 10 real GitHub applications, with 446.4k lines of
code and 7.9k tests; (5) run these tests on these mutants to measure
the quality of mutants and effectiveness of tests; (6) use PIT to
generate 26.2k mutants to compare pAkka and PIT mutant quality
and test effectiveness. PIT is a popular mutation testing tool with
traditional operators; (7) manually analyze the bug coverage and
overlap of pAkka, PIT, and actor operators in a previous work; and
(8) discuss a few implications of our findings. Among others, we
find that pAkka mutants are higher quality, cover more bugs, and
tests are less effective in detecting them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °23, December 39, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12...$15.00
https://doi.org/10.1145/3611643.3616362

Mehdi Bagherzadeh
Oakland University
USA
mbagherzadeh@oakland.edu

Hamid Bagheri
University of Nebraska, Lincoln
USA
bagheri@unl.edu

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; « Theory of computation — Concurrency.

KEYWORDS

Mutation testing, Actor concurrency, Mutation operators, Mutant
quality, Test effectiveness, pAkka, Akka.

ACM Reference Format:

Mohsen Moradi Moghadam, Mehdi Bagherzadeh, Raffi Khatchadourian,
and Hamid Bagheri. 2023. pzAkka: Mutation Testing for Actor Concurrency
in Akka using Real-World Bugs . In Proceedings of the 31st ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE ’23), December 3-9, 2023, San Francisco, CA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3611643.
3616362

1 INTRODUCTION

Actor concurrency is becoming increasingly important in the real-
world and mission-critical software. For example, PayPal uses actor
concurrency to serve more than a billion financial transactions per
day [104], Spark to shuffle hundreds of terabytes of big data [35],
and Groupon to personalize coupons for 48 million customers in
real-time [103]. NASA, Microsoft, Twitter, Verizon, CapitalOne, and
Weight Watchers are among many other users of actor concurrency
[67, 102]. This requires these applications to be free from actor
bugs, that occur in the real world, and have tests that are effective in
finding these bugs, which can cost large sums of money or even lives.
Unlike multithreaded concurrency, in which lower-level threads
communicate using shared memory and locks, in actor concurrency,
higher-level actors communicate using asynchronous messages
[47, 48]. This makes not only actor concurrency but also its bugs [58,
87, 108] fundamentally different from multithreaded concurrency
[68, 98]. Previous work [58, 60, 61, 87, 107, 108] discusses some of
these differences.

Mutation testing [16, 76, 91] is a well-established technique that
transforms, the source or the binary, code of an application to
induce its likely bugs and evaluate the effectiveness of its tests
in finding these bugs. Mutation testing is available for a broad
spectrum of applications and their bugs, ranging from web [124]
to mobile [106] to machine learning [88], and is used at scale in
companies like Google [122, 123] and Facebook [64]. However,
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there still is no mutation testing for actor concurrency that uses real-

world actor bugs. The only relevant work is the work by Jagannath

etal. [89] that proposes 12 mutation operators in ActorFoundry [57].

However, these operators are based on the individual experiences of

the authors, and not a curated set of real bugs, are not implemented,

are not evaluated, and are often specific to ActorFoundry’s syntax
and semantics and not applicable to today’s industrial-strength
implementations of actor concurrency. ActorFoundry is a now-
defunct research prototype actor language with no industrial use.

We discuss this work further in detail throughout the paper.

In this paper, we propose pAkka, a framework for mutation
testing of Akka actor concurrency using real actor bugs. Akka [105],
from LightBend, is an industrial-strength implementation of actor
concurrency, among others such as Orleans [65], from Microsoft,
and Erlang [56], from Ericsson. We focus on Akka because it is
growing faster than others. For example, in the past five years,
there are 3,727 Akka questions and answers [55] in Stack Overflow,
which is 1.8 and 34.2x more than Erlang and Orleans, respectively.
Similarly, there are 10,034 Akka applications [54] in GitHub, which
is 1.5 and 7.3x more than Erlang and Orleans.

To design, implement, and evaluate pAkka, we take the follow-
ing major steps:

(1) manually analyze a recent set of 186 real Akka bugs [58] from
Stack Overflow and GitHub to understand their causes.

(2) design a set of 32 mutation operators, with 138 source code
changes in Akka API, to emulate these causes and induce bugs.

(3) implement these operators in an Eclipse plugin for Java Akka.

(4) use the plugin to generate 11,736 mutants of 10 real GitHub
applications, with 446,444 lines of code and 7,871 tests.

(5) run these tests on these mutants to measure the quality of
mutants and the effectiveness of tests in detecting and killing
these mutants, using ease-of-killing, duplicity, subsumption,
and mutation score metrics that previous work uses often.

(6) use PIT [72] to generate 26,177 mutants to compare pAkka and
PIT mutant quality and test effectiveness.

(7) manually analyze the bug coverage and overlap of uAkka, PIT
and Jagannath et al.’s [89] actor operators.

(8) discuss the implications of our findings.

PIT is a popular [99] mutation testing tool with traditional logic op-

erators such as Math that replaces mathematical operands +, —, *, /, %.

Among others, we find that:

e Mutant quality : iAkka mutants are high quality: 2x harder to
kill, 3x less duplicate, and 1.3x less subsumed than PIT.

o Test effectiveness : Tests are ineffective for pAkka mutants: 1.3x
less effective in covering and 2.3x less effective in killing pAkka
mutants than PIT.

o Bug coverage : jiAkka bug coverage is high: 3.3x more bug cov-
erage than Jagannath et al.’s. And pAkka bug coverage benefits
from the addition of PIT: yAkka + PIT cover 1.1x more bugs
than pAkka alone and 9.5x more than PIT alone.

A few implications of our findings are in predictive, selective, and

sampling mutation testing and actor concurrency testing.

2 BACKGROUND

In this section, we discuss the basics of actor concurrency, Akka,
and mutation testing that we use throughout the paper.
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2.1 Actor Concurrency

Basic actor concurrency Unlike multithreaded concurrency, in
which a program is a set of threads that communicate using shared
memory and locks, in basic actor concurrency [47, 48], the pro-
gram is a set of actors that communicate by sending, receiving,
and processing of asynchronous messages. An actor has its own
thread of execution and behavior and makes its state accessible
only through messages, to avoid sharing. To send a message, a
sender actor sends a fire-and-forget message without waiting and
blocking for its response. To receive the message, a receiver actor
enqueues the message in its mailbox. To process the message, the
receiver dequeues the message from its mailbox and executes it
sequentially and to the end before processing the next message in
the mailbox. During the processing, an actor can change state and
behavior, send a message, or create a new actor.

Akka actor concurrency To allow for the development of real-
world applications, Akka extends the basic actor concurrency with
several necessary features, most of which are programmatic and
dynamic. These features are actor path to locate a local or remote
actor, life cycle to manage the actor life, parental hierarchy and
supervision to manage the actor creation and failure, configura-
tion to configure an application settings, actor system to provide
the actor dispatch and scheduling, dispatch to assign threads to
the actor message processings, scheduling to schedule the actor
message sendings, interaction patterns to support more ways of
actor interactions, stashing to buffer the actor messages for delayed
processing, deployment to deploy remote actors, and clustering for
distribution of actors over network. These features are often the
causes for Akka bugs [58, 87] and are discussed further throughout
the paper. ActorFoundry [57] lacks most of these features.

2.2 Mutation Testing

Basics Mutation testing [16, 76, 91] transforms, the source or
binary, code of an application to induce its likely bugs and evaluate
the effectiveness of its tests in finding these bugs. For each bug, a
mutation operator slightly changes the application code to emulate
the cause of the bug and induce the bug. The operator generates a
mutant of the application which is the original application plus the
induced bug. A test is effective if it can detect and kill a mutant by
distinguishing its behavior from the original application behavior;
otherwise the mutant stays alive. A test cannot kill a mutant that it
does not cover. A test covers a mutant if its execution executes the
mutated part of the mutant. Intuitively, the more mutants the tests
cover and kill the more effective the tests are.

Types of mutants There are different types of mutants, includ-
ing stillborn, easy-to-kill, trivial, redundant, duplicate, subsuming,
subsumed, and equivalent. For a mutant m of an original application
p and the set of tests 7.7, and 77, that, respectively, cover and
kill m, m is stillborn if it includes syntactic and semantic errors that
a compiler can catch and thus prevent its compilation. A mutant m
is easy-to-kill if a large number k of tests in .7, ., kill it. Following
previous work [117], we set k to 97.5%. A mutant m is trivial if all
the tests in .77, can kill m. Triviality is a special case of ease-of-
killing. A mutant m is redundant if tests that kill another mutant
m’ can also kill m. A redundant mutant is either duplicate or sub-
sumed. A mutant m is the duplicate of m’ if their behaviors are the
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functional equivalent of each other, but not equal to p. Duplicate
mutants are syntactically different from each other but semantically
the same. A subsuming mutant m subsumes a subsumed mutant
m” if 717 is a subset of yk’;’}'l m is equivalent if its behavior is the
functional equivalent of p. An equivalent mutant is syntactically
different from the original application but semantically the same.

Automatic determination of all duplicate and equivalent mutants
is proven to be undecidable [53, 69]. Our definition approximates
duplicity using the execution of tests [118]. Approximation of equiv-
alence requires complex heuristics and analyses, such as weakest
precondition [62], and is out of the scope of this work.

Our definitions follow similar definitions from previous work for
stillborn [16, 91], easy-to-kill [117], trivial [85, 94], redundant [16,
52, 94, 115], duplicate [16, 119], subsuming [16, 52, 94], subsumed
[16, 52, 94], and equivalent [16, 52, 91, 94, 119].

Quality of mutants The quality of mutants is critical to muta-
tion testing since non-quality mutants could bias the testing. For
example, previous work [118] shows that using subsumed mutants,
which are non-quality, could, on average, bias the conclusions of
62% of arbitrary sets of mutation testings. A mutant m is quality,
useful [92, 94], or valuable to mutation testing, if it is killable and
its killing requires the addition of a new test to set of tests J.7,
that cover it; otherwise it is non-quality. Trivial, easy-to-Kkill, re-
dundant, and equivalent mutants are among the most well-known
non-quality mutants [16, 93, 94, 117]. This is because, all and a
large subset of tests in .77, can kill a trivial and easy-to-kill m,
respectively, with no need for a new test; a non-empty subset of
I that kills m’ can also kill its redundant m with no need for
new tests; and there is no test that can kill an equivalent m. Our
definition follows similar definitions from previous work for quality
mutants [16, 92, 94, 117-119].

Effectiveness of tests Mutation testing evaluates the effective-
ness of tests in finding bugs that it induces. Mutation score [91] is
the most well-known metric to measure the effectiveness of tests.
For the set of all tests .7,,, that cover at least a mutant, the tradi-
tional mutation score is the ratio of the number of mutants that
tests in 7, kill to the number of all mutants. Our definitions fol-
low similar definitions from previous work for the mutation score
(16,91, 115].

Mutant coverage Neither all tests cover all the mutants nor all
mutants are covered by all the tests. Mutant coverage is the metric
that measures the coverage of mutants. Our definition follows the
standard definition of coverage [86].

Bug coverage A mutation operator covers a bug if it can emulate
the cause of the bug and induce the bug. Our definition follows
similar definitions from previous work for bug coverage [106].

3 METHODOLOGY

In this section, we discuss our methodology to analyze Akka actor
bugs, design and group pAkka mutation operators for these bugs,
and measure the quality of mutants that yAkka and PIT operators
generate, the effectiveness of tests to identify these mutants, and
the coverage of bugs by piAkka and Jagannath et al.’s operators.
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3.1 Akka Actor Bugs

For Akka bugs, we use a set # of 186 real bugs from a recent
previous work [58]. Z includes 130 bugs from Stack Overflow ques-
tions and answers and 56 bugs from GitHub applications. These
bugs cover a broad spectrum of causes, ranging from API confu-
sion to model confusion to missteps in the application logic, and a
broad spectrum of symptoms, ranging from incorrect messaging to
incorrect termination to unexpected application behavior.

3.2 Mutation Operators

Design For each bug in %, we take the following steps to design
the mutation operator that induces the bug. First, we manually
analyze the bug to understand its cause. For example, there is a bug
[19] in Z in which an actor cannot be created with a cause that its
name is not unique. Akka requires unique actor names. Second, we
manually search Akka API and its documentation to identify meth-
ods that can emulate this cause by small changes in their syntax
[46, 76, 91]. Several methods may emulate the same cause. For ex-
ample, actorOf{String name) and actorOf() are two Akka methods that,
their invocations, create an actor with a given and random name, re-
spectively. Changing these invocations to actorOf{String name') could
emulate the cause in which the actor name is not unique, if name’
is an actor name that exists already. We ensure that the syntactic
changes of our operators do not violate the compile-time syntax
and semantic requirements of Akka Java API Third, we select a
name for the mutation operator that describes the changes it makes.
For example, we give the name CHANGE NAME to the operator that
changes actorOf{String name) and actorOf() to actorOf{(String name'). For
a Stack Overflow bug, we analyze its questions, answers, and com-
ments to understand its cause and design its operator. Similarly,
for a GitHub bug, we analyze its commit, messages, original and
modified code snippets, pull requests, and issues.

We use the open card sort [79] to identify API methods, their
source code changes, and the name of a mutation operator. In the
open card sort, there are no predefined API methods, source code
changes, and operator names; instead they are developed during
the sorting process. To sort, the first and second authors individu-
ally analyze the bugs and reiterate and refine until they agree. The
second author is a Software Engineer and Programming Languages
professor with extensive expertise in actor and multithreaded con-
current systems. The first author is a Ph.D. student with extensive
coursework in concurrent and mobile systems. The third and fourth
authors are Software Engineer professors with extensive expertise
in concurrent and streaming systems, and testing and fault localiza-
tion, respectively. First three authors have several years of extensive
industrial work experience. In total, we design 32 mutation oper-
ators using source code changes in 138 Akka APIL Table 1 shows
these operators and their short descriptions. The formalization and
API source code changes for these operators can be found in our
replication package [27].

Grouping We use the same open card sort to group the mutation
operators, based on the semantic relation between the bug causes
they emulate. For example, CHANGE PATH groups together CHANGE
NaME and CHANGE HIERARCHY operators that change the related
name and the hierarchy parts of the path of an actor. In Akka,
the path of an actor denotes its physical location in a system and
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includes its name and hierarchy, among others. In total, we group
our operators into 8 groups. Table 1 shows these groups.

Compile-time and logic bugs To avoid the generation of still-
born mutants, we do not design mutation operators for compile-
time bugs. Generation and compilation attempts for stillborn mu-
tants decrease the efficiency of mutation testing because they can
neither be compiled nor executed. A bug is a compile-time bug if
its cause is a syntactic or semantic issue that prevents its successful
compilation. For example, there is a bug [18] in 4 in which the
compilation fails because of using an undeclared variable. There
are 21 (11.3%) compile-time bug in . Similarly, to avoid the re-
designing of non-Akka and traditional operators, that already exist
[16], we do not emulate logic bugs. A bug is a logic bug if its cause
is a misstep in the application logic. For example, there is a bug [20]
in & in which the lookup and message delivery for a remote actor
fails because an skipped if conditional creates the wrong path for
the actor. The traditional operator Negate Conditional in PIT [72]
can emulate this bug by negating the condition of the conditional.
There are 65 (35.0%) logic bugs in Z. In total, we design mutation
operators to emulate the causes of 100 (53.8%) bugs in % that are
neither compile-time nor logic bugs.

3.3 Evaluation

Quality of mutants We use three well-known metrics to measure
the quality of mutants that pAkka and PIT operators generate.
These metrics are ease-to-killing, duplicity, and subsumption, which
Section 2 defines. Intuitively, the lower the number of easy-to-kill,
duplicate, and subsumed mutants the higher the quality. Previous
work uses the number of ease-of-killing [117], duplicity [16, 75, 119],
and subsumption [16, 52, 94] often to measure mutant quality.

Effectiveness of tests We use the well-known metric mutation
score, that Section 2 defines, to measure the effectiveness of our tests
to identify pAkka and PIT mutants. Previous work uses mutation
score [95, 120] often to measure the effectiveness of tests.

We execute the tests to measure the mutant quality and test
effectiveness. However, a test can be flaky and produce different
outcomes for different executions. To prevent flaky tests from skew-
ing measurements [121], we follow previous work [63] and use the
average of three executions of our tests to calculate our metrics.

Bug coverage We use the same open card sort to identify %
bugs that Jagannath et al.’s [89] operators can induce and cover
and their overlap with pAkka.

4 MUTATION OPERATORS AND GROUPS

In this section, we discuss and illustrate the mutation operators
using real bug examples. In addition, we compare our operators
with Jagannath et al.’s [89]. Table 1 shows our 32 mutation opera-
tors, their eight groups 8 groups PaTH, CONFIGURATION, COMMU-
NICATION TYPE, LIFE CYCLE, EXCEPTION, INTERACTION, RACE, and
CLUSTER, and their short descriptions.

4.1 PaTH

In Akka, an actor has a path that denotes its physical location
in a system. The path includes an address and a name. The ad-
dress can be either local or remote. An actor is local if it is in
the same Java Virtual Machine (JVM) and is remote otherwise. A
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local address specifies the actor system that the actor resides in
and a hierarchy of its ancestors, following akka://actor system/hier-
archy/name format. Actors form a hierarchy in which a parent
creates its children. A remote address, also specifies a host, protocol,
and a port for remote connections, following akka.protocol://actor
system@host:port/hierarchy/name format. An Akka developer is
responsible to understand actor paths and their different parts, and
their programmatic and dynamic modifications, and manually pro-
vide correct values for these parts; otherwise incorrect actor paths
can cause bugs, as the previous work [58] shows.

PaTH group includes six mutation operators that CHANGE the
NaME, ProTocoL, AcTor SysTEM, HosT, PorT, and HIERARCHY
parts of an actor path to induce the bugs that are caused by the
use of incorrect values for these parts. For example, there are three
bugs [1, 14, 19] in % in which an actor cannot be created because
its name is not unique. Akka requires actor names to be unique
in a system. CHANGE NAME incudes these bugs by changing the
name of an actor to an actor name that already exists in the system.
Similarly, there is a bug [3] in which an actor cannot be looked up
and messages sent to it cannot be delivered because its hierarchy
is missing an ancestor. CHANGE HIERARCHY induces this bug by
changing the hierarchy of an actor to a hierarchy with one less
random ancestor. Table 1 describes all the mutation operators in
PaTH and the bug causes they emulate.

Jagannath et al. [89] use their individual experiences to propose
12 unimplemented mutation operators in 3 groups for the research
actor language ActorFoundry. These operators, inside parenthe-
ses, and their groups, outside parentheses are: Messaging (Remove
Send/Receive, Modify Message Parameters, Reorder Message Pa-
rameter, Modify Message Name, Modify Message Recipient, and
Change Synchronization Type), Constraint (Remove Constraint and
Modify Constraint), and Creation/Deletion (Remove Creation/Dele-
tion, Modify Creation Parameter, and Reorder Creation Parameters).

All six mutation operators in PATH are new and cannot be found
in the previous work by Jagannath et al.’s.

4.2 CONFIGURATION

A configuration defines the properties of an application using a set
of parameter and value pair settings. In Akka, a default configu-
ration [50] defines 255 default settings. These settings define the
properties of actors and actor systems of an application and their
deployment, mailboxes, dispatchers, and routers, among others. For
example, the mailbox can be configured to be either unbounded or
bounded with a specific capacity for the number of its messages. An
application configuration can override the default settings, define
new settings, such as a new dispatcher [13] with a different max
and min number of threads in its thread pool, or fallback on an-
other configuration for the settings that it does not define. An Akka
developer is responsible to understand the default and application
configurations, their parameter and value settings, overriding, and
fallback, and their programmatic modifications, and manually con-
figure non-default settings; otherwise incorrect configurations can
cause bugs [58].

CONFIGURATION includes six mutation operators that CHANGE
APPLICATION, FALLBACK, MAILBOX, D1SPATCH, ROUTING, and DE-
PLOYMENT settings to induce bugs that are caused by using incorrect
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Group Mutation Operator Description
name change the name of an actor to an existing or random actor name
protocol change the local protocol of an actor to a remote protocol and vice versa
actor system change the actor system name of an actor to an existing or random actor system name
PaTH host change the host name or IP address of an actor to a random host name or IP address
port change the port number of an actor’s host to a random port number
hierarchy change the ancestral hierarchy of an actor to a hierarchy with one less random ancestor
application change the application configuration to an empty configuration or drop it
fallback change the fallback configuration to an empty configuration or drop it
mailbox change the mailbox configuration of an actor to an empty or random configuration or drop it
CONFIGURATION dispatch change the dispatch configuration of an actor to an empty or random configuration or drop it
routing change the routing configuration of an actor to the default or no router configuration or drop it
deployment change the deployment configuration of an actor to the default or drop the configuration
send type change the set of message types that an actor sends to a set with one more random type

COMMUNICATION TYPE .
receive type

change the set of message types that an actor receives to a set with one less random type

lookup change the lookup of an actor to occur in another existing or random actor system
starting change the starting pre- and post-behaviors of an actor to empty or supertype behaviors
stopping change the stopping pre- and post-behaviors of an actor to empty or supertype behaviors
Lire cycre restarting change the restarting pre- and post-behaviors of an actor to empty or supertype behaviors
termination change the termination of an actor or actor system by removing or delaying the termination
monitoring change monitoring of an actor by removing the monitoring
failure change the failure behavior of an actor to throw an exception
Exceprion supervision change the supervisory behavior of an actor to another random behavior
synchrony change the synchrony of a message that an actor sends from sync to asynch and vice versa
blocking change the blocking behavior of an actor by increasing or decreasing its wait or sleep durations
INTERACTION timeout change the timeout behavior of an actor by increasing or decreasing its timeout durations
forwarding change the sender of a message that actor forwards to a random actor reference
sender change the sender of a message that an actor sends to an existing actor reference
receiver change the receiver of a message that an actor sends to an existing actor reference
scheduling change the scheduling of a message that an actor sends by increasing or decreasing its delays
RACE sharing change the sharing of data between an actor and its concurrent future or async tasks
ordering change the ordering between two messages by delaying the first message
subscription change a cluster event that an actor subscribes for to another Akka cluster event
CLUSTER unsubscription change a cluster event that an actor unsubscribes from to another Akka cluster event

Table 1: Mutation operators for actor concurrency in pAkka, their groups, and descriptions.

settings for these configurations. For example, there is a bug [8]
in % in which an actor system cannot be configured and created
because its application configuration does not load. CHANGE APPLI-
CATION induces this bug by replacing the application configuration
with an empty configuration with no settings. Similarly, there is a
bug [30] in which an actor cannot stash its messages because its
mailbox is not configured properly. CHANGE MAILBOX induces this
bug by removing the mailbox configuration of an actor.

All six mutation operators in CONFIGURATION are new and can-
not be found in Jagannath et al.’s.

4.3 COMMUNICATION TYPE

In Classic Akka, unlike Akka Typed [51], an actor neither knows
about the types of messages that it may receive nor the type of
messages it can send. An Akka developer is responsible to manually
discover these message types and ensure that the actor can receive
all the messages that others send to it and sends only messages that
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others can receive; otherwise, sending or receiving messages with
incorrect types can cause bugs [58].

COMMUNICATION TYPE includes two mutation operators CHANGE
ReceIvE TyYPE and SEND TYPE that change the type of messages that
an actor can receive or send to induce the bugs that are caused by
receiving or sending incorrect message types. For example, there
are two bugs [22, 23] in & in which the application behavior is
undesired [22] or terminates prematurely [22] because an actor
receives a message of a type that it cannot process. CHANGE RECEIVE
TypE induces these bugs by changing the set of message types that
a receiver actor can receive to another set with one less random
message type. Similarly, CHANGE SEND TYPE can induce these bugs
by changing the set of message types that a sender actor can send
to another set with one more random message type.

Our CHANGE RECEIVE TYPE partially overlaps with Jagannath
et al.’s Remove Send/Receive (RSR) operator, in their Messaging
group, that “mimics the omission of messages by removing send-
s/receives”. Similarly, our CHANGE SEND TYPE overlaps with their
Messaging Modify Message Name (MMN) operator, in Messaging,
that “modifies the name [type] of a message being sent”.

4.4 LiFE CYCLE

In Akka, an actor and its enclosing actor system go through dif-
ferent stages in their life cycle, such as creation, lookup, starting,
stopping, restarting, termination, and monitoring. An Akka developer
is responsible to understand these life cycles and their program-
matic stages and manually manage these stages and their pre- and
post-behaviors correctly; otherwise incorrect management of life
cycles can cause bugs [58, 87].

L1rE cycLE includes six mutation operators that CHANGE Lookup,
STARTING, STOPPING, RESTARTING, TERMINATION, and MONITORING
of an actor and its actor system to induce the bugs that are caused by
the incorrect managements of these stages. For example, there are
two bugs [17, 25] in £ in which the application does not shutdown
[17] or consumes all its available memory [25] because its actor
system and actors do not terminate. CHANGE TERMINATION induces
these bugs by removing the termination of an actor and its enclosing
actor system. Similarly, there is a bug [26] in which the termination
of an actor goes unnoticed because the actor that is responsible to
manage the termination is not monitoring the terminating actor.
CHANGE MONITORING induces this bug by removing the termination
monitoring of an actor.

Our CHANGE TERMINATION partially overlaps with Jagannath
et al.’s Remove Creation/Deletion (RCD) operator, from their Cre-
ation/Deletion group, that “mimics the omission of creation/dele-
tion of an actor by removing an actor creation/deletion”. All other
five mutation operators in LIFE CYCLE are new.

4.5 EXCEPTION

In Akka, a parent actor is not only responsible to create but also
supervise its child actors and manage their failure when they throw
exceptions. The supervision strategy of the parent specifies to either
stop, resume, or restart the failed child or escalate the exception
up the supervision hierarchy to the parent of the parent. An Akka
developer is responsible to understand actor failures and exceptions,
programmatic supervisory hierarchies, and supervision strategies
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and handle these exceptions correctly; otherwise, incorrect han-
dling of exceptions can cause bugs [58].

EXCEPTION includes two mutation operators that CHANGE FAI1L-
URE and SUPERVISION behavior of an actor to induce the bugs that
are caused by incorrect handlings of exceptions. For example, there
are two bugs [6, 11] in & in which the application does not ter-
minate [6] or swallows an exception [11] because an actor throws
an exception that its ancestor does not handle properly. CHANGE
FAILURE induces these bugs by changing the behavior of an actor to
throw an exception. Similarly, there are two bugs [2, 29], in which
an actor does not restart properly because its parent is using the
wrong supervision strategy. CHANGE SUPERVISION incudes these
bugs by changing the supervision strategy of an actor.

Both mutation operators in EXCEPTION are new.

4.6 INTERACTION

In Akka, there are several ways in which an actor can interact with
another. In addition to an asynchronous fire-and-forget message, a
sender actor can send a synchronous request-response message to a
receiver and wait and block for its response in a future variable for
a timeout period. A future is a placeholder for an incomplete task
with a result that is not ready yet. Similarly, a receiver can forward a
message it receives to another actor, without changing the sender of
the message, or schedule to send a message in specific intervals. An
Akka developer is responsible to understand these programmatic
interactions and their semantics and use them correctly; otherwise
incorrect interactions can cause bugs [58, 108].

INTERACTION includes seven mutation operators that CHANGE
SYNCHRONY, BLOCKING, TIMEOUT, FORWARDING, SENDER, RECEIVER,
and SCHEDULING of actor interactions to induce bugs that incorrect
uses can cause. For example, there are two bugs [9, 12] in % in
which a receiver actor cannot respond to its sender more than
once because the temporary actor that a request-response message
creates to receive the response, terminates after receiving the first
response. CHANGE SYNCHRONY induces these bugs by changing an
asynchronous fire-and-forget message to a synchronous request-
reply message. Similarly, there is a bug [34] in which a receive
cannot process its messages because the messages are sent too fast.
CHANGE SCHEDULING induces this bug by decreasing the initial and
interval delays between messages that a scheduler sends.

Our CHANGE SYNCHRONY overlaps with Jagannath et al.’s Change
message Synchronization Type (CST), in Messaging, that “changes
a synchronous send to an asynchronous send and vice versa”. Simi-
larly, our CHANGE RECEIVER overlaps with their Modify Message
Recipient (MMR), in Messaging, that “modifies the recipient of a
message”. All other five operators in INTERACTION are new.

4.7 RACE

A race occurs if two concurrent computations access the same mem-
ory and one modifies the memory. In Akka, to avoid races, an actor
processes its messages sequentially and one at a time. However,
both lower-level data races and higher-level message races [60] are
still possible. A data race occurs when a concurrent future or async
task that runs outside the actor shares memory with the actor and
either the actor or the task modifies the memory. Similarly, a mes-
sage race occurs when two messages arrive at the same actor out
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of their desired order and the processing of either of the messages
modifies the actor memory. An Akka developer is responsible to un-
derstand data sharings and message orderings among all actors and
non-actor concurrent computations of a system and make sure they
are free from races; otherwise races could cause bugs [58, 87, 108].

RACE includes two mutation operators that CHANGE SHARING of
data and ORDERING of messages to induce the bugs that incorrect
sharing and message ordering can cause. For example, there are
seven bugs [4, 5, 7, 10, 28, 32, 33] in 4 in which a response is not
delivered to a sender actor [4, 5, 10, 28, 32] or the application does
not behave as desired [7, 33] because an actor and its future task
share the variable sender which the actor modifies. The variable
sender is the sender of the current message that the actor is process-
ing and changes when the actor starts to process another message.
CHANGE SHARING induces this bug by changing a random actor
reference in a future or async task with getSender(). The method
getSender accesses, reads and returns the value of the shared vari-
able sender. Similarly, there is a bug [21] in which the application
produces incorrect results because two messages that initiate the
warmup of a simulation and production of the results arrive out of
order. CHANGE SHARING induces this bug by delaying the sending
of a message to reorder the arrival of messages.

Our CHANGE SHARING overlaps with Jagannath et al.’s Change
(message) Reference Type (CRT), in Messaging, that “changes a
message sent by reference to a message sent by value and vice
versa” to change the sharing between actors. CHANGE ORDERING is
new.

4.8 CLUSTER

In Akka, a cluster is a group of actor systems that provide distribu-
tion, load balancing, and failover for their actors. An actor system
is a logical node of the cluster. An actor in the cluster can subscribe
for the membership, domain, and reachability events of the clus-
ter, receive messages when these events occur and process these
messages accordingly. Similarly, the actor can unsubscribe from
these events. An Akka developer is responsible to understand these
events, their semantics, and their subscriptions and unsubscriptions
and manage them correctly; otherwise incorrect subscriptions or
unsubscriptons can cause bugs [58].

CLUSTER includes two mutation operators that CHANGE SUB-
scrIPTION and UNSUBSCRIPTION of actors in a cluster to induce
bugs that are caused by incorrect subscriptions. For example, there
is a bug [31] in % in which an actor misses a cluster leader change
event because it subscribes for an incorrect member event instead
of the correct domain event. The leader change event is a domain
event. CHANGE SUBSCRIPTION induces this bug by changing the
cluster event that an actor subscribes to another random cluster
event. Similarly, CHANGE UNSUBSCRIPTION can induce this bug by
changing the cluster event that an actor unsubscribes from.

Both mutation operators in CLUSTER are new.

5 EVALUATION

In this section, we discuss the implementation of our mutation op-
erators in gAkka, evaluate the mutant quality and test effectiveness
of real application in pAkka and PIT, and study the bug coverage
and overlap of pAkka, Jagannath et al.’s [89], and PIT operators.
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5.1 Implementation

For real-world applicability, we implement our mutation operators
as an Eclipse plugin, in a framework that we call pAkka. pAkka
uses 138 source code changes of Java Akka API [90] to implement
our 32 operators. For efficiency, in addition to not generating still-
born mutants, we integrate the following popular techniques, from
previous work, into gAkka. First, we use conditional mutation [93]
that uses conditional statements to integrate all the mutants and
the original application into a single application. This allows a sin-
gle compilation to compile all mutants all at once and efficiently
instead of one by one and inefficiently. Second, we generate and use
coverage information to execute mutants only if they are covered
by tests [74]. This allows to not execute the tests that do not cover
mutants and mutants that are not covered by tests.

5.2 Akka Applications

Id Project LOC Domain Stars
ditto  ditto [36] 261,951 internet of things (IcT) 390
Ims  sunbird-lms [37] 78,633 learning management 29
wot  wot-servient [38] 52,019 web of things 23
flower flower [39] 21,648 reactive microservices 518
comb servicecomb [40] 15,527 transactional data 481
rhino rhino [41] 13,882 web performance testing 16
parc  parallec [42] 13,209 asyncronous web 800
flink  flink-rpc [43] 8,326  web performance testing 19,600
fuse  fuse [44] 3,483  REST server 15
mony money-transfer [45] 3,136  money transfer API 5
Total 446,444

Table 2: Real-world Akka applications from GitHub.

We use GitHub to randomly select a set of 10 mature and real-
world Java Akka applications with a total of 446,444 lines of code.
Table 2 shows these applications, which cover a broad spectrum
of sizes, ranging from 261,951 to 15,527 to 3,136 lines of code, of
domains, from internet of things (IoT) to web performance testing to
money transfer, and of starts, from 19,600 to 390 to 5. An application
is considered to be an Akka application if it uses Java Akka APIs
in its source code. Due to compilation issues in Eclipse, we include
connectivity, internal, things, gateway, and base subsystems of ditto
and the rpc subsystem of flink, and not all their subsystems.

5.3 pAkka’s Mutant Generation and Coverage

Table 3 shows the number of mutants that different mutation oper-
ator groups generate, Gen, and the number of these mutants that
the tests can cover, Cov. The table shows these numbers in aggre-
gate, for all applications, and separately, for individual applications.
Gen,, is the ratio of the number of mutants that an operator gen-
erates to the number of mutants that all operators generate. Cov,,
is the ratio of the covered mutants of an operator to its generated
mutants. Dark gray, light gray, and boxed denote higher, lower,
and average values, respectively.

Generation According to Table 3, row Gen,,, for all applications
in aggregate, the number of mutants that different mutation opera-
tor groups generate are substantially different, with INTERACTION
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Id Mutation group Total
Para Conric Comm LiFE Excep INTER RAcE CLUSTER

Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov Gen Cov
ditto 117 64 27 15 993 410 1,626 580 71 48 2,161 802 724 240 1 1 5720 2,160
Ims 0 0 3 1 125 82 706 425 0 0 759 499 468 320 O 0 2,061 1327
wot 23 19 39 4 84 32 235 90 5 3 207 91 124 52 2 0 719 291
flower 13 7 7 7 30 9 72 30 5 4 73 26 28 4 0 0 228 87
comb 12 12 1 1 29 24 43 43 2 2 49 49 4 4 0 0 140 135
rhino 7 5 1 1 24 11 29 15 3 2 38 23 8 4 0 0 110 61
parc 17 10 3 1 296 82 410 236 8 8 450 228 220 112 0 0 1,404 677
flink 4 4 2 2 34 19 110 61 © 6 115 56 56 24 0 0 372 172
fuse 68 18 3 0 22 7 53 14 3 2 32 10 12 0 0 0 193 51
mony 15 12 1 1 98 38 272 24 4 4 304 23 140 4 0 0 834 106
Total 276, 151 87 33 1,735 714 1,518 622 107 79 4,188 1,807 1,784 764 3 1 11,732 5,067
Gen, 24 0.8 14.8 30.3 1.0 35.7 15.3 0.1
Cov, 54.8 38.0 41.2 42.7 73.9 43.2 42.9 33.4 43.2

Table 3: Mutant generation, Gen, and coverage, Cov, for different mutation operator groups.

alone generating more than a third (35.7%) of the mutants, which
is the most, and CONFIGURATION generating the least (0.8%). This
excludes the outlier CLUSTER that generates 0.1% of mutants with
only 3 mutants. Four operator groups, INTERACTION, LIFE CYCLE,
RacE, and COMMUNICATION TYPE, that include 17 out of 32 (53.1%)
piAkka operators, together generate the majority (96.1%) of mutants
whereas the other four, CLUSTER, CONFIGURATION, EXCEPTION, and
PATH, generate only a small minority (3.9%).

Finding 1: ~% of pAkka operators generate >1—90 of mutants.

Coverage Similarly, according to row Cov,,, tests can cover
less than half (43.2%) of pAkka mutants, and leave more than
half (57.8%) uncovered, with substantially different coverage for
mutants of different operators. EXCEPTION mutants are the most
(73.9%) covered and CONFIGURATION the least (38.0%), excluding
CLUSTER.

Finding 2: Tests are ineffective in covering >% of pAkka mu-
tants.

5.4 pAkka’s Quality of Mutants

Table 4 shows the numbers of easy-to-kill, Eas, duplicate, Dup,
and subsumed mutants, Sub, for pAkka mutation operator groups.
Eas,,, Dup,,, and Sub,,, respectively, are ratios of easy-to-kill, dupli-
cate, and subsumed mutants of an operator to its covered mutants.

Ease-of-killing According to Table 4, row Eas,,, less than a
fifth (17.4%) of mutants are easy-to-kill and non-quality, whereas
more than four fifth (82.6%) are hard-to-kill and quality, with sub-
stantially different ease-of-killing for mutants of different operators.
CONFIGURATION mutants are the most (33.4%) easy-to-kill and PaTa
the least (8.7%), excluding CLUSTER.

Finding 3: >% of pAkka mutants are hard-to-kill and quality.

Duplicity According to row Dup,,, more than a seventh (14.6%)
of mutants are duplicate and non-quality, whereas about six sev-
enth (85.4%) are unique and quality, with substantially different
duplicity for mutants of different operators. PATH mutants are the

most (24.6%) duplicate and EXCEPTION the least (6.4%), excluding
CLUSTER.

Finding 4: ~% of pAkka mutants are unique and quality.

Subsumption According to row Sub,, less than a quarter
(24.2%) of mutants are subsumed and non-quality, whereas more
than three quarters (75.8%) are subsuming and quality, with sub-
stantially different subsumption for mutants of different operators.
PATH mutants are the most (29.9%) subsumed and RACE the least
(8.0%), excluding CLUSTER.

Finding 5: >% of pAkka mutants are subsuming and quality.

Altogether The quality of pAkka mutants differ substantially
for its different operators. RACE mutants are the highest quality as
the second least easy-to-kill, third least duplicate, and the second
least subsumed, whereas CONFIGURATION mutants are the lowest
quality as the seventh easy-to-kill, most duplicate, and subsumed.

Finding 6: Race, Interaction, Cluster, Exception, Life, Commu-
nication, Path, and Config are highest to lowest Akka mutants.

5.5 pAkka’s Test Effectiveness

Table 4 shows the traditional mutation scores for tests of different
applications. According to Table 4, tests are effective in killing only
a sixth (16.6%) of pAkka mutants, and leave about five sixth (83.3%)
alive. In addition, Finding 2 says that the tests are ineffective in
covering more than half of yAkka mutants.

Finding 7: Tests are ineffective not only in covering >% of
ptAkka mutants but also in killing >%.

5.6 PIT’s Mutant Quality and Test Effectiveness

Table 5 shows the generation, coverage, and the quality of PIT
mutants of our applications. Due to compilation and execution
issues in PIT, we include six applications ditto, Ims, wot, flower,
parc, and fuse that we used previously. Generation, coverage, and
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Id Mutation Group Total Mutation Score
Pata ConrFIG Comm Lire Excep INTER Race CLUSTER

Eas Dup Sub Eas DupSub Eas Dup Sub Eas Dup Sub Eas Dup Sub Eas Dup Sub Eas Dup Sub Eas DupSub Eas Dup Sub
ditto 3 10 14 5 2 5 83 46 125130 131 142 11 2 5 142 116 120 31 19 23 1 0 0 406 326 524 l6.1
Ims 0 0 0 1 0 0 61 0 0 124 74 70 0 0 O 81 29 32 40 25 25 O 0 0 307 128 287 17.8
wot 4 5 4 3 2 2 10 8 3 9 2 2 2 0 0 8 7 0 0 O 0o 0 43 17 14 9.4
flower 0 2 1 2 32 2 3 5 1 12 111 1 1 2 7 7 0 0 1 O 0 0 8 28 34 24.6
comb 0 0 0 0 o o0 7 4 18 9 11 22 0 0 o0 7 1 0 0 0 0 0 0 24 24 62 56.5
rhino 1 4 4 0 o o0 o 5 5 1 3 3 2 1 1 0 1 0 0 0 O 0 2 14 19 19.1
parc 0 5 9 0 0O 0 19 20 32 8 51 70 1 0 3 5 53 50 0 22 12 0 0 0 34 151 218 20.4
fink 0 0 1 0 o o0 1 2 8 21 13 8 1 1 1 11 3 7 5 0 0 O 0 49 19 30 21.5
fuse 4 11 11 0 o o0 1 1 1 4 5 5 1 0 1 0 4 4 0 0 0 O o 0 10 21 13 l6.1
mony 1 0 1 0 o 0 2 5 9 1 4 4 1 0 2 4 2 5 0 0 0 O 0 0 9 1 23 5.2
Total 13 37 45 11 7 9 196 94 206 308 306 337 20 5 14 260 224 237 83 66 61 1 0 892 739 1,224 16.6
Eas, 8.7 33.4 27.5 20.3 25.4 14.4 10.9 100.0 17.7
Dup.,, 24.6 21.3 13.2 20.2 6.4 12.4 8.7 0.0 14.6
Sub,, 29.9 27.3 28.9 223 17.8 13.2 8.0 0.0 24.2

Table 4: Mutant ease-of-killing, Eas, duplicity, Dup, and subsumption, Sub, for different mutation operator groups.

quality of pAkka mutants for these six applications can be easily
calculated using Table 4.

Id PIT Mutations Mutation Score
Gen Cov Eas Dup Sub

ditto 17,652 11,108 5,734 5,727 3,906 44.9

Ims 2,436 915 250 265 164 16.8

wot 1,969 1,087 604 404 331 38.4

flower 2,565 470 101 182 155 8.6

parc 1,262 1,232 162 388 229 40.0

fuse 293 106 70 65 55 26.3

Total 26,177 14,909 6,921 7,031 4,840 37.8

Cov,, 57.0

Eas, 46.5

Dup, 47.2

Sub,, 325

Table 5: Mutant quality and test effectiveness in PIT.

Coverage According to Table 5, row Cov,,, tests cover more
than half (57.0%) of PIT mutants, and leave the other half (43%)
uncovered, which is a third more than (1.3x) the 44.5% coverage of
ptAkka mutants, for these six applications.

Finding 8: Tests are 1.3x less effective in covering pAkka than
PIT mutants.

Ease-of-killing, duplicity, and subsumption According to
row Eas,,, less than a half (46.5%) of PIT mutants are easy-to-kill,
which is more than twice (2.64x) the 17.6% ease-of-killing for pAkka
mutants. Similarly, according to row Dup,,, less than a half (47.2%)
of PIT mutants are duplicates, which is thrice (3.2x) the 14.7% du-
plicity for yAkka mutants. Finally, according to row Sub,,, less
than a half (32.5%) of PIT mutants are subsumed, which is a third
more than (1.3x) the 23.8% subsumption for pAkka mutants.

Finding 9: 1Akka mutants are higher quality than PIT: 2x
harder to kill, 3x less duplicate, and 1.3x less subsumed.

Effectiveness of tests Table 5 shows the traditional mutation
scores for tests of our six applications. According to Table 5, tests
are effective in killing more than a third (37.8%) of PIT mutants,
which is 2.3x the 16.8% test effectiveness for pAkka mutants. In
addition, Finding 8 says tests are 1.3x less effective in covering
ptAkka mutants.

Finding 10: Tests are 1.3x less effective in covering and 2.3x
less effective in killing pAkka mutants than PIT.

5.7 Bug Coverage by PIT and Jagannath et al.’s

Figure 1 shows the coverages of non-logic and logic bugs, in our
bug set %, by mutation operators in pAkka, Jagannath et al.’s [89],
and PIT and the overlap of these coverages. The bug coverage of an
operator is the ratio of the number of bugs that it can induce and
cover to the number of all bugs in 4. Similarly, the coverage overlap
of an operator with another is the ratio of the number of bugs that
the former covers to the latter. For example, pAkka INTERACTION
covers about one seventh (13.5%) of bugs in % and Jagannath et
al.’s Messaging overlaps with INTERACTION in covering about one
third (32.0%) of bugs that INTERACTION covers.

Logic bugs Non-logic bugs
A A
Messaging
100.0
PIT Messaging Comm, 9.7
18.5% 32.0%
Config, 7.6 Path, 6.0
Creation/Deletion
Exception,
Interaction, 3.3

Logic, 35.0% 13.5 Life cycle, 9.2 Race, 44 |rpmmmrs

Y Y

Not covered by uAkka Covered by uAkka

Overlaps with PIT Overlaps with Jagannath et al.'s

Figure 1: Bug coverage by yAkka, Jagannath et al.’s, and PIT.
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In Figure 1, yAkka covers %’s non-logic bugs and there is an
overlap between bugs that iAkka’s COMMUNICATION TYPE, INTER-
ACTION, and LIFE CYCLE cover and Jagannath et al.’s Messaging and
Creation/Deletion. In total, Jagannath et al.’s cover about a third
(30.7%=31/101) of non-logic bugs that yAkka covers.

Finding 11: uAkka covers 3.3x more bugs than Jagannath et al.

For non-logic bugs that gAkka does not cover, PIT covers less
than a fifth (18.5%=12/65) of these bugs. Together, Akka and PIT
cover more than two third (68.1%=113/166) of non-logic and logic
bugs which is 1.1x the 60.8% coverage of pAkka alone and 9.5x the
7.2% coverage of PIT alone.

Finding 12: yAkka + PIT cover 1.1x more bugs than yAkka.

6 IMPLICATIONS

Predictive mutation testing for actor concurrency To improve
efficiency, previous work [112, 126] uses characteristics of mutants
as features to build and train models that can predict mutant killing
without executing the mutants. For example, Mao et al. [112] uses
characteristics such as the coverage of a mutant (numTestCover)
and the operator group that generates the mutant (MutatorClass) for
their 0.85 accurate predictions of mutant killing in 654 real-world
Java applications with more than 4 million lines of code. While
still non-existent, future prediction mutation testing tools for actor
concurrency can use ptAkka mutants, and their characteristics, such
as mutation operator group, coverage, ease-of-killing, duplicity, and
subsumption, to build and train models that predict the killing of
actor concurrency mutants.

N-selective and N%-sampling mutation testing for actor con-
currency Similarly, to improve efficiency, previous work [111, 114]
approximates mutation testing using a select set of mutation op-
erators, that excludes N operators that generate the most/more
mutants, while maintaining the mutation score. For example, Of-
futt and Rothermel [114] use 2- and 4-selective mutation testing,
with 22 operators, in 10 Fortran applications and achieve mutant
reductions of 24.0% and 41.4%. While still non-existent, future actor
concurrency mutation testing can use yAkka operators, mutants,
and statistics about their generation for N-selective testing. Accord-
ing to Table 3, a 4-selective testing that excludes the four operators
in COMMUNICATION TYPE and RACE groups, could potentially re-
duce our mutant numbers by 30.1%, if their exclusion maintains the
mutation score. Similarly, previous work [83, 127] approximates
mutation testing by sampling N% of mutants per criteria such muta-
tion operator, method, or class. Future actor concurrency mutation
testing can use pyAkka operators, operator groups, and mutant
quality as new guiding criteria for sampling.

Actor concurrency testing To improve tests, previous work
[73, 80] uses mutation testing to guide where to test and what to
improve. For example, Fraser and Zeller [80] yTEST uses alive
mutants to generate oracles and tests that kill 75% of all mutants
in 10 Java libraries with 1,416 classes. Future actor concurrency
testing can use gAkka to guide similar oracle and test generations.

7 THREATS TO VALIDITY

Some of our decisions during this work could be a threat to its
validity. The bug set % that we use to understand Akka bugs and
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their causes may not be representative of all Akka bugs and could
be a threat. However, the large number of bugs in % from both
popular Stack Overflow and GitHub and the large number of Stack
Overflow posts and GitHub commits that the previous work [58]
uses to construct # could help mitigate this threat. The manual
analysis that we use to understand the bugs, design and group
mutation operators, and understand bug coverages can be a threat.
To minimize this threat, we use well-known sorting techniques [79],
with multiple sorters, that previous work proposes and often uses
[49, 58, 59, 70, 125]. The metrics that we use to measure the mutant
quality and test effectiveness can be another threat. To minimize this
threat, we use well-known metrics that previous work proposes and
often uses for mutant quality [16, 52, 75, 91, 94, 117, 119] and test
effectiveness [52, 91, 95, 118, 120]. The applications that we use in
our evaluations may not be a representative of all Akka applications
and could be a threat. To minimize this threat, we select a random
set of applications that are different in sizes, domains, number of
stars, and developers.

8 RELATED WORK

Concurrency The work by Jagannath et al. [89] is the closest to our
work. We discuss this work and its semantic and bug coverage over-
lap with out work in detail in Sections 1, 4, and 5. Jagannath et al.
[89] propose 12 mutation operators, in 3 groups, for ActorFoundry
[57], that are based on individual experiences of authors and not a
curated set of real bugs, are not implemented, are not evaluated, and
are specific to the syntax and semantics of ActorFoundry and not
applicable to today’s industrial-strength implementations of actor
concurrency. Six out of our 32 mutation operators (18.8%) and the
remaining twenty-six (81.2%) in PATH, CONFIGURATION, LIFE CYCLE,
INTERACTION, RACE, and CLUSTER groups are new. There are six
operators that are unique to Jagannath et al.’s. Two Remove Con-
straint (RC) and Modify Constraint (MC) are inapplicable to Akka
because Akka does not allow conditional constraints to disable the
receiving of messages. For the remaining four, Modify Message
Parameter (MMP), Reorder Message Parameter (RMP), Modify Cre-
ation Parameter (MCP), and Reorder Creation Parameter (RCP),
there were no bugs in & that required a similar operator.

Previous work proposes ConMan [68] and CCMutator [98] to mu-
tate multithreaded concurrency and its constructs, such as threads,
locks, conditional variables, and atomic blocks, in languages like
Java and C/C++. However, the fundamental differences between
actor and multithreaded concurrency, the syntax and semantics
of their constructs, and their bugs make multithreaded mutation
testing inapplicable to actor concurrency.

Languages and paradigms Previous work proposes mutation
testing for different programming paradigms, such as functional
[100], object- [109], aspect- [116], and declarative-oriented [24] pro-
gramming, and different programming models, such web [124], mo-
bile [106], and machine learning [88]. Previous work also proposes
mutation testing for specification [66], modeling [78] and a broad
range of programming languages, such as Java [110], JavaScript
[113], C [71], C++ [15], C# [77], and Ruby [101]. However, none of
these works design, implement, and evaluate mutation testing for
actor concurrency using real bugs.
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Mutant quality Previous work propose several techniques,
such as subsuming [52, 96], dominator [97], disjoint [95], mini-
mal [52], and surface [84] mutants to reduce non-quality trivial,
redundant, and equivalent mutants. Others, quantify the mutant
usefulness using the triviality, equivalence and dominance of the
mutant and relate the usefulness to the program context of the
mutant [92]. However, none evaluate the quality of actor mutants.

Efficiency Previous work proposes Comutation [82] to select a
small subset of multithreaded mutation operators with less number
of mutants but the same test effectiveness and MutMut [81] for
efficient execution of multithreaded mutants. However, selective
and efficient mutation testing are outside the scope of this paper.

9 CONCLUSIONS AND FUTURE WORK

In this work, we propose pAkka for mutation testing of Akka ac-
tor concurrency. To design, implement, and evaluate pAkka, we
manually analyze a set of 186 real Akka bugs, design 32 mutation
operators to induce these bugs, implement these operators in an
Eclipse plugin, generate 11.7k mutants of 10 real applications, mea-
sure the quality of mutants and effectiveness of tests, generate 26.2k
PIT mutants and compare with pAkka, analyze the bug coverage
and overlap between pAkka, PIT, and actor operators in Jagannath
et al.’s, and discuss a few implications of our findings. One avenue
of future work is to use program context to predict and avoid gen-
eration of lower quality mutants [92]. Another avenue is predictive
mutation testing for actor concurrency using machine learning.

DATA AVAILABILITY

All the data and tools that we use in this work are publicly available
in our replication package [27]. These include pAkka’s mutation
operators, their formal definitions, Akka API source code changes,
and the source code of our Eclipse plugin.
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