Towards Safe Automated Refactoring of Imperative
Deep Learning Programs to Graph Execution

Raffi Khatchadourian*T, Tatiana Castro Vélez!, Mehdi Bagherzadehi, Nan Jiaf, Anita Raja*T
*City University of New York (CUNY) Hunter College, TCUNY Graduate Center, fOakland University
Email: raffi.khatchadourian @hunter.cuny.edu, tcastrovelez @ gradcenter.cuny.edu, mbagherzadeh @oakland.edu,
njia@gradcenter.cuny.edu, anita.raja@hunter.cuny.edu

Abstract—Efficiency is essential to support responsiveness
w.r.t. ever-growing datasets, especially for Deep Learning (DL)
systems. DL frameworks have traditionally embraced deferred
execution-style DL code—supporting symbolic, graph-based
Deep Neural Network (DNN) computation. While scalable, such
development is error-prone, non-intuitive, and difficult to de-
bug. Consequently, more natural, imperative DL frameworks
encouraging eager execution have emerged at the expense of
run-time performance. Though hybrid approaches aim for the
“best of both worlds,” using them effectively requires sub-
tle considerations to make code amenable to safe, accurate,
and efficient graph execution. We present our ongoing work
on automated refactoring that assists developers in specifying
whether and how their otherwise eagerly-executed imperative
DL code could be reliably and efficiently executed as graphs
while preserving semantics. The approach, based on a novel
imperative tensor analysis, will automatically determine when
it is safe and potentially advantageous to migrate imperative DL
code to graph execution and modify decorator parameters or
eagerly executing code already running as graphs. The approach
is being implemented as a PyDev Eclipse IDE plug-in and uses
the WALA Ariadne analysis framework. We discuss our ongoing
work towards optimizing imperative DL code to its full potential.

Index Terms—deep learning, refactoring, graph execution

I. INTRODUCTION

Machine Learning (ML), including Deep Learning (DL),
systems are pervasive. They use dynamic models, whose
behavior is ultimately defined by input data. However, as
datasets grow, efficiency becomes essential [1]. DL frame-
works have traditionally embraced a deferred execution-style
that supports symbolic, graph-based Deep Neural Network
(DNN) computation [2], [3]. While scalable, development
is error-prone, cumbersome, and produces programs that are
difficult to debug [4]-[7]. Contrarily, more natural, less error-
prone, and easier-to-debug imperative DL frameworks [8]—
[10] encouraging eager execution have emerged. Though
ubiquitous, such programs are less efficient and scalable
as their deferred-execution counterparts [3], [9], [11]-[14].
Thus, hybrid approaches [11], [12], [15] execute imperative
DL programs as static graphs at run-time. For example, in
TensorFlow [16], AutoGraph [11] can enhance performance
by decorating (annotating)—with optional yet influential dec-
orator arguments—appropriate Python function(s) with @t f.

This material is based upon work supported by the National Science
Foundation under Award Nos. CCF-22-00343 and CNS-22-13763.

function. Decorating functions with such hybridization APIs
can increase code performance without explicit modification.

Though promising, hybridization necessitates non-trivial
metadata [13] and exhibits limitations and known issues [17]
with native program constructs. Subtle considerations are
required to make code amenable to safe, accurate, and efficient
graph execution [18], [19]. Alternative approaches [13] impose
custom Python interpreters, which may be impractical for
industry, and support only specific Python constructs. Thus,
developers are burdened with making their code compatible
with the underlying execution model conversion and manually
specifying the functions to be converted. Manual analysis and
refactoring (semantics-preserving, source-to-source transfor-
mation) can be overwhelming, error- and omission-prone [20],
and complicated by Object-Orientation (OO) (e.g., Keras [10])
and dynamically-typed languages (e.g., Python).

We present our ongoing work on a fully automated,
semantics-preserving refactoring approach that transforms oth-
erwise eagerly-executed imperative (Python) DL code for
enhanced performance by specifying whether and how such
code could be reliably and efficiently executed as graphs at
run-time. The approach—based on a novel tensor analysis
specifically for imperative DL code—will infer when it is
safe and potentially advantageous to migrate imperative DL
code to graph execution and modify decorator parameters or
eagerly executing code already running as graphs. It will also
discover possible side-effects in Python functions to safely
transform imperative DL code to either execute eagerly or
as a graph at run-time. While LLMs [21] and big data-
driven refactorings [22] have emerged, obtaining a (correct)
dataset large enough to automatically extract the proposed
refactorings is challenging as developers struggle with (manu-
ally) migrating DL code to graph execution [18]. Also, while
developers generally underuse automated refactorings [23],
[24], since data scientists and engineers may not be classi-
cally trained software engineers, they may be more open to
using automated (refactoring) tools. Furthermore, our approach
will be fully automated with minimal barrier to entry. Our
refactoring approach is being implemented as an open-source
PyDev Eclipse Integrated Development Environment (IDE)
plug-in [25] that integrates analyses from the WALA Ariadne
analysis framework [26]. Moreover, while the refactorings will
operate on imperative DL code that is easier-to-debug than its
deferred-execution counterparts, the refactorings themselves

1
2
3

1 import tensorflow as tf
class SequentialModel (Model) : 2 class SequentialModel (Model) :
def _ init__ (, **xkwargs) : 3 def _ init_ (, *%kwargs) :
(SequentialModel,) 4 (SequentialModel,)
.__dinit_ (...) 5 .__init_ (...)
.flatten = layers.Flatten(6 .flatten = layers.Flatten(
input_shape=(28, 28)) 7 input_shape= , 28))
num_layers = 8 num_layers =

.layers = [layers .layers = [layers
.Dense (64, activation=) 10 .Dense (64,activation=)
for n in (num_layers)] 11 for n in (num_layers)]

.dropout = Dropout (0.2) 12 .dropout = Dropout (0.2)
.dense_2 = layers.Dense(10)13 .dense_2 = layers.Dense (10)
14
15 @tf.function
def _ call_(., X): 16 def _ call_ (, X))t
X = .flatten (x) 17 X = .flatten (x)
for layer in .layers: 18 for layer in .layers:
x = layer (x) 19 x = layer (x)
x = .dropout (x) 20 x = .dropout (x)
X = .dense_2 (x) 21 x = .dense_2 (x)
return x 22 return x

(a) Code snippet before refactoring. (b) Improved code via refactoring.
Listing 1: TensorFlow imperative (OO) DL model code [14].

will not improve debuggability but instead enable developers
to have performant easily-debuggable (imperative) DL code.

II. MOTIVATING EXAMPLES

Lst. la portrays TensorFlow imperative (OO) DL code
representing a modestly-sized model for classifying images.
By default, this code runs eagerly; however, it may be pos-
sible to enhance performance by executing it as a graph
at run-time. Lst. 1b, lines 1 and 15 display the refactoring
with the imperative DL code executed as a graph at run-
time (added code is underlined). AutoGraph [11] is now
used to potentially improve performance by decorating—with
optional yet influential decorator arguments—call () with
@tf.function. At run-time, call()’s execution will be
“traced” and an equivalent graph will be generated [17]. In this
case, a speedup (runtimeoid/runtimen,.,) of ~9.22 ensues [27].
Though promising, using hybridization reliably and efficiently
is challenging [13], [17]. For instance, side-effect producing,
native Python statements are problematic for tf. function-
decorated functions [17]. Because their executions are traced, a
function’s behavior is “etched” (frozen) into its corresponding
graph and thus can have unexpected results.

III. OPTIMIZATION APPROACH

We work towards two new refactorings, namely, CON-
VERT EAGER FUNCTION TO HYBRID and OPTIMIZE HYBRID
FUNCTION. The former transforms otherwise eagerly-executed
imperative (Python) DL code for enhanced performance, au-
tomatically specifying whether and how such code could
be reliably and efficiently executed as graphs at run-time.
It infers when it is safe and potentially advantageous to
migrate imperative DL code to graph execution. The latter
either modifies existing decorator parameters or the structure
of imperative DL code already running as graphs. While the
DL code portrayed in Ist. 1b is sequentially executed, hybrid
functions share some commonality with concurrent programs.
For example, to avoid unexpected behavior, such functions
should avoid side-effects. In our refactoring formulation, we
will approximate aspects like side-effects in deciding which
transformations to perform to ensure that they are safe, i.e.,
that the original program semantics are preserved. To ensure

that the transformations are advantageous, we will involve
(imperative) tensor analysis to avoid function “retracing” so
that newly hybridized functions have tensor parameters whose
shapes are sufficiently general. Otherwise, the transformed
function would be traced every time it called, potentially
degrading performance [28]. Furthermore, DL code interacts
with many third-party libraries [5], [6], [29]-[31]. Our ap-
proach will operate on a closed-world assumption that assumes
access to all source code that could possibly affect or be
affected by the refactorings. We will then relax this assumption
in our implementation by conservatively failing refactoring
preconditions for functions defined elsewhere.

Challenges include a lack of static type information, which
is necessary to determine candidate functions (must have at
least one parameter of type Tensor). Our current approach is
to use Python 3 type hints if present. We are also augmenting
Ariadne [26] to analyze imperative Python code (TensorFlow
2). Also, unlike, e.g., Java, Python has no restrictions on
decorator (annotation) arguments. Thus, we utilize Ariadne
for dataflow analysis to determine configuration values. Fur-
thermore, t f.function may be used as a first-class function
instead of a decorator. To this end, we are working towards
building a fluent API typestate analysis for imperative DL code
by adapting the work of Khatchadourian et al. [32]. Existing
work for determining tensor shapes only works for procedural
TensorFlow (TF v1) code. Even finding a fully qualified name
(FQN) of a program entity (e.g., t£.function) statically is
difficult in Python. Import statements can appear anywhere in
the code. Moreover, there is also import aliasing (e.g., import
tensorflow as tf) to handle.

Complex static analysis can be expensive and not scalable.
However, such analyses may be useful for future approaches
by the community. Faster speculative analysis [1] uses contex-
tual (ML) keywords to make assumptions. Here, assumptions
are explicitly presented to developers. Developers then decide
if assumptions are valid and may reject the refactoring. How-
ever, it involves more developer input, and DL frameworks
evolve constantly, potentially changing ‘“keywords.” We are
currently considering devising a hybrid analysis [13] that runs
DL code for several epochs to collect type information. Such
an approach can be fast but relies on particular datasets and
thus may be less generalizable.

IV. CONCLUSION & FUTURE WORK

Imperative DL code is easier to debug, write, and maintain
than traditional DL code that runs in a deferred execution.
However, it comes at the expense of (run-time) performance.
Hybrid approaches bridge the gap between eager and graph
execution. Using hybrid techniques to achieve optimal perfor-
mance and semantics preservation is difficult. Our in progress
work aims to automate client-side analyses and transforma-
tions to use hybridization APIs correctly and optimally. In
the future, we plan to evaluate our approach by curating
a DL Python project dataset from Castro Vélez et al. [18]
that is ready to be analyzed, with dependency and build
infrastructure. We will also open-source our refactoring tools.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

W. Zhou, Y. Zhao, G. Zhang, and X. Shen, “HARP: Holistic analysis
for refactoring Python-based analytics programs,” in International
Conference on Software Engineering, 2020, pp. 506-517. por: 10.
1145/3377811.3380434.

Google LLC. “Migrate your TensorFlow 1 code to TensorFlow 2,
Automatic conversion script,” TensorFlow Core. (May 27, 2021),
[Online]. Available: https://tensorflow.org/guide/migrate#automatic_
conversion_script (visited on 05/27/2021).

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A flexible and efficient Machine
Learning library for heterogeneous distributed systems,” in Workshop
on Machine Learning Systems at NIPS, 2015. arXiv: 1512.01274
[cs.DC].

Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empir-
ical study on TensorFlow program bugs,” in International Symposium
on Software Testing and Analysis, 2018. DOI: 10.1145/3213846 .
3213866.

M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on Deep Learning bug characteristics,” in Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Aug. 2019. DOIL: 10.1145/3338906.3338955.
M. J. Islam, H. A. Nguyen, R. Pan, and H. Rajan, What do developers
ask about ML libraries? a large-scale study using Stack Overflow,
2019. arXiv: 1906.11940 [cs.SE].

T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim, “An empirical study
of common challenges in developing Deep Learning applications,”
in International Symposium on Software Reliability Engineering, Oct.
2019. por: 10.1109/ISSRE.2019.00020.

A. Agrawal, A. N. Modi, A. Passos, A. Lavoie, A. Agarwal, A.
Shankar, I. Ganichev, J. Levenberg, M. Hong, R. Monga, and S. Cai,
TensorFlow Eager: A multi-stage, Python-embedded DSL for Machine
Learning, 2019. arXiv: 1903.01855 [cs.PL].

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: An imperative style, high-
performance Deep Learning library, Dec. 3, 2019. arXiv: 1912.01703
[cs.LG].

F. Chollet, Deep Learning with Python, 2nd ed. Manning, 2020.

D. Moldovan, J. M. Decker, F. Wang, A. A. Johnson, B. K. Lee,
Z. Nado, D. Sculley, T. Rompf, and A. B. Wiltschko, AutoGraph:
Imperative-style coding with graph-based performance, 2019. arXiv:
1810.08061 [cs.PL].

Facebook Inc. “PyTorch documentation, TorchScript.” en. (2019),
[Online]. Available: https://pytorch.org/docs/stable/jit.html (visited
on 02/19/2021).

E. Jeong, S. Cho, G.-I. Yu, J. S. Jeong, D.-J. Shin, T. Kim, and
B.-G. Chun, “Speculative symbolic graph execution of imperative
Deep Learning programs,” SIGOPS Oper. Syst. Rev., vol. 53, no. 1,
pp. 26-33, Jul. 2019, 1SSN: 0163-5980. por: 10. 1145/3352020.
3352025.

Google LLC. “Introduction to graphs and tf.function.” (Jan. 19, 2022),
[Online]. Available: https :// tensorflow . org / guide / intro_to_graphs
(visited on 01/20/2022).

Apache. “Hybridize, Apache MXNet documentation.” (Apr. 8, 2021),
[Online]. Available: https://mxnet.apache.org/versions/1.8.0/api/
python/docs/tutorials/packages/gluon/blocks/hybridize.html (visited on
04/08/2021).

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S.
Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-
scale Machine Learning,” in Symposium on Operating Systems Design
and Implementation, 2016.

Google LLC. “Better performance with tf.function.” (Feb. 4, 2021),
[Online]. Available: https://tensorflow.org/guide/function (visited on
02/19/2021).

T. Castro Vélez, R. Khatchadourian, M. Bagherzadeh, and A. Raja,
“Challenges in migrating imperative Deep Learning programs to graph
execution: An empirical study,” in International Conference on Mining
Software Repositories, ser. MSR °22, ACM/IEEE, ACM, May 2022.
DOI: 10.1145/3524842.3528455. arXiv: 2201.09953 [cs.SE].

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

J. Cao, B. Chen, C. Sun, L. Hu, and X. Peng, Characterizing
performance bugs in Deep Learning systems, Dec. 3, 2021. arXiv:
2112.01771 [cs.SE].

D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential Java code
for concurrency via concurrent libraries,” in International Conference
on Software Engineering, IEEE, 2009, pp. 397-407. por: 10.1109/
ICSE.2009.5070539.

OpenAl, Inc. “ChatGPT.” (Aug. 18, 2023), [Online]. Available: https:
//chat.openai.com (visited on 08/18/2023).

M. Dilhara, A. Ketkar, N. Sannidhi, and D. Dig, “Discovering repeti-
tive code changes in Python ML systems,” in International Conference
on Software Engineering, ser. ICSE 22, To appear., 2022.

S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A
comparative study of manual and automated refactorings,” in Euro-
pean Conference on Object-Oriented Programming, G. Castagna, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 552-576,
ISBN: 978-3-642-39038-8.

M. Kim, T. Zimmermann, and N. Nagappan, “A field study of
refactoring challenges and benefits,” in Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. FSE *12, Cary, North Carolina: ACM,
Nov. 2012, ISBN: 9781450316149. Do1: 10.1145/2393596.2393655.
F. Zadrozny. “Pydev.” (Apr. 15, 2023), [Online]. Available: https://
www.pydev.org (visited on 05/31/2023).

J. Dolby, A. Shinnar, A. Allain, and J. Reinen, “Ariadne: Analy-
sis for Machine Learning programs,” in International Workshop on
Machine Learning and Programming Languages, ser. MAPL 2018,
ACM SIGPLAN, Philadelphia, PA, USA: Association for Computing
Machinery, 2018, pp. 1-10, 1SBN: 9781450358347. por: 10.1145/
3211346.3211349.

R. Khatchadourian. “graph_execution_time_comparison.ipynb.”
(Feb. 23, 2021), [Online]. Available: https://bit.ly/3bwrhVt (visited on
11/03/2021).

Google LLC. “Better performance with tf.function, Controlling retrac-
ing,” TensorFlow Core, TensorFlow. (Nov. 11, 2021), [Online]. Avail-
able: https://www.tensorflow.org/guide/function#controlling_retracing
(visited on 01/10/2022).

M. Dilhara, A. Ketkar, and D. Dig, “Understanding software-2.0:
A study of Machine Learning library usage and evolution,” ACM
Transactions on Software Engineering and Methodology, 2021. DOI:
10.1145/3453478.

M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing Deep Neural
Networks: Fix patterns and challenges,” in International Conference on
Software Engineering, 2020. DOIL: 10.1145/3377811.3380378.

Z. Zhang, Y. Yang, X. Xia, D. Lo, X. Ren, and J. Grundy, “Unveiling
the mystery of API evolution in Deep Learning frameworks: A case
study of TensorFlow 2, in International Conference on Software
Engineering, ser. ICSE-SEIP, 2021. poI: 10.1109/ICSE-SEIP52600.
2021.00033.

R. Khatchadourian, Y. Tang, M. Bagherzadeh, and S. Ahmed, “Safe
automated refactoring for intelligent parallelization of Java 8 streams,”
in International Conference on Software Engineering, ser. ICSE ’19,
IEEE Press, 2019, pp. 619-630. por: 10.1109/ICSE.2019.00072.

	Introduction
	Motivating Examples
	Optimization Approach
	Conclusion & Future Work

