
Towards Safe Automated Refactoring of Imperative

Deep Learning Programs to Graph Execution

Raffi Khatchadourian∗†, Tatiana Castro Vélez†, Mehdi Bagherzadeh‡, Nan Jia†, Anita Raja∗†

∗City University of New York (CUNY) Hunter College, †CUNY Graduate Center, ‡Oakland University

Email: raffi.khatchadourian@hunter.cuny.edu, tcastrovelez@gradcenter.cuny.edu, mbagherzadeh@oakland.edu,

njia@gradcenter.cuny.edu, anita.raja@hunter.cuny.edu

Abstract—Efficiency is essential to support responsiveness
w.r.t. ever-growing datasets, especially for Deep Learning (DL)
systems. DL frameworks have traditionally embraced deferred
execution-style DL code—supporting symbolic, graph-based
Deep Neural Network (DNN) computation. While scalable, such
development is error-prone, non-intuitive, and difficult to de-
bug. Consequently, more natural, imperative DL frameworks
encouraging eager execution have emerged at the expense of
run-time performance. Though hybrid approaches aim for the
“best of both worlds,” using them effectively requires sub-
tle considerations to make code amenable to safe, accurate,
and efficient graph execution. We present our ongoing work
on automated refactoring that assists developers in specifying
whether and how their otherwise eagerly-executed imperative
DL code could be reliably and efficiently executed as graphs
while preserving semantics. The approach, based on a novel
imperative tensor analysis, will automatically determine when
it is safe and potentially advantageous to migrate imperative DL
code to graph execution and modify decorator parameters or
eagerly executing code already running as graphs. The approach
is being implemented as a PyDev Eclipse IDE plug-in and uses
the WALA Ariadne analysis framework. We discuss our ongoing
work towards optimizing imperative DL code to its full potential.

Index Terms—deep learning, refactoring, graph execution

I. INTRODUCTION

Machine Learning (ML), including Deep Learning (DL),

systems are pervasive. They use dynamic models, whose

behavior is ultimately defined by input data. However, as

datasets grow, efficiency becomes essential [1]. DL frame-

works have traditionally embraced a deferred execution-style

that supports symbolic, graph-based Deep Neural Network

(DNN) computation [2], [3]. While scalable, development

is error-prone, cumbersome, and produces programs that are

difficult to debug [4]–[7]. Contrarily, more natural, less error-

prone, and easier-to-debug imperative DL frameworks [8]–

[10] encouraging eager execution have emerged. Though

ubiquitous, such programs are less efficient and scalable

as their deferred-execution counterparts [3], [9], [11]–[14].

Thus, hybrid approaches [11], [12], [15] execute imperative

DL programs as static graphs at run-time. For example, in

TensorFlow [16], AutoGraph [11] can enhance performance

by decorating (annotating)—with optional yet influential dec-

orator arguments—appropriate Python function(s) with @tf.

This material is based upon work supported by the National Science
Foundation under Award Nos. CCF-22-00343 and CNS-22-13763.

function. Decorating functions with such hybridization APIs

can increase code performance without explicit modification.

Though promising, hybridization necessitates non-trivial

metadata [13] and exhibits limitations and known issues [17]

with native program constructs. Subtle considerations are

required to make code amenable to safe, accurate, and efficient

graph execution [18], [19]. Alternative approaches [13] impose

custom Python interpreters, which may be impractical for

industry, and support only specific Python constructs. Thus,

developers are burdened with making their code compatible

with the underlying execution model conversion and manually

specifying the functions to be converted. Manual analysis and

refactoring (semantics-preserving, source-to-source transfor-

mation) can be overwhelming, error- and omission-prone [20],

and complicated by Object-Orientation (OO) (e.g., Keras [10])

and dynamically-typed languages (e.g., Python).

We present our ongoing work on a fully automated,

semantics-preserving refactoring approach that transforms oth-

erwise eagerly-executed imperative (Python) DL code for

enhanced performance by specifying whether and how such

code could be reliably and efficiently executed as graphs at

run-time. The approach—based on a novel tensor analysis

specifically for imperative DL code—will infer when it is

safe and potentially advantageous to migrate imperative DL

code to graph execution and modify decorator parameters or

eagerly executing code already running as graphs. It will also

discover possible side-effects in Python functions to safely

transform imperative DL code to either execute eagerly or

as a graph at run-time. While LLMs [21] and big data-

driven refactorings [22] have emerged, obtaining a (correct)

dataset large enough to automatically extract the proposed

refactorings is challenging as developers struggle with (manu-

ally) migrating DL code to graph execution [18]. Also, while

developers generally underuse automated refactorings [23],

[24], since data scientists and engineers may not be classi-

cally trained software engineers, they may be more open to

using automated (refactoring) tools. Furthermore, our approach

will be fully automated with minimal barrier to entry. Our

refactoring approach is being implemented as an open-source

PyDev Eclipse Integrated Development Environment (IDE)

plug-in [25] that integrates analyses from the WALA Ariadne

analysis framework [26]. Moreover, while the refactorings will

operate on imperative DL code that is easier-to-debug than its

deferred-execution counterparts, the refactorings themselves

1

2 class SequentialModel(Model):

3 def __init__(self, **kwargs):

4 super(SequentialModel, self)

5 .__init__(...)

6 self.flatten = layers.Flatten(

7 input_shape=(28, 28))

8 num_layers = 100 # Add layers.

9 self.layers = [layers

10 .Dense(64,activation="relu")

11 for n in range(num_layers)]

12 self.dropout = Dropout(0.2)

13 self.dense_2 = layers.Dense(10)

14

15

16 def __call__(self, x):

17 x = self.flatten(x)

18 for layer in self.layers:

19 x = layer(x)

20 x = self.dropout(x)

21 x = self.dense_2(x)

22 return x

(a) Code snippet before refactoring.

1 import tensorflow as tf

2 class SequentialModel(Model):

3 def __init__(self, **kwargs):

4 super(SequentialModel, self)

5 .__init__(...)

6 self.flatten = layers.Flatten(

7 input_shape=(28, 28))

8 num_layers = 100 # Add layers.

9 self.layers = [layers

10 .Dense(64,activation="relu")

11 for n in range(num_layers)]

12 self.dropout = Dropout(0.2)

13 self.dense_2 = layers.Dense(10)

14

15 @tf.function

16 def __call__(self, x):

17 x = self.flatten(x)

18 for layer in self.layers:

19 x = layer(x)

20 x = self.dropout(x)

21 x = self.dense_2(x)

22 return x

(b) Improved code via refactoring.

Listing 1: TensorFlow imperative (OO) DL model code [14].

will not improve debuggability but instead enable developers

to have performant easily-debuggable (imperative) DL code.

II. MOTIVATING EXAMPLES

Lst. 1a portrays TensorFlow imperative (OO) DL code

representing a modestly-sized model for classifying images.

By default, this code runs eagerly; however, it may be pos-

sible to enhance performance by executing it as a graph

at run-time. Lst. 1b, lines 1 and 15 display the refactoring

with the imperative DL code executed as a graph at run-

time (added code is underlined). AutoGraph [11] is now

used to potentially improve performance by decorating—with

optional yet influential decorator arguments—call() with

@tf.function. At run-time, call()’s execution will be

“traced” and an equivalent graph will be generated [17]. In this

case, a speedup (runtimeold/runtimenew) of ∼9.22 ensues [27].

Though promising, using hybridization reliably and efficiently

is challenging [13], [17]. For instance, side-effect producing,

native Python statements are problematic for tf.function-

decorated functions [17]. Because their executions are traced, a

function’s behavior is “etched” (frozen) into its corresponding

graph and thus can have unexpected results.

III. OPTIMIZATION APPROACH

We work towards two new refactorings, namely, CON-

VERT EAGER FUNCTION TO HYBRID and OPTIMIZE HYBRID

FUNCTION. The former transforms otherwise eagerly-executed

imperative (Python) DL code for enhanced performance, au-

tomatically specifying whether and how such code could

be reliably and efficiently executed as graphs at run-time.

It infers when it is safe and potentially advantageous to

migrate imperative DL code to graph execution. The latter

either modifies existing decorator parameters or the structure

of imperative DL code already running as graphs. While the

DL code portrayed in lst. 1b is sequentially executed, hybrid

functions share some commonality with concurrent programs.

For example, to avoid unexpected behavior, such functions

should avoid side-effects. In our refactoring formulation, we

will approximate aspects like side-effects in deciding which

transformations to perform to ensure that they are safe, i.e.,

that the original program semantics are preserved. To ensure

that the transformations are advantageous, we will involve

(imperative) tensor analysis to avoid function “retracing” so

that newly hybridized functions have tensor parameters whose

shapes are sufficiently general. Otherwise, the transformed

function would be traced every time it called, potentially

degrading performance [28]. Furthermore, DL code interacts

with many third-party libraries [5], [6], [29]–[31]. Our ap-

proach will operate on a closed-world assumption that assumes

access to all source code that could possibly affect or be

affected by the refactorings. We will then relax this assumption

in our implementation by conservatively failing refactoring

preconditions for functions defined elsewhere.

Challenges include a lack of static type information, which

is necessary to determine candidate functions (must have at

least one parameter of type Tensor). Our current approach is

to use Python 3 type hints if present. We are also augmenting

Ariadne [26] to analyze imperative Python code (TensorFlow

2). Also, unlike, e.g., Java, Python has no restrictions on

decorator (annotation) arguments. Thus, we utilize Ariadne

for dataflow analysis to determine configuration values. Fur-

thermore, tf.function may be used as a first-class function

instead of a decorator. To this end, we are working towards

building a fluent API typestate analysis for imperative DL code

by adapting the work of Khatchadourian et al. [32]. Existing

work for determining tensor shapes only works for procedural

TensorFlow (TF v1) code. Even finding a fully qualified name

(FQN) of a program entity (e.g., tf.function) statically is

difficult in Python. Import statements can appear anywhere in

the code. Moreover, there is also import aliasing (e.g., import

tensorflow as tf) to handle.

Complex static analysis can be expensive and not scalable.

However, such analyses may be useful for future approaches

by the community. Faster speculative analysis [1] uses contex-

tual (ML) keywords to make assumptions. Here, assumptions

are explicitly presented to developers. Developers then decide

if assumptions are valid and may reject the refactoring. How-

ever, it involves more developer input, and DL frameworks

evolve constantly, potentially changing “keywords.” We are

currently considering devising a hybrid analysis [13] that runs

DL code for several epochs to collect type information. Such

an approach can be fast but relies on particular datasets and

thus may be less generalizable.

IV. CONCLUSION & FUTURE WORK

Imperative DL code is easier to debug, write, and maintain

than traditional DL code that runs in a deferred execution.

However, it comes at the expense of (run-time) performance.

Hybrid approaches bridge the gap between eager and graph

execution. Using hybrid techniques to achieve optimal perfor-

mance and semantics preservation is difficult. Our in progress

work aims to automate client-side analyses and transforma-

tions to use hybridization APIs correctly and optimally. In

the future, we plan to evaluate our approach by curating

a DL Python project dataset from Castro Vélez et al. [18]

that is ready to be analyzed, with dependency and build

infrastructure. We will also open-source our refactoring tools.

REFERENCES

[1] W. Zhou, Y. Zhao, G. Zhang, and X. Shen, “HARP: Holistic analysis
for refactoring Python-based analytics programs,” in International

Conference on Software Engineering, 2020, pp. 506–517. DOI: 10 .
1145/3377811.3380434.

[2] Google LLC. “Migrate your TensorFlow 1 code to TensorFlow 2,
Automatic conversion script,” TensorFlow Core. (May 27, 2021),
[Online]. Available: https://tensorflow.org/guide/migrate#automatic
conversion script (visited on 05/27/2021).

[3] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A flexible and efficient Machine
Learning library for heterogeneous distributed systems,” in Workshop

on Machine Learning Systems at NIPS, 2015. arXiv: 1512 . 01274
[cs.DC].

[4] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empir-
ical study on TensorFlow program bugs,” in International Symposium

on Software Testing and Analysis, 2018. DOI: 10 . 1145 / 3213846 .
3213866.

[5] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on Deep Learning bug characteristics,” in Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, Aug. 2019. DOI: 10.1145/3338906.3338955.
[6] M. J. Islam, H. A. Nguyen, R. Pan, and H. Rajan, What do developers

ask about ML libraries? a large-scale study using Stack Overflow,
2019. arXiv: 1906.11940 [cs.SE].

[7] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim, “An empirical study
of common challenges in developing Deep Learning applications,”
in International Symposium on Software Reliability Engineering, Oct.
2019. DOI: 10.1109/ISSRE.2019.00020.

[8] A. Agrawal, A. N. Modi, A. Passos, A. Lavoie, A. Agarwal, A.
Shankar, I. Ganichev, J. Levenberg, M. Hong, R. Monga, and S. Cai,
TensorFlow Eager: A multi-stage, Python-embedded DSL for Machine

Learning, 2019. arXiv: 1903.01855 [cs.PL].
[9] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: An imperative style, high-

performance Deep Learning library, Dec. 3, 2019. arXiv: 1912.01703
[cs.LG].

[10] F. Chollet, Deep Learning with Python, 2nd ed. Manning, 2020.
[11] D. Moldovan, J. M. Decker, F. Wang, A. A. Johnson, B. K. Lee,

Z. Nado, D. Sculley, T. Rompf, and A. B. Wiltschko, AutoGraph:

Imperative-style coding with graph-based performance, 2019. arXiv:
1810.08061 [cs.PL].

[12] Facebook Inc. “PyTorch documentation, TorchScript.” en. (2019),
[Online]. Available: https:/ /pytorch.org/docs/stable/jit .html (visited
on 02/19/2021).

[13] E. Jeong, S. Cho, G.-I. Yu, J. S. Jeong, D.-J. Shin, T. Kim, and
B.-G. Chun, “Speculative symbolic graph execution of imperative
Deep Learning programs,” SIGOPS Oper. Syst. Rev., vol. 53, no. 1,
pp. 26–33, Jul. 2019, ISSN: 0163-5980. DOI: 10 . 1145 / 3352020 .
3352025.

[14] Google LLC. “Introduction to graphs and tf.function.” (Jan. 19, 2022),
[Online]. Available: https : / / tensorflow . org / guide / intro to graphs
(visited on 01/20/2022).

[15] Apache. “Hybridize, Apache MXNet documentation.” (Apr. 8, 2021),
[Online]. Available: https : / / mxnet . apache . org / versions / 1 . 8 . 0 / api /
python/docs/tutorials/packages/gluon/blocks/hybridize.html (visited on
04/08/2021).

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S.
Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-
scale Machine Learning,” in Symposium on Operating Systems Design

and Implementation, 2016.
[17] Google LLC. “Better performance with tf.function.” (Feb. 4, 2021),

[Online]. Available: https://tensorflow.org/guide/function (visited on
02/19/2021).

[18] T. Castro Vélez, R. Khatchadourian, M. Bagherzadeh, and A. Raja,
“Challenges in migrating imperative Deep Learning programs to graph
execution: An empirical study,” in International Conference on Mining

Software Repositories, ser. MSR ’22, ACM/IEEE, ACM, May 2022.
DOI: 10.1145/3524842.3528455. arXiv: 2201.09953 [cs.SE].

[19] J. Cao, B. Chen, C. Sun, L. Hu, and X. Peng, Characterizing

performance bugs in Deep Learning systems, Dec. 3, 2021. arXiv:
2112.01771 [cs.SE].

[20] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential Java code
for concurrency via concurrent libraries,” in International Conference

on Software Engineering, IEEE, 2009, pp. 397–407. DOI: 10 .1109/
ICSE.2009.5070539.

[21] OpenAI, Inc. “ChatGPT.” (Aug. 18, 2023), [Online]. Available: https:
//chat.openai.com (visited on 08/18/2023).

[22] M. Dilhara, A. Ketkar, N. Sannidhi, and D. Dig, “Discovering repeti-
tive code changes in Python ML systems,” in International Conference

on Software Engineering, ser. ICSE ’22, To appear., 2022.
[23] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A

comparative study of manual and automated refactorings,” in Euro-

pean Conference on Object-Oriented Programming, G. Castagna, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 552–576,
ISBN: 978-3-642-39038-8.

[24] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of
refactoring challenges and benefits,” in Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, ser. FSE ’12, Cary, North Carolina: ACM,
Nov. 2012, ISBN: 9781450316149. DOI: 10.1145/2393596.2393655.

[25] F. Zadrozny. “Pydev.” (Apr. 15, 2023), [Online]. Available: https: / /
www.pydev.org (visited on 05/31/2023).

[26] J. Dolby, A. Shinnar, A. Allain, and J. Reinen, “Ariadne: Analy-
sis for Machine Learning programs,” in International Workshop on

Machine Learning and Programming Languages, ser. MAPL 2018,
ACM SIGPLAN, Philadelphia, PA, USA: Association for Computing
Machinery, 2018, pp. 1–10, ISBN: 9781450358347. DOI: 10 . 1145 /
3211346.3211349.

[27] R. Khatchadourian. “graph execution time comparison.ipynb.”
(Feb. 23, 2021), [Online]. Available: https://bit.ly/3bwrhVt (visited on
11/03/2021).

[28] Google LLC. “Better performance with tf.function, Controlling retrac-
ing,” TensorFlow Core, TensorFlow. (Nov. 11, 2021), [Online]. Avail-
able: https://www.tensorflow.org/guide/function#controlling retracing
(visited on 01/10/2022).

[29] M. Dilhara, A. Ketkar, and D. Dig, “Understanding software-2.0:
A study of Machine Learning library usage and evolution,” ACM

Transactions on Software Engineering and Methodology, 2021. DOI:
10.1145/3453478.

[30] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing Deep Neural
Networks: Fix patterns and challenges,” in International Conference on

Software Engineering, 2020. DOI: 10.1145/3377811.3380378.
[31] Z. Zhang, Y. Yang, X. Xia, D. Lo, X. Ren, and J. Grundy, “Unveiling

the mystery of API evolution in Deep Learning frameworks: A case
study of TensorFlow 2,” in International Conference on Software

Engineering, ser. ICSE-SEIP, 2021. DOI: 10.1109/ICSE-SEIP52600.
2021.00033.

[32] R. Khatchadourian, Y. Tang, M. Bagherzadeh, and S. Ahmed, “Safe
automated refactoring for intelligent parallelization of Java 8 streams,”
in International Conference on Software Engineering, ser. ICSE ’19,
IEEE Press, 2019, pp. 619–630. DOI: 10.1109/ICSE.2019.00072.

	Introduction
	Motivating Examples
	Optimization Approach
	Conclusion & Future Work

