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Error Analysis for Parameter Estimation of Li-ion Battery subject to
System Uncertainties
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Abstract— Lithium-ion battery parameter estimation is a
dynamic research field in which creative and novel algorithms
are being developed to tune high-fidelity models for advanced
control of energy systems. Amidst these efforts, little focus has
been placed on the fundamental mechanisms associated with es-
timation accuracy, giving rise to the question, why is an estimate
accurate or inaccurate? In response, we derive a generalized
multivariate estimation error equation for the least-squares
objective, which reveals that the error can be represented as
the product of system uncertainties (i.e., in model, measure-
ment, and parameter) and uncertainty-propagating sensitivity
structures. We then relate the error equation to conventional
error analysis criteria, such as parameter sensitivity, the Fisher
information matrix, and the Cramér-Rao bound, to assess
the benefits and limitations of each. Broadly, these criteria
share the principal deficiency of neglecting estimation bias and
system uncertainties, which are inevitable in practice. The error
equation is validated through a series of experimental uni-
and bivariate estimations of lithium-ion battery electrochemical
parameters. These results are also analyzed using the error
equation to study the composition of errors under various data
sets. Finally, the bivariate analysis indicates that adding an
additional target parameter to the estimation without increasing
the amount of data intrinsically reduces the error robustness
to the influence of system uncertainties.

I. INTRODUCTION

Parameter estimation can be broadly defined as fitting a
mathematical model to data through the identification of nu-
merical constants. Accordingly, it is a vital element of model-
based control, which strongly relies upon accurate models of
physical systems. Recently, the accelerating deployment of
electric vehicles and renewable energy systems has spurred
significant research interest in the estimation of electrochem-
ical parameters for lithium-ion (Li-ion) batteries [1], [2], [3],
which enables the high-fidelity battery modeling capabilities
necessary for advanced battery management systems [4] and
degradation monitoring [5].

A parameter estimation problem is comprised of three
elements—measurement data, system model, and estimation
algorithm. The algorithm is typically a set of optimization
procedures for determining the values of model parameters
that minimize a cost function associated with the error
between the measurement data and modeled output, e.g.,
sum of squared errors. As such, several challenges exist
that negatively affect the estimation performance. For ex-
ample, nonlinear models and large parameter sets can cause
identifiability issues and high computational expense [3].
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More notably, the measured data may not contain sufficient
information about the target parameters, which can limit the
attainable estimation accuracy [6].

Accordingly, estimation analysis methods have been ap-
plied to study the quality of data and its influence on the
estimation result. In battery modeling and control, con-
ventional analysis criteria are mostly based on parameter
sensitivities, the Fisher information, and the Cramér-Rao
bound. Sensitivity analysis examines how the variation of
parameter values affect the output data. For example, [7]
examined the sensitivity dynamics of electrochemical battery
parameters through analytical sensitivity analyses, while [2]
ranked the sensitivities of electrochemical battery parameters
through numerical sensitivity analyses. Computed based on
parameter sensitivities, the Fisher information can be used
to quantify the amount of information about each parameter
that is embedded in the data [8]. In [9], the eigenvalues of
the Fisher information matrix were used to rank the identifi-
ability of electrochemical battery parameters. The Fisher in-
formation matrix was analytically derived in [10] to examine
the identifiability of a simple battery model under periodic
excitation. Furthermore, the inverse of the Fisher information
gives the Cramér-Rao bound, which characterizes the lower
bound of the estimation error (co)variance for an unbiased
estimator [8], [11]. In [12], [13], the Cramér-Rao bound was
analytically derived for uni- and multivariate state and pa-
rameter estimation for a simple battery model under generic
excitation, to quantify the role of battery characteristics and
data on estimation accuracy. Additionally, since the Cramér-
Rao bound indicates that error (co)variance is minimized
when the Fisher information matrix is “maximized,” scalar
metrics of the Fisher information (e.g., determinant, trace,
minimum eigenvalue) have become standard metrics for data
quality and are typically implemented for optimal experiment
design [14], [15], [16].

These existing estimation analysis criteria and methods
are limited because they do not consider estimation bias
nor system uncertainties. This significantly restricts their
effectiveness, as estimation bias and system uncertainties
are major sources of estimation error and are inevitable
in practice [6]. Specifically, estimation accuracy is strongly
influenced by constant and varying uncertainty in model
(e.g., due to unmodeled dynamics) [17], measurement (e.g.,
due to sensor bias/noise) [18], and parameter (e.g., due to
changing operating conditions/degradation) [19]. We sought
to address these limitations in a prior work through the
derivation of a univariate estimation error equation for the
least-squares objective, which directly predicts the estima-
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tion error through consideration of uncertainties in model,
measurement, and parameter [6]. This error equation was
subsequently leveraged to develop criteria for data optimiza-
tion in univariate estimation scenarios, i.e., cost functions for
data design [6] and selection criteria for data selection [20],
[21], which yielded promising results and outperformed the
conventional Fisher information-based criteria.

The objective of this paper is to answer a funda-
mental question—why is an estimation result accurate or
inaccurate?—both from a generic perspective and in the
context of battery parameter estimation problems. The topic
is investigated through the following contributions. First, we
will derive and validate a generalized multivariate estimation
error equation for the least-squares objective that is not
subject to conventional limitations (i.e., unbiased estimation
and omission of system uncertainties). This equation will
reveal several important insights, such as the theoretical re-
lationship between system uncertainties and estimation error,
data structures that are capable of attenuating the influence of
system uncertainties, and the precedence of data quality over
quantity. Second, we will apply this equation to analyze the
error composition in several battery electrochemical param-
eter estimation scenarios under various data sets. This will
indicate the factors that enhance/degrade estimation accuracy
and illustrate their strong dependence on data. Third, we
will compare the errors and their compositions across uni-
and bivariate estimation scenarios to identify an intrinsic
mechanism that can reduce accuracy as additional parameters
are simultaneously estimated under the same data. These
contributions cast new light on the state of the art estima-
tion error analysis criteria. Specifically, traditional local and
global sensitivity analyses indicate that the magnitude of
parameter sensitivity is important, yet we will show that the
structure of the sensitivity can have an even greater impact
on the estimation result. Similarly, Fisher information-based
criteria specify that estimation performance will simply im-
prove with the amount of data, though we will show that
the structure of the data plays a more significant role and
unfavorable data can potentially degrade the accuracy under
uncertainty. Finally, the Cramér-Rao bound and other Fisher
information-based criteria do not consider estimation bias or
system uncertainties, though we will explicitly reveal how
these inevitable factors are related to the estimation error.

II. ESTIMATION ERROR DERIVATION & ANALYSIS

In this section, we will derive and discuss the estimation
error equation that will be implemented for error analysis
in the proceeding sections. Consider a discrete-time single-
input-single-output system model,

xr = fr(Tp—1,0, ¢, ur_1)

1
yk:gk(wk707¢7uk)a ( )

where x, u, and y are the state vector, input, and output of the
system, f and g are the nonlinear state and output equations,
and k is the time step index. The system is parameterized
by 0 and ¢, where 8 = [0y, ...,0,]7 is the vector of target

parameters to be estimated and ¢ = [¢1,...,Pn|T is the
vector of non-estimated system parameters.

The objective of the estimation problem is to determine
0 based on a sequence of N measured output data y™ =
[ym, ..., y"]7T sampled across consecutive time steps under
input sequence u = [uy,...,ux|?. To incorporate various
system uncertainties, each output measurement ;" is ex-

pressed as

yr' = yr(0, @, u) + Ay + Sy, (2)

where yi (0, ¢, ui) is the modeled system output under
the true parameter values (6, ¢), Ay is the constant bias
between yy (6, ¢, ui) and the output measurement y;” due
to measurement bias and/or model uncertainty, and dyy, is the
varying model/measurement uncertainty due to factors such
as sensor noise and unmodeled system dynamics. It is noted
that y5 (0, ¢, uy) denotes the mapping from 60, ¢, and uy, to
y, with the state dynamics contained implicitly.

We employ the discrete-time multivariate least-squares
objective—one of the most widely-used objectives for pa-
rameter estimation—to determine the estimated parameter
set O that minimizes the sum of squared errors between the
measured output y;* and modeled output y;, across the N
data points.

2
k=1

1 - 2
minJ = 5 3 (y,T — (8, b, uk)) 3)
It is noted that the estimation problem further includes
parameter uncertainty in ¢, as the exact values may not be
known, which is indicated by the notation ¢A> in Eqn. (3). We
then apply the first-order optimality condition (VéJ = 0) to
Eqn. (3), which yields

N

ayg a A m PN
_Z A (0a¢)7uk) (yk _yk(avd)v uk)) =0, 4
i 00
where 2% — {% 81&”“} is the (row) vector of output
06 26,7 96,

sensitivity to each target parameter in 6 at time step k, and
0 is the n-dimensional null column vector.

Recall that the measured output y;* is represented in
function of the unknown true parameter values (0, ¢) in
Eqn. (2). Therefore, we expand (0, ¢, u;) with a first-
order Taylor series about the estimated/assumed parameter

values (é, o), ie.,

a A o A A
yr(0, d,ur) ~ yx(0, P, uy) + Y (0,0, ur)A0

00
ayk PPN
+ —=(0, ¢, u) Ao,
qu( o, up)Ap

(&)

where A@ = 6 — 6 is the estimation error in 6, A¢ =

b — cﬁ is the parameter uncertainty in cﬁ, and 2%

[% Oy
9oy Do ©
each non-estimated parameter in ¢ at time step k.
Combining Eqns. (2), (4), & (5) and rearranging yields
the multivariate estimation error equation in Eqn. (6),

} is the (row) vector of output sensitivity to
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which expresses the estimation error A@ in terms of the
parameter sensitivities and system uncertainties, i.e., the
model/measurement bias Ay, varying model/measurement
uncertainty dyy, and parameter uncertainty vector A¢. Note
that the sensitivities are dependent on é ¢A> and wuyg, though
these terms are omitted for brevity. If 6 and ¢? are scalars,
Eqn. (6) is reduced to the compact scalar form in Eqn. (7).
Several insights can be drawn from the error equation.

1) More data do not necessarily improve estimation ac-
curacy. We illustrate this by examining the scalar form
of the error equation in Eqn. (7), which indicates
that, while increasing the number of data points (V)
will monotonically increase the denominator, the nu-
merator may also increase and possibly at a higher
rate. For example, if the sensitivity ayF is small (<
1), the approximately linear rate of 1ncrease of the
numerator could outpace the quadratic rate of the
denominator. Alternatively, consider that the varying
model/measurement uncertainty dy; may be very large
during a portion of the data; the estimation error could
be reduced by using a subset of the data that avoids
the highly uncertain portion. This insight is corrobo-
rated by several works that have improved estimation
accuracy through strategic data selection from a larger
data set [20], [21], L22].

2) The term Y p_, %% is essentially the Fisher in-
formation matrix simplified under independently and
identically distributed (i.i.d.) Gaussian noise [10], [13].
Thus, we see that the Fisher information is directly
related to the estimation error and serves as an ap-
proximate measure of robustness against the influence
of system uncertainties. This is plainly illustrated in the
scalar error equation in Eqn. (7), where a large Fisher
information in the denominator will attenuate the im-
pact of the system uncertainty terms in the numerator.
However, the Fisher information is only part of the
equation and is thus not a perfect standalone indicator
of estimation accuracy. For example, Eqn. (7) shows
that a large error will occur if the uncertainty terms in
the numerator are significantly larger than the Fisher
information in the denominator, regardless of the size
of the Fisher information. The same conclusion can be
obtained for the multivariate case by applying norm
analysis to the general form in Eqn. (6). Therefore, it
is critical to consider the role of system uncertainties
in estimation error analysis. Additionally, we see that
Fisher information-based criteria favor more data for
estimation, which may not be optimal according to the
previous insight on c}ata length.

3) The term (Zgﬂ aay é:‘ ) Ay represents the error caused
by the constant model/measurement uncertainty Ay.
Since Ay is propagated to the total error through

N 0
the sensitivity structure Zk 1 ayg s

Ay is ellmmate?,d. 1.f Efcvﬂ aayg’f = 0, i.e., each target
parameter sensitivity sums to zero across the data

sequence. This relationship between a specific sensi-

the influence of

tivity structure and the estimation error illuminates the
limitation of traditional sensitivity analysis methods,
which only focus on the magnitude of sensitivity.

4) The term Zszl aggT Oy represents the error caused
by the varying model/measurement uncertainty d&yy.
Essentially, this term is a vector of inner products
between the sensitivity sequence vector for each target

9y _ |9n Oyn .
20, — [8@,..., 8@,;} and the uncertainty
sequence vector 0y = [0y, .. ,75yN]T’ where each

vector consists of the respective entries at all time
steps of the sequence. Accordingly, the influence of
dyr on the estimation error of a certain 6; is zero

if chvzl Oy §y = 0, i.e., if the sensitivity sequence

vector of Gl is orthogonal to the uncertainty sequence
vector. This is an important sensitivity structure that
propagates uncertainty to the estimation error, which
is not considered by convenTtional analysis criteria.

5) The final term (ch\;l %%ﬁc) A¢ represents the
error caused by uncertainty in the non-estimated model
parameters ¢. The associated sensitivity structure
ZN ay;fT Ouk 5

k=1 26 o¢
the sensitivity sequence vector of each estimated pa-
rameter 6, and that of each non-estimated parameter
d)j, ie., 80 v, which is multiplied by the
uncertainty vector A(;S Thus, the influence of Ag
on the total estimation error can be ehmmated 1f

?lk Oy
Zk 1 60 op = = 0, where each combination of 2 ()ei
¢

is an additional sensitivity
structure with Crltlcal impact on estimation accuracy,
which is related to our prior analytical Cramér-Rao
bound analysis [13]. The study indicates that bivariate
estimation does not suffer loss of accuracy (increased

error covariance) over univariate estimation if the data
contain orthogonal sensitivities between parameters.

IIT. LI-1ON BATTERY MODEL & SENSITIVITY

This section will briefly summarize the Li-ion battery
model, target parameters, and parameter sensitivity asso-
ciated with our application of analyzing electrochemical
parameter estimation errors. Specifically, we will investigate
the estimation of the cathode lithium diffusion coefficient
D, cathode active material volume fraction €, ;,, and anode
reaction rate constant k,,, based on the widely-adopted single
particle model with electrolyte dynamics (SPMe) [7]. The in-
volved parameters play a vital role in the performance of the
battery and are commonly studied in state of health (SOH)
estimation applications, as they indicate various degradation
mechanisms [23]. The model and the sample parameters are
used in this work as examples for illustrating the method-
ology of estimation error analysis, which can be applied to
other models and parameters without loss of generality.

The SPMe captures the battery dynamics by predicting
the output terminal voltage V' and battery internal physical
states from the input current /. The SPMe is a reduced-order
model that represents the electrochemical processes in each
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(7

electrode (e.g., intercalation, diffusion) with a single particle,
under the assumption that lithium intercalation current den-
sity is uniform across each electrode. Both electrode particles
are interfaced through the electrolyte diffusion dynamics.
The output terminal voltage is expressed as

V =Up(csep) = Un(Cse,n) + Gep(Cep) — Pen(Cen)

(3)
+ np(cse,py ce,p) —Mn (cse,na Ce,n) - IRla

which includes the difference between the cathode and
anode (denoted by subscripts p and n, respectively) in open-
circuit potentials (OCPs) U, electrolyte potentials ¢., and
overpotentials 7. These terms are functions of the dynamic
lithium concentration states at the electrode particle surface
(cse) and electrolyte boundary (c.), which are governed
by Fick’s second law of diffusion and the Butler-Volmer
equation of (de)intercalation reaction kinetics at the particle
surface. The voltage drop across various Ohmic resistances
(e.g., SEI layer, current collectors) is incorporated through
the lumped resistance term R;. The reader is referred to [7]
for the full details of the model.

The estimation error equation in Eqn. (6) relies upon the
sensitivities of the estimated and non-estimated parameters.
We employ the analytical sensitivity expressions derived for
the SPMe in [7], which efficiently capture the dynamics of
the sensitivity through sensitivity transfer functions (STFs).
For example, the sensitivity of the output voltage V' to &,
can be derived by taking the partial derivative of Eqn. (8)
with respect to €5, as

ov Oy +< oy

(t) — acse,l’
Oesp desp Icse.p

o,
+ 8%@)- e t). (9

In this equation, the first three terms can be easily computed
based on the model, while %(t) is subject to dynamics,

and needs to be computed based on the derived STF

TR: s°4+420D, ,R2 s+3465D2 [(s)
T s(R% ,s24189Ds , R2 [ s+3465D2 ) Fe2 | Apdp°
(10)
e.g., by converting to a linear state-space representation.
Here, A,, §p, and R, , are the cathode area, thickness, and
particle radius, while F' is the Faraday constant. The STF
was derived based on the SPMe via Laplace transform and
Padé approximation, with the full procedure and sensitivity
expressions for other parameters detailed in [7].

9Cse
853‘:7 (S)

IV. UNIVARIATE ESTIMATION ERROR ANALYSIS

We will first present the estimation error analysis in the
univariate case. In the context of the battery parameter

estimation problem, the output y is voltage V', and the input
u is current I. Eqn. (6) will be applied to two univariate
battery electrochemical parameter estimation problems with
the purpose of (1) validating the error equation and (2)
analyzing the composition of error sources due to different
types of uncertainty. Both scenarios are subject to the varying
model/measurement uncertainty §Vj, which characterizes the
mismatch between the measured and modeled (under the true
parameter values) outputs due to factors such as unmodeled
system dynamics, discretization errors, and sensor bias/noise.
Note that §V is the total varying model/measurement uncer-
tainty, i.e., the sum of the constant (Ay) and varying (dyy)
components discussed in Section II. Both scenarios are also
subject to parameter uncertainty A¢, which characterizes the
deviation between the true and assumed values of the non-
estimated parameters due to factors such as manufacturing
variation, degradation, and operating condition.

Each estimation is performed with the least-squares al-
gorithm, SPMe battery model, and input-output data sets
acquired through experimental testing of an LGMS50T
INR21700 Li-Nickel-Manganese-Cobalt (NMC) cell, using
an Arbin LBT21084 cycler. Three dissimilar input current
profiles were applied to the cell, namely, a constant 1C
discharge (1C CC), 1C Pulse (1/60 Hz square wave), and
the Federal Urban Driving Schedule drive-cycle (FUDS).
Each profile has the same duration (30 minutes) and number
of data points (6,000), and the initial cell state of charge
(SOC) was 75% for the 1C CC profile and 50% for the 1C
Pulse and FUDS profiles. The true parameter set was adapted
from [24], which experimentally parameterized an LGMS50
INR21700 cell through a full tear-down analysis.

The first scenario estimates the cathode active material
volume fraction €, 5, subject to intrinsic model/measurement
uncertainty and parameter uncertainty in the separator elec-
trolyte porosity €. sep and cathode lithium diffusion coeffi-
cient Dy, i.e., 0 = 5, and @ = [¢ sep, Ds p|* . Parameter
uncertainty was applied by scaling €. s¢p and D, by 20%
from the true values. The general form of the error equation
in Eqn. (6) is cast as Eqn. (11) for this scenario, where
the denominator is the Fisher information of e, , and the
numerator contains the uncertainty terms, 6Vj, Aee sep, and
AD; ,,. The estimation was performed for each input current
profile and the results are summarized in Table I. Specifically,
the actual error is the true error between the estimate and the
benchmark value, while the predicted error was computed
from the error equation in Eqn. (11). The normalized Fisher
information F;,, fo 18 also included, which is the denominator

3102
Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 17,2023 at 13:38:37 UTC from IEEE Xplore. Restrictions apply.



of Eqn. (11) times éz’p. The next three columns indicate the
error contribution of each uncertainty, according to Eqn. (11).
For example, the error contribution of Dj j, is the third term
in the numerator divided by the denominator. Finally, the
last three columns list the root-mean-square (RMS) values
of the model uncertainty JV}, and normalized sensitivities of
the uncertain parameters, i.e., 6(;;;’“ = qﬁ%‘g‘ .
The second scenario estimates D, , subject to intrinsic
model/measurement uncertainty and parameter uncertainty in
the anode lithium diffusion coefficient D, ,, and €, ;. In this
case, the assumed values of D, , and &, were selected
to be 10% larger than the true values. The error equation
for this scenario follows the same form as Eqn. (11), with
€s,p» Ee,sep> and Dy, replaced with Dy, D, 5, and €, 4,
respectively. The results are summarized in Table II.

Tables I & II indicate that the predicted errors agree well
with the actual errors, validating the error equation in Eqn.
(6). An important observation is that the deviations between
the predicted and actual errors increase at larger actual errors.
This is due to the first-order Taylor expansion in Eqn. (5),
which was used to approximate the model output under
the true parameter set (6, ¢) about the estimated/assumed
parameter set (97({5) Since the accuracy of the expansion
(and thus the error equation) is dependent on the proximity
of the estimated/assumed parameter set to the true parameter
set, prediction accuracy increases as the estimate of the target
parameter approaches the true value, i.e., when the actual
error is low. From a practical standpoint, we are typically
not concerned with error prediction accuracy if the estimate
is poor, yet even when this is the case, the error equation
can still discern between high- and low-accuracy results, i.e.,
predicted errors are still large when actual errors are large,
and small when actual errors are small.

A second observation is that the Fisher information is not
necessarily correlated with the estimation error. For example,
the 1C Pulse and FUDS results in Table I have the smallest
and largest errors with nearly equivalent Fisher information
values. In addition, the 1C CC Fisher information values in
Tables I & II are one order of magnitude larger than those of
FUDS, yet the estimation errors for 1C CC are higher. This
highlights the limitations of the Fisher information as a stan-
dalone metric for data quality, though it is still intrinsic to the
estimation error, as Eqn. (11) indicates that it is related to the
robustness of the error against the uncertainty-propagating
numerator terms. Even so, the system uncertainties play a
significant role in the total error and should not be ignored.

Third, both Tables I & II reveal that the estimation error
is strongly dependent on the data. This is because the
model/measurement uncertainty and parameter sensitivities
are dynamically driven by the input, e.g., as characterized by
the sensitivity transfer functions discussed in Section III. It
follows that the error contribution of each uncertainty is also
dependent on the data, as observed by the variations across
each table. For example, the dominant uncertainty in Table II
is the model/measurement uncertainty JV} under 1C CC and
1C Pulse, but the parameter uncertainty Ae, , is dominant

under FUDS. In most cases, the uncertain parameter with
the highest sensitivity has the largest error contribution, e.g.,
in Table II, €,, has a higher RMS sensitivity and error
contribution than D, ,, for every input profile. This aligns
with the conventional sensitivity analysis criterion, which
specifies that the most sensitive parameter will have the
greatest influence on the estimation result. However, the
influence of a parameter may not always be reflected by its
sensitivity, as Table I reveals that D, ,, is always more sensi-
tive than e, _gp, though e, s has a larger error contribution
under 1C Pulse. This is due to the uncertainty-propagating
sensitivity structures, e.g., chvzl aayé*‘ %?g, which can amplify
or attenuate the influence of an uncertain parameter based
on the orthogonality of its sensitivity to that of the target
parameter. Therefore, sensitivity magnitude is not sufficient
as a standalone criterion for data quality—the uncertainty-
propagating sensitivity structures are also critical.

V. BIVARIATE ESTIMATION ERROR ANALYSIS

We will now present the estimation error analysis in the
bivariate case. The error equation in Eqn. (6) will be applied
to a bivariate estimation scenario to validate the multivariate
form of the error equation and analyze the effects of simulta-
neously estimating multiple parameters under the same data.
The estimation procedure is identical to that of the univariate
estimation in Section IV, except that two parameters are
estimated instead of one, namely, €, ,, and the anode reaction
rate constant k,, giving 8 = [, ,, k,]T. Accordingly, the
error equation in Eqn. (6) can be cast as Eqn. (12) for
the error in €, ,, while the k, error equation follows a
symmetric form. The only uncertainty considered here is
the model/measurement uncertainty JVj, as the parameter
uncertainty in €, , and k,, has effectively been eliminated by
estimating both parameters simultaneously. When compared
with the univariate form, the bivariate error equation in Eqn.
(12) features a more complicated uncertainty-propagating
sensitivity structure in the numerator and the determinant
of the Fisher information matrix in the denominator.

The bivariate estimation results are summarized in Table
III, where the predicted errors are presented alongside the ac-
tual errors for both parameters. The normalized determinant
of the Fisher information matrix |fm fo‘ is also listed. For
comparison, the univariate estimation results are included,
where €, ;, and k,, were each independently estimated sub-
ject to model/measurement uncertainty and uncertainty in
the respective non-estimated parameter, realized by a 20%
deviation from the true value.

Table III first indicates that the actual and predicted errors
mostly show good agreement for the bi- and univariate esti-
mations, which further validates the error equation. However,
exceptions occur in the bivariate results for €, , under 1C
Pulse and k,, under 1C CC, which have significantly larger
predicted errors than actual errors, i.e., 700% vs. 224% and
4004% vs. 724%, respectively. This is because the first-order
Taylor expansion in Eqn. (5) causes error prediction accuracy
to degrade when the actual error is large, as discussed in
Section IV. Nevertheless, even at large actual errors, the error

3103

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 17,2023 at 13:38:37 UTC from IEEE Xplore. Restrictions apply.



N 9V, N Vi, OVy N OV, OVi
(Zk:l 92,5 0Vi ) + (Zk:l 92, , 856,561,) Age,sep + (Zk:l 95500, ) ADsp
Aeggp = — 5 - (11)
ZN 8Vk
k=1 \ 9.,
TABLE I
UNIVARIATE ESTIMATION OF Es,p SUBJECT TO UNCERTAINTY IN €e,sep AND Ds,p
Predicted Error Contribution RMS Values (mV')
Input Profile  Actual Error ~ Predicted Error ~ Fjp, fo (v?) Vi Aeesep ADsp 6V agv’“ ;}Y’“
e,sep sp
1IC CC 6.2% 7.5% 273 12.2% -0.52% -4.2% 38.8 6.8 553
1C Pulse -22.3% -17.3% 8.3 -17.0% -0.73% 0.41% 21.5 2.0 4.3
FUDS 1.3% 2.1% 8.1 6.2% -0.39% -3.7% 8.4 1.0 8.6
TABLE II
UNIVARIATE ESTIMATION OF Ds ;, SUBJECT TO UNCERTAINTY IN Dy ;, AND €5 p
Predicted Error Contribution RMS Values (mV')
Input Profile  Actual Error  Predicted Error ~ Fjp, fo (V?) oV ADg pn Aesp OV a%vk gév""
s,M s,P
IC CC 18.3% 25.7% 12.8 68.6% -0.68% -42.3%  38.8 52 221
1C Pulse 349% 463% 0.0082 529% -0.47% -659% 21.5 0.087 20.6
FUDS -4.8% -2.1% 0.60 299%  -0.081% -31.9% 8.4 0.12 36.5
N OV OVy BVk avk
(Zk:l D€s,p Oken ) (Zk 1 ok, 5Vk Zk 1 Zk 1 65 p Vi
Ae, p = ' (12)
k=1 \ 22, , k 1\ ok k 192, , ok,

equation is still effective at discerning the quality of data, i.e.,
large predicted errors are associated with large actual errors.

Second, the bivariate Fisher information does not solely
determine the estimation error. For example, the bivariate
Fisher information values under 1C CC and 1C Pulse are
nearly equivalent, yet the e, error is significantly larger
under 1C Pulse, while the k,, error is larger under 1C CC.
In addition, both univariate estimation cases under FUDS in
Table III have the smallest errors despite having the smallest
Fisher information values. These observations align with
those of Section IV and reinforce that the Fisher information
is limited as a standalone criterion for data quality, as the
system uncertainties play a significant role.

Finally, the results in Table III reveal that simultane-
ously estimating two parameters can yield larger errors than
estimating each parameter independently, under the same
data. Specifically, we see that each bivariate estimation
error is larger than the corresponding univariate estimation
error, even though the former is not subject to parameter
uncertainty through the inclusion of the unknown parameter
in the estimation. This can be explained by examining
the form of the &, , bivariate error equation in Eqn. (12).
Specifically, dividing the numerator and denominator of

Ean. (12) by 337, (2%

) yields the new denominator,

2 SN oV AVy 2
PO (6‘9}/’“ ) _(Eh dgsa“’,a’”") , which is the denom-
= Es,p ZA—1( k)

inator of the univariate error equation in Eqn. (11) minus a

positive term. Thus, the denominator always diminishes un-
der the bivariate estimation case. Therefore, simultaneously
estimating a second parameter causes bivariate estimation to
be less robust than univariate estimation to the influence of
system uncertainties, characterized by the numerator. This
aligns with [12], [13], which show that the error covariance
for multivariate unbiased estimation can never be less than
that of univariate unbiased estimation, under the same data.

VI. CONCLUSIONS

In this paper, a generalized multivariate estimation error
equation was derived for the least-squares objective that
is not subject to the limitations of conventional analysis
criteria, i.e., unbiased estimation and omission of system
uncertainties. Analysis of the equation revealed the sen-
sitivity structures that propagate various types of system
uncertainties to the estimation error, and that estimation
accuracy depends more on data quality than quantity. The
error equation was validated through comparison of the
predicted and actual errors in a series of uni- and bivari-
ate battery electrochemical parameter estimation scenarios.
These analyses highlighted the strong dependence of the
estimation error (and its decomposition into the impact of
different uncertainties) on data and the limitations of the
conventional error analysis criteria. Specifically, parameter
sensitivity magnitude alone does not determine the influence
of uncertainties on the estimation result, as the uncertainty-
propagating sensitivity structures are critical; the Fisher
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TABLE III
BIVARIATE VERSUS UNIVARIATE ESTIMATION OF €5 5 AND kn

Bivariate Estimation of €5, and ky,

Univariate Estimation of k,,
Subject to Uncertainty in €55

Univariate Estimation of €5 p
Subject to Uncertainty in ky,

Input es,p Act. g5 Pred.  kn Act.  kpn Pred.  |Fyp g Act. Pred. Finfo Act. Pred.  Fipfo
Profile Error Error Error Error (v Error Error (V2) Error Error (V2)
1C CC -13.8% -11.9% 724% 4004% 0.85 7.9% 8.8% 274 -21.5% -9.5% 229
1C Pulse 224% 700% -44.3% -31.5% 0.66 -35.7%  -22.3% 16.6 -328%  -25.5% 323
FUDS 1.0% 1.0% 16.9% 19.0% 11.5 0.23% 1.0% 9.0 -0.011% 2.5% 3.1

information is an important term in the multivariate error
equation associated with robustness to system uncertainties,
yet it cannot serve as a standalone metric for data quality as
the system uncertainties play a vital role; and the Cramér-Rao
bound is not as widely applicable as the Fisher information
as an error analysis criterion due to the highly restrictive
assumption of unbiased estimation, as bias is inevitable
in practice. Finally, the bivariate error analysis reinforced
the insights from the univariate analysis and revealed that
simultaneously estimating a second parameter under the
same data intrinsically reduces the error robustness to system
uncertainties. For further investigation, we refer the reader to
our other work [25], which examines the error equation at
greater depth with a mathematical correlation to the Cramér-
Rao bound and a study on parameter identifiability. We have
also been leveraging the identified uncertainty-propagating
sensitivity structures for data design/selection to improve
estimation accuracy [6], [20], [21].
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