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Abstract— Accurate parameter estimation has been a long-
pursued objective in battery modeling and control practice. To
this end, optimization of excitation to improve the estimation
accuracy has been an emerging topic, since the quality of
data critically determines the accuracy of estimation. However,
there are several major drawbacks with existing approaches.
First, the commonly used criterion for optimization, e.g., Fisher
information, is limited in performance due to not considering
the estimation bias caused by inevitable system uncertainties.
In addition, alternative existing methods rely on a good a priori
knowledge of the parameter to be estimated, which is intrinsi-
cally contradictory to the goal of estimation. To address these
issues, we propose a reinforcement learning (RL) framework to
learn the optimal policy for excitation generation that is robust
to system uncertainties. In particular, the framework involves
a non-additive objective/reward associated with the newly
established optimization criterion, and a state augmentation
technique is applied to address the ensuing challenge. It is
shown that, when applied to estimate a key health-related
battery electrochemical parameter, the RL-based approach
achieves significantly higher objective value under nominal
conditions, and reduces the estimation error by one-order-of-
magnitude in the presence of uncertainties compared with the
baseline in existing approaches.

I. INTRODUCTION

The accurate estimation of model parameters is important
to guarantee the efficacy of model-based diagnostics and
management of lithium-ion batteries [1]. Typically, model
parameters are estimated based on measured output data gen-
erated by an excitation input sequence. Therefore, the quality
of parameter estimation depends strongly on the ability of
the excitation input to generate output containing maximal
information about the underlying system parameters. This
practice can be formulated as an optimization problem where
we optimize over the excitation sequence to maximize the
information content of the target parameter. The problem is
further complicated by inevitable output measurement bias
and uncertainties in system model.

To date, research in this field has consisted of early
works on maximizing statistical criteria related to estimation,
including but not limited to the Fisher information (FI) [2]
and the information gain produced by the data, such as the
Kullback-Leibler divergence [3], [4] and others. Specifically
regarding the estimation in battery applications, FI has been
commonly used as the criterion for excitation design. Some
early works studied the topic for the equivalent circuit model

1R. Huang and X. Lin are with the Department of Mechanical and
Aerospace Engineering, University of California, Davis, CA 95616, USA,
corresponding author e-mail: lxflin@ucdavis.edu

2M. Jones is with the Department of Automatic Control and Systems
Engineering, The University of Sheffield, Sheffield, UK.

[5], [6] and the physics-based electrochemical model [7],
with the goal of optimizing the features of an imposed
input current pattern, e.g., the frequency and magnitude of
sinusoidal or pulse. More recently, the research has evolved
to discover the fundamentally optimal excitation for battery
electrochemical parameters with no imposed current pattern
[8], enabled by efficient sensitivity computation [9].

Despite significant progress on the topic, however, there
are major drawbacks with the state of the art regarding
both the criterion and approach for input optimization. First,
regarding the criterion, the commonly used FI objective is
subject to inherent limitations, as it is only related to the
estimation error variance achievable by an unbiased estimator
(through the Cramér-Rao bound) [10], and neglects the
estimation bias. In practice, the bias is not only ubiquitous
but also prominent due to inevitable system uncertainties,
including those in model, measurement, and parameters. Our
previous works have shown that input optimized solely based
on FI could yield significant estimation error in the presence
of system uncertainties [11], [12]. Second, regarding the
approach, the existing practice typically formulates input
design as optimizing an (open-loop) excitation sequence.
It faces a fundamental dilemma: in order to optimize the
excitation to estimate the target parameter, a good a priori
knowledge of the parameter itself is needed, since the
optimization objective (e.g., FI) is dependent on its value.
In fact, a moderate uncertainty in the a priori knowledge
of the target parameter may cause the optimized sequence
to deviate far from optimality. In addition, the optimization
procedure is computationally intensive, due to the large
number of optimization variables (dependent on the length of
the input sequence) and the need for repetitive computation
(and inversion) of system dynamics and Jacobians. As a
result, local and sub-optimality is hard to avoid because of
the non-linear and non-convex essence of the problem.

In this work, we propose a reinforcement learning (RL)
framework as a new approach for input optimization to
address the fundamental challenges in the state of the art. We
envision the generation of excitation as a Markov Decision
Process (MDP) with dynamics described by certain state(s),
and the goal is to find an optimal policy that maps the
state(s) to an optimal excitation that maximizes the objective.
The benefits of using RL are two-fold. First, the obtained
policy, which uses states as feedback to generate input
when implemented, could significantly reduce the impact of
system uncertainties. Compared with the existing practice of
optimizing an open-loop excitation sequence, the feedback of
states in real-time would correct for the deviation caused by
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system uncertainties and disturbances. Second, RL could also
substantially improve the tractability of optimization. During
the training process, the policy is learned using the reward
generated at each time instant, and the procedures only
involve the forward computation of the rewards and states
based on the model. The associated computational complex-
ity is much more favorable than both the direct optimization
of the time sequence and the traditional optimal control,
which essentially need to not only compute but also invert the
system dynamics and the Jacobians of the design objective.
Our prior works have demonstrated promising results when
optimizing the FI criterion for input optimization [13], [14].
Furthermore, a new criterion is adopted for optimization,
which takes model/measurement bias into account. It was
discovered in our prior work that, apart from FI, if the data
satisfy certain structure in terms of parameter sensitivity, the
error caused by system uncertainties can be minimized [12].
Leveraging the results, a new objective for optimization is
adopted by augmenting FI with an additional term accounting
for constant model/measurement bias. Other types of uncer-
tainties can be addressed in a similar way. It is noted that a
major challenge for RL under the new objective is that the
latter is non-additive, resulting in difficulty to formulate the
single-step reward for learning (as in the case of sole FI).
A state augmentation technique is introduced to address the
challenge [15]. It will be shown that when applied to estimate
a key health-related battery electrochemical parameter, the
RL-based approach achieves significantly higher objective
values, and reduces the estimation error by near one-order-
of-magnitude in the presence of model/measurement bias
compared with the baseline existing approach.

II. INPUT OPTIMIZATION OBJECTIVE

In this section, the objective of input optimization is
formulated. Specifically, we introduce a previously derived
formula that captures the parameter estimation error caused
by system uncertainties under the commonly used least-
square algorithm [11]. Based on the error formula, a desirable
objective function is formulated by supplementing the FI
with sensitivity-based data structures that could minimize the
estimation error caused by constant model/measurement bias.
In addition, the computation of battery parameter sensitivity,
which is needed to evaluate the objective during optimiza-
tion, is also discussed [9].

A. Estimation Error Formula

Consider a discrete-time single-input-single-output system
model,

xk = fk(xk−1,θ,ϕ, uk−1)

yk = gk(xk,θ,ϕ, uk),
(1)

where x, u, and y are the states (vector), input, and output of
the system respectively, and f and g are the nonlinear state
and output equations. The system is parameterized by θ and
ϕ, with θ = [θ1, ..., θnθ

] representing the target parameters
to be estimated, and ϕ = [ϕ1, ..., ϕnϕ

] representing other
system parameters. In this work, we focus on the estimation
of a single-variate system parameter with θ being a scalar

(nθ = 1). The goal of estimation is to determine θ based
a sequence of N output data [ym1 , ym2 , ..., ymN ] measured
over consecutive time steps excited by a sequence of input
[u1, u2, ..., uN ]. Moreover, by considering various system
uncertainties, each output measurement ymk is expressed as

ymk = yk(θ
∗,ϕ∗,uk) + ∆y + δyk, (2)

where yk(θ
∗,ϕ∗,uk) is the output of the system based on

the true parameters θ∗ and ϕ∗, ∆y represents the constant
bias between yk(θ

∗,ϕ∗,uk) and the output measurement
including that caused by the measurement noise and/or model
uncertainty, and δyk is the varying uncertainty between the
model and measurement. It is noted that yk(θ,ϕ,uk) denotes
the mapping from θ, ϕ, and uk to yk with the state dynamics
contained implicitly and uk = [u1, u2, ..., uk]. A least-
squares optimization problem can be formulated to determine
the estimate of target variable, θ̂, by minimizing the sum of
squared error between the measurement and model output,

min
θ̂

J =
1

2

N∑
k=1

(
ymk (θ

∗
,ϕ∗,uk)− yk(θ̂, ϕ̂,uk)

)2

. (3)

It is noted that the estimation problem further includes the
parameter uncertainty in ϕ, whose exact values are unknown
and hence denoted as ϕ̂ in (3).

In our prior work [11], a formula quantifying the esti-
mation error ∆θ = θ∗ − θ̂ induced by the system uncer-
tainties, i.e., constant bias ∆y, dynamic uncertainty δyk,
and parameter uncertainty ∆ϕ has been derived as in (4).
Several important insights can be made from the formula.
On one hand, the denominator is actually the FI of the
target parameter θ (under the assumption of i.i.d. Gaussian
noises), which has been the predominant objective function
adopted in existing studies. Maximizing FI could indeed help
decrease the estimation error by increasing the denominator.
One the other hand, there are terms in the numerator that
indicate the propagation of each uncertainty source to the
estimation error. For example, for constant bias ∆y, its
impact on the estimation error is dependent on the sum of the
sensitivity of y to θ over the sequence,

∑N
k=1

∂yk

∂θ (θ̂, ϕ̂,uk).
Therefore, to mitigate such error, the input can be designed
to achieve minimal |

∑N
k=1

∂yk

∂θ |. Other types of uncertain-
ties can be minimized similarly based on their associated
sensitivity terms. These insights will be used to guide the
formulation of the objective for input optimization in the
next subsection.

B. New Excitation Optimization Objective Considering Bias

Based on the analysis of the error formula in (4), a new
input optimization objective can be established to minimize
the impact of system uncertainties on the estimation results.
In this work, we focus on countering the constant bias
∆y, but other types of uncertainties can be incorporated
in a similar way. Specifically, a new objective function is
formulated as

max
u

N∑
k=1

(
∂yk
∂θ

(θ̂, ϕ̂,uk)

)2

− β

∣∣∣∣∣
N∑

k=1

∂yk
∂θ

(θ̂, ϕ̂,uk)

∣∣∣∣∣ . (5)
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∆θ ≈ −

(∑N
k=1

∂yk

∂θ (θ̂, ϕ̂,uk)
)
∆y +

(∑N
k=1

∂yk

∂θ (θ̂, ϕ̂,uk)δyk

)
+

∑nϕ

i=1

(∑N
k=1

∂yk

∂ϕi
(θ̂, ϕ̂,uk)

∂yk

∂θ (θ̂, ϕ̂,uk)
)
∆ϕi∑N

k=1

(
∂yk

∂θ (θ̂, ϕ̂,uk)
)2 (4)

The first term is the FI that has already been widely adopted
in practice, while the second term is a soft penalty with a
scaling factor β to penalize |

∑N
k=1

∂yk

∂θ |. The new criterion
is based on the insight from the error formula (4) that
maximizing FI could reduce the overall estimation error,
while minimizing

∣∣∣∑N
k=1

∂yk

∂θ

∣∣∣ could mitigate the estimation
error caused by the constant modeling/measurement bias ∆y.
The optimization variables are the sequence of inputs applied
over discrete time instances u = [u1, ..., uN ]T .

In the context of battery parameter estimation problem, the
output is the voltage, and input is the current, i.e., y = V
and u = I .

C. Parameter Sensitivity for Battery Electrochemical Param-
eters

As shown in (5), the objective function involves the
calculation of the parameter sensitivity ∂yk

∂θ (θ̂, ϕ̂,uk). For
the battery electrochemical parameters to be estimated in this
research, a method for efficient computation of sensitivity
has been developed in our previous work [9], based on
the single particle model with electrolyte dynamics (SPMe),
which is a reduced order battery electrochemical model
widely used for battery control and estimation [1]. A series of
techniques and approximations, e.g., Laplace Transform and
Padé approximation, have been applied to derive a closed-
form expression based on the sensitivity transfer function
(STF), which maps system input to sensitivity.

In this work, the target parameter for estimation is the
electrode (cathode) active material volume fraction, θ = εs,
which is a critical battery parameter related to capacity
and reflecting the battery degradation progress. It has been
frequently used as the subject for estimation to monitor the
battery state of health [16]. The sensitivity of the output, i.e.,
battery voltage V , to εs takes the form

∂V

∂εs
(t) =

∂η

∂εs
(t) +

(
∂η

∂cse
+

∂U

∂cse

)
· ∂cse
∂εs

(t). (6)

The first term accounts for the impact of εs on the overpoten-
tial η, which drives the (de)intercalation reaction and the flow
of lithium ions between the electrode and electrolyte. This
term is non-dynamic and can be computed easily based on
the model. The second term captures the impact of εs on the
open circuit potential (OCP) U and overpotential η through
lithium diffusion. Specifically, OCP is the battery electrode
equilibrium potential dependent on the lithium concentration
at the electrode particle surface cse, which will change during
battery operation as lithium ions diffuse in the electrode.
For this term, ∂U

∂cse
and ∂η

∂cse
are the slopes of the U and η

with respective to cse, which can both be computed easily.
Meanwhile, ∂cse

∂εs
is the sensitivity of the diffusion state, i.e.,

the particle surface concentration cse, to εs, for which an
STF has been derived as

∂cse
∂εs

(s) =
7R4

ss
2 + 420DsR

2
ss+ 3465D2

s

s(R4
ss

2 + 189DsR2
ss+ 3465D2

s)
· I(s)

Fε2sAδ
, (7)

where Rs, A, δ, and F represent the particle radius, electrode
area, electrode thickness, and Faraday constant respectively.

We can implement the derived STF in time domain, e.g.,
through state-space representation, to efficiently compute the
state sensitivity ∂cse

∂εs
(t) and then obtain the output sensitivity

∂V
∂εs

(t) based on (6), which can be used for excitation
optimization, as demonstrated in [12]. More details about
the battery model and sensitivity computation can be found
in [9].

III. REINFORCEMENT LEARNING FRAMEWORK

A new input optimization objective has been formulated
in (5), which aims to maximize the FI while minimizing
the estimation error induced by constant bias. This objective
has been applied to optimize the open-loop input sequence
in [12]. A major issue with that existing approach is that
the objective is often dependent on the target parameter that
needs to be estimated. As an example, for θ = εs, as seen
from (7), its sensitivity includes εs itself. Therefore, in order
to attain the optimum of the true objective, a good a priori
knowledge of θ is needed, which is typically impossible
because θ itself is the unknown target of estimation. Devia-
tion in the a priori knowledge could significantly affect the
optimality of the obtained sequence. In addition, the existing
approach is computationally intensive and prone to local/sub-
optimality due to the large number of optimization variables
and nonlinearity and complexity of the battery model. Specif-
ically, regarding the battery current optimization problem, for
a 30-min input sequence with a sampling rate of 1 second,
the total number of input values to be optimized is 1800.

RL provides a fundamentally different way to address
the challenges facing the existing approach. In RL, the
generation of optimal excitation is viewed as a Markov
Decision Process (MDP) with dynamics described by certain
state (s) S, which are driven by underlying dynamics related
to battery physics. The goal is to find an optimal control
policy π(S) mapping the state S to action a (which is
the current I in the context of battery estimation problem)
that can maximize the objective of input optimization. The
schematic of the RL-based excitation optimization frame-
work is shown in Fig. 1. During the training process, the
policy is learned through a reward rk generated at each step
related to the objective, by leveraging the RL principle of
balancing between exploration and exploitation to solve the
Bellman equation, the form of which most optimal control
problems can be formulated. During implementation, the
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optimal excitation is generated by the trained policy in a
closed-loop manner based on the feedback of state or its
estimate by an observer.

Function

Reward 

State Update 

Input Action 
Output

Observer

Estimated  State 

Estimated Parameter 

Input 

TrainingImplementation

System Model 

(e.g., Battery)

Physical 

System 

(e.g., 

Battery)

Fig. 1. Schematic of RL for Input Optimization and Generation

One key step in formulating the RL framework is reward
design. For the commonly used objective of maximizing

the FI, i.e.,
∑N

k=1

(
∂yk

∂θ

)2

, which is additive over the se-
quence, the reward (or equivalently the one-step cost) can

be conveniently set as rk =
(

∂yk

∂θ

)2

at each time step.
The new objective in (5), however, is non-additive, as it
further includes a term β

∣∣∣∑N
k=1

∂yk

∂θ

∣∣∣, which needs to be
evaluated over the whole sequence and cannot be distributed
to each step [17]. In order to address this challenge, a
state augmentation technique is applied in this study [15].
Specifically, a state w is defined as

wk =
k∑

i=1

∂yi
∂θ

(θ̂, ϕ̂,ui). (8)

In this way, the reward rk can be designed as

rk =

{
(∂yk

∂θ (θ̂, ϕ̂,uk))
2, k < N

(∂yk

∂θ (θ̂, ϕ̂,uk))
2 − |w(k)|, k = N

(9)

to account for the non-additive term in the objective function.
It has been proven that RL performed with the augmented
states and designed reward satisfies the principle of optimal-
ity of the original objective function [15].

Regarding the rest of the states, we choose one to be a
battery physical state, i.e., state of charge (SOC), which is
related to cse and reflects the underlying battery dynamics. In
addition, the time index k is also adopted as a state, because
the input optimization is a finite horizon RL problem and
the optimal action depends on the time progression over the
sequence. The complete set of states S is hence

S(k) =
[
SOC(k) wk k

]T
. (10)

In this research, the policy is trained by the classical Q-
learning method for its simplicity, while other RL algorithms
can be adopted alternatively under the framework. Specifi-
cally, a Q function Q(S, a) is used to represent the expected
total reward to be received after taking an action a when
at state S (until the end of the sequence). This Q function
needs to be learned during the training phase. Specifically,
learning is performed in repeated episodes, which consist of
a series of time steps. At each time step k, an action ak
is taken with the state at Sk. The state transition Sk+1 and

the associated reward rk are observed, and the Q function
Q(Sk, ak) is updated by iteratively applying the following
update rule until convergence [18],

Q(Sk, ak)←Q(Sk, ak) + α[rk+

γmax
a

Q(Sk+1, a)−Q(Sk, ak)],
(11)

ak ←
{

argmaxa Q(Sk, a) with probability 1− ϵ
a random action with probability ϵ

(12)
in which α is the learning rate and γ is the discounting factor.
The action ak is chosen using the ϵ-greedy strategy described
in (12). With probability of 1 − ϵ, the strategy exploits the
maximum return by selecting the action that maximizes the
Q function, while with probability of ϵ, it explores a random
action for the purpose of learning. Following training, the
obtained Q function is used to generate the excitation in the
implementation stage, according to the greedy policy (with
ϵ = 0), with the aim of maximizing the return based on the
feedback from the states.

The proposed framework takes a model-based RL ap-
proach, where the states and reward are computed based
on the SPMe during training. The framework addresses the
challenges faced by the existing approach of direct sequence
optimization. On one hand, the closed-loop policy is more
robust to uncertainties since it modifies the excitation based
on the feedback of actual states during implementation,
rather than sticking with a fixed pre-determined excitation
sequence. On the other hand, the training process of RL,
which only involves forward propagation of states and reward
based on the model, is more tractable than direct sequence
optimization, which requires repetitive computation and in-
version of the system dynamics and Jacobians.

IV. SIMULATION VALIDATION

In this section, the optimization results for estimating
θ = εs considering the constant model/measurement bias are
presented. The performance of the proposed RL framework
will be analyzed and compared with the existing approach,
both with and without parameter uncertainties.

The optimization task aims to generate an 1800-second
current excitation sequence that maximizes the new criterion
in (5) with β = 1 and a sampling interval of 1 second,
starting from 0.5 SOC. During RL training, each episode
starts from SOC = 0.5 and ends when time reaches 1800
seconds. The states and input are digitized to discrete values
to index the Q function, i.e., the input, SOC and w are dis-
cretized by 11, 101 and 200 respectively. The time horizon is
discretized by 18. It is noted that having more discretization
points for the time horizon is favorable for control accuracy,
but at the cost of proportionately larger discretization nodes
for other states to discern the effect of different inputs on
state transition, thus significantly complicating the problem.
The hyper-parameters of the RL are calibrated as α = 0.5
and γ = 1, while the ϵ decays lineally from 1 to 0 over 10
million episodes.
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As a benchmark, direct sequence optimization, i.e., solving
(5) using the conventional optimization approach, is imple-
mented using the state-of-the-art General Purpose OPtimal
Control Software based on the same model under the same
conditions. The SPMe parameters are adopted from [19].

A. Nominal Optimization Results

We will first evaluate the optimization results of the RL
and the conventional approach under nominal conditions, i.e.,
assuming we have perfect knowledge of εs during optimiza-
tion. Specifically, optimization is performed with three target
parameter values, i.e., εs = 0.5, 0.45, 0.4, and the results
are summarized in Table I, including the objective value of
the obtained policy/sequence, the FI, and |

∑N
k=1

∂yk

∂θ | which
represents the impact of constant bias. The obtained current
excitation, resulting voltage, and SOC for the two approaches
under εs = 0.5 are shown in Fig. 2 as an example.

It is seen that the RL policy achieves significantly higher
objective value than the conventional direct optimization
approach as shown in Table I for all values of εs, i.e., 41.0
versus 24.1 (70% higher) for εs = 0.5, 64% higher for
εs = 0.45, and 43% higher for εs = 0.4. More specifically,
the RL policy yields both consistently higher FI and lower
|
∑N

k=1
∂yk

∂θ |, which are the exact goals of optimizing the
new objective. These results indicate the potential advantage
of the RL-based approach in finding the true goal optimum
by reducing the computational complexity, which presents a
major challenge for the conventional approach.
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Fig. 2. Optimized current, resultant voltage and SOC for εs by RL (1-
a,b,c) and conventional approach (2-a,b,c)

B. Simulation Validation subject to Parameter Uncertainty

In this part, the performance of the optimized current
excitations is validated by applying to εs estimation. The
validation is conducted in simulation, where the voltage data
are generated by SPMe, and the value of εs can be controlled
to benchmark the estimation results. Furthermore, to emulate
the practical scenario where εs is unknown for input design,
the uncertainty in εs is considered during validation. Namely,

the policy/sequences optimized with a priori knowledge of
εs at 0.4 and 0.45 are applied to an actual battery (model)
with εs = 0.5. The generation of excitation by the RL
policy is informed by the feedback of states, while the
conventionally optimized sequences are applied directly.

After the voltage data are generated, a constant bias
of 0.05V is injected into the data to emulate the
model/measurement bias in practice. The estimation of εs is
performed using the least-squares method based on the data
generated by both optimization approaches, as well as several
other heuristic excitations frequently used for battery param-
eter identification, e.g., 1C constant current discharging, 1C
Pulse and the Federal Urban Driving Schedule (FUDS) [11],
[20]. The results are listed in Table II for comparison.

It is seen that generating an optimal excitation subject
to uncertainty in the target parameter is indeed a major
challenge for conventional sequence optimization. As shown
in II, when optimized at εs = 0.45, which amounts to
a 10% deviation from the true value of 0.5, the obtained
open-loop sequence gives an estimation error of −6.46%.
When the uncertainty in the a priori knowledge is further
increased to 20% (with the sequence optimized at εs = 0.4),
the estimation error is as high as −20.42%, which basically
means that the estimation using the open-loop sequence did
not improve the knowledge of εs at all. The RL policy, on the
other hand, manages to achieve highly accurate estimation
results with one-order-of-magnitude smaller errors, namely
0.54% when trained at εs = 0.45 and 2.96% at εs = 0.4. The
substantial difference in performance can be explained by the
values of the optimization objective in (5) when evaluated at
the true εs = 0.5, also shown in Table II. It can be seen
that the objective value of the open-loop sequence drops
significantly from 29.5 (with perfect knowledge of εs shown
in Table. I) to 7.9 under 10% uncertainty, and from 34.1 to
-15.8 under 20% uncertainty. This indicates that a deviation
in the a priori knowledge of the target parameter value
could significantly affect the optimality of the generated
open-loop sequence. Meanwhile, the RL policy is capable
of maintaining substantially higher objective values under
the same uncertainties, namely 32.1 under 10% uncertainty
and 16.5 under 20%, thanks to the feedback of states during
implementation which renders robustness to input generation.
It is noted that even though the estimated states are also
subject to errors caused by uncertainties, such error is
typically minimal due to use of output (voltage) feedback for
correction. In addition, the RL policy also yields much better
estimation accuracy than the heuristic profiles, which have
errors between −6.4% and −93.8%, indicating the benefits
of using a designed input excitation for estimation.

V. CONCLUSIONS

In this paper, we propose a RL framework to optimize the
current excitation for estimating battery parameters subject
to constant model/measurement bias. The framework aims
at maximizing a new objective for optimization, which
considers both the FI of the data and the impact of system
uncertainty. The optimization is achieved by leveraging the
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TABLE I
OPTIMIZATION RESULTS OF TWO APPROACHES UNDER DIFFERENT εs

Approach εs = 0.5 εs = 0.45 εs = 0.4

FI |
∑N

k=1
∂yk
∂θ

| Obj. Value FI |
∑N

k=1
∂yk
∂θ

| Obj. Value FI |
∑N

k=1
∂yk
∂θ

| Obj. Value
Conventional 24.9 0.8 24.1 29.6 0.1 29.5 34.3 0.2 34.1

RL 41.4 0.4 41.0 48.4 0.1 48.3 48.7 0.1 48.6

TABLE II
ESTIMATION RESULTS OF VARIOUS EXCITATIONS WITH TRUE εs = 0.5

Excitation Estimation Error Obj. Value
Open-loop sequence -20.42% -15.8(optimized at εs = 0.4 )

RL policy 2.96% 16.5(trained at εs = 0.4 )
Open-loop sequence -6.46% 7.9(optimized at εs = 0.45 )

RL policy 0.54% 32.1(trained at εs = 0.45 )
1C CC -66.12% -159.9

1C Pulse -6.40% -1.5
FUDS -93.80% -93.3

RL principle to train an optimal policy, which could guide
the generation of the excitation based on feedback of the
state estimates. To address the non-additive property of the
new objective, state augmentation and reward re-structuring
techniques are applied to enable RL. The framework is
then applied to input optimization for estimating a key
battery health-related electrochemical parameter εs under
constant bias. The results have been validated by simula-
tion, demonstrating the advantages of the RL-based new
approach over the direct optimization of input sequence using
a conventional approach. First, the optimization results by
RL achieves more than 43% higher objective value under
the nominal condition (i.e., with perfect knowledge of εs),
indicating the potential of the new approach in finding the
true optimum by reducing the complexity of optimization.
More importantly, when applied to the practical estimation
scenario with uncertainty in target parameter, the closed-
loop policy renders the RL-based approach significantly im-
proved robustness, with one-order-of-magnitude reduction in
estimation error. In ongoing works, this framework is being
extended to incorporate more types of system uncertainties
and applied to parameter estimation for more complicated
models (e.g., the full-order Doyle-Fuller-Newman model).
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