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The Mental Models Training App:
Enhancing verbal reasoning
through a cognitive training
mobile application

Robert A. Cortes®™, Adam B. Weinberger! and Adam E. Green'?

!Department of Psychology, Georgetown University, Washington, DC, United States, Interdisciplinary
Program in Neuroscience, Georgetown University, Washington, DC, United States

Introduction: Reasoning is a complex form of human cognition whose nature has
long been debated. While a number of neurocognitive mechanisms for deductive
reasoning have been offered, one of the most prominent accounts is Mental
Model Theory (MMT). According to MMT, humans are able to manipulate and
represent information for reasoning and problem solving by leveraging the brain’s
evolved visuospatial resources. Thus, when solving deductive reasoning problems,
reasoners build “mental models” of the essential pieces of information conveyed
in the premises, with their relations to each other represented spatially—even
when the information contained within a reasoning problem is not intrinsically
spatial. Crucially, taking a spatially-based approach, such as building mental
models, supports higher accuracy on deductive reasoning problems. However,
no study has empirically tested whether explicitly training this mental modeling
ability leads to improved deductive reasoning performance.

Method: Therefore, we designed the Mental Models Training App, a cognitive
training mobile application which requires participants to complete increasingly
dificult reasoning problems while using an external mental modeling tool. In this
preregistered study ( ), we conducted a between-subjects
experiment (N = 301) which compared the Mental Models Training App to 3
distinct control conditions in order to examine which specific components (if any)
of the training were causally responsible for improved reasoning performance.

Results: Results demonstrate that, when compared to a passive control condition,
the Mental Models Training App led to improvements in adults’ verbal deductive
reasoning performance both during and after the training intervention. However,
contrary to our preregistered hypotheses, the training-induced improvements
were not significantly larger than the effects of the active control conditions—
one which included adaptive practice of the reasoning problems, and one which
included adaptive practice as well as a spatial alphabetization control task.

Discussion: Therefore, while the present results demonstrate the ability of the
Mental Models Training App to enhance verbal deductive reasoning, they do
not support the hypothesis that directly training participants mental modeling
ability yields improved performance beyond the effects of adaptive practice of
reasoning. Future research should examine the long-term effects of repeated
usage of the Mental Models Training App, as well as transfer effects to other
forms of reasoning. Finally, we present the Mental Models Training App as a free
mobile application available on the Apple App store (

), in the hope that this translational
research may be utilized by the general public to improve their reasoning ability.
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1. Introduction

Complex human thinking and reasoning is a recent evolutionary
arrival. The primate brain evolved to interact with objects in space
rather than interact with complex logic structures, so a great deal of
the cerebral cortex is devoted to visuospatial and motor processing
(Byrne and Johnson-Laird, 1989; Waltz et al., 1999; Byrne et al., 2007,
Kravitz et al., 2011). According to a prominent account in cognitive
science—mental model theory (MMT)—human reasoning and
problem-solving co-opts previously evolved neural machinery for
visuospatial and motor processing to internally represent and
manipulate information (Johnson-Laird, 1980, 2010; Tversky, 1991;
Wai et al., 2009). In other words, people form internal, spatially
arranged “mental models” of relevant information, suggesting a
connection between mental modeling ability and spatial cognition
(e.g., related pieces of information are close together in space and
unrelated pieces of information are far apart). Consistent with this
perspective, emerging work indicates that spatial cognition is a
malleable neurocognitive resource that supports deductive verbal
reasoning (Collins and Gentner, 1987; Johnson-Laird, 2010; Uttal
ctal, 2013a,b; Cortes et al., 2022). The well-established role of mental
modeling as a form of spatial cognition that supports verbal reasoning
suggests that, if mental modeling can be trained through explicit
spatialization of information, verbal reasoning performance can
be enhanced. The goal of the present study was to train mental
modeling using a mobile application and test for improvements in
verbal deductive reasoning performance.

Mental model theory has been highly influential in the cognitive
and brain sciences for several decades (Johnson-Laird, 1980; Byrne
and Johnson-Laird, 1989; Goodwin and Johnson-Laird, 2005), and
this literature has described mental modeling as a resource that
generalizes across multiple forms of reasoning. Deductive verbal
reasoning, for example, is supported by the formation and
manipulation of mental models (Knauff and Johnson-Laird, 2002;
Goodwin and Johnson-Laird, 2005; Knauff, 2009). In a deductive
verbal reasoning problem, one must deduce whether a conclusion
logically follows from premises (e.g., Premise 1: The dog is better than
the cat/Premise 2: The cat is better than the frog/Conclusion: The dog is
better than the frog). In such an example, a reasoner might represent the
better option as above a worse option, “spatializing” the concept of
goodness, which is not inherently spatial. Several theories of human
reasoning suggest that these sorts of problems, often called linear
syllogisms, are solved using internal representations which are
spatially ordered (De Soto et al., 1965; Huttenlocher, 1968; Byrne and
Johnson-Laird, 1989; Khemlani and Johnson-Laird, 2012; Ragni and
Knauff, 2013). Notably, the extent to which reasoners are able to apply
such mental models is associated with variability in task performance;
building superior mental models has been associated with higher
accuracy on deductive reasoning tasks (Galotti et al., 1986; Roberts,
2000; Schacken et al., 2014). However, no study has empirically tested
whether it is possible to explicitly training this mental modeling ability.
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Although mental model training is thus-far untested, there is
reason to believe that mental modeling can be improved through
targeted interventions. For instance, many other visuospatial and
motor cognitive resources are trainable and show transfer to untrained
reasoning tasks (Adkins et al., 2006; Forgeard et al., 2008; Sanchez,
2012; Frick and Mohring, 2016; Lowrie et al., 2017). Educational
psychology has also shown promise for training spatial cognition,
which is thought to support mental modeling during reasoning
(Byrne and Johnson-Laird, 1989; Johnson-Laird, 2004; Knauff, 2009).
Meta-analytic evidence indicates that training on a range of spatial
tasks leads to improvement on the trained abilities and may yield
transfer to untrained STEM-related tasks (Uttal et al., 2013a).
Emerging research has highlighted neural and behavioral changes
during verbal reasoning following participation in spatially focused
curricula in real-world classroom (Cortes et al., 2022). While
encouraging, other spatial training studies have failed to produce
lasting transfer (Mix and Cheng, 2012: Xu and LeFevre, 2016).
Notably, none of this work has tested whether it is possible to directly
train the mental modeling resource itself, and whether this would lead
to improved verbal deductive reasoning performance.

Training efforts to improve spatial thinking reflect a growing
emphasis within psychology and neuroscience to use cognitive
training programs to improve general cognitive ability (CGA; Sala and
Gobet, 2019). Generally, these training paradigms follow a similar
logic: If Tasks X, Y, and Z require Cognitive Skill A—and Cognitive
Skill A influence GCA—then training on Tasks X, Y, and/or Z can
transfer to improve GCA. In other words, enhancing a domain-
general cognitive ability is be achieved by a domain-specific training
(Taatgen, 2021).

Most of these cognitive training efforts have focused on working
memory (Jacggi et al., 2008; Shipstead et al., 2012a.b). This is not
surprising given the extensive literature demonstrating the strong
positive relationship between working memory and a range of
cognitive abilities (e.g., executive function, fluid intelligence, verbal
reasoning, and mathematical achievement; Dancman and Carpenter,
1980; Kyllonen and Christal, 1990; Engle et al., 1999). Some of this
work is promising, but in many cases, working memory trainings have
been unable to achieve appreciable effect sizes, do not demonstrate
sustained and/or transferable effects, and have failed to replicate
(Shipstead et al., 2012a,b; Melby-Lervag and Hulme, 2013; Redick
et al, 2013). Indeed, robust meta-analyses have provided strong
evidence that past cognitive training efforts—including but not
limited to working memory paradigms—do not yield transfer for
GCA or its component abilities (Sala and Gobet, 2019).

Although substantial evidence has highlighted the role of
working memory in verbal reasoning (Kyllonen and Christal, 1990;
Klaver, 1997; Ruff et al., 2003), the lack of successful working
memory training effects suggests that targeted training of other
cognitive abilities may be worth investigating. Mental modeling is a
cognitive ability that draws on working memory (Ruff et al., 2003;
Ragni and Knauff, 2013)—as virtually all cognitive abilities do—but
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has direct, mechanistic ties to spatial cognition and verbal reasoning,
and may therefore yield larger effects than efforts to train working
memory broadly. Given the evidence for mental modeling as a
reasoning-general mechanism, the present study was devised to test
whether targeting this specific cognitive ability can produce
sustained reasoning (a domain-general
cognitive ability).

If mental modeling is indeed a viable subject of cognitive

improvements in

training, there are important considerations regarding how to
conduct such a training. Key components of successful cognitive
training paradigms include: adaptive training (e.g., attuned to each
individual’s performance; Kelly et al., 2014), increases in problem
dificulty (Wickens et al., 2013), and performance feedback after each
problem (Larson, 1984). For mental models training in particular,
one promising direction is to externalize reasoners’ internal mental
representations—that is, “build” visible manifestations of the internal
spatial representations of complex mental models during the
reasoning process. The use of external spatialization tools may afford
reasoners better insight into model accuracy through concrete
visualization while also reducing burdens on working memory.
Informed by educational psychology research, spatial tools allow
individuals to better process abstract concepts through concrete
visualization, and that can be measured and compared through
established methods (Hay ct al., 2008). However, it is important that
these tools are as simple and color-less as possible, as visual imagery
can actually impede the reasoning process (Knauff and Johnson-
Laird, 2002). Research on multimedia learning (e.g., translating
verbal content into visual images to improve learning) provides
support for this notion, as overly complex visual environments
during learning can lead to extraneous cognitive processing that
distracts from the core processes of the learning paradigm, therefore
impeding optical instructional outcomes (Mayer, 2009, 2014;
Makransky et al., 2019).

Successful efforts at mental modeling training via a simple
smartphone application could allow for increased growth in
accessibility of such trainings, given the ubiquity of such devices
(Poushter, 2016). However, most “brain training” mobile applications
are not empirically validated by scientific research before released to
the public—and when these apps are scientifically tested, many of
them turn out to be completely ineffective at enhancing cognition
(Owen et al., 2010; Rabipour and Raz, 2012). This has resulted in a
general distrust of “brain training” apps by the scientific community
(Simons et al., 2016), as well as legal sanctions against certain apps,
such as the FTC’s conviction of Lumosity, for deceptive advertising
(Bainbridge and Mayer, 2018).

Therefore, we designed the Mental Models Training App, which
requires participants to adaptively complete increasingly dificult
reasoning problems while using a spatial modeling tool to construct
external mental models. The present study tests whether this
app-based training improves verbal deductive reasoning, as measured
by the Multidimensional Relational Reasoning Test (MRRT; Cortes
etal., 2021). We compared the Mental Models Training App to several
control conditions (see Methods) in order to examine which specific
components (if any) were causally responsible for improved reasoning
performance. Positive effects of the training would provide support
for the MMT by demonstrating a causal role of mental modeling
ability in verbal deductive reasoning, while also demonstrating the
eficacy of a free mobile app that anyone can use to enhance their own
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reasoning ability. This research is part of a larger effort to translate
basic science into applied tools that have the potential to benefit the
general public (Wethington and Dunifon, 2012). This study was
preregistered on the Open Science Framework.'

2. Materials and methods
2.1. Participants

A total of 382 participants were recruited through Prolific (Palan
and Schitter, 2018), and compensated $37.50 for their participation
in the full study (i.e., $15 per hour for 2.5 total hours). Participation
was limited to adults’ ages 18-35 living in the United States who
spoke English as their first language and had not participated in any
prior studies from our laboratory. Substantial data removal is
standard in online data collection (Buhrmester et al, 2011;
Allahbakhsh et al., 2013; Palan and Schitter, 2018), and was
anticipated in the present study. We included four attention check
items (e.g., please select “True”) throughout the study to screen for
participants who were not properly attending to the questions (e.g.,
rushing through and clicking answers). Thirteen participants were
removed for missing a total of two or more attention checks across
both sessions, 50 participants were lost due to an error during data
collection (sent the wrong survey link), and 18 participants were
removed because they did not complete the entire study. Therefore,
the final sample included 301 participants (57.8% Female, 38.5%
Male, 3.7% Other; mean age=27.4 years, SD=7.3; 63.2% Caucasian,
7.3% Asian, 12.6% African American, 5.6% Hispanic; 0% Native
American, 11.3% Mixed Race/Other; Total Years of Education:
48.1% 16+ years, 37.5% 13—15years, 12.9% 12 years, 1.4% 0—11 years;
Total Household Income: 19.3% Less than $30,000, 18.3% $30,000—
$50,000, 17.9% $50,001-$70,000, 21.6% $70,001-$100,000, 14.3%
$100,001-$150,000, 4.3% $150,001-$250,000, 4.3% More than
$250,000). All study procedures were approved by the Georgetown
University Institutional Review Board, and all participants provided
informed written consent before participation.

2.2. Study design and procedure

A full visual depiction of the study design and procedure can
be found in Figure 1. During the pretest, participants first completed
45 items from the MRRT (Cortes et al., 2021), a measure of verbal
deductive reasoning which served as the main outcome measure of
the study. After completing the MRRT, participants completed
additional measures not analyzed in the present study, with the
demographics survey always administered at the end. The entire
pretest took approximately 1h. The following day (24h later),
participants were randomized into one of the four experimental
conditions (see Experimental Conditions section and Figure 2 for full
description of each condition). The timing of the interventions was
participant-dependent, as the training application was adaptive to
performance in all conditions (except condition 0 in which

1 https://osf.io/4b7kn
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FIGURE 1

CO0 (N=58)
Passive Control Group
No Intervention
Pretest c1 (nest) Posttest

Main Measure = ;

R L Active Control Group === Main Measure
Verbal 1 Adaptive Practi D ¢ Verbal
Deductive i § | SPRe Tee | g | Deductive

. o |
Reasoning i S i i o _ Reasoning
(MRRT) H 2 (MRRT)
Covariates ' < C2 (N=92) i £ i
* Demographics i N i Active Control Group 19
T Alphabetize Spatial Tool | ----
(N=301) (N=301)
C3 (N=93)
Experimental Group
Mental Models Training
1 hour 20-40 minutes 30 minutes

Study design and procedure. Full visual depiction of the study design, cognitive measures administered, sample sizes at each timepoint (for each
group), and complete timing information for the length of tasks/interventions administered as well as the break between each session.

participants received no intervention), however overall average
completion time was approximately 32 min. After completing their
respective version of the mobile training application, participants were
provided a mandatory 10-min break. Then, all participants completed
an appropriately counterbalanced version of the MRRT as a posttest
measure of verbal deductive reasoning (to measure change in
performance from pretest). The posttest took approximately 30 min.
All participants completed the entire study on their iPhones.

2.3. Verbal deductive reasoning

Verbal deductive reasoning was measured with the MRRT
(available for use at https://osf.io/qfvp2/; Cortes et al., 2021). Within
each MRRT problem, 23 premises and a conclusion were presented
(e.g., “Premise 1: Tim is above and the right of John/Premise 2: Bob
is above and to the right of Tim/Conclusion: John is below and to the
left of Bob”) and participants were instructed to respond with “True” if
the conclusion necessarily follows from the premises or “False” if the
conclusion could possibly be false (i.e., if it is clearly false from the
information in the premises or if the solution is indeterminate).
Participants were given up to 90s to complete each problem and were
instructed to solve every problem in their head without the use of
pencil/paper or their fingers. The problems in the MRRT were
systematically varied along the following stimulus properties:
Number of Premises (2 or 3), Number of Dimensions (1 or 2),
Relation Type (Spatial or Non-spatial), and Solution (True, False, or
Indeterminate). The MRRT was used during pretest, training, and
posttest—each implementation contained a different set of names (all
two-syllable male names from ranks 50—-100 in the list of popular
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names from the 1990s? in order to prevent participants from seeing
repeated problems while preserving (and matching) the underlying
stimulus qualities. Two different versions of the MRRT were created
(A and B) for the pretest and posttest, both of which contained 45
problems with the same stimulus properties and overall average
problem dificulty (72% accuracy), but with different specific names
and wording—these versions were counterbalanced across all
participants, equally across each of the conditions. For example, half
of the participants in each condition completed version A in the
pretest and version B in the posttest, while the other half completed
version B in the pretest and version A in the posttest. The version of
the MRRT in the training was divided into levels based on stimulus
properties (number of premises and number of dimensions) which
have been empirically proven to impact problem dificulty (for more
details, see Experimental Conditions, Figure 3, and Cortes et al.,
2021). The full stimuli for version A, version B, and the training
version of MRRT can be found at https://osf.io/a8zyn/.

2.4. Experimental conditions

2.4.1. Condition 0: Passive control group—no
intervention

In order to control for the practice effects of completing the
MRRT during the pretest and test the effects of each condition against
a truly passive control group, Condition (0 was implemented such that

2 https://www.ssa.gov
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| Condition 0: Passive Control Group — No Intervention |

. NA |

| Condition 1: Active Control Group — Adaptive Practice |

one cycle

« Adaptive practice of MRRT
« 3cycles per level
« 4 levels of progressive difficulty
» Correct/Incorrect Feedback after each problem

Condition 2: Active Control Group — Alphabetize Spatial Tool

one cycle

+ Adaptive practice of MRRT
» 3cycles perlevel
* 4 levels of progressive difficulty
+ Correct/Incorrect Feedback after each
problem
+ Alphabetize Spatial Tool control
» Used AFTER each problem to
alphabetize names
« Different set of names than
previous problem
» Verbal explanations after using the
tool

Condition 3: Experimental Group — Mental Models App

one cycle

FIGURE 2

training levels within each condition can be found at https://osf.io/a8zyn/.

]
* 4 levels of progressive difficulty
° » Correct/Incorrect Feedback after each problem
© ® + Spatial Modeling Tool
« Used DURING each problem to create mental
% model of the current names in premises
« Verbal explanations after solving with tool
— « Spatial explanations after solving without tool

Key components of each condition. Full visual presentation of the app interface for each condition (Left), as well of the key training components of
each condition (Right). The app screenshots (Left) represent one cycle from one level, however the design and structure was the same across all 4
levels of the training (as well as each of the 3+ cycles in each level) in each condition. Complete screenshots of the entire instructions section and

Adaptive practice of MRRT
3 cycles per level

participants did not complete any intervention (i.e., they did not
download any training app) and simply completed the MRRT posttest
24 after they completed the pretest.

2.4.2. Similarity across all conditions (excluding
Condition 0)

All training conditions (Conditions 1-3) were completed by
participants on their iPhones through the TestFlight application,
which allowed participants to download a specific version of the
training app using a condition-specific password provided by the
researchers. Upon opening the app, participants entered their Prolific
ID number along with the condition-specific password. The title of the
app (“Reasoning Training”), the instructions provided about the
reasoning problems (e.g., “Welcome to the Reasoning Training app.
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This app is designed to help you improve your reasoning skills. The
training will get increasingly dificult as you go on, and it is very
important that you follow the instructions so that the training is
effective””), and the overall structure of the app (adaptive reasoning
training with increasingly dificult problems) was kept the exact same
across all conditions (see Figure 2) to create a uniform participant
experience and ensure that any group differences were related to
specific and intentional differences created between conditions.
Within each app, participants were instructed to solve all problems in
their head and were given optional 3 min breaks between each level of
the training. Participants had 90 total seconds to solve each
problem—755s to view the premises and reason about them, and once
participants pressed the “conclusion” button, the conclusion would

appear and participants had 15s to response “Yes” for necessarily true
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| Spatial Nonspatial
1 dimension Premise 1: Tim s to the right of John. Premise 1: Tim is more certain than John.
2premise  premise 2: Bob is to the right of Tim. Premise 2: Bob is more certain than Tim. BOB
Conclusion: John is to the left of Bob. Conclusion: John is less certain than Bob.
2 dimension Premise 1: Tim is above and the right of John. Premizer;] : Tieri]s more certain and more BOB
i excited than John.
2premise  promise 2: Bob is above and to the right of Tim.
(D . X Premise 2: Bob is more certain than and more
Conclusion: John is below and to the left of Bob. excited than Tim.
-
I I I Conclusion: John is less certain and less
excited than Bob.
>| L 1 dimension Premise 1: Tim is to the right of John. Premise 1: Tim is more certain than John.
3 premise Premise 2: Bob is to the right of Tim Premise 2: Bob is more certain than Tim.
| 9 : : BOB
Premise 3: Pete is to the left of John. Premise 3: Pete is less certain than John.
Conclusion: Pete is to the left of Bob. Conclusion: Pete is less certain than Bob.
2 dimension Premise 1: Tim is above and to the right of John. I;rem‘ijsit Tim is more certain and less excited @
i t .
3premise  premise 2: Bob is below and the right of Tim. an Jonn
. . Premise 2: Bob is less certain and more BOB
Premise 3: Pete is above and to the left of John. excited than Tim.
Conclusion: Pete is above and to the left of Bob. Premise 3: Pete is more certain and less
excited than John.
Conclusion: Pete is more certain and less
excited than Bob.
FIGURE 3

Levels within the mental models training. Full description of the problem types included in each level of the training app in Conditions 1-3. The MRRT
problems in these levels were empirically proven to be increasingly dificult (Cortes et al.,, 2021). The normative average accuracy was 80% for the
problems in level 1, 73% for the problems in level 2, 72% for the problems in level 3, and 66% for the problems in level 4.

or “No” for not necessarily true. The purpose of this problem timing
was to ensure that participants fully solved the problems and processed
all of the premise information, rather than focusing solely on the
conclusion and using process of elimination. In Condition 3, this
ensured that participants fully constructed a mental model before
attempting to solve the problem. After each problem, participants
received feedback on whether they answered the problem correctly or
incorrectly (“Correct” vs. “Incorrect”).

In all training conditions, participants completed the same 4 levels
of increasingly dificult MRRT problems (see Figure 3). The verbal
deductive reasoning problems in these levels were empirically proven
to increasingly dificult based on normative accuracy data (Cortes
etal., 2021; Figure 3). Level 1 contained two premise, one dimensional
problems with both non-spatial and spatial wording (average
accuracy=_80%); Level 2 contained two premise, two dimensional
problems with both non-spatial and spatial wording (average
accuracy=73%); Level 3 contained three premise, one dimensional
problems with both non-spatial and spatial wording (average
accuracy=72%); and Level 4 contained three premise, two
dimensional problems with both non-spatial and spatial wording
(average accuracy=66%). See Figure 3 for full details of each level® for
the exact problems within each level. Within each level, participants
had to complete 3 successful cycles to advance to the next level. A
successful cycle entailed completing two reasoning problems in a row
with the correct answer—some of the components within the cycles

3  https://osf.io/a8zyn
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differed based on condition (see Figure 2 and the Condition 1-3
sections below). After each problem, participants received feedback
on whether they answered the problem correctly or incorrectly
(“Correct” vs. “Incorrect”). At the end of the app, participants were
redirected to a survey which included a mandatory 10-min break,
followed by the posttest MRRT. Complete screenshots of the entire
instructions section and training levels for each condition (1-3) can
be found at https://osf.io/a8zyn/.

2.4.3. Condition 1: Active control group—adaptive
practice

In order to control for the effects of practicing verbal deductive
reasoning problems in a mobile application, Condition 1 was designed
the same as Conditions 2 and 3, except that there was no spatial tool
included in the training. Participants still received instructions for
solving reasoning problems, the problem timing remained the same,
correct/incorrect feedback was still provided after each problem, and
the levels still advanced in the same increasingly dificult manner.
However, the cycles within each level only included 2 successive
reasoning problems (see Figure 2) and there was never any mention
or usage of a spatial tool throughout the training.

2.4.4. Condition 2: Active control group—
adaptive practice with spatial alphabetization
tool

In order to control for the visual, spatial, and motor processes
engaged by using a spatial tool during the reasoning training, Condition
2 matched the design of Condition 3, but provided participants with a
spatial alphabetization tool (Figure 2) instead of the spatial modeling
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tool. In the instructions section of the app, participants were introduced
to the spatial alphabetization tool and instructed to “arrange the names
below in a horizontal line, alphabetically from left to right” (see
Figure 2). Participants were instructed to create several different spatial
structures throughout the training, depending on the number of names
in the premises (e.g., horizontal line, vertical line, triangle, square), and
the direction of alphabetization (e.g., left to right, right to left, top to
bottom, bottom to top, clockwise, counter clockwise) was evenly
distributed across the training.

A key difference from Condition 3 is that, during the levels of the
training, participants in Condition 2 were provided with the spatial
alphabetization tool affer each reasoning problem using a different set of
names than those shown in the previous problem. This design ensured
that participants were not distracted during the reasoning problem (i.e.,
dividing their attention in counterproductive ways) and that they could
not use the alphabetization tool in order to create mental models during
the reasoning problems or retrospectively after solving reasoning
problems. Relatedly, participants in Condition 2 completed cycles with the
following components: 1) complete a reasoning problem without a tool,
(2) alphabetize a separate list of names in the specific spatial configuration
and alphabetical direction, (3) for non-spatial problems, verbally explain
how they used the spatial alphabetization tool to arrange the names to
form the alphabetized shape (4) complete a new reasoning problem, (4)
alphabetize a separate list of names in the specific spatial configuration
and alphabetical direction (see Figure 2). As in all other conditions,
participants had to complete 3 successful cycles to advance from one level
to the next. At the beginning of each level, participants were shown an
example of how the tool could be used to spatially alphabetize the names
from the type of problems included in that level (Figure 2).

Typical responses to the verbal explanation prompt for non-spatial
problems in Condition 2 included: “I put them alphabetically from left
to right,” “I arranged the circles alphabetically from bottom to top in
a vertical line;” and “I placed the names alphabetically in a triangle
starting lower left and clockwise” The prevalence of these sorts of
responses suggested that the spatial alphabetization tool was generally
used as intended. In addition, thorough visual inspection of the
alphabetized shapes created throughout the training by participants
in this condition confirmed that the alphabetize spatial tool was
utilized as intended.

2.4.5. Condition 3: Experimental group—the
Mental Models Training App

The defining feature of the Mental Models Training App
(Condition 3) was that it provided participants with a spatial modeling
tool to create external mental models while solving increasingly
dificult reasoning problems in the app’s levels. The spatialization tool
was introduced during the instructions section of the app, wherein
participants were shown (1) a visual example of how the tool could
be used to represent reasoning problems in a spatial manner, (2) how
to tap in the workspace to create pre-labeled tokens for each of the
names in a reasoning problem, (3) how to move the tokens around
within the workspace to create a mental model for a reasoning
problem, and (4) an example reasoning problem in which they could
use the tool to create a mental model and solve the problem. After
completing the instructions, participants began level 1 of the training.

Within each level of the Mental Models Training App (Condition
3), participants completed cycles with the following structure: (1)
complete a problem using the spatialization tool to create mental
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models of the names in the premises, (2) for non-spatial problems,
verbally explain how they solved the problem using the spatialization
tool, (3) complete a new problem without the use of the spatialization
tool, and (4) use the tool to spatially explain how they solved the
previous problem (see Figure 2). The goal of this process was to teach
participants how to construct mental models externally in a
2-dimensional space and encourage the internalization of this process.
As in all other conditions, participants had to complete 3 successful
cycles to advance from one level to the next. At the beginning of each
level, participants were shown an example mental model for the
corresponding type of problems included in that level (Figure 2).

Typical responses to the verbal explanation prompt for non-spatial
problems in Condition 3 included: “I used the tool similar to above
and below to rank the level of excitement,” “I placed those who were
more patient further to the right than those who were less patient,’
and “I used the visual tool to show the hierarchy” The prevalence of
these sorts of responses suggested that the spatialization tool was
generally used as intended. In addition, thorough visual inspection of
the mental models created throughout the training by participants in
this condition confirmed that the mental modeling tool was utilized
as intended.

2.5. Analytic strategy

In order to assess the effects of each training condition on
reasoning performance (i.e., MRRT accuracy and RT) from pretest to
posttest, we conducted a series of mixed-effects models testing for
condition-by-time interactions. Mixed-effects models are appropriate
when several repeated measurements or observations (Level 1) are
nested within a higher level of data (Level 2; Longford, 1995; Goldstein,
2011). In the present study, stimulus properties of the MRRT (number
of dimensions, number of premises, spatial vs. non-spatial wording,
true vs. false solution) and timepoint (pretest, posttest) were modeled
as a Level 1 variables, and each participant’s demographic variables
(age, gender, income, and education) and condition assignment
(Condition 0, 1, 2, or 3) were modeled as Level 2 variables. Because
we were interested in examining the condition-by-time effects on
MRRT accuracy and RT, we performed separate mixed-effects models
for these two dependent variables. The condition-by-time effect on
accuracy was investigated using a mixed-effects logistic regression
because accuracy was a binary variable (i.e., each individual response
was either correct or incorrect). RT models were estimated via mixed-
effects linear regression. All models estimated fixed effects, given that
the high number of variables included made random slope estimations
computationally infeasible (Bell et al., 2019). All mixed-effects models
were fit using the glmer (for accuracy) and Imer (for RT) commands in
R Studio (De Boeck et al., 2011; Lee and Grimm, 2018; Verzani, 2014).
Significance tests were two-sided.

3. Results

3.1. Descriptive statistics for pretest
variables

Descriptive statics for all variables measured at pretest (separated
by condition) can be found in Table 1. Results indicate that all variables
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TABLE 1 Descriptive statistics for pretest measures across conditions.

10.3389/fpsyg.2023.1150210

Condition Difference (one-way
ANOVA)
N
MRRT accuracy Mean 1% 70% 70% 70% 0.02 0.99
SD 14% 14% 14% 14%
MRRT RT (seconds) = Mean 31.19 33.61 3191 33.02 0.44 0.72
SD 13.82 17.06 10.60 11.99
Age Mean 27.03 26.17 27.57 28.18 0.96 0.41
SD 471 5.42 4.78 1091
Gender Female 60% 53% 61% 56% 0.36 0.78
Male 36% 43% 34% 42%
Other 4% 4% 5% 2%
Income bracket Less than $30,000 26% 16% 16% 20% 0.18 091
$30,000-$50,000 16% 19% 21% 17%
$50,001-$70,000 16% 19% 18% 18%
$70,001-$100,000 22% 28% 21% 18%
$100,001-$150,000 14% 16% 13% 15%
$150,001-$250,000 3% 2% 4% 6%
More than $250,000 3% 2% 7% 4%
Total years of 0-11 2% 2% 1% 1% 0.13 0.95
education
12 12% 12% 12% 15%
13-15 36% 38% 40% 35%
16+ 50% 48% 47% 48%

Condition 0, no intervention; Condition 1, adaptive practice; Condition 2, alphabetize spatial tool; Condition 3, mental models training.

were not significantly different across conditions, indicating that each
condition contained cognitively and demographically equivalent
participants at the start of the experiment (before the various training
conditions were administered). This result provides confidence that
any training-related effects are likely due to the training conditions
rather than extraneous characteristics of the sample in each condition.

3.2. Effects of training conditions on
reasoning performance

We ran two mixed-effects models (Model 1: Accuracy, mixed-
effects logistic regression; Model 2: RT, mixed-effects linear regression)
to examine whether each of the training conditions (1-3) significantly
improved MRRT performance from pretest to posttest, using the
passive control condition with no intervention (condition 0) as the
reference factor level. All models controlled for stimulus properties of
the MRRT problems (relation type, premises, dimensions, and
solution) and demographic characteristics of the participants (Age,
Gender, Income Bracket, and Total Education). Results indicated
significant condition-by-time effects of all three conditions (1-3) on
MRRT accuracy (Table 2) and RT (Table 3). Condition 1 (adaptive
practice) showed the largest training effects compared to condition 0
(passive control), as participants in condition 1 were 1.46 times more
likely to provide the correct response in 3.26 fewer seconds. Participants
in condition 2 (alphabetize spatial tool) were 1.31 times more likely to
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provide the correct response in 1.98 fewer seconds when compared to
condition 0 (passive control). Participants in condition 3 (mental
models training) were 1.35 times more likely to provide the correct
response in 2.22 fewer seconds. Bar graphs of the mean accuracy and
RT for each condition at each timepoint can be found in Figures 4, 5,
respectively. Additional models comparing the effects between the
training app conditions (condition 3 vs. condition 1, condition 2 vs.
condition 1, condition 3 vs. condition 2) revealed no significant
differences in the size of the training effects between conditions 1 and 3
on accuracy (all p>0.38) or RT (all p>0.07).

3.3. Within-training differences between
conditions

Next, we examined differences in performance within the
training app across conditions 1-3 (condition 0 was not included as
it did not include the app intervention). Participants in condition 1
(adaptive training) completed the training in an average of 21.93 min,
which was significantly shorter (about half as long) than the average
completion time in condition 2 (alphabetize spatial tool; 38.43 min)
and condition 3 (mental models training; 37.55min; Table 4). This
was not surprising given that condition 1 contained half as many
training components as conditions 2 and 3 (see Figure 2). For this
reason, the remaining analyses of within-training focus on the
number of problems completed within the training levels, which
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TABLE 2 Mixed-effects logistic regression model for condition-by-time
effects on accuracy (fixed effects).

Accuracy
Predictors Odds Confidence

ratios interval
(Intercept) 2.17 1.23-3.83 0.008
Condition [1] 0.66 0.45-0.97 0.035
Condition [2] 0.74 0.52-1.04 0.085
Condition [3] 0.71 0.50-1.00 0.048
Timepoint 1.00 0.88-1.14 0.956
Relation type 1.09 1.03-1.15 0.002
[Spatial]
Premises [2 1.54 1.46-1.63 <0.001
Premise]
Dimensions [1 1.41 1.37-1.45 <0.001
Dimension]
Solution 0.76 0.71-0.81 <0.001
[Indeterminate]
Solution [True] 1.10 1.03-1.18 0.006
Age 1.00 0.99-1.01 0.806
Gender [Male] 1.14 0.96-1.36 0.128
Income bracket 1.07 1.03-1.12 0.002
Total education 1.08 0.93-1.26 0.299
Condition [1] * 1.46 1.12-1.74 <0.001
Timepoint
Condition [2] * 1.31 1.11-1.53 0.001
Timepoint
Condition [3] * 1.35 1.11-1.59 <0.001
Timepoint
Random effects
o’ 3.29
Too D 0.51
(¢ 0.13
Nip 301
Observations 27,563
Marginal R/ 0.046/0.173
Conditional R?

Condition 1, adaptive practice; Condition 2, alphabetize spatial tool; Condition 3, mental
models training. Condition 0 (no intervention) was the reference level in this model: The
following variables were dummy coded. Relation Type: spatial vs. non-spatial; Premises: two
premise vs. three premise; Dimensions: one-dimension relations vs. two-dimension
relations; Solution: False vs. Indeterminate and False vs. True; Gender: 0, female; 1, male.
Bold values indicate significant effects (p < 0.05).

directly tracks with the number of cycles participants had to
successfully complete before advancing to the following level (i.e.,
how well they were performing within each level).

The total number of reasoning problems completed in the training
was not significantly different across conditions (Table 4). However, in
level 3 of the training, participants in condition 3 (mental models
training) completed significantly fewer problems (mean of 8.47
problems, or 4.1 successful cycles) than both condition 2 (alphabetize
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spatial tool; mean of 11.07 problems, or 5.53 successful cycles) and
condition 1 (adaptive practice; mean of 12.21 problems, or 6.11
successful cycles; Table 4). Completing fewer problems indicated
improved performance within a training level, as 3 successful cycles
(one successful cycle included two subsequent correct reasoning
problems) were required to advance from each level—the higher
number of problems completed within a level, the more problems a
participant answered incorrectly. In sum, participants in the Mental
Models Training App condition answered fewer problems incorrectly
(i.e., performed better) in level 3 compared to the active control
conditions. Level 3 problems contained three premise, one-dimension
reasoning problems. There were not significant differences in number
of problems completed in any other levels (Table 4), though the
differences in progression through the training can be visualized in
Figure 6, which contains a bar graph representing the mean number of
problems completed during the training across conditions 1-3.

3.4. Exploratory analyses

Based on the finding that participants in Condition 3 showed
improved performance on 3-premise problems in level 3 of the mobile
training app (compared to Conditions 1 and 2), we conducted
exploratory analyses testing for a significant three-way interaction
between Condition-Time-Premises on reasoning performance
(examining the posttest training effects in Condition 3 as compared
to the other conditions). Results indicated no significant Condition-
Time-Premises interaction for Condition 3 compared to: Condition 0
(Accuracy: Odds Ratio=1.08, C/=0.66—1.27, p=0.602; RT: Estimated
effect: —0.30s, C/=-1.96-2.56, p=0.795), Condition 1 (Accuracy:
Odds Ratio=1.17, C[=0.60-1.15, p=0.262; RT: Estimated effect:
0.65s, CI=-2.90-1.60, p=0.572), or Condition 2 (Accuracy: Odds
Ratio=0.92, C/=0.81-1.44, p=0.593; RT: Estimated effect: 0.24s,
CI=-2.21-1.73, p=0.813).

4. Discussion

The present study provides empirical evidence that a mental model-
based cognitive training mobile application (“The Mental Models
Training App”) significantly improved verbal deductive reasoning
performance, as indicated by increased accuracy and reduced reaction
time on the MRRT (Cortes et al., 2021), compared to a passive control
group which received no intervention. However, contrary to our
preregistered hypotheses, the training-induced improvements in the
Mental Models Training App condition were not significantly different
than the improvements in both of the active control conditions of the
app intervention—one which included adaptive practice of the MRRT
(condition 1), and the other which included adaptive practice as well as
an alphabetize spatial tool control task (condition 2). Specifically, the
adaptive practice training (condition 1) led to the nominally highest
improvements in reasoning performance, despite taking roughly half
the amount of time (~22 min) as the mental models training and the
alphabetize spatial tool control training (~38 amounts). These results
demonstrate that simply practicing reasoning problems within any
version of the mobile app led to improved reasoning performance
immediately after completing the training.
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TABLE 3 Mixed-effects linear regression model for condition-by-time
effects on RT (fixed effects).

Reaction time

Predictors Estimates Confidence

interval
(Intercept) 37.91 29.97-45.84 <0.001
Condition [1] 5.72 1.26-10.17 0.012
Condition [2] 2.72 —1.30-6.74 0.085
Condition [3] 3.90 —0.11-7.92 0.057
Timepoint —4.51 —5.40 to —3.62 <0.001
Relation type -2.24 —2.63to—1.86 <0.001
[Spatial]
Premises [2 -7.97 —8.35t0—7.58 <0.001
Premises]
Dimensions [1 —6.40 —5.99 to —6.81 <0.001
Dimension]
Solution 0.56 0.09-1.04 0.021
[Indeterminate]
Solution [True] -1.06 —1.53t0—0.58 <0.001
Age 0.15 —0.02-0.32 0.083
Gender [Male] 2.56 0.02-5.11 0.049
Income bracket —0.54 —1.14-0.07 0.084
Total education -1.97 —4.18-0.25 0.082
Condition [1] * -3.28 —4.53t0 —2.02 <0.001
Timepoint
Condition [2] * -1.98 —3.11t0—0.84 0.001
Timepoint
Condition [3] * -2.22 —3.35t0—1.09 <0.001
Timepoint
Random effects
o’ 269.94
Too1p 119.57
ICC 0.31
Nip 301
Observations 27,563
Marginal R/ 0.099/0.375
Conditional R?

Condition 1, adaptive practice; Condition 2, alphabetize spatial tool; Condition 3, mental
models training. Condition 0 (no intervention) was the reference level in this model. The
following variables were dummy coded. Relation Type: spatial vs. non-spatial; Premises: two
premise vs. three premise; Dimensions: one-dimension relations vs. two-dimension
relations; Solution: False vs. Indeterminate and False vs. True; Gender: 0, female; 1, male.
Bold values indicate significant effects (p < 0.05).

We did not find evidence for an additive benefit of the
spatialization tool, nor a closely matched control version of that tool,
for improving reasoning performance after the training. In line with
prior research on cognitive training (Schubert et al., 2014), it is
possible that the practice-based training (in the adaptive practice
condition) may be more effective than strategy-based training (in

the mental models conditioning) at improving reasoning
performance in the short-term (i.e., after one session). Relatedly, the
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additional cognitive demands of the mental models training (i.e.,
creating visualizations of mental models in-between and during
trials) may have produced fatigue effects which were not present in
the adaptive training condition (which took half the time to
complete and did not involve any sort of multi-tasking between
problems). Future research should examine the long-term effects of
repeated usage of the Mental Models Training App, as it is possible
that if the intervention was completed multiple times across several
weeks, and posttest performance was measured on the scale of
months rather than minutes, the Mental Models Training App may
be the most effective at promoting long-term retention of
improvements and overall strategy changes compared to basic
practice in the control condition. Therefore, while the present results
demonstrate the ability of the Mental Models Training App to
enhance verbal reasoning, they do not support the mental models
theory-based hypothesis that directly training participants’ mental
modeling ability yields improved performance beyond the effects of
adaptive, increasingly dificult practice of reasoning problems in a
cognitive training mobile application.

However, we did find evidence that the spatial modeling tool
directly improved performance during the mobile training app.
Specifically, participants in the Mental Models Training App training
completed level 3 of the training (one-dimension, three premise
problems) with significantly fewer total attempts (an average of 8
problems completed compared to 12 problems in both of the control
conditions). Previous research on deductive verbal reasoning has
found that the single most impactful stimulus factor on problem
dificulty is the number of premises (Cortes et al., 2021). In
particular, the increase from two premises to three premises results
in a 10% reduction in accuracy (Cortes et al., 2021), due to the
additional demands a third premise places on working memory
(Klauer, 1997; Johnson-Laird, 2001; Goodwin and Johnson-Laird,
2005). In the present data, access to the spatial modeling tool during
the training completely wiped out this effect on dificulty (0% change
in dificulty compared to 10% in prior data; see Figure 0), indicating
that externalizing mental models improved adaptation when
reasoning becomes more dificult, perhaps by reducing working
memory load during reasoning. However, it should be noted that
this within-training improvement on three premise problems did
not transfer to posttest reasoning performance.

Future research should test for transfer effects of the Mental Models
Training App to other kinds of reasoning, such as causal (Waldmann
and Hagmayer, 2013; Khemlani et al., 2014), temporal (Kelly et al.,
2020), categorical (Copeland, 2006), and visuospatial reasoning (Elliott
and Tyler, 1986; Waschl et al., 2017), all of which are theorized to
be supported by the mental modeling resource (Johnson-Laird, 1980,
2004, 2010; Goel et al., 2000; Khemlani and Johnson-Laird, 2012; Ragni
and Knauff, 2013; Khemlani et al., 2014; Johnson-Laird et al., 2017).
Moreover, research should examine the effects of the intervention on
different age groups, such as older adults where cognitive training has
yielded the most substantial benefits (Willis et al., 2006; Kueider et al.,
2012), or younger children where milestones along their developmental
cascade are significantly predictive of future cognitive abilities (Piaget,
1952; Gibson, 1988; Bornstein et al., 2013; Adolph and Tamis-LeMonda,
2014; Libertus et al., 2016). Given recent evidence demonstrating
transfer effects from spatially enriched education to verbal deductive
reasoning (Cortes et al., 2021), it is possible that an intervention which
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FIGURE 4

Mean accuracy at each timepoint across all conditions. Condition 0, no intervention; Condition 1, adaptive practice; Condition 2, alphabetize spatial
tool; Condition 3, mental models training.
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FIGURE 5
Mean reaction time (seconds) at each timepoint across all conditions. Condition 0, no intervention; Condition 1, adaptive practice; Condition 2,

alphabetize spatial tool; Condition 3, mental models training.

directly trains spatial scanning ability, a core spatial cognitive process Finally, we present the Mental Models Training App as a free mobile
known to support reasoning (Knauff, 2009), may be more effective at  application (available on the Apple App store*), in the hope that it may
producing post-training reasoning performance enhancements than an  be useful for individuals seeking to improve their reasoning ability.
intervention which directly training participants’ reasoning (such as the

Mental Models Training App). Future research should compare the

effects of spatial and reasoning training on posttest reasoning

performance within the same sample‘ 4 https://apps.apple.com/us/app/mental-models-training/id1664939931
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TABLE 4 Total training time and number of problems completed during the app training across conditions 1-3.

Condition One-way ANOVA
N F P

Total Training Time (minutes) Mean 21.93 38.43 37.55 27.61 <0.001
SD 12.02 15.79 14.19

Total number of problems completed in Mean 46.41 46.96 42.14 2.17 0.12

training
SD 17.29 18.05 14.54

Level 1 number of problems Mean 9.51 9.69 8.97 0.65 0.52
SD 5.73 425 3.31

Level 2 number of problems Mean 11.28 12.87 12.27 1.09 0.34
SD 6.26 6.55 6.41

Level 3 number of problems Mean 12.21 11.07 8.47 9.98 <0.001
SD 6.56 5.96 341

Level 4 number of problems Mean 13.41 13.33 12.43 2.17 0.12
SD 5.58 7.73 7.92

Condition 1, adaptive practice; Condition 2, alphabetize spatial tool; Condition 3, mental models training. Condition 0 (no intervention) was not included in this table because participants in
that condition did not complete any form of app training. Bold values indicate significant effects (p < 0.05).

14 .3

12

10

Number of Problems Completed

1 2

Condition
Error bars: +/- 1 SE

FIGURE 6
Mean number of problems completed in each level of the training across conditions 1-3. Condition 1, adaptive practice; Condition 2, alphabetize
spatial tool; Condition 3, mental models training.
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