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Abstract—A central processing unit receives data from all
agents and transmits control commands in a Networked Control
System (NCS) which is centralized. Centralized NCSs have nu-
merous applications in industrial settings due to their efficiency,
simplicity, and cost-effective design. However, centralized NCSs
are vulnerable to false data injection (FDI) attacks. Despite the
fact that researchers have developed detection and mitigation
defense mechanisms during past several years, most of these
methods have focused on systems with linear dynamics. Fur-
thermore, the existing literature only assumes the injection of
FDI attacks on measurement signals. In this paper, we assume
that an adversary has injected the FDI attack into both state
measurements and control signals with nonlinear dynamics while
considering communication noises and disturbances. We propose
a secure nonlinear control design that mitigates FDI attacks in
real-time by combining learning and model-based approaches.
We used Lyapunov stability analysis to design the controller,
estimator, and updating laws of the neural network (NN). In
addition, we selected a network of two robots with Euler-
Lagrange dynamics to illustrate the robustness of the proposed
controller and estimator.

Index Terms—Nonlinear systems; Networked control systems;
Lyapunov stability; False-Data-Injection attack; Nonlinear Ob-
server;

I. INTRODUCTION

Ver the past several years, networked control systems

(NCSs) have emerged as a promising solution for various
industrial applications. These systems have demonstrated the
ability to enhance performance and efficiency by integrat-
ing control algorithms with network communication. In a
centralized NCSs, agents transmit their data to a central
processing unit from which they receive control signals. Such
centralized NCSs have many application in various industrial
settings, including the load frequency control in smart grid
systems, formation flight, manufacturing automation, robotics,
and search and rescue operations [1]-[3]. However, studies
illustrated that that centralized NCSs are not immune to False
Data Injection (FDI) attack [4], [5].

Researchers have studied the negative impacts of attacks
such as FDI attacks during past several years [6]-[10]. Authors
in [7] introduced a category of FDI attacks that are not
detectable by detection algorithms. Another study investigates
the injection of FDI attacks in a control system which is
implemented by a Kalman filter [8]. An optimal attack strategy
against the economic dispatch in integrated energy systems,
underscoring the delicate balance between maintaining oper-
ational efficiency and ensuring system security is explored in
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[11]. A study demonstrated that adversaries can inject FDI
attacks with limited knowledge of the system [9]. Similarly,
authors in [10] demonstrated that the smallest set of hackers
could carry out an undetectable attack. These studies collec-
tively emphasize the vulnerability of NCSs to FDI attacks,
highlighting the importance of designing secure controllers
that can mitigate such threats in the next generation of systems.

Researchers have spent a considerable amount of time
on developing defense mechanism to detect and compen-
sate FDI attacks. These techniques fall into two categories:
learning-based [12]-[17] and model-based techniques [18]-
[24]. Model-based techniques depend on the presence of a
precise observer to estimate the states of a system,. They have
a low computing complexity and are especially well suited
for FDI attack detection in real-time. However, because of
their dependency on a mathematical model, they are not robust
to uncertainties. Despite model-based techniques, learning-
based techniques learn complicated nonlinear systems using
machine learning algorithms. This makes them a great can-
didate for systems that are under uncertainties, noises, and
disturbances. They are therefore quite useful for identifying
FDI attacks. However, due to their computational complexity,
these methods are not ideal for online detection. In addition,
the stability analysis of these methods is frequently more
complicated than that of model-based methods. Here, we
combined both model and learning based techniques and
propose a nonlinear controller and observer to enhance the
accuracy of the nonlinear observer and FDI attack mitigation
while reducing computational complexity.

Mitigation and detection of FDI attacks injected into sys-
tems with linear dynamics has been investigated in the litera-
ture; however, there are a limited number of studies focusing
on real-time mitigation of these attacks. State estimation
challenges under FDI attacks are investigated in [25]. The
study offers strategies to to improve system resilience. An-
other study analyzed the strategic dynamics of FDI attacks
on NCSs through a Switched Stackelberg game model and
revealed critical insights into defense and attack strategies
[26]. An investigation carried out by [8] developed a technique
involving a likelihood ratio test to mitigate FDI attacks. An
observer is developed in [10] to estimate FDI attacks. A joint
algorithm for FDI attack mitigation was formulated in [27],
which simultaneously estimates states and inputs. However,
this technique treated the FDI attacks as an input which
is unknown and utilized a Kalman filter-based observer for
mitigation purposes. These approaches rely significantly on an
accurate system model. An alternative algorithm for FDI attack
mitigation was suggested by [28]. In this method a NN-based
architecture has been developed for mitigation of FDI attacks.
However, this algorithm is designed for linear control systems



and cannot be used for NCSs with nonlinear dynamics. In
addition, the existing techniques in the literature are not able
to mitigate FDI attacks injected to both state measurement and
control input signals.

Despite the existing challenges for mitigation of FDI at-
tacks, the challenges escalate when dealing with NCSs with
nonlinear dynamics. Various methods investigated FDI at-
tacks injected into NCSs with nonlinear dynamics. Yet, these
strategies exhibit limitations under specific circumstances. For
instance, the work presented by [29] developed an approach
to mitigate FDI attacks within a distinct subset of nonlinear
systems, employing a retrospective cost-driven adaptive con-
troller. Nevertheless, this strategy’s applicability is restricted
when dealing with second-order nonlinear systems. In another
investigation, a nonlinear-based estimator to compensate faults
injected into state measurement signals is proposed [30]. The
algorithm uses the power of NNs to perform real-time fault
estimation. However, the stability analysis of this technique
remained unexplored and this strategy is not applicable for
NCSs with second-order nonlinear dynamics. Addressing these
concerns, [31] developed a Lyapunov-based control algorithm
tailored explicitly to alleviate the influence of FDI attacks.
This developed controller can mitigate the overall effect FDI
attacks effectively. However, this technique cannot mitigate
the effect of FDI attacks if they are injected into both control
input and measurement signals. Addressing the existing gap,
this paper proposes a novel Lyapunov-based controller and
observer to mitigate the effect of FDI attacks injected into
both measurement and control input signals of an NCS with
nonlinear dynamics while considering noises and disturbances.

This paper has three main contributions which are summa-
rized as (i) a novel nonlinear observer is developed which
uses a three-layer feed-forward NN in its design, providing a
comprehensive defense mechanism; (ii) a nonlinear controller
is designed using Lyapunov analysis for a class of second
order control system when both of the state measurement
and control input signals are under FDI attacks. This novel
control strategy addresses the challenges posed by FDI attacks,
ensuring the system’s robustness and stability in the face
of attacks, disturbances, and measurement noises; (3) the
controller, observer, and updating laws of NN are developed
through stability analysis ensuring the stability and robustness
of the system under FDI attacks. In addition, we showed that
the tracking error remains bounded while the NCS is under
FDI attacks, disturbances, and measurement noises.

The paper’s structure is described here: Section II describes
the dynamic model of NCS along with the model of FDI
attacks. In Section III, the error signals are defined, along
with the control objectives. The subsequent portion delves into
the design process of the controller and observer. Section V
illustrates the development of FDI attack estimation. Moving
ahead, Section VI delves into the stability analysis which is
used to develop the controller, observer, and FDI attack esti-
mator. To conclude, the assessment of the nonlinear controller
and observer’s performance takes center stage in Section VIIL.
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Fig. 1: A centralized NCS under FDI attacks. An adversary
injects FDI attacks into both measurement and control signals.

II. MATHEMATICAL MODEL

In this study, we considered a centralized NCS with N €
Z~o agents which are indicated by V = {1,2,...,N}.
As shown in Figure 1, an adversary can inject FDI attacks
into both measurement and control signals. In the proposed
centralized NCS, the control center receives the state mea-
surements and generates and transmits the control inputs to the
agents. The communication topology is indicated by a graph
G £ (V,€) which is an undirected, connected, and static,
where £ CV x V is the edge set and V is the node-set.

A. FDI Attacks Model

An FDI attack is defined by the ability of an adversary to get
to control communication channels and inject faults into the
data shared between agents and the centralized control unit.
This form of attack possesses the potential to render an NCS
unstable or less efficient and can be modeled as

Qi(ni, Bi,) = nit) + Ay, (1), (1)

where €2; € R™ is a known linear function, n; € R™ is a
signal under FDI attack and Aj, (t) € R™ is defined as

Aji(t) = 85, (1) + 05,(1), 2)

where 3;, € R™ are unknown, continuous, and bounded FDI
attacks, j € Zso, and 6,,(¢) is the already existed Gaussian
noises in the communication channel. The term 6;, represents
the existing Gaussian noise in the communication channel. For
simplicity of the equations, we modeled it as part of the FDI
attack.

Assumption 1. It is assumed that Aj,(¢) are bounded and
differentiable for all ¢ and j, such that |Aj,(t)] < Aj, can
be hold for all time. In addition, Aj, are known and positive
constants'.

IThe adversary’s aim is to perturb the system’s stable operation by injecting
faulty information while remaining undetected by the anomaly detection
mechanism. Consequently, these FDI attacks can be considered bounded.



B. Dynamic Model of Nonlinear Agents under FDI Attacks

In this paper, we considered a second order model for the
agent ¢ € V as described below

&i(t) = fi(@i(t), 2:(t)) + u;(t) + di(t), 3)

where x;,1;,&; € R™ are the states, n; is the number of
state variables, the control input under FDI attack is denoted
by u € R™, d; €— R™ is a bounded exogenous disturbance,
and f; € R* x [0,00) — R™ is a known and uniformly
bounded nonlinear C? function. The control input and state
measurement signals under FDI attacks can be defined as

ui(t) = Q(ui(t), B3, (1)),

vi(t) = Qi(zi(t), B, (1)), “4)

i (1) = Qi(2:(t), Ba, ().
where the state measurement signals under FDI attacks are
denoted by y;,y; € R™, v € R™ is the control input.
In the real world, should an adversary gain access to the
communication channels, they could inject FDI attacks into
both types of signals, significantly increasing the complexity
of the problem. Addressing and mitigating FDI attacks that
target both state measurements and control signals represent
one of the main contributions of this paper.

Assumption 2. This study assumed that the disturbance is
continuous and bounded and can be shown as ||d;(¢)| < d;
for all time ¢ > ¢y, where the initial time is denoted by ¢y and

d; € Rs( is a known and positive constant [32].

Remark 1. The focus of our study is on a specific type of
nonlinear NCS characterized by a second-order model for
each agent. This model is used where the dynamics of the
agents involve both inertia and damping effects, typical of
mechanical systems like robotic arms or vehicles. Such a
model allowing for a more accurate representation of their
motion and interaction within the network.

III. ERROR SIGNALS AND OBJECTIVE

This paper’s primary goal revolves around developing a
centralized controller that regulates state measurements toward
predetermined trajectories despite the presence of FDI attacks,
measurement noises, and bounded disturbances. Within this
context, a tracking error e; € R™ can be calculated as

ei(t) £ za, (t) — i(t), ®)

where x4, € R™ is the desired trajectory. To facilitate the
stability analysis, let 7; € R™ be an auxiliary tracking error
as

ri(t) £ aiei(t) + &(t), (6)

where a; € R is a positive gain 2.

Assumption 3. It is assumed that the reference trajectory,
T4, is bounded. In addition, we assumed that the first two
derivatives of reference trajectory are bounded by positive and
known constants, i.e. T4, Zq,, T4, € Loo [6].

2The value of «; can be selected by the control engineer through a tuning
process. Several tuning algorithms exist, offering optimization to find the best
values for user defined parameters [33].

The first challenge of this study pertains to the unavailability
of measurement signals, x;, under FDI attacks. As a result, the
error signal e; becomes unmeasurable under attacks. There-
fore, while an adversary injected FDI attacks into an NCS, the
control center receives faulty measurement signals—namely,
y; and g; from agents which are faulty ones. Consequently,
one of the primary objective of this study is to ensure an
accurate tracking even when the state measurements are under
FDI attacks. The second challenge is that the control signals
are under FDI attacks. As the results, while the control centers
transmits u;, the agent ¢ receives u; under FDI attacks that
results in faulty actions by agents. To tackle these challenges,
the secondary objective of this study is to design a novel
observer that can accurately estimate the state measurements
and control signals simultaneously. On another word, the main
objective is to ensure the uniformly ultimately bounded (UUB)
tracking under FDI attacks. The effectiveness of the proposed
nonlinear observer can be quantified by defining an state
estimate error signal x; € R™ as

Ti(t) £ ay(t) — &4(t), (7)

where Z; € R™ is the estimation of state signals. To facilitate
the stability analysis, an auxiliary tracking errors 7 € R™ is
defined to facilitate the stability analysis as

Fi & ol + 1. (8)

Since NCS is measurement noises and disturbances, a fully
model-based nonlinear observer cannot accurately estimate
states. Therefore, there is a need to infuse a NN-based
estimation algorithms for estimation of the overall effect of
attacks. The following error signals is defined to quantify the
performance of the FDI attack estimator as

Ai(t) £ Ait) = Ai(), ©)

where Ai € R™ is the estimate of the overall effect of FDI

attacks A; € R™ and it is defined as
Ai(t) & A, () + @iy, (8) — K, ' Ag,, (10)

where K, € R is a positive user-defined gain.

IV. CONTROL AND OBSERVER DESIGN
A. Nonlinear Controller

The proposed controller is developed using the subsequent
stability analysis. The control signal is designed as

ul(t) = Kuqfl(t) + d}di (t) - fl(xd7 (t)a ‘C.Cdi (t))a (11)
where 7; € R™ is designed as
Filt) £ aiei(t) + éi(t) + A1), (12)

where é;(t) £ z4,(t) —y:(t) is a measurable error signal even
under FDI attacks.

Taking time derivative of (6) and using (3) results the open-
loop tracking error as

Fi(t) = dq, (t) = filzi(t), 24(t)) — wi(t) — di(t) + aiéi(t),

13)



Substituting the control signal (11) into (13) and utilizing (4)
and (1) results

7i(t) = —fi(zi(t), @i () + fi(za, (1), Tq, (t)) — di(?)
— Ky, o [mdi (t) — x;(t) — Ag, (t)]
— Ky, [#4,(t) — @i (t) — Ay, (1)]
— A, (1) + iéi(t) — Ko, Ay £ ei(t),

(14)

Using (6) and further simplification yields
ri(t) = —fili(t), &:(t) + fi(wa, (1), 2a, (1)) — di(t)
— Ko, ri(t) + Ko [Ar (1) + aiddg, (8) — K A, (1)]
— Ko, Ai(t) + airi(t) — afei(t),
5)
Rearranging (15) and utilizing (9) yields
fi = —Kyu,ri(t) + Ko, Ai(t) — ei(t) + x1, (t) + di(t), (16)
where the above auxiliary term x;, € R™ is defined as
X1 (1) 2airi(t) — afei(t) +ei(t)

. . a7
= filwi(t), 2:(t)) + fi(xa, (8), &4, ().

B. Nonlinear Observer

The subsequent stability analysis is used to develop the state
observer as

Z5(t) 2 fil@s(t), 2:(t)) + ug(t) + Ly, ®4(t),

where L., € R denotes a positive user-defined gain and ®; €
R™ is a measurable feedback signal which is defined as

D;(t) 2 §i(t) — @5(t) + auyi(t) — audi(t) — Ai(t).

By substituting (18) and (3) into the time derivative of (8),
the closed-loop observer error can be calculated as

(18)

19)

Fi(t) = =Ly, Fi(t) — & — Ku,Ai + x2, + N1y, (20)

where x2, € R™ is an auxiliary term which is descibed as

X, () £ fiwi(t), &:(t) — fil@i(t), 2(8)) + Zi(t)

_ _ (21)
+ o,y (t) — QT (t)
and N;, € R™ is defined as
Ny, (8) £ dit) + pilds, + (Ko, — Le)Ai, (22)

where p; 21— L, K.
Remark 2. We can use Assumptions 2 and 3 and the Mean
Value Theorem (MVT) to conclude that

Splq‘,(

X1, EANIEAIR (23)

and

Ixa: I < p2; ([lzi D]zl (24)

where p1,(||z:|]) and po,(]|2:]]) Are functions that exhibit
global invertibility, positivity, and non-decreasing behavior
[34]. In addition, z; € R*" is defined as

A

zi:[eT T =T ~T}T'

i Tis Ly Ty

(25)

In the subsequent equations, we have excluded the inclusion
of time dependencies to enhance the simplicity of the analysis.

V. ESTIMATION OF FDI ATTACK

Ka,(t —to)
My, 2 2o ,
AT Ka(t—to) +1

where Mx, : [to, 00) — [0, 1] denotes the nonlinear mapping,
and A, € R denotes a positive gain which is user-defined.
Since ng : [0,1] — [to,00), the overall effect of FDI
attack is able to be mapped into v which a compact domain.
Therefore, the overall effect of FDI attack, A;, can be written
as

te [to, OO)7 (26)

Ai(t) = Ay(MRz[ (V) £ Any, (), v € 10,1 27)

With the proposed nonlinear mapping, Apz,, : [0,1] — R™
is defined over a compact domain3. Thus, a NN structure can
be used to represent the overall effect of FDI attacks as

Apma, (V) = WA, 0 (VA,8:) +ei, (28)

where the NN ideal and unknown weights are denoted by
Wa, € ROwnit)xni and Va, € ROHDXn | the number
of neurons in the hidden layer is denoted by n,,, o(-) €
R+ ig a vector for activation functions 4, and imputes of
the NN is denoted by §; € R(™ D> In addition, &; € R™
denotes an error signal which is bounded such that ||&;|| < &;,
where g; € R denotes a positive known constant.

The overall effect of FDI attack with respect to the spatial

domain can be estimated as
A 2WE a(VES), (29)

where Vi, € RMHDX7n and Wy, € ROmitDxni are
weights of the FDI attack estimate, and d; can be defined as

6 &1, ATT. (30)
Substituting (27), (28), and (29) into (9) yields
Ai=WEo(VEo) - Who (VE&)+e (D

Using a Taylor’s series approximation, we can write the FDI
attack estimation error A; as

Ay =WLo (VEo:) + Whor (VL o) VL 6+ Ny,
(32)
where

No, £ WE o1 (VE8:) VA8 + WIH (VE6:) +2 33)

where H is the higher order terms, Va, = Va, — Va, and
Wa, = Wa, — Wa, are the the outer and inner errors for the
weights of NN respectively, and finally ¢’ is defined as

o (72) ¢ T

[I>

(34)

Remark 3. It has been shown in the literature that IV, is
bounded, i.e., | Ny, || < 7in,, and 7i,,, € R is a positive constant
[37].

3The mapping is conducted to satisfy the Stone-Weierstrass Theorem
described in [35].
4The activation functions should be chosen to be C2 [36].



The updating laws for the NN is calculated based on the
stability analysis in Section VI as

Wa, = proj (ﬁliKiG(VATﬁz‘)(‘I’i)T) (35)

and ]
VA’L = pI‘Oj (§2LKZ(Sl(\I/z)TWgLO‘/(VgL(Sl)) s (36)
where &1, € R™*™ and &, € R™*"™ are positive definite

matrices, proj(-) denotes the projection operator implemented
based on [38], and the signal U, is defined as

v, £ Ta, — &i + 0, — ;. 37
Remark 4. The use of proj(-) function ensures that VAVAt and
V, remain bounded. Therefore, W, and J(VATiéi) remain
bounded. So, we can conclude that Ai remains bounded. In
addition, based on Assumption 1, the overall effect of FDI at-
tack, A;, is bounded. therefore, the FDI attack estimation error,
A,;, remains bounded and we can conclude that ||A;| < A;,

Vt > tg,i € V, and A; € Ry is a known positive constant.

Remark 5. Assumptions 1 and 3 along with Remark 4 can be
utilized to conclude that

||N17|| < N1, (38)

where 71, € R is a positive known constant.

VI. STABILITY ANALYSIS

Let €1,,€9,,€3,,€4,,€65, € Rso be user-defined gains to
satisfy the following sufficient conditions

Ku1€1 €2, €3;

2 + 2 + 27
€1, €3, Kyes,
2 + 2 + 2
and let &1, = 1||2;||? and &, £ ||z, In addition, Let Hyp, :
[to, 20) = R>( be defined as

K, >—l

(39
Ly, >

- - 1 - -

Hp, & -w(WX & ' Wa,) + itr(VATifilvAi)v (40)
Remark 6. Based on Remark 4, we can show that WAi and
VA are bounded. Thus, Hy,_ is bounded and we can show
that |Hp, | < Hp, max, and HL max € R is a positive and

known constant

Theorem 1. Provided that all of the sufficient conditions in
(39) are satisfied, the proposed nonlinear controller in (11),
FDI attack estimator in (29), and nonlinear observer in (18)
ensure globally UUB tracking such that

1 0
limsup |12 < ¢ L (H ot ”)
t—00 &, - zy

Proof. Let V,, : R**1x[0,00) — R be a positive definite,
radially unbounded and continuously differentiable Lyapunov
candidate function that is described as

(41)

1 1.
Vin 262 € + QT?T'L + = 2 T; xz + T Tz +HL1 (42)

2"

The function Vi, in (42) is bounded Lyapunov candidate

function such that
€1, < Vi, <&+ Hi, e 43)

To proof Theorem 1, we first take the derivative of (42) with
respect to time and substitute (6), (8), (16), and (20), which
yields

VLwi :elT(Ti -
o, + ;) + 3T (7
— T — KUzAl + X2, + Nli) + Hin7

Oéiei) + TlT( — Kﬂ"i —e; + Ku,Az

— i) + 7T (= LaFi (44)

Acknowledging the fact that XN/AZ, = —VAi and WA,- = —WAi,
equation (44) can be written as

VLwi :ezT (7“1‘ - aiei) + T;T( —Kir; —e; + KuiAi
7T (r - ax) + rT( -
T; — Ku,;Ai + X2; +N1,ﬂ,)

- tr(VATiggil‘A/Ai)v

+ X1, —‘rdz) +

— (W4 &, Wa,)
Rearranging further yields

VLz,i ——ale e; — Kr rl—i—r X1; +7; d
— il & — Ly, 77 + Ky, (rs — 7) T A 4 71 o,
+ 7Ny, — (W &7 Wa,) — w(VE 65 Vi),
(46)

Utilizing Assumption 2, Remark 3 and 4, an upper bound for
(46) can be obtained as

: 2 2
Vi, <—a;lle|” — K [|ri]]
~ 2 ~
+rill lldill — ai |2i]]” — La, (I7
A7l x|+ 117 N4 K (il ([N
+ Ky, [lri + 74| ( NZiJ(AATﬁi)
—u(WX &, Wa,) - w(VE &, Va,)
Knowing that ¥; = r; + 7; results

(47)

Vi,, < — aqllesl” = K [lrill® + 7]l x|
+ llrill sl — e 201> = Lo, 171
+ 17 |7l [[ N1, I N,
+ K.,
+ K, (WAU(VA5)+WAUI(VA5)VAT§Z-)

—(WE & Wa,) — (VA &, Vi)

(48)
Substituting NN updating laws of (35) and (36) into (48)

cancels the NN terms and results
VL K ||ri)|* + [|r;
~ 2 ~
+ il ldill = ci |Zill™ = La, |7
017l ez, |+ N7 NG|+ B, (73]l No,
+ K,

< —ajlel? -

(49)




Applying the Young’s Inequality, terms in (49) can be upper
bounded as

=2
€1; 2 n,,.
Al N || < =2 |75 — 50
s [l N [l < 5=l * e (50)
€2, 2 JzQ
illlldil] < i 5 51
Il < Sl + 5 5
€3; 2 Ly 2
sl I < ==l +f3_p11(llzi\|)\\2il\, (52)
N < Sl + 2 (53
T = Ti a.
L=y €4,
~ €3; 1~ 112 L, 2
7l Izl < ==l +T€3_p2i(llzz‘\|>\\2il\ ; (54)
N < S+ 2 (59)
s R —
! 2 2¢s,
Using (50)-(55), (49) can be written as
. €3,
Wﬁﬁ—aWMF—KNMF+§WWW
L, 2 & 2, @
+ g ARzl + Gl + 5
- ~ €3, 1~
= a7 = L, 1750 + 2 742
L s 2, €2 T (56)
+ g ARl + G + 2
Ky e, 2 Kutﬁgh
S+
Kui65i ~ 112 uzﬁ"l%,l
Ty I
Simplifying further results
Vi, < —aillesl® — o, [Irill* — i 3% — az, 7]
1 (57)
+Tp?(||Z¢II)IIZiIIQ+sO¢,
€3;
where ¢; is defined as
) AKuiﬁgLi Kuzﬁ%l sz T_Li (58)
& 2611: 2€5i 262i 2€4i ’
and p?(||z]|) is defined as
pi (lzill) 2 o7, (l1zil) + o3, (l2il)), (59)
and o, and ag, can be defined as
oy &, - Bwen @ & (60)
¢ ¢ 2 2 2
A €4, €3 Ku.€5
&L, — — - = i 61
@2 TR T T 2 (61

where o, and a; are positive constants given the sufficient
conditions defined in (39). Therefore, inequality in (57) can
be written as

. 3, 1 asg;
Vi, <= =" = 5—pi (all) ) llz]* = = ll=il* + i,
2 2, 2
(62)

where a3, = min{a;, ai,,as,}. Since, the Lyapunov candi-
date function in (42) is bounded based on the inequality in
(43), the expression in (62) can be upper bounded as

Qs ag;

Vi, < ==V, + i;max + Pi- (63)
¢ 527; ‘ 527;
Solving the differential equation in (63) yields
as,
Vi, <Vi,, (to)exp (— 53‘ (t — to))
b (Homo+ 22 (1 exp (22 (1 -19)) ).

0131. 627;

(64)

Considering the inequality in (43), equation (64) can be used
to get the upper bound given in (41). Therefore, we can
conclude that z; is bounded and subsequently we can show
that e;, r;, &; € Loo. The control designed in (11) can be used
to conclude that u; € L. [ |

VII. SIMULATION ANALYSIS

In this section, we proceed to assess the efficacy of the
formulated nonlinear controller, observer, and FDI attack esti-
mator within the context of NCSs characterized by nonlinear
dynamics, while being exposed to FDI attacks, disturbances,
and measurement noise. To facilitate this evaluation, an NCS
involving two-link planar manipulators is taken into consider-
ation. For the simulation simplicity, agents are considered to
have an Euler-Lagrange dynamic model as described below
(6], [34]:

{uli(t)] _ [ph + 2p3,c08(y2, )

P2, + p3icos(y2i ):| |:$1,:|

U2, (t) p2, + pgicos(y2i) b2, 56.21‘
_p3iSin(y2i)j"2i _pSiSin(yQi)(j"li + ‘/L‘Ql) j"li
p3iSin(y21‘)jj1i 0 j:‘gi

far, 0 T, dy, .
i { 0 fd%} LJ + [d%} Vi e (1,2},
(65)

where p1, = 3.473 kg - m?, pa, = 0.196 kg - m?, p3, =
0.242 kg-m?, fq1, = 5.3 Nm-sec, and finally fgo, = 1.1 Nm-
sec.

Additionally, in (65), the measurements signals, y;, and y;,
are not equal state variable when the system is under attack
and measurement noises and they are defined as

v = Qi(zj,, B1,), V5 € {1,2}, (66)
and
Vs = Qi(d4,, Ba,), Vi € {1,2}
The desired trajectories for the initial agent are chosen
similar to the literature [6] for comparison reasons as
50[1 — exp(—0.01£3)] x cos(1.5t)
zay () = [30[1 — exp(—0.01#3)] x cos(1.5t)} deg,
and the desired trajectories of the second agent is selected as
3
= [ e oo

In addition, we added exogenous disturbances to both of agents
which are defined as

dy, (t) = 0.002sin(0.1¢),

(67)

(68)



and

dy, (t) = 0.001sin(0.5¢), (69)

where ¢ € [1,2].

The FDI attacks denoted as (31,, B2,, and B3, which are
attacks injected to state measurement and control input signals
respectively. We considered that FDI attacks are injected to
both of the robots and they are illustrated in Figures 2 and 3.
The errors for the position and angular velocity are illustrated
in Figures 2 and 3 where the first and second Figures are
related to the first and second robots respectively. The results
clearly illustrate that the proposed nonlinear controller is
resilient to FDI attacks that are injected into both control
input and measurement signals. To compare the proposed
nonlinear controller with a traditional controller’. In addition,
we simulated the proposed work in [6] and compared the result
with our proposed secure controller. We calculated the root
mean square error (RMSE) and included the results in Table
I. Furthermore, we calculated the RMSE of the estimation
error for the effect of FDI attack to quantify the performance
of the FDI attack estimator. The FDI attack estimation for the
first and second agents are 0.0738 and 0.5351 respectively.

TABLE I: The performance Comparison of the proposed
controller with traditional controllers for agents under FDI
attacks.

Agent  Proposed controller ~ Controller in [6]  Traditional controller
1 0.0164 0.0521 0.1093
2 0.0375 0.0625 0.1254

VIII. CONCLUSION

In this study, we have presented a novel Lyapunov-based
control strategy with the primary objective of ensuring precise
tracking within Nonlinear Control Systems operating under the
influence of FDI attacks, external disturbances, and measure-
ment noises. It is noteworthy that our approach differentiates
itself from conventional control algorithms found in existing
literature by addressing a specific and challenging scenario: the
injection of FDI attacks into both state measurements and con-
trol input signals. To achieve this, we have introduced an inno-
vative anomaly detection algorithm that seamlessly integrates
model-based and learning-based observers. This amalgamation
of techniques allows us to rapidly and accurately detect and
estimate the impact of FDI attacks in real-time. Notably,
the updating laws governing the behavior of the NN were
developed through using Lyapunov stability analysis, ensuring
the reliability and robustness of our proposed methodology. To
comprehensively evaluate the efficacy and resilience of our
proposed approach, simulation analysis was conducted. These
simulation results demonstrate that our proposed controller,
nonlinear observer, and FDI estimator, offering valuable re-
siliency to NCS used in real-world applications.

Data availability statement:
The data that support the findings of the numerical results are
available from the authors upon reasonable request.

5The proposed controller without an FDI attack estimation is considered as
a traditional controller.
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Fig. 2: Sub-figure (a) illustrates the Position error for the first
robot and sub-figure (b) shows the angular Velocity error.
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